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1 Introduction

Many macroeconomic time series are characterized by two stylized features: time-varying

(co)variances and persistent or transitory deviations from a linear trend. Regarding the

former characteristic, e.g., Sensier and Dijk (2004) document that about 80% of 214 U.S.

macroeconomic time series they studied displayed breaks in their unconditional volatility during

the period 1959–1999. On the latter characteristic, Westerlund (2015, p. 454) states that

“...for many economic time series, a linear trend, rather than a constant, might

be considered appropriate as the default specification, . . . . This is certainly true

for series such as GDP, industrial production, money supply and consumer or

commodity prices, where trending behavior is evident.”

The potential consequences of variance shifts on the discrimination between persistent and

transitory dynamics by means of univariate unit root tests have been investigated by, among

others, Hamori and Tokihisa (1997), Kim et al. (2002), Cavaliere (2004), and Cavaliere and

Taylor (2007). These studies find that the (augmented) Dickey-Fuller (Dickey and Fuller,

1979) tests have seriously distorted empirical sizes—and, hence, provide deceptive inference—if

volatility varies over time.

For the case of diagnosing unit roots in dynamic panels, the joint occurrence of time-varying

volatility and linear trends complicates inference even further. First, widely applied PURTs such

as those suggested in Levin et al. (2002) or Breitung and Das (2005) are no longer pivotal under

heteroskedasticity (Herwartz et al., 2016). Second, even recently proposed heteroskedasticity-

robust PURTs (Demetrescu and Hanck, 2012a,b; Herwartz et al., 2016) lack pivotalness under

linear trends, since available detrending schemes introduce nuisance parameters that affect the

limiting distribution of the tests under heteroskedasticity.

In this paper, we propose a new PURT that works well for the empirically-relevant case

that the data is both trending and heteroskedastic. The test statistic builds upon the recursive

detrending method proposed in Chang (2002). The drift term is estimated as the unconditional

mean of first-differenced series. Tracing the effects of volatility breaks, level detrending and

drift estimation, we construct a test statistic that exhibits an asymptotic Gaussian distribution

under the panel unit root null hypothesis. To prove asymptotic normality we rely on central

limit theory (CLT) for near-epoch dependent processes as discussed, e.g., in Davidson (1994).

CLT of this type appears flexible and useful in practice, as it allows for a regulated dependence

structure in the process under study. Results for the local asymptotic power of the test underpin

its consistency. Simulation results show that the proposed test works well in finite samples, and
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has satisfactory power which is comparable with the power of the tests in Demetrescu and

Hanck (2012a) and Herwartz et al. (2016) under homoskedasticity.

As an empirical illustration, we examine whether energy use per capita is trend or difference

stationary. Using data from 23 OECD economies over the period 1960–2014, we find that energy

use per capita is generally integrated of order one. However, results from unit root testing for

rolling fixed-length time spans show that the series could be characterized as trend stationary

for forty-years windows that start between 1963 and 1968. It is worth mentioning here that the

proposed test is implemented in the Stata package xtpurt (Herwartz et al., 2018).

Section 2 discusses the panel unit root testing problem and presents the proposed test

statistic along with its asymptotic distribution. The finite sample performance of the new

test is evaluated by means of a Monte Carlo study documented in Section 3. As an empirical

illustration, the stationarity of energy use per capita is examined in Section 4. Section 5

concludes. Proofs of the asymptotic results are provided in the online Supporting Information.

2 Homogeneous panel unit root testing

In this section we, firstly, describe the panel unit root testing problem and formalize cross-

sectional dependence and heteroskedasticity. Secondly, we recall the detrending scheme of

Chang (2002), which is essential to establish pivotalness of the new test statistic. Thirdly, we

present the new test in two versions: a theoretical (but infeasible) variant building upon true

deterministic parameters, and a feasible approach based on estimated moments. Finally, we

sketch the adjustment of the panel data in presence of higher order serial correlation.

2.1 The first order panel autoregression

The first order panel autoregression considered in this work formalizes an empirically-relevant

panel unit root testing problem of distinguishing between a random walk with drift and a trend

stationary process (Pesaran, 2007), i.e.,

yt = µ+ (1− ρ)δt+ ρyt−1 + et, t = 1, ..., T. (1)

In (1), yt = (y1t, . . . , yNt)
′, yt−1 = (y1,t−1, . . . , yN,t−1)

′, et = (e1t, . . . , eNt)
′ are N × 1 vectors,

and et is heterogeneously distributed with mean zero and covariance Ωt. Furthermore, the

vector δ = (δ1, . . . , δN )′ stacks panel-specific trend parameters, and µ = (µ1, . . . , µN )′ contains

panel-specific intercepts. PURTs are used to test the hypothesis H0 : ρ = 1 against H1 : ρ < 1

in (1).
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While all PURTs share the same null hypothesis, they differ in their assumptions about

the alternative hypothesis. The alternative hypothesis for PURTs such as the one suggested

by Levin et al. (2002) is that the time series processes are stationary for all cross section

members with homogeneous autoregressive parameter. Other PURTs, such as the one by Im

et al. (2003), assume under the alternative hypothesis that a significant fraction of the panel

members are stationary with heterogeneous (individual specific) mean reversion parameters.

While homogeneous PURTs build upon pooled regressions, heterogeneous PURTs combine test

statistics for individual panel units. However, it is worth noting that both groups of tests could

be consistent against both homogeneous and heterogeneous alternatives. Moreover, rejection

of the null hypothesis by both types of tests indicates that a significant fraction of the time

series processes are stationary (Breitung and Pesaran, 2008; Pesaran, 2012 ; Westerlund and

Breitung, 2013).

With strengthened moment conditions, we adopt the assumptions in Herwartz et al. (2016)

about cross-sectional dependence and heteroskedasticity et as follows:

Assumptions A.

(i) et is serially uncorrelated with mean 0 and covariance Ωt.

(ii) Ωt is a positive definite matrix with eigenvalues λ
(1)
t ≤ λ

(2)
t ≤ . . . ≤ λ

(N)
t and λ

(N)
t < c <∞,

λ
(1)
t > c > 0 for all t.

(iii) E[upitu
p
jtu

p
ktu

p
lt] <∞ for all i, j, k, l and p = 1, 2, where u• t, • ∈ {i, j, k, l} denote typical

elements of ut = Ω
−1/2
t et. Here we set Ω

1/2
t = ΓtΛ

1/2
t Γ′t, where Λt is a diagonal matrix of

eigenvalues of Ωt and the columns of Γt are the corresponding eigenvectors.

A(i) restricts the error terms to be serially uncorrelated. Ways of handling higher order

serial correlation will be described later. The assumption that the fourth order moments of eit

(or uit by implication of A(ii)) should be finite (A(iii) for p = 1) is standard in the (panel) unit

root literature. The stronger assumption of finiteness of moments up to order eight (p = 2) will

allow to apply asymptotic theory for near-epoch dependent processes. While A(ii) captures so-

called weak forms of cross-sectional dependence such as spatial panel models (for more details

on spatial panel models see, e.g., Anselin, 2013) and seemingly unrelated regressions, it rules out

strong forms of cross-sectional dependence that might be traced back to the presence of common

factors. A variety of factor structures are considered in the panel unit root literature, including

cases where either one or both of the common factors and the idiosyncratic components are

nonstationary, scenarios of single or multiple factors, and possibilities of serially uncorrelated

versus persistent factors (see, e.g., Bai and Ng, 2004; Breitung and Das, 2008; Kapetanios,

2007). These distinct factor structures often deserve specialized defactoring approaches (see,
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e.g., Phillips and Sul, 2003; Moon and Perron, 2004; Kapetanios, 2007), which are likely to

divert the focus of the present paper on effective centering and standardization in trending

and heteroskedastic panels. Accordingly, for the third established feature of macroeconomic

panel data, i.e. contemporaneous correlations, we restrict our attention to scenarios of weakly

correlated panels. Since tr(Ωt) =
∑N

i=1 λ
(i)
t , A(ii) covers both discrete covariance breaks as well

as smoothly trending variances.

2.2 Deterministic terms

Similar to their univariate counterpart, the Dickey-Fuller test (Dickey and Fuller, 1979), PURTs

assess the significance of ‘correlation’ among vectors of the first differences (∆yt = yt − yt−1)

and the lagged levels of the panel data (yt−1). Homogeneous PURTs are typically applied to

the data after adjustments for higher order serial correlation and deterministic components.

Although in practice the prewhitening procedure of removing serial correlation from the data is

applied before detrending, we first discuss the detrending issue which is of particular relevance

in our case of unit root testing in trending panels. Panel data adjustment for higher order serial

correlation is outlined at the end of this section.

Removing the trend in (1) by means of popular schemes such as OLS, GLS or recursive

detrending renders homogeneous PURTs to depend on the drift terms in µ, and, hence, requires

bias-correction terms. The detrending procedures in Chang (2002) and Breitung and Das (2005)

do not require bias adjustment terms as long as the homoskedasticity assumption is maintained.

Although both methods affect the pivotalness of PURTs under time-varying volatility, the

former allows to trace the adjustment step back to the first and second order moments of a

suitably defined test statistic.

The detrending scheme proposed in Chang (2002) involves recursively detrending the lagged

level variables to obtain

ỹt−1 = yt−1 +
2

t− 1

t−1∑
r=1

yr −
6

t(t− 1)

t−1∑
r=1

ryr. (2)

Since ∆yt has non-zero mean, it has to be demeaned. One choice is to center ∆yt in the usual

way as

∆y∗t = ∆yt −
1

T

T∑
t=2

∆yt, (3)

where T in the denominator replaces T − 1 for notational convenience.

4



2.3 Heteroskedasticity-robust panel unit root testing for trending panels

2.3.1 Testing with known covariances

For panel unit root diagnosis in heteroskedastic and non-trending panels Herwartz et al. (2016)

suggest the statistic1

tHSW =

∑T
t=1 y

′
t−1∆yt√∑T

t=1 y
′
t−1∆yt∆yt

′yt−1

d→ N(0, 1). (4)

Evidently, tHSW exhibits a nonzero mean in case of trending panels since, under the null

hypothesis, the drift term shows up in E[∆yt] 6= 0. A pivotal test statistic which is robust

under the panel unit root, nonzero drift and heteroskedasticity can be obtained after suitable

adjustments of both the numerator and the denominator of tHSW . Therefore, before introducing

the test statistic in a compact form, first consider a modified version of the numerator of tHSW

in (4). With (2) and (3) the summands of the numerator can be rewritten as

ỹ′t−1∆y
∗
t = ỹ′t−1êt =

t−1∑
q=1

(
aq,t−1e

′
qet −

1

T
aq,t−1

T∑
r=2

e′qer

)
, (5)

where

∆y∗t = êt = et −
1

T

T∑
t=2

et, (6)

and finite weighting coefficients aq,t−1 read as

aq,t−1 = 1 +
2

t− 1
(t− q)− 3

(
1− (q − 1)q

(t− 1)t

)
. (7)

Derived from data detrended according to (2) and (3), the expression in (5) has a non-zero

expectation in the absence of homoskedasticity under the null hypothesis of a panel unit root.

To establish asymptotic normality of our test it is convenient to proceed in two steps. Firstly,

we outline an infeasible test statistic processing true time varying covariances for which central

limit theory is available to establish an asymptotic Gaussian distribution under the panel unit

root. Below we refer to this variant as the theoretical version of the test and denote it with τ .

Secondly, we consider a feasible variant of the statistic, denoted τ̂ which builds upon estimated

second order moments. For this, we prove its asymptotic equivalence with τ , and, hence, the

asymptotic Gaussian distribution for the feasible PURT under the null hypothesis.

1Other heteroskedasticity-robust PURTs have been proposed in Demetrescu and Hanck (2012a,b) and

Westerlund (2014). A common limitation of these PURTs, however, is that in the presence of linear trends

(i.e., µ 6= 0 in (1)), applying standard detrending schemes does not retain the pivotalness of the tests if the data

exhibit variance breaks.
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The theoretical version of the new test statistic is a modification of tHSW with adjustments

for the non-zero mean in the numerator, and corresponding changes for the variance (in the

denominator). Specifically, the test statistic with theoretical moments is given by

τ =

∑T
t=2

1√
NT

(
ỹ′t−1∆y

∗
t − E[ỹ′t−1∆y

∗
t ]
)√

Var
[∑T

t=2
1√
NT
ỹ′t−1∆y

∗
t

] . (8)

While tHSW defined in (4) relies on a White-type covariance estimator, combining the

recursive detrending scheme with the mean adjustment invokes dependencies of ỹ′t−1∆y
∗
t in

the time dimension. Accordingly, the variance of the numerator in (8) reads as:

s2NT := Var

[
T∑
t=2

1√
NT

ỹ′t−1∆y
∗
t

]

=
1

NT

E [ T∑
t=2

ỹ′t−1∆y
∗
t

]2
−

(
T∑
t=2

νt

)2
 = ζ1 − ζ2 + ζ3 + ζ4 + ζ5 −

1

NT

(
T∑
t=2

νt

)2

.

(9)

The expansion of the expectation in (9) yields components ζ1, . . . , ζ5 which can be shown to

correspond to the following quantities

ζ1 =
2

NT

T−1∑
q=1

T−1∑
r=q+1

T∑
s=q+1

T∑
t=r+1

āq,s−1ār,t−1 (tr(ΩqΩr) + tr(Ωq)tr(Ωr))

ζ2 =
2

NT

T−1∑
q=1

T∑
s=q+1

T∑
t=q+1

ãq,s−1āq,t−1tr(ΩqΩs)

ζ3 =
1

NT

T−1∑
q=1

T∑
t=q+1

ã2q,t−1tr(ΩqΩt) (10)

ζ4 =
1

NT

T−1∑
q=1

T∑
t=q+1

ā2q,t−1

E [(e′qeq)2]+
T∑

r=1,r 6=q,t

tr(ΩqΩr)


ζ5 =

2

NT

T−2∑
q=1

T−1∑
s=q+1

T∑
t=s+1

āq,t−1āq,s−1

E [(e′qeq)2]+
T∑

r=1,r 6=q,t,s

tr(ΩqΩr)

 ,

where ãq,t−1 =
(
1− 1

T

)
aq,t−1 and āq,t−1 = 1

T aq,t−1 with coefficients aq,t−1 defined in (7).

Similarly,

νt := E[ỹ′t−1∆y
∗
t ] = −

t−1∑
q=1

āq,t−1tr(Ωq). (11)

2.3.2 A feasible robust PURT

The feasible counterpart of τ in (8) is given by

τ̂ =

∑T
t=2

1√
NT

(
ỹ
′
t−1∆y

∗
t − ν̂t

)
ŝNT

, (12)
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where the estimator of νt is based on the estimation of the traces of the covariance matrices

Ωq. More precisely, we replace tr(Ωq) by ê′qêq where êq is a vector of centered residuals (first

differences) as defined in (6). Furthermore, the non-standard form of ỹ
′
t−1∆y

∗
t renders a

straightforward estimation of the variance s2NT by
∑T

t=2
1

NT (ỹ
′
t−1∆y

∗
t − νt)2 impossible. We

rely on the representation in (9) and replace, similarly to the mean estimator, tr(ΩqΩr) by

ê′qêrê
′
qêr and E

[
(e′qeq)

2
]

by (ê′qêq)
2. Detailed representations of ν̂t and ŝ2NT are given in the

online Supporting Information. The following proposition states the asymptotic normality of

the statistic in (12).

Proposition 1. Under assumptions A and under the null hypothesis H0 : ρ = 1 the test statistic

in (12) is asymptotic normally distributed, i.e., for N,T →∞ with N/T 2 → 0

τ̂
d−→ N (0, 1). (13)

Due to dependence between the terms ỹ
′
t−1∆y

∗
t , central limit theory for serially independent

processes is not sufficient to prove asymptotic normality of the test statistic. However,

Proposition 1 can be proven based on a central limit theorem for near-epoch dependent

sequences. Similar to martingale difference sequences, we allow for a regulated form of serial

dependence while conditioning on sets generated by functions of the increments et. The proof

is given in the online Supporting Information. As it will turn out, the additional requirement

of N/T 2 → 0 is necessary for τ̂ to fulfill the conditions of the central limit theorem, as well as

for applying the test to prewhitened data (Herwartz et al., 2016). The following proposition

asserts consistency of the statistic in (12) and states its asymptotic behaviour under the local

alternative Hl : ρ = 1− c/(T
√
N).

Proposition 2. Under assumptions A and the local alternative hypothesis Hl : ρ = 1 −

c/(T
√
N), the test statistic in (12) is asymptotic normally distributed, i.e., for N,T → ∞,

N/T 2 → 0

τ̂
d−→ N (ϕ, 1), (14)

with negative expectation ϕ < 0.

The proof of Proposition 2 along with an analytical expression for ϕ is provided in

Appendix A.4 of Supporting Information.

2.4 Short-run dynamics

To eliminate short-run serial correlation from the data, prewhitening is an important procedure

which leaves the limiting distribution of the tests unaffected (Breitung and Das, 2005). This
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procedure requires estimating individual-specific autoregressions of the first differences under

H0, i.e.,

∆yit =

pi∑
r=1

bir∆yi,t−r + eit. (15)

Prewhitened data is then obtained as

ŷit = yit − b̂i1yi,t−1 − . . .− b̂ipiyi,t−pi , (16)

and

∆̂yit = ∆yit − b̂i1∆yi,t−1 − . . .− b̂ipi∆yi,t−pi . (17)

Any consistent lag-length selection criterion can be applied to decide upon the lag orders

pi. In cases where both short-run dynamics and deterministic patterns are present in the

data, prewhitening should precede detrending. The prewhitening regression should include

an intercept term if the model features linear time trends under the alternative hypothesis.

While the choice of lag selection criteria may not necessarily affect asymptotic properties of

unit root tests, it might however impact on finite sample performances of tests in the presence

of heteroskedasticity. Cavaliere et al. (2015) have shown that standard lag selection criteria

tend to over-fit the lag order in the presence of heteroskedasticity and, hence, induce power

losses in the (wild bootstrap version of the) univariate augmented Dickey-Fuller tests. Their

modified lag selection criteria, which rescale the data by an estimate of the underlying time-

varying volatility process, significantly mitigate the power losses while retaining comparative size

properties. However, it is noteworthy that estimating time-varying volatility is more challenging

in the panel data framework as each time time series could have distinct underlying volatility

processes. Moreover, the effect of potential power losses on unit root testing are likely less

severe in PURTs than in univariate tests as the former additionally exploit the cross-sectional

dimension of the data. Hence, we focus on the asymptotic behavior of the proposed test, and

do not address potential power losses to our test that might be induced by the use of (slightly)

over-fitting models employed for prehwitening.

3 Monte Carlo study

3.1 The simulation design

To evaluate the finite sample properties of the proposed test τ̂ , we consider the following DGPs

taken from Pesaran (2007):

DGP1: yt = µ+ (j − ρ)� βt+ ρ� yt−1 + et, t = −50, . . . , T, (18)

DGP2: yt = µ+ (j − ρ)� βt+ ρ� yt−1 + εt, εt = b� εt−1 + et, (19)
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where bold entries indicate vectors of dimension N × 1, j is a vector of ones and � denotes the

Hadamard product. The DGP1 formalizes AR(1) models with serially uncorrelated innovations

while DGP2 introduces AR(1) disturbances. Both DGPs formalize a panel random walk with

drift under the null hypothesis, and a panel of trend stationary processes with individual effects

under the alternative. Empirical size obtains by setting ρ = j and power is simulated as ρ =

0.9j. Results for DGPs with heterogeneous autogregressive coefficients under the alternative

hypothesis, i.e., ρ = (ρ1, . . . , ρN ), ρi ∼ iidU(0.85, 0.95), are qualitatively identical.2 Individual

effects, trend parameters as well as serial correlation of innovations are modeled as in Pesaran

(2007): µ = (µ1, . . . , µN )′, µi ∼ iidU(0, 0.02) and b = (b1, . . . , bN )′, bi ∼ iidU(0.2, 0.4).

To separate the issue of cross-sectional correlation from variance breaks, we employ the

decomposition

Ωt = Φ
1/2
t ΨΦ

1/2
t ,

where Φt = diag(σ21t, . . . , σ
2
Nt) and Ψ is a (time invariant) correlation matrix characterizing

Ωt. Cross-sectional independence is obtained by setting Ψ to an identity matrix of order N .

We generate a weak form of cross-sectional correlation by means of the spatial autoregressive

(SAR) error structure used in Herwartz and Siedenburg (2008). Specifically, we take ΨSAR that

is implied by the SAR model

et = (IN −ΘW )−1ξt, with Θ = 0.8 and ξt ∼ iidN(0, IN ),

where W is the so-called spatial weights matrix. In this particular case, W is a row normalized

symmetric contiguity matrix of the ‘g ahead and g behind ’ structure, with g = 1 (see, e.g.,

Kelejian and Prucha, 1999). The resulting covariance matrix of et is given by ΩSAR = ((IN −

ΘW )′(IN −ΘW ))−1, and ΨSAR is the correlation matrix implied by ΩSAR.

Cross-section specific volatility shifts are generated as

σ2it =

 σ2i1, if t < bγiT c, (0 < γi < 1)

σ2i2, otherwise,

where γi refers to the time a variance break occurs and bγiT c denotes the integer part of γiT .

In the homoskedastic case, σi1 = σi2 = 1. We introduce heteroskedasticity by changing the

post-break variance to σi2 = 1/3, for a negative variance break, and to σi2 = 3, for a positive

one. Regarding the timing of the variance breaks, we consider scenarios of homogeneously

early (γi = 0.2) or late (γi = 0.8) variance breaks for all panel units. Main findings of the

2Moreover, recent papers, e.g., Homm and Breitung (2012), also consider power against explosive alternatives

(ρ > 1). Using a right-sided testing, the proposed test τ̂ is powerful against the alternative that ρ = 1.03j, even

for T = 25. The corresponding simulation results are available upon request.
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simulation exercise remain qualitatively unaffected by consideration of randomly distinct break

points γi ∼ iidU(0.1, 0.9). Data are generated for all combinations of N ∈ [50, 100, 250] and

T ∈ [25, 50, 100, 250]. To mitigate the potential impacts of initial values on our analysis, we

generate and discard 50 presample observations.

3.2 Simulation results

In the following we discuss simulation results on the finite sample performance of the proposed

test statistic τ̂ . Simulation results for tHSW in (4) and the test suggested by Demetrescu and

Hanck (2012a) are provided to highlight the risks of using existing heteroskedasticity-robust

tests for trending panels. The latter test reads as

tDH =

∑T
t=1 sgn(yt−1)

′∆yt√∑T
t=1 sgn(yt−1)′∆yt∆yt

′sgn(yt−1)

d→ N(0, 1), (20)

where sgn(·) denotes the sign function. Similar to tHSW , tDH should be applied on detrended

data.

For the new test τ̂ , we also document results for its theoretical counterpart τ determined

from the true covariance matrices Ωt (see (8)). Presenting simulation results for both τ̂ and

τ is meant to highlight finite sample performance of τ̂ that can be traced back to the use of

moment estimators.

3.2.1 Cross-sectionally independent panels

Simulation results for data generated according to DGP1 and cross-sectionally independent

panels are documented in Table 1. Results in the upper panel of this table show that, under

homoskedasticity, the recursive detrending scheme in Chang (2002) leaves the pivotalness

of heteroskedsticity-robust tests unaffected. With respect to rejection frequencies under

the alternative hypothesis, it can be seen that using estimated covariance matrices induces

considerable power loss under a small time dimension T = 25. However, this power loss

vanishes with increasing T . Furthermore, the new test τ̂ is generally as powerful as tHSW

and more powerful than tDH . Hence, it is worthwhile noting that our adjustment for obtaining

robustness to time-varying volatility does not come at a cost of reduced power. In view of the

fact that the reported empirical powers are not size adjusted, the power estimates for τ̂ are

rather remarkable.

When early negative variance breaks are introduced, tHSW and tDH display zero rejection

frequencies under the null hypothesis. On the contrary, τ̂ holds remarkable size control, except

for small T (T = 25) where it is substantially undersized. These size distortions, however,
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improve markedly as the time dimension increases to T = 50. The new test also has significant

power under early variance breaks although it is less than the power under homoskedasticity.

In comparison with τ̂ , the White-type tests tHSW and tDH have substantially weaker power,

with both tests showing almost zero probability of rejecting the alternative hypothesis until the

time dimension increases to T = 100.

Size distortions of tHSW and tDH are also observed when a late positive volatility shift is

considered, but this time with huge oversizings. On the contrary, τ̂ displays a fairly good size

precision. Consistent with results in Herwartz et al. (2016) for non-trending data, power seems

to be unaffected by late positive variance breaks but reduced by early negative volatility shifts.

In general, simulation results documented in Table 1 demonstrate not only the risk of using

tHSW and tDH for trending time series, but also the satisfactory finite sample performance of

τ̂ for trending heteroskedastic data.

*****

Place Table 1 here.

*****

3.2.2 DGPs with cross-sectionally correlated panels

The left-hand side block of Table 2 documents simulation results for τ̂ applied on data generated

according to DGP1 for weakly correlated panels. Results available upon request show that size

distortions of tHSW and tDH observed for cross-sectionally independent panels (Table 1) carry

over to panels with weak forms of cross-sectional correlation. Hence, we focus on the implications

of cross-sectional correlation for the new test τ̂ . Confirming the asymptotic considerations, a

relatively larger cross-sectional dimension N is required for the empirical size of τ̂ to come closer

to the nominal significance levels. Moreover, the statistic τ̂ is less powerful under the SAR(1)

model than under independent panels—a result consistent with those documented in Herwartz

et al. (2016) for non-trending series.

3.2.3 DGPs with serially correlated innovations

To evaluate how the proposed test τ̂ performs for data with serially correlated disturbances,

we generate data according to DGP2 in (19) and subject it to prewhitening before detrending.

The corresponding simulation results are documented in the middle- and right-hand side blocks

of Table 2. The results show that serial correlation and the ensuing prewhitening procedure

entail marked size distortions for small time dimensions. This result could be explained by
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noting that estimation errors arising from the prewhitening procedure introduce finite sample

correlations between the lagged level and first differenced series, thereby inducing a non-zero

mean to the numerator of the test statistic in (12). However, size distortions vanish as T grows,

and empirical power grows in T and N .

*****

Place Table 2 here.

*****

*****

Place Table 3 here.

*****

3.2.4 Testing against a heterogeneous alternative and local power

As documented in Table 2 scenarios of early negative variance shifts are most challenging for the

detection of stationary panels. For this particular scenario of weakest simulated power, Table 3

documents rejection frequencies for τ̂ if only fractions of 20%, 50% and 90% of the panel

members accord with panel stationarity, while the remaining panel members are characterized

by stochastically trending data. Not surprisingly, under the heterogeneous alternative the test

suffers from some power loss in comparison with simulation results documented in Table 2.

Pointing to consistency of τ̂ , however, the documented rejection frequencies increase throughout

with the sample sizes. Moreover, power estimates are more favourable, the larger is the fraction

of panel members that accord with the alternative hypothesis.

Completing our Monte-Carlo analysis, Figure 1 shows local power figures (mostly) for τ̂

under alternative covariance scenarios. Local power estimates for tHSW under homoskedasticity

are also provided for purposes of comparison. Irrespective of the second order (break) properties

of model residuals, local power estimates point to the consistency of the new test. As a

confirmation of the tabulated simulation results, scenarios with late positive variance shift

obtain a more favourable performance pattern under the local alternative in comparison with

early negative variance breaks. Interestingly, in case of homoskedastic trending panels tHSW

and τ̂ exhibit very similar local power properties, although the latter statistic is computationally

much more demanding.

*****

Place Figure 1 here.

*****
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3.2.5 Summary of simulation results

The simulation results reported in Table 1 show that existing heteroskedasticity-robust PURTs

exhibit huge size distortions (either undersizing or oversizing) when applied to detrended

data with time-varying volatility. The proposed test, however, performs remarkably well

in this scenario. Results documented in Table 2 show that the new test has fairly good

finite sample properties even when the data are not only trending and heteroskedastic, but

also cross-sectionally and serially correlated. Therefore, the new test should be helpful in

(often complex) empirical applications. Rejections of the null hypothesis of the panel unit

root could indicate that only a significant fraction of the cross section is characterized by

a stationary process. Asyptotically the suggested test statistic exhibits non-trivial power

features in close neighbourhoods of the null hypothesis. However, results not reported here

for space considerations show that τ̂ does not remain pivotal under strong forms of cross-

sectional dependence such as factor structures (Pesaran, 2007). An effective way of panel unit

root testing under strong forms of cross-sectional correlation is to remove the common factor

from the data (see for example Bai and Ng, 2004 and Moon and Perron, 2004). While the test

in Westerlund (2014) uses this approach, it is, however, not pivotal in the presence of linear

trends.

4 Is energy use per capita trend or difference stationary?

4.1 Background

Whether energy use per capita is trend or difference stationary has been intensively investigated

in the past two decades. The growing interest in testing the stationarity of per capita energy

consumption is attributed to three main reasons (e.g., Hsu et al., 2008; Narayan and Smyth,

2007). First, knowing the direction of causality between per capita energy use and economic

growth has gained significant policy relevance as it has direct implications on governments’

involvement in global efforts to reduce greenhouse gas emissions. On the one hand, if causality

runs from energy consumption to growth, reductions in energy use will have adverse effects on

economic growth and, hence, generates reluctance on the part of policy makers to commit to

substantial energy use reductions. On the other hand, if causality runs from growth to energy

use, and not vice versa, reductions in energy consumption will not be harmful for economic

growth. The order of integration of energy use per capita has implications on testing and

interpreting the relationship between energy use and GDP per capita. For instance, Granger

predictability tests employing level vector autoregressions could be misleading if the series
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are nonstationary and not cointegrated. Conversely, Granger predictability testing by means

of variables in levels will be appropriate if the series are either stationary or cointegrated.

Consequently, unit root testing is routinely performed before testing for cointegration between

energy use and GDP per capita.

Second, stationarity of energy use per capita has implications for the effectiveness of energy

policies such as import tariffs on fuels and vehicles or carbon taxes on transportation fuels. In

particular, if energy consumption is a stationary process, it will return to its trend after a policy

shock. This implies that energy saving policies will have transitory effects only. On the other

hand, if energy consumption contains a unit root, such policies will have a permanent impact.

Furthermore, nonstationarity implies that (permanent) shocks to energy use are more likely to

affect other sectors of the economy as well as macroeconomic aggregates (Narayan and Smyth,

2007).

Third, the order of integration of energy consumption has implications for forecasting energy

demand. For instance, if energy consumption is trend stationary, its past behaviour offers

valuable information to forecast future energy demand. However, if energy consumption is a

unit root process, it does not follow a predictable path and, hence, forecasting energy demand

will be more difficult than in the stationary case.

Efforts to test for a unit root in energy use per capita have initially relied on univariate tests.

Hsu et al. (2008) review the empirical literature on unit root testing of energy use per capita.

Most studies, including Glasure and Lee (1998), Beenstock et al. (1999) and McAvinchey and

Yannopoulos (2003) report that the null hypothesis of an I(1) energy consumption series can

not be rejected at conventional levels of significance. As an exception to this general conclusion,

Altinay and Karagol (2004) document evidence in favor of characterizing energy use in Turkey

during 1950–2000 as a trend stationary process. However, given the low power of univariate

tests in finite samples, it is not clear if the failure to reject the null of a unit root is an evidence

of a truly I(1) series. To circumvent this problem, a few studies have recently applied PURTs to

examine the stationarity of energy use per capita. Results have been generally mixed, however.

For instance, Joyeux and Ripple (2007) employ the PURTs suggested in Levin et al. (2002)

and Im et al. (2003) and find that energy consumption measures are I(1). Narayan and Smyth

(2007), on the other hand, report that the unit root null hypothesis can be rejected at the

10% level of significance for 56 of the 182 countries they considered. However, they find strong

evidence of a (trend) stationary energy consumption by employing the PURT of Im et al. (2003).

Nevertheless, these results should be seen with caution as the studies employ standard PURTs,

which are not pivotal if the series exhibit volatility shifts.
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4.2 Panel unit root test results

In this section, we study the order of integration of energy consumption per capita using the

test suggested in this paper, τ̂ , vis-a-vis the heteroskedasticity-robust tests of Herwartz et al.

(2016) and Demetrescu and Hanck (2012a) lacking applicability for such trending data. We

analyse annual data of energy use per capita (kilogram of oil equivalent per capita) obtained

from World Development Indicators (World Bank, 2016). In this data set, energy use refers

to “use of primary energy before transformation to other end-use fuels, which is equal to

indigenous production plus imports and stock changes, minus exports and fuels supplied to

ships and aircraft engaged in international transport.” The study covers 23 OECD economies

(Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Greece, Ireland,

Italy, Japan, Netherlands, New Zealand, Norway, Poland, Portugal, Spain, Sweden, Switzerland,

Turkey, United Kingdom and the United States) from 1960 to 2014. The economies are

selected according to data availability. As transforming the series into natural logarithms before

undertaking unit root testing is a standard practice in the literature, we test for unit roots both

on original series as well as their logarithmic values.

To get an impression if variances in the energy use per capita series exhibit significant

changes over time, we plot variance profiles in Figure 2. Variance profiles ϑ̂i(w) are computed

as

ϑ̂i(w) =

∑bsT c
t=1 η̂2it + (wT − bwT c)η̂2ibwT c+1∑T

t=1 η̂
2
it

, 0 ≤ w ≤ 1, (21)

where the η̂it’s are obtained as residuals from AR(1) regressions of the series. Plotting ϑ̂i(w)

against w, it is straightforward to see that a homoskedastic series would fall on the 45◦ line and

deviations from the diagonal indicate time-varying variances. Figure 2 reveals that time-varying

variances characterize energy per capita series in most cross section members.

*****

Place Figure 2 here.

*****

*****

Place Table 4 here.

*****

Panel unit root test results are reported in Table 4. Results for all the tests overwhelmingly

show that energy use per capita has a unit root. This evidence is consistent with the findings

of most of the empirical studies on the area, except, e.g., Narayan and Smyth (2007). However,
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it is well-known that unit root test results often depend on the specific time period under

study. To address this caveat, we perform panel unit root testing on rolling windows of 40

years. Corresponding results depicted in Figure 3 show that while energy use per capita is

difference stationary for most of the period, it could be considered trend stationary—at least at

the 10 percent significance level—for the sample periods starting between 1965 and 1968. It is

worthwhile noting that τ̂ has the lowest p−value of the three tests in almost all the considered

periods and could suggest an inferential outcome which is distinct from that of the other two

tests. In particular, for the period spanning 1966-2005 and based on the 5 percent significance

level, τ̂ implies that log energy per capita series can be considered trend stationary while the

other two tests suggest to treat the series as difference stationary. Moreover, our results also

highlight the risk of deciding on stationarity of series using one specific time window.

*****

Place Figure 3 here.

*****
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5 Conclusions

In this paper, we suggested a new panel unit root test (PURT) for the empirically-relevant

case where trending panels exhibit time-varying volatility. The test makes use of the recursive

detrending scheme proposed in Chang (2002), and the construction of the test statistic fully

accounts for non-zero expectation of the pooled panel regression estimator and the variance

of its centred counterpart. Accordingly, the resulting test statistic has a Gaussian limiting

distribution. Monte Carlo simulation results show that the test has satisfactory finite sample

properties. In particular, the test tends to be conservative, while it shows remarkable power.

Hence, this test should be useful in panel unit root testing of several trending macroeconomic

and financial time series such as GDP per capita, industrial production, money supply and

commodity prices.

The empirical illustration examined the order of integration of energy use per capita. Results

using data from 23 OECD economies for the period 1960-2014 show that energy use per capita

is often difference stationary. Yet, there are also a few sub-periods for which the series could

be considered as trend stationary.

A particular limitation of the suggested test is that it does not perform well under a strong

form of cross-sectional dependence. An effective way of panel unit root testing under strong

forms of cross-sectional correlation is to remove the common factor from the data (Bai and Ng,

2004; Moon and Perron, 2004; Kapetanios, 2007). Consequently, it appears worthwhile to see in

a future research if such an approach would yield a panel unit root test that works for strongly

correlated panels with trending and heteroskedastic time series.

Data Availability Statement

The data used in this study are openly available from World Development Indicators of the

World Bank: https://data.worldbank.org. Accessed on September 23, 2016.
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Table 1: Empirical rejection frequencies, cross-sectionally independent panels

5% 10%

size power size power

N T τ τ̂ HSW DH τ τ̂ HSW DH τ τ̂ HSW DH τ τ̂ HSW DH

Constant variance (HOM)
50 25 5.6 4.6 4.8 4.5 40.5 32.0 31.1 19.4 11.1 10.0 9.8 9.9 55.2 49.9 48.3 32.3
50 50 4.6 5.5 4.8 4.3 98.9 98.6 97.4 77.2 10.4 11.1 9.7 9.0 99.6 99.7 99.4 87.7
50 100 4.6 4.3 3.5 4.0 100.0 100.0 100.0 100.0 9.7 9.7 8.4 8.6 100.0 100.0 100.0 100.0
50 250 3.8 4.2 3.6 4.0 100.0 100.0 100.0 100.0 9.0 9.9 8.6 8.6 100.0 100.0 100.0 100.0
100 25 5.4 3.4 4.3 4.7 63.8 50.8 49.6 28.9 11.4 8.2 9.5 9.5 76.1 68.4 67.8 45.6
100 50 5.2 5.5 4.7 4.7 100.0 100.0 100.0 96.2 11.0 10.8 9.7 9.9 100.0 100.0 100.0 98.8
100 100 4.5 4.9 3.7 4.4 100.0 100.0 100.0 100.0 9.4 10.2 8.8 8.7 100.0 100.0 100.0 100.0
100 250 4.9 4.6 3.7 4.4 100.0 100.0 100.0 100.0 10.3 10.0 8.4 9.0 100.0 100.0 100.0 100.0
250 25 5.4 2.0 4.5 4.8 92.7 81.0 83.2 54.2 10.8 5.9 9.5 9.7 96.1 92.1 93.4 70.1
250 50 4.9 4.1 3.8 4.2 100.0 100.0 100.0 100.0 10.4 9.5 9.0 9.2 100.0 100.0 100.0 100.0
250 100 4.7 4.7 3.6 4.1 100.0 100.0 100.0 100.0 9.6 9.5 8.0 8.7 100.0 100.0 100.0 100.0
250 250 4.6 5.0 3.9 4.0 100.0 100.0 100.0 100.0 10.1 10.3 8.4 9.0 100.0 100.0 100.0 100.0

Early negative variance shift (NEG)
50 25 4.9 1.4 0.0 0.0 9.6 4.3 0.0 0.0 10.2 4.4 0.0 0.0 17.3 12.1 0.0 0.0
50 50 5.1 3.0 0.0 0.0 48.8 48.2 0.0 0.1 10.7 7.9 0.0 0.0 63.8 66.2 0.1 0.6
50 100 4.7 4.0 0.0 0.0 99.9 99.9 37.8 36.1 10.0 8.9 0.0 0.0 100.0 100.0 54.4 51.4
50 250 4.6 4.5 0.0 0.0 100.0 100.0 100.0 100.0 9.9 10.2 0.0 0.0 100.0 100.0 100.0 100.0
100 25 5.4 0.4 0.0 0.0 12.5 3.3 0.0 0.0 10.5 2.6 0.0 0.0 22.3 12.3 0.0 0.0
100 50 5.2 2.3 0.0 0.0 75.5 72.4 0.0 0.0 10.6 6.0 0.0 0.0 85.8 87.1 0.0 0.1
100 100 4.9 3.9 0.0 0.0 100.0 100.0 57.0 57.5 10.6 8.9 0.0 0.0 100.0 100.0 73.7 73.0
100 250 5.2 4.5 0.0 0.0 100.0 100.0 100.0 100.0 10.5 10.3 0.0 0.0 100.0 100.0 100.0 100.0
250 25 5.0 0.0 0.0 0.0 18.6 0.8 0.0 0.0 10.1 0.4 0.0 0.0 29.2 6.9 0.0 0.0
250 50 5.0 1.0 0.0 0.0 97.8 96.1 0.0 0.0 10.7 4.4 0.0 0.0 99.2 98.9 0.0 0.0
250 100 5.0 3.4 0.0 0.0 100.0 100.0 84.4 87.1 10.1 7.9 0.0 0.0 100.0 100.0 93.4 94.0
250 250 5.0 4.8 0.0 0.0 100.0 100.0 100.0 100.0 10.0 9.3 0.0 0.0 100.0 100.0 100.0 100.0

Late positive variance shift (POS)
50 25 4.6 1.6 17.7 11.0 57.7 35.6 77.8 50.8 9.9 7.0 30.7 21.3 73.6 64.3 92.3 68.4
50 50 3.3 3.2 26.0 13.1 99.0 98.8 99.8 95.4 8.2 8.2 39.6 23.4 99.9 99.9 100.0 98.7
50 100 3.1 3.3 21.0 12.2 100.0 100.0 100.0 100.0 7.6 8.4 35.0 21.9 100.0 100.0 100.0 100.0
50 250 2.6 2.7 18.4 12.3 100.0 100.0 100.0 100.0 7.3 8.0 32.1 22.4 100.0 100.0 100.0 100.0
100 25 4.7 0.5 29.1 15.6 85.5 55.6 92.7 72.9 10.0 3.7 44.7 27.0 92.6 83.4 99.0 86.9
100 50 4.6 2.9 34.4 17.4 100.0 100.0 100.0 99.9 9.4 7.8 50.8 29.6 100.0 100.0 100.0 100.0
100 100 3.5 2.9 30.0 16.3 100.0 100.0 100.0 100.0 8.0 7.2 46.7 28.1 100.0 100.0 100.0 100.0
100 250 3.4 3.1 28.8 15.4 100.0 100.0 100.0 100.0 8.3 8.1 45.3 26.8 100.0 100.0 100.0 100.0
250 25 4.4 0.1 57.3 29.4 99.7 85.0 99.7 94.6 10.4 1.1 72.3 44.1 99.9 98.3 100.0 98.8
250 50 3.4 1.9 56.0 27.7 100.0 100.0 100.0 100.0 9.0 6.3 73.7 42.0 100.0 100.0 100.0 100.0
250 100 4.0 3.7 53.7 26.8 100.0 100.0 100.0 100.0 9.0 8.7 71.8 41.7 100.0 100.0 100.0 100.0
250 250 3.1 3.3 57.3 29.1 100.0 100.0 100.0 100.0 7.4 8.1 72.3 44.0 100.0 100.0 100.0 100.0

Notes: τ , τ̂ , HSW and DH refer to the PURT statistics given in (8), (12), (4) and (20) respectively. Power is
not size adjusted. All results are based on 5000 replications. Data is generated according to DGP1 in (18) and
all tests are computed on detrended data.
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Table 2: Empirical rejection frequencies of τ̂ , diverse scenarios

DGP1, SAR(1) model DGP2, Independence DGP2, SAR(1) model

5% 10% 5% 10% 5% 10%

N T size power size power size power size power size power size power

Constant variance (HOM)
50 25 4.3 16.2 11.2 28.9 0.0 0.0 0.0 0.1 0.0 0.1 0.5 0.7
50 50 3.8 60.4 10.3 78.0 0.1 29.7 0.8 50.3 0.2 8.1 1.2 20.6
50 100 3.6 100.0 9.3 100.0 1.3 100.0 3.7 100.0 1.2 95.4 4.1 98.7
50 250 3.2 100.0 8.6 100.0 2.9 100.0 6.7 100.0 1.9 100.0 5.5 100.0
100 25 4.8 24.7 10.6 40.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2
100 50 4.4 89.7 10.5 95.6 0.1 58.7 0.3 77.6 0.1 17.7 0.9 36.8
100 100 4.2 100.0 10.0 100.0 1.0 100.0 3.0 100.0 1.0 100.0 4.0 100.0
100 250 3.8 100.0 9.2 100.0 2.5 100.0 6.0 100.0 2.2 100.0 6.4 100.0
250 25 3.7 42.6 8.9 61.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
250 50 4.5 99.9 9.9 100.0 0.0 94.0 0.1 98.3 0.1 48.1 0.6 68.4
250 100 4.1 100.0 9.1 100.0 0.4 100.0 1.3 100.0 0.8 100.0 2.9 100.0
250 250 4.5 100.0 10.2 100.0 2.6 100.0 5.9 100.0 2.5 100.0 6.4 100.0

Early negative variance shift (NEG)
50 25 2.9 5.1 7.7 13.7 0.0 0.0 0.0 0.0 0.1 0.0 0.5 0.3
50 50 3.3 20.8 8.9 38.1 0.1 0.4 0.4 2.0 0.3 0.9 1.4 3.0
50 100 3.7 79.2 9.6 90.4 0.7 87.7 3.0 95.9 0.8 30.3 3.1 55.3
50 250 3.5 100 8.5 100.0 3.0 100.0 8.0 100.0 1.7 100.0 6.3 100.0
100 25 2.0 4.8 5.7 13.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0
100 50 3.3 35.3 8.5 53.4 0.0 0.2 0.1 0.7 0.2 0.5 0.6 2.1
100 100 4.6 97.7 10.1 99.3 0.6 99.6 2.0 100.0 0.9 66.3 2.9 84.8
100 250 4.4 100.0 9.5 100.0 3.7 100.0 8.5 100.0 2.3 100.0 6.0 100.0
250 25 0.6 3.6 3.1 12.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
250 50 3.0 61.9 6.9 78.1 0.0 0.0 0.0 0.1 0.0 0.2 0.0 0.9
250 100 4.2 100.0 9.2 100.0 0.2 100.0 1.2 100.0 0.5 97.9 2.0 99.5
250 250 4.6 100.0 9.8 100.0 3.9 100.0 9.5 100.0 2.5 100.0 7.6 100.0

Late positive variance shift (POS)
50 25 1.8 14.8 7.9 34.7 0.0 0.3 0.4 4.4 0.2 0.7 1.5 4.5
50 50 1.8 56.7 7.1 80.1 0.8 63.1 4.7 83.6 0.6 16.4 3.8 37.9
50 100 1.4 99.0 6.0 99.8 2.2 100.0 6.6 100.0 0.9 85.8 4.8 96.8
50 250 1.1 100.0 5.6 100.0 2.8 100.0 7.1 100.0 0.9 100.0 4.9 100.0
100 25 2.0 24.8 7.2 50.0 0.0 0.2 0.2 3.2 0.1 0.5 0.8 4.4
100 50 2.6 89.8 7.6 97.0 1.2 91.9 4.4 98.4 1.0 39.9 4.1 66.0
100 100 2.6 100.0 7.7 100.0 3.0 100.0 8.2 100.0 1.6 99.7 5.8 100.0
100 250 2.2 100.0 7.0 100.0 3.1 100.0 8.3 100.0 2.0 100.0 6.0 100.0
250 25 0.8 48.1 4.3 77.4 0.0 0.0 0.0 1.1 0.0 0.2 0.1 2.9
250 50 3.1 99.9 8.0 100.0 0.4 100.0 3.7 100.0 0.8 85.0 4.2 95.7
250 100 3.0 100.0 8.2 100.0 3.1 100.0 9.0 100.0 2.1 100.0 6.3 100.0
250 250 2.8 100.0 7.7 100.0 4.1 100.0 10.1 100.0 2.5 100.0 7.8 100.0

Notes: Data is generated according to DGP1 in (18) for results in the left-hand side block, while DGP2 in (19)
is used to generate data for results documented in the middle and right-hand side blocks of the table. Testing
is performed on detrended data. For DGP2, detrending is preceded by prewhitening. Power is not size adjusted
and all results are based on 5000 replications.
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Table 3: Power of τ̂ when a subset of panel units are stationary

DGP1, SAR(1) model DGP2, Independence DGP2, SAR(1) model

α α α

N T 0 0.2 0.5 0.9 0 0.2 0.5 0.9 0 0.2 0.5 0.9

Early negative variance shift (NEG)
50 25 2.9 3.0 3.6 4.7 0.0 0.0 0.0 0.0 0.3 0.1 0.2 0.2
50 50 3.3 4.7 8.5 18.0 0.3 0.4 0.7 1.6 0.5 0.5 0.7 1.5
50 100 3.7 8.8 24.7 66.3 1.3 5.4 27.3 84.8 1.0 2.1 7.0 29.6
50 250 2.8 16.6 71.1 100.0 4.3 36.4 97.9 100.0 2.0 11.4 62.2 99.9
100 25 2.0 2.2 2.9 4.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
100 50 3.3 5.3 12.6 27.0 0.1 0.1 0.2 0.9 0.2 0.2 0.5 1.2
100 100 4.6 12.0 45.5 90.6 1.2 7.5 58.0 99.1 1.2 3.1 17.9 60.8
100 250 3.7 27.8 95.5 100.0 4.5 59.0 100.0 100.0 2.3 19.8 92.5 100.0
250 25 0.5 1.0 1.5 3.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
250 50 3.5 6.5 19.4 54.3 0.0 0.0 0.0 0.8 0.1 0.1 0.4 1.2
250 100 3.3 22.1 82.2 100.0 0.5 17.9 94.2 100.0 0.9 7.7 49.1 98.7
250 250 5.5 60.4 100.0 100.0 5.6 97.3 100.0 100.0 2.1 56.0 100.0 100.0

Notes: α denotes the share of stationary units in the sample, with the autoregressive coefficient of the stationary
series generated as ρ = (ρ1, . . . , ρN1), ρi ∼ iidU(0.85, 0.95), where N1 = αN . For further notes, see Table 2.

Table 4: Is energy use per capita trend or difference stationary?

Energy use p.c. Ln (energy use p.c.)

Period y ∆y y ∆y

τ̂ HSW DH τ̂ HSW DH τ̂ HSW DH τ̂ HSW DH

Full period

1960-2014 0.71 0.55 1.36 -2.79 -3.18 -2.56 1.56 1.24 1.37 -2.86 -2.88 -2.64

50 years window

1960-2009 0.46 0.43 1.24 -2.65 -2.82 -2.17 0.86 0.91 1.39 -2.64 -2.40 -2.13

1961-2010 -0.18 -0.01 0.93 -2.82 -2.81 -2.21 0.77 0.84 1.34 -2.81 -2.59 -2.02

1962-2011 -0.18 0.00 0.40 -2.71 -2.81 -2.32 0.73 0.83 1.04 -2.69 -2.56 -2.01

1963-2012 -0.29 -0.10 0.18 -2.69 -2.85 -2.57 0.28 0.55 0.64 -2.76 -2.66 -2.17

1964-2013 -0.57 -0.36 -0.31 -2.67 -3.25 -2.61 0.04 0.39 -0.33 -2.84 -2.91 -2.74

1965-2014 -0.27 -0.14 -0.66 -2.70 -3.11 -2.18 0.19 0.48 -0.85 -2.79 -2.83 -2.51

Notes: Reported numbers are estimates of the panel unit root tests τ̂ , tHSW and tDH . Testing is performed on
data that is first prewhitened and then recursively detrended. The lag order used for prewhitening is selected
based on the AIC criterion, with the maximum lag length set to two. Our results remain qualitatively identical if
we set a uniform lag length of one or two for all panel units. ‘Ln’ denotes the natural logarithmic transformation.
Bold entries represent cases in which the panel unit root null hypothesis is rejected with 5% significance.
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Figure 1: Local power of τ̂ and tHSW as a function of c.

0 5 10 15 20 25 30 35 40 45 50

c

0

10

20

30

40

50

60

70

80

90

100

R
e

je
c
ti
o

n
 f

re
q

u
e

n
c
ie

s

HMW_hom

HMW_early_neg

HMW_late_pos

HSW_hom

Notes: The curves depict local power of τ̂ (HMW) as a function of c under homoskedasticity, early negative

variance break and late positive variance break. For the sake of comparison, the figure also depicts the local

power of tHSW (HSW) under homoskedasticity. Data are generated according to DGP1 and SAR(1) residuals.

Regarding the selection of φ = 1 − c/(T
√
N) we proceed similar to Westerlund and Breitung (2013) and draw

c ∼ U(0, 2c). Rejection frequencies are computed based on 5,000 replications and a 5% critical value of 1.64.
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Figure 2: Estimated variance profiles
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Notes: ‘Ln’ denotes the natural logarithmic transformation.

Figure 3: Panel unit root testing over 40-years windows
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Notes: The figures depict p−values from the panel unit root tests τ̂ (HMW), tHSW and tDH . ‘Year’ represents

the year at which the 40-years sample period begins. For further notes, see Table 4.
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