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Abstract

Objective: A major challenge in the care of preterm infants is the early identifi-

cation of compromised neurological development. While several measures are

routinely used to track anatomical growth, there is a striking lack of reliable

and objective tools for tracking maturation of early brain function; a corner-

stone of lifelong neurological health. We present a cot-side method for measur-

ing the functional maturity of the newborn brain based on routinely available

neurological monitoring with electroencephalography (EEG). Methods: We

used a dataset of 177 EEG recordings from 65 preterm infants to train a multi-

variable prediction of functional brain age (FBA) from EEG. The FBA was vali-

dated on an independent set of 99 EEG recordings from 42 preterm infants.

The difference between FBA and postmenstrual age (PMA) was evaluated as a

predictor for neurodevelopmental outcome. Results: The FBA correlated

strongly with the PMA of an infant, with a median prediction error of less than

1 week. Moreover, individual babies follow well-defined individual trajectories.

The accuracy of the FBA applied to the validation set was statistically equivalent

to the training set accuracy. In a subgroup of infants with repeated EEG record-

ings, a persistently negative predicted age difference was associated with poor

neurodevelopmental outcome. Interpretation: The FBA enables the tracking of

functional neurodevelopment in preterm infants. This establishes proof of prin-

ciple for growth charts for brain function, a new tool to assist clinical manage-

ment and identify infants who will benefit most from early intervention.

Introduction

Preterm birth is a substantial risk to infant health. While

mortality rates have dropped considerably over recent

years due to improvements in clinical care, these infants

remain at significant risk of neurodevelopmental delay

and a host of other chronic impairments in later life.1,2 It

is, therefore, of critical importance to reduce the exposure

of the preterm infant to neurological adversities while in

the neonatal intensive care unit (NICU), and to identify

those infants who will benefit most from early interven-

tion.3 Recent advances in neurological care have also

stressed the need for improving early functional biomark-

ers of neurodevelopment to expedite cycles within clinical

intervention trials.4

Monitoring physiological and anatomical growth is

crucial for clinicians when optimizing the care of very or

extremely preterm infants. Critical time periods for the

direction of care are usually the first days after birth, the

time of discharge from tertiary care to step-down units,

ª 2020 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any

medium, provided the original work is properly cited.

891

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/328856164?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0002-5146-8450
https://orcid.org/0000-0002-5146-8450
https://orcid.org/0000-0002-5146-8450
mailto:
http://creativecommons.org/licenses/by/4.0/


as well as the follow-up visit at term-equivalent age. Elec-

troencephalography (EEG) is widely used for early thera-

peutic decisions and the prediction of

neurodevelopmental outcome in preterm infants.5,6

Assessing brain maturity via the visual interpretation of

the EEG during an infant’s stay in the NICU has been a

part of clinical practice for decades.7 Its use complements

traditional anatomical measures such as weight, length,

and head circumference. However, the clinical use of EEG

in the NICU is complicated by difficulties in interpreta-

tion and the availability of expertise to perform interpre-

tation.8 Computer-assisted analysis presents an

opportunity to solve both problems by providing simpli-

fied EEG measures that can be interpreted by clinical

staff, on demand and in real time.

The concept of brain age is one such measure than can

be automated.9 A lag between estimated functional brain

age (FBA) from the EEG and the postmenstrual age

(PMA) of the individual – the predicted age difference

(PAD) – holds potential as a functional biomarker for use

in neuro-intensive care. We have previously shown that it

is possible to construct computational measures that

emulate visually observed features of maturation10,11 and

correlate with pathological changes in neurological func-

tion.12,13 Recent advances in computational neuroscience

suggest that the EEG contains markers of brain function

that are not readily discernible by visual EEG review.14

Key information lies within the widespread network of

intermittent bursting that dominates early cortical activ-

ity.15 This developmentally unique activity is known to be

crucial for supporting neuronal growth and guiding early

brain wiring.16 It changes rapidly over the last trimester,

is sensitive to endogenous and exogenous disturbances,

and is predictive of future neurodevelopment.17-19 Here,

we incorporated novel measures of the EEG into an anal-

ysis of the functional maturity of the preterm brain. We

then determined the efficacy and validity of automated

EEG analysis as a reliable biomarker of the functional

maturity of the preterm brain and assessed its potential as

a predictor of neurodevelopmental outcome.

Materials and Methods

This study employed two different datasets of serial EEG

recordings of preterm infants recorded from NICUs in dif-

ferent countries. The first dataset (recorded in Vienna: 65

infants, 177 EEG recordings) was used to train and evaluate

the FBA measure, as well as investigate the use of FBA as a

predictor of neurodevelopmental outcome (Fig. 1). The

second dataset (recorded in Utrecht: 42 infants, 99 EEG

recordings) was used to validate the FBA measure trained

on the first dataset. Infants were born before 29 weeks ges-

tation, with EEG recorded serially at 25–39 weeks PMA

(Vienna) or 25–34 weeks PMA (Utrecht). We used

machine learning techniques to form an estimate of FBA

using quantitative EEG (qEEG) variables that can be

grouped into three categories: phenomenological analysis,

burst analysis, and other recently developed analyses

(Table S1 in the Supporting Information).

Data acquisition

The training dataset consisted of 67 preterm infants

admitted to the NICU at the Vienna General University

Hospital, Austria (see Table 1). Infants were included in

the study cohort if they were born before 29 weeks gesta-

tional age (GA), medically stable at the time of EEG

recordings, and parental consent was received. EEG was

acquired with nine scalp electrodes using a Brain Quick/

ICU EEG (MicroMed, Treviso, Italy) at a sampling fre-

quency of 256 Hz. Electrode positions reflect the 10-20

international system (modified for neonates) and were

located at Fp1, Fp2, C3, C4, T3, T4, O1, O2, with a refer-

ence at Cz. A bipolar montage (double banana) was used

in analysis: Fp1-C3, C3-O1, Fp1-T3, T3-O1, Fp2-C4, C4-

O2, Fp2-T4, T4-O2. The EEG was recorded as soon as

possible after birth and at fortnightly intervals until term

equivalent age, where possible. Comorbidities and medi-

cations at the time of recording are listed in Table 1.

Each EEG recording was split into 1 h epochs (with a

75% overlap). Epochs with excessive artefact were

excluded from further analysis (see Table 1). GA was

defined according to the last menstrual period (LMP). If

the LMP-based assessment of gestation deviated consider-

ably from ultrasound findings in the first trimester, ultra-

sound measurements were used as a surrogate measure of

LMP. PMA, defined as the sum of GA and postnatal age,

was used as the benchmark, true age of an infant.

The neurodevelopmental outcome of infants was

assessed at ages 1 year and 2 years (Bayley Scales of

Infant Neurodevelopment II and III — BII and BIII,

respectively; assessed against German norms). Of the 67

preterm infants initially included in the study, 2 were

assessed with BII at 1 year, 19 were assessed with BII at

2 years, 35 were assessed with BIII at 2 years, and 11

infants were not assessed for neurodevelopmental out-

come. Infants were stratified according to outcome using

the following rules applied to the latest available assess-

ment (either 1 year or 2 years): normal (mental develop-

mental index and physical developmental index greater

than 85 [scale II]; or cognitive index, language index, and

motor index greater than 85 [scale III]), or abnormal (ei-

ther mental developmental index or physical developmen-

tal index less than 70 [scale II]; or either cognitive index,

language index, or motor index less than 70 [scale III]).

Those infants with intermediate scores that did not fit
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into the normal or abnormal categories were categorized

as mildly abnormal.

A summary of the database before and after the rejec-

tion of epochs with an excessive amount of artefact is

presented in Table 1. Data collection was approved by the

local ethics committee and written, informed, parental

consent was received for each infant included in the data-

base (Medical University Vienna, Austria; study protocol

EK Nr 67/2008).

Data acquisition for independent, validation
dataset

We used an independent dataset to validate the multivari-

able models of age prediction. This validation dataset

contained EEG recordings from 43 neonates admitted to

the NICU at the Wilhelmina Children’s Hospital, Utrecht,

Netherlands. The data were collected as part of a multi-

center European study.21 Infants were included in this

Figure 1. Data acquisition, training, evaluation, and testing of the FBA. The histograms depict the distribution of EEG recordings with PMA (in

weeks) in each dataset. The bottom row illustrates the analyses corresponding to each dataset. PAD is the predicted age difference between

functional brain age (FBA) and post-menstrual age (PMA).
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study if they were born less than 28 weeks GA and

informed, written parental consent was received. Infants

were excluded if the presence of chromosomal or congen-

ital abnormalities were identified and if the neuro-moni-

toring was performed with devices other than the BrainZ

BRM3 monitor (Natus Medical Incorporated, Seattle,

USA). Long duration EEG recordings (~72 h) were

recorded as close as possible to admission, followed by

shorter recordings (~4–6 h) at weekly intervals (up to a

postatal age of approximately 4 weeks). EEG was recorded

with a BrainZ BRM3 monitor and needle electrodes at a

sampling frequency of 256 Hz. Two derivations were

recorded and used in the analysis: F4-P4 and F3-P3. All

neonates had a neurological examination and psychologi-

cal testing at 30 months of corrected age (Bayley Scales of

Infant and Toddler Development III; assessed against

Dutch norms). Neonates with normal neurodevelopmen-

tal outcome at this age were included in the validation

cohort (normal was defined as per the Vienna dataset;

n = 43 infants satisfied these criteria). The data collection

protocol was approved by the local medical ethics com-

mittee.

EEG preprocessing

EEG recorded in an intensive care environment is prone

to contamination from electrical activity that is not corti-

cal in origin. All data were filtered with a high pass filter

(Butterworth, 4th order, cutoff frequency at 0.5 Hz) and

then a low-pass filter (Butterworth, 6th order, cutoff fre-

quency at 16 Hz) to eliminate high frequency activity that

is more commonly associated with artefacts, including

muscle activity.8 EEG recordings were then segmented

into 1 h epochs. To account for further artefacts, yet

include as many 1 h EEG epochs as possible, we used

automated rejection of EEG epochs with excessive arte-

fact. We did not analyze epochs with considerable spatial

imbalance in amplitude (EEG derivations with a factor of

2 difference in mean amplitude from any other

Table 1. A summary of infants and EEG recordings before and after

application of artefact rejection.

Development: Vienna Initial

Post-artefact

rejection

gestational age (weeks) 25.3 (24.5–27.0) 25.3 (24.5–27.0)

birthweight (g) 707 (605–920) 704 (604–922)

sex (m:f)† 34:31 33:30

PMA of EEG recording

1st 27.0 (26.6–29.4;

n = 67)

27.9 (26.7–29.6;

n = 52)

2nd 30.8 (29.2–31.8;

n = 59)

31.0 (29.5–31.8;

n = 43)

3rd 33.7 (32.0–34.4;

n = 54)

33.6 (32.0–34.4;

n = 46)

4th 35.3 (33.1–36.4;

n = 37)

35.2 (34.1–36.0;

n = 36)

5th 36.5 (35.2–37.4;

n = 16)

36.4 (34.9–36.7;

n = 9)

6th 38.6 (n = 1) 38.6 (n = 1)

Intraventricular hemorrhage 14 (I/II = 10,

III/IV = 4)

14 (I/II = 10,

III/IV = 4)

Periventricular

leukomalacia

2 (I/II = 2) 1 (I/II = 1)

Necrotizing

enterocolitis

3 3

Chronic lung

disease

19 19

Patent ductus

arteriosus

49 48

Medications at EEG recording

No medication 15 (6%) 10 (6%)

Caffeine 195 (83%) 152 (86%)

Morphine 12 (5%) 10 (6%)

Inotropes 5 (2%) 5 (3%)

Doxapram 8 (3%) 5 (3%)

Anticonvulsants 2 (1%) 0 (0%)

Dexamethasone 1 (0.4%) 1 (0.6%)

Missing data 14 (6%) 9 (5%)

Infants Recordings 1 h epochs

Initial 67 234 1686

Post-artefact rejection 65 177 1137

Outcome

Normal 20 (100%) 57 (76%) 376 (65%)

Mildly abnormal 18 (95%) 57 (78%) 338 (73%)

Abnormal 16 (94%) 41 (75%) 238 (62%)

Unknown 11 (100%) 22 (71%) 185 (71%)

Validation: Utrecht Initial Post-artefact rejection

Gestational age (weeks) 26.9 (26.0–27.6) 26.9 (26.1–27.6)

Birthweight (g) 920 (830–1068) 920 (830–1070)

Sex (m:f) 27:16 26:16

Infants 43 42

Recordings 105 99

1 h epochs 6561 6101

For outcome, percentages refer to the number of infants/recordings/

1 h epochs that were in the initial set that passed the artefact rejec-

tion stage, for medications percentages are based on the number of

recordings in the initial and post-artefact rejection sets, respectively

and other values are presented as median (interquartile range). For

intraventricular hemorrhage and periventricular leukomalacia, roman

numerals indicate increasing grades of severity; assessed by cranial

ultrasound.20

†Data missing from two infants.

(Continued)

Table 1. Continued.
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derivation), persistent excessive amplitude (greater than

25% of the recording with burst amplitudes greater than

500 µV), or persistent low amplitude (greater than 50%

of the recording with EEG activity less than 5 µV).

Prediction of post-menstrual age using qEEG

Single and multivariable models of PMA were calculated

using regression analysis. These models used a combina-

tion of summary measures of the EEG (qEEG variables),

calculated on 1 h epochs, as an input and generated a

prediction of PMA as an output. The qEEG variables used

in this study can be grouped into three categories: phe-

nomenological analysis (m = 46), burst analysis (m = 40),

and other analysis paradigms (m = 10). Phenomenologi-

cal analysis extracts qEEG variables that mirror the visual

interpretation of the EEG.10,11 Burst analysis extracts

qEEG variables that identify important characteristics of

highly irregular (“crackling”) noise, through analysis of

EEG bursts.14 Other advanced analyses extract qEEG vari-

ables that represent complex characteristics of the preterm

EEG such as entropy, global connectivity, and cross-chan-

nel coupling.22-28

Leave-one-subject-out cross-validation was used when

generating models with a single or multivariable input

and FBA as output. In the case of N subjects (infants), a

training set consisting of the qEEG variables from N-1

subjects was used to train the regression model that out-

puts a FBA. The accuracy of the FBA was then calculated

using the left-out subject. The process was repeated until

all subjects had been left out, allowing accuracy to be esti-

mated on the entire cohort. Single and multivariable

model parameters were estimated using support vector

regression with a medium Gaussian kernel (a kernel scale

of 10, a box constraint equal to the interquartile range of

PMA/1.349 and epsilon equal to the box constraint/10).

Support vector regression is tolerant of redundant and

irrelevant variables; nonetheless, we implemented a pro-

cess of variable selection to rank the importance of each

qEEG variable to the determination of age and to reduce

the computational burden of the multivariable model.

Backwards selection was used (fourfold cross-validation

within the training set), with the mean square error

between FBA and PMA as a cost function to be mini-

mized.

Independent validation

A multivariable model was trained on all available data in

the Vienna dataset and then applied to the independent

dataset collected at the Wilhelmina Children’s Hospital,

Utrecht, Netherlands. The range of PMA and electrode

recording configurations were not identical between the

EEG recordings from Vienna and Utrecht. To overcome

this heterogeneity, the multivariable model was trained

on fronto-central derivations (Fp1-C3, Fp2-C4) in the

Vienna dataset and applied to the fronto-parietal deriva-

tions in the Utrecht dataset. This was one of the closest

approximations, in terms of position and distance

between electrodes, given the available configurations of

the Vienna dataset (we also tested centro-temporal deriva-

tions). Model efficacy was only compared across a similar

PMA range between the two datasets (24–33 weeks

PMA).

Statistical analysis

A prediction was made on a 1 h epoch of EEG; if multi-

ple EEG epochs exist per recording then the average pre-

dicted age per recording was used. The goodness-of-fit

between predicted age (single and multivariable models)

and PMA was evaluated using the correlation coefficient

(Pearson’s). The bias, variance, and absolute error

between predicted age and PMA were also used as mea-

sures of goodness-of-fit.10 The use of repeated (serial)

measures allowed the application of a linear mixed effects

model (LMM) where the model output was a fixed effect

and the infant ID was a random effect. The adjusted r

value was used to assess the goodness-of-fit taking into

account multiple recordings from each infant. Statistical

comparisons of measures of the goodness-of-fit between

EEG metrics for the prediction of PMA were performed

using resampling methods (bootstrap). A correlation coef-

ficient was deemed significantly different if the 95% confi-

dence interval of differences (estimated via a bootstrap)

did not span zero, that is, was either entirely positive or

negative. Differences in prediction accuracy (absolute

error) between the Vienna (training) and Utrecht (valida-

tion) sets were evaluated using equivalence testing with a

two, one-sided t-tests (TOST) procedure based on

Welch’s t-test.29 We used a mean difference in absolute

error of �0.5 weeks as a conservative equivalence bound-

ary based on the results of previous work which reported

an absolute prediction error of approximately �1 week.11

Differences in FBA trajectories (FBA subtracted from

PMA averaged across all recordings per infant) between

outcome groups were tested using a one-way ANOVA,

with Levene’s test for homogeneity of group variances

and a post hoc analysis performed using Tukey’s Range

test to correct for multiple comparisons. FBA trajectories

in each group were assessed to determine if they were sig-

nificantly different from zero using a t-test. For post-hoc

analyses, Cohen’s D statistic, with small sample size cor-

rection, was used to estimate the effect size between

groups. All tests were two-sided and used a level of signif-

icance of 0.05.
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Results

PMA prediction using a single variable FBA

Across all metrics tested, the qEEG variable that had the

highest correlation with PMA was the asymmetry of aver-

age burst shape (Fig. 2A), which exhibits a strong linear

relationship with bursts becoming more symmetric with

increasing PMA (Fig. 2B). Several additional qEEG vari-

ables were strongly associated with PMA (Table S1 in the

Supporting Information). Metrics that were not reliably

predictive of PMA were varied in nature and included

several relative band powers and measures of burst dura-

tion.

PMA prediction using the multivariable FBA

Combining several qEEG variables into a multivariable

model improved the prediction accuracy of the FBA

(Table 2). Assessed within a leave-one-out cross-valida-

tion, the multivariable FBA model had a significantly

higher correlation with PMA than a single variable model

based on the single best variable (asymmetry of the burst

shape) for models based on bursts, phenomenological, and

other newly proposed qEEG variables (Dr = 0.109, 95%

CI: 0.059 to 0.162; Dr = 0.095, 95% CI: 0.045 to 0.150;

Dr = 0.094, 95% CI: 0.057 to 0.142; n = 177, respectively).

The multivariable model using qEEG variables derived

from only burst analysis had a significantly higher correla-

tion with PMA than multivariable models based on phe-

nomenological or other newly proposed qEEG variables

(Dr = 0.030, 95% CI: 0.001 to 0.062; Dr = 0.027, 95% CI:

0.005 to 0.049; n = 177, respectively).

Incorporating qEEG variables into a multivariable

model, via a variable selection procedure, further improved

the accuracy of the FBA (Table 2). The FBA estimator

identified PMA to within 2 weeks for 90% of recordings,

with a median absolute error of 0.7 weeks. A scatter plot

of FBA versus PMA exhibits a clear linear trend (Fig. 3A),

with a tight clustering of FBA within �2 weeks of the

PMA. The performance of this FBA, which contained a

mixture of burst, phenomenological, and other recently

developed EEG variables, was significantly higher than

multivariable models based on only phenomenological

analysis, burst analysis or other analyses alone (Dr = 0.045,

95% CI: 0.020 to 0.073; Dr = 0.015, 95% CI: 0.002 to

0.028; and Dr = 0.042, 95% CI: 0.024 to 0.063, respec-

tively; n = 177). Variable selection resulted in a median of

53 variables (IQR; 49–55; n = 65 folds, see Table S1 in the

Supporting Information for more details).

Validation of FBA on an independent
dataset

To directly address the generalizability of our results, we

validated the multivariable model on an independent

dataset. We found that the multivariable model trained

on Vienna data (evaluated via cross-validation) and

applied to the Utrecht dataset performs near physiological

limits in prediction accuracy, with 90% of epochs cor-

rectly identified to within �2 weeks (Table 2). The abso-

lute error between the FBA and PMA, when applied to

the Utrecht data, was equivalent to the cross-validation

results from the Vienna dataset across a similar range of

PMA (Fig. 3B: P < 0.001; TOST, equivalence boundary of

�0.5 weeks). Training with centro-temporal recordings

Figure 2. Changes in burst characteristics with post-menstrual age (PMA). (A) Asymmetry of average burst shape versus PMA (r is Pearson’s

linear correlation coefficient). (B) Average burst shape of the EEG amplitude grouped according to PMA with fortnightly steps from 25 weeks; the

inset shows the entire average burst. The changes seen in (B) are best represented by measures of burst asymmetry.
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also resulted in a FBA that was strongly correlated with

PMA when applied to the Utrecht dataset (Table 2).

FBA for tracking individual growth and
predicting neurodevelopmental outcomes

The accuracy of FBA in tracking cot-side development

raises the idea that FBA may be useful for individualized

assessment of functional maturity. We used linear mixed

modelling to account for serial recordings from individual

infants which resulted in an adjusted correlation of

r = 0.978 (95% CI: 0.974–0.987; n = 65). The improve-

ment in correlation over a point-wise estimate implies

that individual infant trajectories are more highly corre-

lated with PMA than the cohort average. In other words,

infants tend to follow their individual growth trajectories

(Fig. 4A), and the FBA is able to track these trajectories

with high accuracy. In a subgroup of infants with more

Table 2. The performance of several multivariable FBA models for predicting PMA in preterm infants on training (cross-validation) and validation

datasets.

r [95% CI] Bias (weeks)

Variance

(weeks)

Absolute difference

(weeks) [IQR] �1 week (%) �2 weeks (%)

Phenomenological

(n = 177; m = 46)

0.894 [0.859–0.919] �0.1 2.1 0.9 [0.4–1.6] 55 83

Other

(n = 177; m = 10)

0.896 [0.866–0.920] �0.1 2.1 0.9 [0.5–1.5] 53 84

Bursts

(n = 177; m = 40)

0.923 [0.905–0.940] �0.2 1.6 0.9 [0.3–1.4] 60 89

Variable Selection

(n = 177; m = 53)

0.938 [0.922–0.952] �0.1 1.3 0.7 [0.4–1.3] 63 90

Validation: Vienna

(n = 134; m = 53)

0.900 [0.873–0.929] �0.2 1.1 0.6 [0.3–1.2] 64 92

Validation: Utrecht

(FC: n = 99; m = 53)

0.765 [0.665–0.846] 0.1 1.5 0.9 [0.4–1.3] 61 90

Validation: Utrecht

(CO: n = 99;

m = 53)

0.674 [0.554–0.758] �0.3 2.0 1.0 [0.4–1.6] 53 80

r is the correlation coefficient, n is the number of recordings included in analysis, m is the number of qEEG variables used in the model (for vari-

able selection this is the median number across folds of the cross-validation), 95% CI is the 95th percentile of the confidence interval, IQR is inter-

quartile range, FC and CO denote a FBA trained on fronto-central and centro-occipital derivations, respectively.

Figure 3. The correlation between a multivariable FBA and PMA. (A) The multivariable FBA, with variable selection, evaluated on the Vienna

dataset via leave-one-subject-out cross-validation over the full range of EEG recording PMAs (24–38 weeks). (B) The multivariable FBA trained on

the Vienna dataset and applied to an independent dataset recorded from Utrecht over the full range of EEG recording PMAs from the Utrecht

dataset (24–34 weeks). Dashed lines denote �2 weeks difference between FBA and PMA.
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than two serial recordings (a median PMA range of

6.2 weeks, IQR: 4.6 to 7.5 weeks; Fig. 4B), the average

predicted age difference (PAD: difference between FBA

and PMA) was significantly associated with neurodevelop-

mental outcome (One-way ANOVA: F statistic = 3.980,

df = 2, P = 0.029; n = 35, 3 groups: normal, mildly

abnormal, abnormal – see Fig. 4C; group variances were

homogenous; Levene’s Test: P = 0.82). Infants with

abnormal outcome (n = 9) had a PAD that was signifi-

cantly less than infants with mildly abnormal outcome

(n = 13) (Cohen’s D = 1.12, P = 0.025, corrected for

multiple comparisons using Tukey’s Range Test). The

estimated PAD in these infants was also significantly

below 0 weeks (t-test: Cohen’s D = 0.661, P = 0.035;

n = 9) suggesting a persistent delay in brain maturation

(i.e., negative PAD) in infants with abnormal outcome.

These differences were not apparent when including

infants with less than three serial EEG recordings

(ANOVA: F statistic = 0.112, df = 2, P = 0.894; n = 54),

suggesting that multiple recordings may be required to

assess a PAD associated with neurodevelopmental out-

come.

Discussion

The brain matures rapidly in early life with a wide range of

structural and functional indices changing over time spans

as short as a few weeks. Here, we showed that automated

analysis of preterm EEG can be used to track maturation

of cortical function with high accuracy. This analysis con-

verts the EEG into an “age” trend (FBA) that can be con-

sidered as a biomarker of maturity in preterm EEG. This

multivariable prediction of age from the EEG enables the

estimation of functional brain maturity to within 1–
2 weeks of PMA; an accuracy that generalized to an inde-

pendent validation dataset acquired under a considerably

different EEG recording environment. The margin of error

is far lower than similar predictions in preterm infants

based on functional neuroimaging with fMRI and orders

of magnitude lower than what is achieved over later stages

of life using EEG or MRI (error margins of 5–10 years).30-

32 Our findings are also comparable to an array of somatic

anatomical methods over similar preterm age ranges based

on measures of femur length, head circumference, weight,

and structural MRI (cortical folding, thickness).33,34 This

supports the concept of rapid and distinct changes in anat-

omy and physiology throughout the preterm period and

suggests that physiological and anatomical growth are

strongly intertwined.18,35,36

The multivariable model developed here advances previ-

ous work that was designed to capture key visual elements

of EEG review for age prediction. Incorporating burst

measures based on the analysis of crackling noise resulted

in the most accurate single variable model, improved mul-

tivariable model accuracy, and provided a potential frame-

work to explain the mechanistic origins of rapidly evolving

preterm EEG signals. The existence of asymmetric burst

shapes replicates our previous findings in independent

datasets when identifying pathological changes in the EEG

at or near birth.13,17 We also validated several recently pro-

posed qEEG variables of maturation: suppression curve,

mPLI, global ASI, multi-scale entropy, and path length

(coherence) as excellent predictors of age within the pre-

term period. This supports the use of automated measures

of EEG (qEEG) for the extraction of useful information in

addition to visual interpretation.

We also successfully validated the model’s robustness

on unseen data. This showed that the prediction accuracy

of the multivariable model holds when translating to a

dataset collected within a different clinical environment

and with different recording parameters (e.g., amplifier,

electrode type, number, and location). This is a crucial

hurdle for the clinical translation of new methods, which

is impossible to establish in a dataset acquired under uni-

form conditions. Notably, the independent validation

dataset was collected using a 4-channel recording mon-

tage that is commonly used in brain monitoring with the

amplitude integrated EEG.37 This validation on heteroge-

neous data establishes the wider clinical applicability of

determining functional brain age from EEG.

Various measures of growth are commonly used in

health care. The finding that neurological dysfunction

manifests as immaturity in the EEG is intuitively appeal-

ing, and indeed, has been a cornerstone of clinical EEG

review for decades.5,38,39 This hypothesis can only be

accurately tested with measures that are strongly corre-

lated with age. We show that most phenomenological

measures used in clinical EEG research, such as inter-

burst interval, EEG amplitude, or spectral power, are only

weakly correlated with age, which challenges their applica-

bility for maturational EEG assessment. More recently

proposed qEEG measures (such as asymmetry and sharp-

ness of burst shape, suppression curve, mPLI, MSE, and

path length) and multivariable models of age are strongly

correlated with PMA and, therefore, more relevant for

maturational analyses.

We show that infants follow individual functional mat-

uration trajectories in a highly predictable manner. Analy-

sis of these trajectories with measures such as PAD (the

difference between FBA and PMA) can, potentially, be

used to predict neurodevelopmental outcome. This sug-

gests that early neurological adversities become embedded

in cortical function (EEG recordings).40 The potential of

PAD measures was only apparent in infants with multiple

recordings over a wide range of PMA within the preterm

period. Summarizing across multiple recordings resulted
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in a PAD that was able to capture both acute and chronic

delays in functional maturation.5

Limited sample sizes, a reality when studying critically

ill infants, mean that the reported links between PAD and

outcome cannot take into account the variety of factors

that may confound this result such as physiological chal-

lenges, routine cares, and interventions experienced by

preterm infants during their stay in intensive care. These

factors will also confound the FBA and include the

difference between GA and PMA (intra-uterine vs extra-

uterine maturation), postnatal adaption, medications,

ventilation, birthweight, kangaroo care/infant massage,

and gender.41-46 We aim to investigate these effects in

future work to differentiate them from other potential

causes of inter-subject variability such as natural variabil-

ity in the course of in-utero growth.47 Nevertheless, FBA

provides an accurate prediction of PMA even when based

on a small training sample with an array of potentially

Figure 4. Functional brain age prediction using a multivariable model of quantitative EEG measures. (A) Maturational trajectories of individual

infants, with at least two serial recordings per infant; n = 54, colored according to the average differences between FBA and PMA (PAD:

predicted age difference) in each infant. The color bar denotes the PAD in weeks. (B) Scatter plot of the subgroup of data, with at least three

serial recordings, used to evaluate the prediction error for outcome prediction; n = 35, colored according to neurodevelopmental outcome.

Straight dashed lines denote a difference of plus or minus 2 weeks between PMA and predicted age. (C) Subgroup analysis of EEG predicted age

minus PMA with respect to outcome was graded as N – normal (minimum Bayley’s score> 85), M – mildly abnormal (minimum Bayley’s score

between 70 and 85) and A – abnormal (minimum Bayley’s score < 70). The asterisks denote P < 0.05 between outcome groups and when

testing each outcome group against a null hypothesis of zero mean EEG maturity. Data points in (C) have been shifted horizontally for clarity of

presentation and are denoted with filled circles. Data points in (C) represented by triangles are infants with intra-ventricular hemorrhage.
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confounding factors that were not explicitly modelled.

This is a reassuring finding, but the incorporation of EEG

trends such as FBA into routine clinical practice requires

an FBA trained on larger cohorts and further validation

using other well characterized clinical cohorts to tease out

the role of potential confounders, and determine the

effect of acute, chronic or even longer-term changes in

the underlying EEG.

The clinical potential of FBA is twofold. First, the track-

ing of individual growth trajectories is becoming an impor-

tant part of individualized medicine for preterm

infants.48,49 Tracking FBA provides a crucial functional

complement to anatomical growth charts, being sensitive to

the functional consequence of perinatal adversities specific

to early neurological development. Second, these analyses

may have an important role in clinical trials, as recent pro-

gress in early therapeutic interventions has been hampered

by delays due to the assessment of outcome several years

after birth. The use of very early measures of neurodevelop-

ment, like FBA, could lead to dramatically expedited study

cycles by allowing more dynamic, adaptive study designs

with optimized sample sizes and research questions.50 The

estimation of FBA also has clear applications in develop-

mental neuroscience, where the assessment of maturation

based on cortical function can be used to benchmark mod-

els of early human neurological development across species

and within human brain organoids.51,52
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