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ABSTRACT
The way the words are used evolves through time, mirroring cul-
tural or technological evolution of society. Semantic change detec-
tion is the task of detecting and analysing word evolution in textual
data, even in short periods of time. In this paper we focus on a
new set of methods relying on contextualised embeddings, a type
of semantic modelling that revolutionised the NLP field recently.
We leverage the ability of the transformer-based BERT model to
generate contextualised embeddings capable of detecting semantic
change of words across time. Several approaches are compared in
a common setting in order to establish strengths and weaknesses
for each of them. We also propose several ideas for improvements,
managing to drastically improve the performance of existing ap-
proaches.

CCS CONCEPTS
•Computingmethodologies→Lexical semantics;Cluster anal-
ysis; • Information systems→ Language models.
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1 INTRODUCTION
The large majority of data on the Web is unstructured. Amongst
it, textual data is an invaluable asset for data analysts. With the
large increase in volume of interaction and overall usage of the
Web, more and more content is digitised and made available on-
line, leading to a huge amount of textual data from many time
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periods becoming accessible. However, textual data are not neces-
sarily homogeneous as they rely on a crucial element that evolves
throughout time: language. Indeed, a language can be considered as
a dynamic system where word usages evolve over time, mirroring
cultural or technological evolution of society [1].

In linguistics, diachrony refers to the study of temporal variations
in the use and meaning of a word. While analysing textual data
from the Web, detecting and understanding these changes can
be done for two primary goals. First, it can be used directly for
linguistic research or social analysis, by interpreting the reason of
the semantic change and linking it to real-world events, and by
analysing trends, topics and opinions evolution [9]. Second, it can
be used as a support for many tasks in Natural Language Processing
(NLP), from text classification to information retrieval conducted
on a temporal corpora where semantic change might occur.

To tackle semantic change, models usually rely on word embed-
dings, which summarise all senses and usages of a word within a
certain time period into one vector. Measuring the distance between
these vectors across time periods is used to detect and quantify the
differences in meaning. But these methods do not take into consid-
eration that most words have multiple senses, since all word usages
are aggregated into a single static word embedding. Contextualised
embedding models such as BERT [5] are capable of generating a
separate vector representation for each specific word usage, making
them more suitable for this task.

The goal of this paper is to establish the best way to detect
semantic change in a temporal corpus by capitalising on BERT
contextualised embeddings. First, several approaches for semantic
shift detection from the literature are compared in a common set-
ting in order to establish strengths and weaknesses of each specific
method. Second, several improvements are presented, which man-
age to drastically improve the performance of existing approaches.
Our code and models are publicly available1.

2 RELATEDWORK
A large majority of methods for semantic shift detection lever-
age dense word representations, i.e. embeddings. Word-frequency
methods for detecting semantic shift that were popular in earlier
studies [13, 16], are now rarely used. The detailed overview of the
field could be found in recent surveys [22, 27, 28].

1https://github.com/smontariol/AddMoreClusters
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2.1 Static Word Embeddings for Semantic
Change

The first research that employed word embeddings for semantic
shift detection was conducted by [18]. The main idea was to train a
separate embedding model for each time period. Since embedding
algorithms are inherently stochastic and the resulting embedding
sets are invariant under rotation, a procedure that makes these
models comparable is needed. To solve this problem, they proposed
the incremental model fine-tuning approach, where the weights of
the model, trained on a certain time period, are used to initialize
weights of a model trained on the next successive time period.
Some improvements of the approach were later proposed by [24],
who replaced the softmax function for the continuous skipgram
model with a more efficient hierarchical softmax, and by [17], who
proposed an incremental extension for negative sampling.

An alternative approach was proposed in [19], where embedding
models trained on different time periods were aligned in a common
vector space after the initial training using a linear transformation
for the alignment. The approach was upgraded [31] by using a set
of nearest neighbour words as anchors for the alignment.

The third alternative for semantic shift detection with static word
embeddings is to treat the same words in different time periods as
different tokens in order to get time specific word representations
for each time period [6, 26]. Here, only one embedding model needs
to be trained and no aligning is needed.

2.2 The Emergence of Contextualised
Embeddings

While in static word embedding models each word from the prede-
fined vocabulary is presented as a unique vector, in contextualised
embeddings a separate vector is generated for each word mention,
i.e. for each context the word appears in. The two most widely used
contextual embeddings models are ELMo (Embeddings from Lan-
guageModels [25]) and a more recent BERT (Bidirectional Encoder
Representations from Transformers [5]). The approach of using
contextual embeddings for semantic shift detection is fairly novel;
we are aware of three recent studies that employed it.

In the first study, contextualised embeddings were applied in a
controlled way [15]: for a set of polysemic words, a representation
for each sense is learned using BERT. Then pretrained BERT is
applied to a diachronic corpus, extracting token embeddings, that
are matched to the closest sense embedding. Finally, the proportions
for each sense are computed at each successive time slice, revealing
the evolution of the distribution of senses for each target word.
This method requires that the set of senses of each target word is
known beforehand.

Another possibility is clustering all contextual embeddings for a
target word into clusters representing the word senses or usages in a
specific time periods [10]. K-means clustering and BERT contextual
embeddings were used in this study. In addition, the incremental
training approach proposed by [18] was used for diachronic fine-
tuning of the model. Jensen-Shannon divergence (JSD), a measure
of similarity between probability distributions, was used to quan-
tify changes between word usages in different time periods. They
also tested if domain adaptation of the model would improve the
results of their approach by fine-tuning the model on an entire

corpus rather than on specific time periods, however this yielded
no performance improvements.

In the third, even more recent study, contextual embeddings for
a specific word in a specific time period were averaged in order
to generate a time specific word representation for each word in
each period [23]. BERT embeddings are used in the study and
cosine distance is used for measuring the difference between word
representations in different time periods.

3 DATA
We rely on a small human-annotated dataset [12] to conduct the
evaluation. The dataset consists of 100 words from various fre-
quency ranges, labelled by five annotators according to the level
of semantic change between the 1960s and the 1990s. They use a
4-points scale from "0: no change" to "3: significant change", and
the inter-rater agreement was 0.51 (p <0.01, average of pair-wise
Pearson correlations). The most significantly changed words from
the dataset are, for example, user and domain; words for which the
meaning remain intact, are for example justice and chemistry. This
dataset is a valuable resource and has been used to evaluate meth-
ods for measuring semantic change in previous research [7, 10].
Following previous work, we use the average of the human an-
notations as semantic change score. For evaluation, we compute
Pearson and Spearman rank correlations between this score and a
model output. The notion of the best model is based on Spearman
correlations.

To train the models we use the Corpus of Historical American
English (COHA) 2. It contains more than 400 million words of text
from the 1810s-2000s. As a historical corpus, it is smaller than
the widely used Google books corpus 3 but it has the advantage
that data from each decade are balanced by genre—fiction, mag-
azines, newspapers, and non-fiction texts, gathered from various
Web sources. We focus our experiments on the most recent data in
this corpus, from the 1960s to the 1990s (1960s has around 2.8 mil-
lion and 1990s 3.3 million words), to match the manually annotated
data. The fine-tuning of the model is also done only on this subset.

4 METHODOLOGY
4.1 Context-dependent Embeddings
BERT is a neural model based on the transformer architecture [29].
It relies on a transfer learning approach proposed by [14], where in
the first step the network is pretrained as a language model on large
corpora in order to learn general contextual word representations.
This is usually followed by a task specific fine-tuning step e.g., clas-
sification or, in our case, domain adaptation. BERT’s novelty is an
introduction of a new pretraining learning objective, a masked lan-
guage model, where a percentage of words from the input sequence
is masked in advance, and the objective is to predict these masked
words from an unmasked context. This allows BERT to leverage
both left and right context, meaning that a wordw t in a sequence is
not determined just from its left sequencew1:t-1 = [w1, ...,wt−1]—
as is the case in the traditional language modelling task—but also
from its right word sequencew t+1:n = [wt+1, ...,wt+n ].

2https://www.english-corpora.org/coha/
3http://googlebooks.byu.edu/
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In our experiments we use the English BERT-base-uncasedmodel
with 12 attention layers and a hidden layer of size 768, which was
pretrained on the Google Books Corpus [11] (800M words) and
Wikipedia (2,500M words). For some of the experiments (see Table
1), we further fine-tune this model (as a masked language model)
for up to 10 epochs on the COHA subcorpus described in Section 3
for domain adaptation.

Note that our fine-tuning approach deviates from the approaches
presented in some of the related work [10] and we do not conduct
any diachronic fine-tuning of the model using the incremental
training approach similar to [18]. The hypothesis is that this step
is not necessary due to contextual nature of embeddings generated
by the model, which by definition are dependent on the context
that is always time-specific.

Since we are using a pre-trained model we have to apply the
BERT tokenization, which is based on byte-pair encodings [30].
In order to acquire contextual embeddings, the corpus documents
are first split into sentences; each sentence is limited to 512 tokens
and fed into the BERT model. A sequence embedding is gener-
ated for each of these sequences by summing last four encoder
output layers of BERT4. Finally, this sequence embedding of size
sequence lenдth × embeddinдs size is cut into pieces, to get a sepa-
rate contextual embedding for each token in the sequence.

4.2 Target Words Selection
In any practical application of semantic change detection, perform-
ing clustering for every word in the corpus would not be feasible
in terms of computing time. Thus, we investigate several scalable
metrics as a preliminary step to identify a set of words that may
have undergone semantic change.

A first set of metrics relies on the computation of a variation
measure, similarly to [20]. Variation is the cosine distance between
each token embedding and a centroid, i.e. an average token embed-
ding for a given word. The mean of these cosine distances is the
variation coefficient of a word. The intuition is that for words that
have many different senses and usages, the distance to the centroid
would be higher than for words that are monosemous. However,
this method does not make distinction between words that gain
(loose) sense and polysemous words that stay stable across time.

To measure an evolution of word variation, we compute the
variation coefficient inside each time slice t . Then, we take the
average difference from one time step to another. This measure
aims at detecting words that undergo changes in their level of
polysemy. For example, in a corpus divided into T time slices:

Variation by time slice =

∑T
t=t0 |Variationt −Variationt−1 |

T
,

The second set of metrics relies on averaging all token embed-
dings at each time slice, and using the cosine distance as a measure
of semantic drift between time slices. The total drift is the cosine
distance between the average of token representations of the first
time slice and of the last time slice. It represents the amount of
change a word has undergone from the first to the last period, with-
out taking into account the variations in between. The averaging
by time slice computes the mean of the drifts from each time step to
4We refer the reader to the original implementation of transformer in [29] for a detailed
overview of each component in the architecture.

the next one, in order to measure the successive changes of word
usage.

To evaluate and compare these measures we use all hundred
words from the test set. In practice it is possible to choose a thresh-
old (as a fraction of the size of the full vocabulary) to get a list
of target words. Then, the heavier clustering techniques can be
applied to this list.

4.3 Embeddings Clustering
The goal of the clustering step is to group the word occurrences by
similar vector representation. Then JSD is used to compare cluster
distribution across time periods, same as in [10]. The intuition is
the following: if, for instance, a word acquired a novel sense in the
latter time period, then a cluster corresponding to this sense only
consists of word usages from this period but not the earlier ones,
which would be reflected by a higher divergence. However, a cluster
does not necessarily correspond to a precise sense of the word. Each
cluster would rather represent a specific usage or context. Moreover,
a word may completely change its context without changing the
meaning. Consequently, determining the number of clusters is a
tricky part.

For clustering we used k-means with various values for k and
affinity propagation [8]. Affinity propagation has been previously
used for various linguistic tasks, such as word sense induction [2,
21]. Affinity propagation is based on incremental graph-based al-
gorithm, partially similar to PageRank. Its main strength is that
number of clusters is not defined in advance but inferred during
training. We also experiment with the approach inspired by [3],
where clusters with less than twomembers are considered weak and
merged with the closest strong cluster, i.e. clusters with more than
two members.5 We refer to this method as two-stage clustering.

5 EXPERIMENTS
We focus our analysis on comparing the various clustering ap-
proaches and the metrics to detect semantic change. Table 1 shows
the Pearson and Spearman correlations between the models’ out-
puts and the human-annotated drifts. We also report Silhouette
scores for clustering.

We use a pretrained version of BERT 6 and BERT fine-tuned
on the COHA subcorpus for up to 10 epochs. We make use of the
Scikit-learn implementation of k-means and affinity propagation
7. For k-means, we set the number of clusters k and use default
parameters for the rest. Similarly, for affinity propagation, we use
the default parameters set by the library.

A specificity of BERT is the representation of words with byte-
pair encodings [30]. Thus, some words can be divided into several
sub-parts; for example, in our list of hundred target words for
evaluation, sulphate is divided into two byte-pairs sul and ##phate,
where ## denotes the splitting of the word. This is also true for
the words medieval, extracellular and assay. We decided to exclude
these words from our analysis. Thus, strictly speaking our results

5Note that procedure in [3] is more complex: they first find one or more number of
representatives for each datapoint and then clustering is applied over representatives,
while in our work clustering is done over the instances themselves.
6https://pytorch.org/hub/huggingface_pytorch-transformers/
7https://scikit-learn.org/stable/modules/clustering.html
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Table 1: Correlations between detected semantic change and manually annotated list of semantic drifts [12] between 1960s
and 1990s.

Method Pearson Spearman Silhouette
Related work

Gulardova & Baroni, 2011 [12] 0.386 - -
Frermann & Lapata, 2016 [7] - 0.377 -
Giulianelli, 2019 [10] 0.231 0.293 -
Kutuzov, 2020 [20] 0.233 0.285 -

Pretrained BERT
Target word selection

Variation 0.070 0.015 -
Variation by decade 0.239 0.303 -
Averaging by decade 0.295 0.272 -
Averaging 0.354 0.349 -

Clustering
k-means, k = 3 0.461 0.444 0.104
k-means, k = 5 0.476 0.443 0.096
k-means, k = 7 0.485 0.434 0.091
k-means, k = 10 0.478 0.443 0.086
2-stage clustering, Aff. propagation 0.530 0.485 -
Affinity propagation 0.548 0.486 0.039

Fine-tuned BERT for 5 epochs
Target word selection

Averaging 0.317 0.341 -
Clustering

k-means, k=3 0.411 0.392 0.105
k-means, k=5 0.539 0.508 0.098
k-means, k=7 0.526 0.491 0.092
k-means, k=10 0.500 0.466 0.088
k-means, k=100 0.315 0.337 0.042
2-stage clustering, Aff. propagation 0.554 0.502 -
Affinity propagation 0.560 0.510 0.043

are not directly comparable to some of the other approaches in the
literature that do not employ BERT.

At the top of Table 1 we overview all previous work on the same
test set. To train the models, [13] used GoogleBooks Ngrams, [8]
used an extended COHA corpus, and both [11] and [21] used a
subcorpus of COHA, identical to the one used in our experiments.
In fact, the setting in [11] is quite similar to our work, though our
best model performance is much higher than in [11]; we will further
discuss this discrepancy in Section 6.

As can be seen in Table 1, among all metrics used for target
word selection averaging yields the highest correlation with the
human annotations. This intuitively makes sense since averaging
measures semantic drift between the first and the last time step and
the evaluation dataset was annotated by only considering the first
and the last decade. Variation by decade also shows good results;
it is a measure of the evolution of the level of variation of a word
usage through time.

As can be seen in Table 1 affinity propagation on the fine-tuned
BERT model yields the highest Spearman rank correlation. Results
obtained using pretrained and fine-tuned models are consistent: in
both runs averaging yields lower performance than clustering and

affinity propagation is the best clustering method. Two-stage clus-
tering works better than k-means but slightly worse than affinity
propagation.

Fine-tuning BERT improves all models except for k-means with
3 clusters and averaging—we do not yet have a clear explanation
for that exception.

To conclude, clustering fine-tuned embeddings using affinity
propagation yields the best results, with a Pearson correlation with
human annotation of 0.56. To evaluate the success of this result, we
can use the value of the inter-rater agreement during the annotation
process, which was 0.51, computed using the average of pair-wise
Pearson correlations [12]. This highlights the difficulty of the task
and the performance of the best method.

6 DISCUSSION
6.1 Error Analysis
We manually checked few examples by choosing the words that
have less mentions in the corpus to be able to look through all
sentences containing the word. One of the tricky cases for our
model is the word neutron: according to the manual annotation,
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Figure 1: 2D PCA visualization for the biggest clusters
obtained for word neutron.

Figure 2: Impact of BERT fine-tuning on the performance of
two distinct aggregation methods, affinity propagation and
k-means with k=5.

it is ranked 81st and has a stable meaning, while our best model
considered it one of the most changed and ranked it at 9.

We visualize the biggest clusters for neutron using PCA decom-
position of BERT embeddings (Figure 1). There are two clearly
distinctive clusters: cluster 36 in the bottom right corner, drawn
with pink crosses, which consists only of instances from 1990s, and
cluster 7 drawn with green dots in the top right corner, which con-
sists only of instances from 1960s. A manual check reveals that the
former cluster consists of sentences which mention neutron stars.
Though neutron stars have been already discovered in 1960s they
were probably less known8 and are not represented in the corpus.
In any case, a difference in a collocation frequency does not mean
a semantic shift, since collocations often have a non-compositional
meaning. Another similar example is a company called "Vector
Security International" that appears only in 1990s time slice, which
distorts semantic our calculations for the word vector. Our method
could be improved by removing stable multiword expressions and
named entities from the training set.

The latter distinctive cluster for neutron, consisting of word
usages from 1960s, contains many sentences that have a certain
pathetic style and elevated emotions, such as underlined in the
examples below:
throughout the last several decades the dramatic revelation of this new
world of matter has been dominated by a most remarkable subatomic
particle – the neutron .
the discovery of the neutron by sir james chadwick in 1939. marked
a great step forward in understanding the basic nature of matter .

The lack of such examples in 1990s might have a socio-cultural
explanation or it could be a mere corpus artefact. In any case, this
has nothing to do with semantic shift and demonstrates an ability
of BERT to capture other aspects of language, including syntax and
pragmatics.

8https://en.wikipedia.org/wiki/Neutron_star

6.2 Impact of Fine-tuning
Figure 2 shows the comparison of fine-tuning influence for two best
clustering methods (affinity propagation, and k-means with k=5).
Interestingly, a light fine-tuning (just for one epoch) decreases the
performance of both methods (in terms of Spearman correlation)
in comparison to no fine-tuning at all (zero epochs). After that, the
length of fine-tuning until up to 5 epochs is linearly correlated with
the performance increase.

Fine-tuning the model for five epochs appears optimal. After that,
the performance for both methods starts decreasing, most likely
because of over-fitting due to the reduced size of the fine-tuning
dataset compared to the training data.

The impact of fine-tuning on the k-means clustering is stronger
than on the affinity propagation. The difference between model’s
performance on 5 epochs is negligible. However, this effect holds
only with k=5, other values of k do not demonstrate such a differ-
ence between original and fine-tuned models, as can be seen in
Table 1.

6.3 Clustering
Results presented in Table 1 imply that most of the approaches
for semantic change detection proposed in this work manage to
outperform previous approaches by a large margin. We believe the
differences in the numerical results should be primarily attributed to
the differences in themethods, even thoughwe can not draw a direct
comparison to some of the approaches due to test set word removal
and differences in the train corpora. We can however compare our
results directly to the results published by [10] since they are also
using BERT trained on the COHA corpus. Evenmore, their proposed
clustering approaches are methodologically very similar to the
approaches presented in this work, yet we manage to outperform
their approach by a margin of about 35 percentage points when
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Figure 3: Number of clusters found by affinity propagation and frequency of a word in the 1960s and 1990s in COHA.

affinity propagation is used and by about 33 percentage points
when k-means clustering9, same as in [10], is used.

Unfortunately, [10] does not report a number of clusters that
has been used, they only mention that the number of clusters has
been optimised using the Silhouette scores. We can only speculate
why their results are much lower than ours. The first hypothesis
is connected with the usage of the Silhouette score, which might
not be optimal for our goals. We compute the Silhouette score10
for clusterings obtained by our methods. As can be seen in Table 1,
the best Spearman correlation coefficient does not correspond to
the best Silhouette score. Moreover, the Silhouette scores are quite
close to zero.

The second hypothesis is connected with the difference in fine-
tuning regimes employed in this research and the one conducted by
[10]. We use domain adaptation fine-tuning, proving its efficiency
for a certain number of epochs, for both k-means (except for a
small number of clusters) and affinity propagation. However, [10]
tried both diachronic fine-tuning (using the incremental fine-tuning
technique first proposed by [18]) and domain-specific fine-tuning,
but concluded that none led to an improvement in the results. As
it was already speculated in [10], using both training regimes at
the same time might lead to too extensive fine-tuning and there-
fore over-fitting. Further, a more thorough study on influence of
incremental fine-tuning on contextual embeddings models (such as
BERT) should perhaps be conducted, since the effects might differ
from the ones observed for static embeddings models. Finally, the
domain-specific fine-tuning is conducted only for 1 to 3 epochs,
which might be too few to improve the results on some corpora.

The difference in performance between k-means and affinity
propagation could be partially explained by the different number
of clusters in the two approaches. Affinity propagation, which per-
forms the best, outputs a huge amount of clusters—160 on average.
The particular number of clusters found by affinity propagation for
a word correlates strongly with the frequency of that word in the

9Here we are referring to our best k-means configuration with five clusters and using
a BERT model fine-tuned for five epochs.
10Using standard Scikit-learn implementation, https://scikit-learn.org/stable/modules/
clustering.html#silhouette-coefficient

corpus with correlational coefficient r = 0.875, as is illustrated in
Figure 3.

Thus, determining the optimal number of clusters for different
words is not straightforward. We cannot claim that the clusters
found by any of the methods we used can be interpreted as the
different senses of a word or that they are even suitable for hu-
man interpretation. Most probably, affinity propagation captures
subtle differences in word usages rather than global semantic shift.
Nevertheless, it works better than k-means with smaller and more
intuitive number of clusters, since word sense induction and se-
mantic shift detection are not the same task.

Affinity propagation usually produces a skewed clustering, with
a large number of small clusters containing only one or two data
points, and can be used for outlier detection. K-means is not suitable
for this task since it uses a random initialisation and if an outlier is
not initially selected as a potential centroid it may never be found.

To justify this claim we conducted an additional experiment
and run k-means clustering on fine-tuned embeddings using k=100
or number of instances minus one for less frequent words. As
presented in Table 1, this resulted in Pearson and Spearman rank
correlations of 0.315 and 0.337, respectively, which is worse than
any other strategy we tried for fine-tuned embeddings, including
averaging. At the same time, the Silhouette score for this insufficient
model is almost equal to the Silhoutte score for the best model. Thus,
the Silhouette score fails to discriminate between the best and the
worst model.

7 FUTUREWORK
We plan to investigate how the clusters found by the methods in
this work can be used to interpret the different usages of a word in
a specific time slice. The initial experiments on this subject have
already been conducted with the two-stage clustering, which re-
moves the smallest clusters, containing one or two instances. Thus,
it allows to focus on a smaller number of the most representative
clusters, which might be more suitable for human interpretation
even though it does not yield the best result. The initial check
demonstrated that most of these clusters are interpretable, though
some particular meaning can be spread among several clusters.
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Our analysis hints that clustering BERT token embeddings for
a word does not necessarily lead to sense-specific clusters. This
conclusion is on par with [4]. Indeed, BERT ability do detect distinct
word meanings has limitations. Thus, it would be interesting to
extract only the semantic parts of the BERT embeddings to direct
our analysis more towards word meaning and rather than word
usage in general.
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