
Crowdsourcing Content Creation for SQL Practice
Juho Leinonen

juho.leinonen@helsinki.fi
University of Helsinki

Helsinki, Finland

Nea Pirttinen
nea.pirttinen@helsinki.fi
University of Helsinki

Helsinki, Finland

Arto Hellas
arto.hellas@aalto.fi
Aalto University
Espoo, Finland

ABSTRACT
Crowdsourcing refers to the act of using the crowd to create content
or to collect feedback on some particular tasks or ideas. Within
computer science education, crowdsourcing has been used – for
example – to create rehearsal questions and programming assign-
ments. As a part of their computer science education, students often
learn relational databases as well as working with the databases
using SQL statements. In this article, we describe a system for prac-
ticing SQL statements. The system uses teacher-provided topics
and assignments, augmented with crowdsourced assignments and
reviews. We study how students use the system, what sort of feed-
back students provide to the teacher-generated and crowdsourced
assignments, and how practice affects the feedback. Our results
suggest that students rate assignments highly, and there are only
minor differences between assignments generated by students and
assignments generated by the instructor.

CCS CONCEPTS
• Information systems→Crowdsourcing; •Applied computing
→ Interactive learning environments; • Social and professional
topics→ Computing education.

KEYWORDS
crowdsourcing, SQL, introduction to databases, teacher generated
content, student generated content, assignment creation, assign-
ment quality

ACM Reference Format:
Juho Leinonen, Nea Pirttinen, andArtoHellas. 2020. Crowdsourcing Content
Creation for SQL Practice. In Proceedings of the 2020 ACM Conference on
Innovation and Technology in Computer Science Education (ITiCSE ’20), June
15–19, 2020, Trondheim, Norway. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3341525.3387385

1 INTRODUCTION
Crowdsourcing has been used in computing education, for exam-
ple, to have students create multiple-choice questions [12] or pro-
gramming assignments [15, 31], to have educators create a large
assignment pool [35], and to have educators generate new learning
material [36]. However, an aspect of introductory computing that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ITiCSE ’20, June 15–19, 2020, Trondheim, Norway
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6874-2/20/06. . . $15.00
https://doi.org/10.1145/3341525.3387385

has been largely overlooked by those creating crowdsourcing sys-
tems is SQL practice. While a versatile tool such as PeerWise [12]
can be used for creating multiple-choice questions related to any
topic, it would be useful to have a system in which students create
SQL assignments that require others to write actual SQL queries.

In this article, we present a system in which students can de-
sign SQL assignments, peer review assignments created by other
students, and complete assignments from the large crowdsourced
assignment pool. We study students’ use of the system by analyz-
ing the feedback students give to assignments within the system
during peer review. Additionally, we compare the feedback to as-
signments created by the instructor to those assignments created
by the students.

Our hypothesis is that student-generated SQL assignments are
close to the instructor generated assignments with regards to qual-
ity. This is because previous work on assessing the quality of stu-
dent generated crowdsourced resources has found that students
can create assignments that are of good quality [13, 19] and that in
the case of crowdsourced programming assignments, there are no
large differences between assignments created by more experienced
programmers and novice programmers [32].

This article is structured as follows. In Section 2, we detail prior
work related to crowdsourcing in computer science education and
learning and teaching SQL. In Section 3, we present the system we
have developed. Section 4 describes our research methodology, and
Section 5 presents the results of the study, which are discussed in
Section 6. Lastly, we conclude the work in Section 7.

2 RELATEDWORK
2.1 Crowdsourcing in CS Education
Crowdsourcing is a method of obtaining content, ideas or goods
from a large group of people, usually on the Internet. The term
first appears in a 2006 article by Howe [21], born as a portmanteau
between words crowd and outsourcing, the act of employing outside
workforce to perform required tasks.

The rapid growth of the usage of the Internet and especially
social media platforms has made both the advertising of and partici-
pating in crowdsourcing activities easier. A well-known example of
crowdsourcing is Wikipedia1, an online encyclopedia maintained
in almost 300 languages through user-based open collaboration.
Crowdsourcing is very suitable for small tasks that require human
interaction, and cannot be automated. For example, Amazon Me-
chanical Turk2 provides a platform for businesses to hire users to
complete discrete tasks.

One of the main uses of crowdsourcing in computer science
education is to alleviate the time spent on creating new exercises for

1https://www.wikipedia.org/
2https://www.mturk.com/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/328855929?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3341525.3387385
https://doi.org/10.1145/3341525.3387385
https://doi.org/10.1145/3341525.3387385


ITiCSE ’20, June 15–19, 2020, Trondheim, Norway Juho Leinonen, Nea Pirttinen, and Arto Hellas

each course iteration. This can be achieved by using material banks,
usually consisting of exercises, visualizations or lecture materials
from instructors, or by tools that both teach programming and
collect content at the same time. Using the student population for
crowdsourcing efforts produces a larger mass of results with less
effort from the instructors, but requires more curating, either with
systematically set out tasks during the crowdsourcing, or with
manual or automated filtering afterwards.

For example, PeerWise [12] is a web-based tool that is used
to crowdsource multiple-choice questions. While the format of
multiple-choice questions makes them applicable for a wide range
of educational fields, studies mostly investigate the usage of Peer-
Wise in computer science courses. Students create questions and
two to five answer alternatives, mark the correct answer and give
an explanation for why the chosen option is the correct one. All of
the multiple-choice questions entered into the system are available
as exercises for other students. After completing an exercise, stu-
dents can review and rate the question for its cohesion, difficulty,
relevance and so forth. This way, PeerWise works as both a revision
system through creating and answering multiple-choice questions,
and curates itself through a peer-review system.

Similarly, CrowdSorcerer [31] is an embeddable tool that is used
for programming assignment creation. Students come up with an
assignment description according to some specifics given by an in-
structor. This can be, for example, creating an assignment that uses
conditional clauses. Then, the student programs a model solution
and a code template for the assignment. The model solution is a
full, working answer to the assignment, while the code template
only contains the basic structure of the program, like the main
method declaration, without the actual implementation lines. The
user also creates test cases for their program. The program code is
automatically tested for compilation errors, and the user-given tests
make sure that the program works as it is supposed to. Finished
assignments are peer reviewed using both written feedback and
Likert-like review statements.

As for the expert curated material banks, Canterbury Question-
Bank [35] is a comprehensive set of multiple-choice questions suit-
able for first-year computer science courses. An ITiCSE 2013 work-
ing group of computer science educators produced over 650 ques-
tions and answers suitable for, for example, quizzes and exams. The
question bank can be found and contributed to through its website3.
OpenDSA [36] is a collection of online materials supporting wide
range of computer science courses. The materials include visualiza-
tions, course books, exercises and modules that can be used as a
part of any course material regarding, for example, programming,
data structures and algorithms, or formal languages. The materials
provided by the system are available on the webpage4 of the project.

2.2 Quality of Crowdsourced Content
End-product quality and the trustworthiness of the crowd are valid
concerns with crowdsourcing. The issuer cannot be entirely sure
of the skill level, nor the ulterior motives, their crowd has. Low
quality contributions are not necessarily only due to varying levels
of competence, but also due to intentional maliciousness, either

3http://web-cat.org/questionbank/
4https://opendsa-server.cs.vt.edu/

for the person’s own amusement or to hurt the company they are
working for.

The crowd can be pre-selected based on their applications or
self-reported expertise on the area of the task [6], but this can be
time and resource consuming, taking away from the advantages
crowdsourcing has over outsourcing, mainly flexibility and swift-
ness. While carefully defining the scope of the task and the end-
product criteria beforehand can work as a method of quality control,
many companies accept the additional workload of reviewing the
crowdsourced content and discarding low-quality contributions.
Allahbakhsh et al. [6] list existing review methods for analysing
end-product quality, such as expert review and comparison to a
golden standard.

Besides the framing of the tasks, the format in which the tasks
are given can also affect the quality of the crowdsourced outcome.
According to Lukyanenko et al. [26], free-format tasks seem to pro-
duce better quality contributions, though this causesmoreworkload
for the issuer as the crowdsourced contents need to be carefully
checked and formatted before they can be used.

Another way to alleviate quality issues is peer reviewing, as with
the multiple-choice questions in PeerWise [12] and programming
assignments in CrowdSorcerer [31]. Studies have shown that the
quality of peer reviewed exercises is good [13, 19], even when
both the creators and the reviewers are from the same crowd of
students. Hamer et al. [19] did not find any significant differences
between peer reviews and expert reviews of the same, student-
created exercises. No significant differences have been found in
reviews done by novices or experienced students [19, 32]. Pirttinen
et al. [32] also report that at least with CrowdSorcerer, assignments
created by students with more programming experience did not
seem to differ from those created by novices quality-wise.

2.3 Learning and Teaching SQL
SQL as a language and the formulation of SQL queries can be com-
plex for novices. Several studies have reported about the types of
mistakes and errors students encounter when learning to write
SQL [3, 4, 9, 37, 41, 42]. Performance in writing SQL is also linked
with students’ course performance [2]. Thus, instructional approaches
for teaching and opportunities to learn SQL are called for.

The use of worked examples and sequencing course content
can help students’ learning [27]. Helping students reason about
and structure patterns that occur in SQL problems may help with
recalling appropriate statements needed to solve the problems
and to identify (and solve) similar problems [5]. This can be ap-
proached through the use of checklists and patterns, or through
more problem-specific templates accompanied with a strategy for
using those templates [5, 33, 39, 40].

Learning SQL is typically not limited to the language itself, as
students need to also learn to study and reason about the domain
and the underlying schema [20, 33]. In other words, the way how
the problems are phrased [7, 8, 10] and the database schema [25]
both contribute towards the difficulty of the query formulation task.
At the same time, once students learn SQL, it can be a useful tool
in teaching: one can, for example, use SQL to teach other database
concepts such as transaction management [18].



Crowdsourcing Content Creation for SQL Practice ITiCSE ’20, June 15–19, 2020, Trondheim, Norway

Multiple tools have been developed for teaching SQL. These in-
clude both traditional practice systems where students are given
a set of automatically assessed SQL problems that they need to
solve [1, 17, 24, 38], and tutoring systems [22, 23, 28–30], which
provide further scaffolding to the learning process by, for exam-
ple, providing hints, partial solutions, and controlling when the
student can proceed to the next type of problems. In both types of
systems, instructors have traditionally constructed the problems
that students need to solve.

3 SYSTEM DESCRIPTION
Here, we describe the system that is used to practice SQL and to
crowdsource the content. The system is open source and available
at https://github.com/rage/iticse2020-sqltrainer.

3.1 Creating Content
The system provides two views: one for the teacher and one for
the student. The teacher has the opportunity of creating databases,
topics, and assignments, while the student can create and com-
plete assignments. Databases are created by writing a name for the
database and the SQL statements needed for creating the database.
Topics are essentially categories for assignments – when creating a
topic, the system asks for the name of the topic as well as a short
description and a rank, which defines the order in which the topics
are shown to the student. When creating an assignment, the data-
base and the topic are selected, and the name of the assignment, the
assignment handout, and the SQL statements needed to complete
the assignment are written.

When students use the system, they see a list of topics ordered
by their rank. Each topic has the option of practicing it and creat-
ing content into it. If the student chooses to practice a particular
topic, they will be given a randomly selected assignment that the
student has not yet completed from the pool of assignments within
that topic. If the student chooses to create content for a particular
topic, the system will ask which database the student wants to use
(from the pre-defined list of databases created by the teacher), as
well as ask for the name, handout, and SQL statements for that
assignment. Once the assignment is completed, it is added to the
pool of assignments within that topic.

3.2 Practice and Feedback
When working on an assignment, in addition to the assignment
name and handout, the student can view the database schema and
the expected outcome of the query – if it is possible to show one. If
a student is unable to complete the currently selected assignment,
they can choose to select another assignment from the pool of
assignments within that topic. All attempts towards solving an
assignment are stored, and each student has access to their attempt
history for each assignment. The number of completed and created
assignments by the student is shown in the topic list.

Whenever a user completes an assignment, they are shown a
list of feedback questions related to that assignment. The questions
that the system shows are created by the teacher. By default, the
questions are answered using a 7-point Likert-scale questions rang-
ing from (1 = Not at all, 7 = Very much so). Answering the feedback
questions is not mandatory, and skipping the questions leads the

student to the next randomly selected assignment within the topic
that the student is currently practicing.

3.3 Assessment of SQL Assignments
The system supports automatic assessment of SQL select statements
as well as SQL statements that alter the database schema. This is
realized through depending on the use of in-memory databases that
are created and destroyed whenever a student submits a solution
to an assignment. For each submission (i.e. assignment attempt),
the system creates two in-memory databases: one for the expected
outcome and one for the student’s outcome. Both of these databases
are initiated using the teacher provided SQL statements used for
creating the database, and the subsequent queries are based on the
model solution in the case of the database depicting the expected
outcome, and the student’s queries in the case of the database
depicting the student’s outcome.

First, during the assessment, the system compares the structure
and content of the databases, including indices and key constraints.
This step is used to ensure that any expected (and non-expected)
modifications to the database schema and the content are verified.
Then, the output of the last query is assessed; here, the structure
of the output and the content of the output is compared for both
the model solution and the student’s solution to ensure that the
output of the query is as expected. Finally, the student’s query is
heuristically compared with the output to verify that the student
has not written a simple query that outputs the expected values
without actually querying the database. If these verification steps
pass, the student is awarded a point for completing the assignment.

3.4 Integrations
The system uses the OAuth 2.0 protocol5 for user authentication,
which means that the backend used for authentication can be practi-
cally any backend that supports the protocol. Moreover, the system
provides a REST interface that allows teachers access to the points
of all students in the system, and access to students for their own
points. This interface can be used to e.g. create centralized score-
boards and to embed the points of the current student to the learn-
ing material, assuming that students use the same authentication
mechanism in the learning materials.

4 METHODOLOGY
4.1 Context and Data
For the purposes of this study, we used the system described in Sec-
tion 3 in three instances of an introductory-level databases course,
which is typically taken right after the introductory programming
course (CS1). The course is offered by University of Helsinki, a
public research-oriented university in Finland, and the course can
be attended for free by both affiliated and non-affiliated students.

The teacher of the course constructed 11 topics into the sys-
tem, and added three to five assignments into each topic. The top-
ics included simple SQL select statements on one or more tables,
comparisons for limiting results, constructing aggregate queries,

5https://oauth.net/2/

https://github.com/rage/iticse2020-sqltrainer


ITiCSE ’20, June 15–19, 2020, Trondheim, Norway Juho Leinonen, Nea Pirttinen, and Arto Hellas

constructing nested queries, and altering the database schema (cre-
ating, removing, updating tables, working with indices). In total,
the teacher generated 45 SQL assignments into the system.

The grade of the course is formed from weekly assignments (55%
of the grade), two projects (30% of the grade), and an exam (15% of
the grade). Grading-wise, the students must receive at least half of
the overall points and at least half of the exam points to pass the
course. The highest grade can be achieved by collecting at least 90%
of the overall course points. In the course, completing and creating
SQL statements within the system contributed approximately 10%
of the overall grade. To reach full points from SQL training, students
were expected to complete at least 44 SQL assignments (4 from each
topic) and to create at least 11 assignments (1 for each topic).

Furthermore, six feedback questions (FQ) with 7-point Likert-
scale answer options ranging from (1 = Not at all, 7 = Very much
so) were included. In this work, we refer to the questions with
single-word labels. The labels and questions were as follows:
FQ1. Easiness: The exercise was too easy.
FQ2. Clarity: I think that the exercise handout was clear.
FQ3. Educational: I learned something when working on the ex-

ercise.
FQ4. Suitability: The difficulty of the exercise was suitable for me.
FQ5. Confidence: I think that my solution is good.
FQ6. Frustration: Working on the exercise was frustrating.
The analysis in the present work focuses on students’ work

within the system. Data from all course instances have been aggre-
gated for the purposes of the analysis.

4.2 Research Questions and Approach
Our research questions for this study are as follows.
RQ1 How do students respond to the feedback questions within

the system?
RQ2 How are the responses to the feedback questions related to

each other?
RQ3 How does the feedback from the crowdsourced assignments

compare to the feedback of the assignments created by the
instructor?

RQ4 To what extent does working on the assignments influence
feedback?

For correlations, we have used Spearman’s Rank Order Correla-
tion. For comparing populations, we have used the Mann-Whitney
U test. In all analyses, when analyzing statistical significance, we
have used a Bonferroni correction [16] to correct for multiple
(n = 61) comparisons. We consider p < 0.05 as statistically signifi-
cant, after correcting the p-value using the Bonferroni correction.

5 RESULTS
5.1 Descriptive Statistics
A total of 1,410 students entered the system and attempted at least
one assignment. From these, 1,359 completed at least three assign-
ments (96%), 1,184 created at least one assignment (84%), and 1,007
reviewed at least one assignment (71%). In total, students generated
12,059 assignments (on average, 10.1 per student who created at
least one assignment). There were in total 198,165 attempts in com-
pleting the assignments, and from the 12,059 assignments, 1,163

Question Mean, Median, (std)

FQ1. Easiness 3.60, 4, (1.82)
FQ2. Clarity 5.65, 6, (1.65)
FQ3. Educational 5.35, 6, (1.64)
FQ4. Suitability 5.24, 6, (1.62)
FQ5. Confidence 5.94, 6, (1.37)
FQ6. Frustration 2.33, 2, (1.78)

Table 1: Feedback averages. Likert answers between 1 (Not
at all) and 7 (Very much so).

were not solved by any of the students (9.6% of generated assign-
ments). Furthermore, 5,325 of the assignments received at least 1
review (44.2% of generated assignments).

In the subsequent analyses, unless otherwise stated, we limit
the analysis to those 1,359 students who have completed at least 3
assignments.

5.2 Overall Feedback on Assignments
To answer RQ1 “How do students respond to the feedback questions
within the system?” we first calculated the means, medians, and
standard deviations for the different feedback questions, which are
shown in Table 1. The Likert-scale was between 1 (Not at all) and 7
(Very much so).

Overall, students rated the clarity and suitability of the assign-
ments high, and considered that the assignments were educational
and that their own solutions (to the assignments) were good. The
assignments were not too easy, but also not too difficult, and on
average the assignments were not considered frustrating.

5.3 Feedback Correlations
To answer RQ2 “How are the responses to the feedback questions
related to each other?” we calculated the correlations between stu-
dents’ answers to different feedback questions. Analysis was limited
to those assignments that received at least three reviews. Summary
of the correlations are shown in Table 2. All of the correlations
except for FQ1-FQ2, FQ1-FQ5, and FQ1-FQ6 were statistically sig-
nificant. Non-significance is indicated with “ns” in the table.

Overall, the answers to the feedback questions correlate with
each other mostly moderately. The only strong correlation between
any two feedback questions is the correlation between FQ3 and FQ4
(r = 0.77), i.e. whether the student felt they learned something and
whether the student considered the assignment suitably difficult.

5.4 Comparing Feedback from Teacher’s
Assignments with Students’ Assignments

To answer RQ3 “How does the feedback from the crowdsourced as-
signments compare to the feedback of the assignments created by the
instructor?” we compared the means and standard deviations of
the feedback questions separately for instructor generated assign-
ments and student generated assignments. The feedback means and
standard deviations are shown in Table 3, medians in both groups
follow the overall median in the feedbacks as shown in Table 1.



Crowdsourcing Content Creation for SQL Practice ITiCSE ’20, June 15–19, 2020, Trondheim, Norway

FQ1. FQ2. FQ3. FQ4. FQ5. FQ6.

FQ1. Easiness 1.00
FQ2. Clarity ns 1.00
FQ3. Educational -0.46 0.46 1.00
FQ4. Suitability -0.42 0.49 0.77 1.00
FQ5. Confidence ns 0.56 0.35 0.41 1.00
FQ6. Frustration ns -0.60 -0.28 -0.36 -0.43 1.00

Table 2: Correlations between answers to different feedback
questions. Statistically non-significant correlations are indi-
cated with “ns”.

Question Instructor mean (std) Student mean (std)

FQ1. Easiness 3.62 (1.77) 3.58 (1.84)
FQ2. Clarity* 5.89 (1.33) 5.51 (1.79)
FQ3. Educational* 5.59 (1.44) 5.20 (1.73)
FQ4. Suitability* 5.33 (1.53) 5.18 (1.67)
FQ5. Confidence 5.96 (1.28) 5.93 (1.42)
FQ6. Frustration 2.31 (1.68) 2.34 (1.83)

Table 3: Feedback averages for instructor and student gener-
ated assignments. Likert answers between 1 (Not at all) and
7 (Verymuch so). For questionsmarkedwith an asterisk, the
difference between averages was statistically significant (p-
value < 0.05) after a Bonferroni correction. Medians in both
groups followed the medians shown in Table 1.

Overall, the differences in feedback answer means are small
between the assignments created by the instructor and the assign-
ments created by students. The differences are only statistically
significant for three feedback questions FQ2, FQ3, and FQ4, i.e.
whether the handout was clear, whether the student felt that they
learned something, and whether the student found the assignment
suitably difficult.

5.5 Behavior and Feedback
To answer RQ4 “To what extent does working on the assignments in-
fluence feedback?” we calculated the correlations between answers
to feedback questions and students’ assignment completion behav-
ior, i.e. the number of assignments attempted, completed, created
and reviewed. Additionally, the correlation between the previous
and the average distance to deadline was calculated. The average
distance to deadline was calculated from students’ attempted assign-
ments. For the metric, a larger value represents a higher distance.
The results are shown in Table 4.

Overall, assignment completion behavior only correlates weakly
or statistically non-significantly with feedback question answers.
Assignment completion behavior metrics correlate with each other
moderately, except for the distance to deadline, which correlates ei-
ther weakly or non-significantly with the other behavioral metrics.

6 DISCUSSION
Our results show that students rank crowdsourced assignments
highly overall, which is in line with previous work [32]. On the

other hand, other previous work found that students tend to under-
mark their peers’ scores [19]. The relatively high overall scores of
assignments in this work indicates that at least most of the crowd-
sourced assignments seem good to other students.

When looking at how the answers to feedback questions relate
to one another, we found that the highest correlation (0.77) was
between suitability and educational value, which is not surpris-
ing. After all, considering the zone of proximal development [11],
assignments should be suitably difficult for maximal educational
value. The non-significant correlations were between easiness and
clarity, confidence, and frustration. Of these, it is somewhat surpris-
ing that easiness does not correlate with confidence or frustration
statistically significantly. One would assume that the easier the
assignment, the more confident a student would be in their own an-
swer. One explanation for the non-significance between frustration
and easiness could be that both too easy and too hard assignments
cause frustration, and thus the correlation is not linear.

Comparing student- and instructor-generated assignments, we
found that the feedback to student-generated assignments had
slightly larger standard deviations. This is not surprising, since
only a single instructor created assignments, and thus those as-
signment are likely to be of similar quality. Overall, there are no
major differences between the feedback to student- and instructor
generated-assignments, which is in line with previous work [14].
The statistically significant differences, albeit minor, were in clarity
of the handout, educational value of the assignment, and suitability.
For all of these three, the instructor-generated assignments were
rated slightly higher, which makes sense, since the instructor prob-
ably has more experience in generating assignments and thus can
generate assignments that are slightly clearer, more educational,
and more suitable.

Considering students’ behavior with regards to attempting, com-
pleting, creating, and reviewing assignments and their correlations
with answers to feedback questions, we found that the number
of attempted, completed, and created assignments did not corre-
late much with feedback questions, while the number of reviewed
assignments correlated weakly with feedback questions. We be-
lieve that most students attempt and complete assignments, since
that is one of the main methods for students to learn SQL on the
course, while a smaller sub-population reviews assignments, which
was optional and does not contribute towards points. Interestingly,
distance to deadline did not have a significant correlation with
almost anything, with the only exception being the number of at-
tempted and completed assignments, where the correlation was
weak and negative. This means that the students who attempted
assignments close to the deadline, attempted and completed slightly
more assignments on average. We are not sure of the reasons for
this phenomenon, but one possible explanation could be that stu-
dents who have performed well – who also attempt and complete
more assignments – in the course are more confident in their skills
and thus have no need to start work early, thus working closer to
the deadline. Alternatively, another possible explanation could be
that students who perform poorly start work later and need more
attempts to feel comfortable with the studied topic.



ITiCSE ’20, June 15–19, 2020, Trondheim, Norway Juho Leinonen, Nea Pirttinen, and Arto Hellas

Attempted Completed Created Reviewed Distance to DL

Attempted 1.00
Completed 0.77 1.00
Created 0.55 0.69 1.00
Reviewed 0.29 0.36 0.36 1.00
Distance to DL -0.22 -0.30 ns ns 1.00
FQ1. Easiness -0.13 -0.12 -0.13 ns ns
FQ2. Clarity ns ns ns 0.28 ns
FQ3. Educational ns ns ns 0.18 ns
FQ4. Suitability ns ns ns 0.22 ns
FQ5. Confidence ns ns ns ns ns
FQ6. Frustration ns ns ns -0.12 ns

Table 4: Correlations between feedback question answers and assignment completion behavior. Non-significant correlations
are replaced with “ns”.

6.1 Limitations
There are multiple limitations to this work, which we will explain
here. Firstly, we have calculated averages from Likert-scale ques-
tions, where the distance between different options is not necessar-
ily the same. For example, it is possible that the distance perceived
by students between e.g. 5 and 6 is not as great as the perceived
distance between 6 and 7. Thus, using averages instead of strictly
using medians might not represent the data accurately. This is also
influenced by the cultural differences in answering Likert-scale
questions [34]. In the culture where the study was conducted, peo-
ple tend to avoid choosing the extreme ends of the Likert-scale,
which might affect the results. To combat this problem, we chose
to use a 7-point Likert-scale instead of a 5-point scale.

Another limitation is that the instructor disabled some student
generated assignments during the course, when it was noticed that
none of the students could solve them. It is possible that out of
the 1,163 assignments (9.6% of all student-created assignments)
some would have been solvable. At the same time, due to feedback
being collected once the assignment was completed, these excluded
assignments were not reviewed at all. Hence, it is possible that
this has influenced the results as some of the student-generated
assignments were excluded.

Most of the analysis relies on feedback questions that students an-
swered while reviewing assignments. There were no official guide-
lines to reviewing except for a prompt asking the student to review
the exercise and your solution using the following form. Responses
to the Likert-scale questions are subjective and it is also possible
that students have perceived the feedback questions differently –
this may have influenced the reviews that students have given.

Lastly, there is a selection bias when considering the feedback
students gave. Since giving feedback on assignments was optional,
it is likely that the population that decided to give feedback differs
from the overall course population. For example, it is possible that
more active students gave more feedback, which could affect the
results.

7 CONCLUSIONS
In this work, we presented a system for crowdsourcing SQL assign-
ments from students. In the system, students can design their own

SQL assignments, review assignments created by their peers, and
complete assignments from the crowdsourced assignment pool. We
studied how students use the system by analyzing the feedback
given by students and students’ behavior within the system.

Our results indicate that overall, students rate assignments highly.
On a 7-point Likert-scale, ratings given by students tend to be higher
than four for positive questions such as whether the assignment
was of suitable difficulty and lower than four for negative questions
such as whether students were frustrated whilst working on the
assignment. The feedback questions (see Section 4.1), which ana-
lyzed different aspects of the assignment, were mostly weakly or
moderately correlated with one another. Additionally, differences
between student- and instructor-generated assignments were ei-
ther statistically non-significant or modest, which is in line with
previous work [14]. Lastly, looking into students’ behavior in the
system, we found that the numbers of attempted, completed, cre-
ated, and reviewed assignments were moderately correlated with
one another. Additionally, the number of attempted, completed, and
created assignments did not correlate significantly with feedback
question answers, while the number of reviewed assignments only
weakly correlated with answers to feedback questions.

Overall, our results support earlier results [13, 19, 32] which
show that crowdsourced student-generated assignments can be of
good quality. Thus, such assignments – or at least a curated pool
of the best ones – could be used on courses, which can lessen the
burden of the instructor with regards to creating a large assign-
ment pool, although we acknowledge that our study does not take
into consideration the initial setup overhead of the system. Large
assignment pools are necessary, for example, in intelligent tutor-
ing systems, in which students can practice certain skills over and
over until the system judges the student to have learned the skill.
In our future work, we are interested in studying whether there
are differences when considering different types of assignments,
for example, assignments related to different topics of the course.
Additionally, we are interested in studying the effects of crowd-
sourcing on student performance and whether students improve as
assignment creators as the course progresses, as well as whether
their motivation can be positively influenced.



Crowdsourcing Content Creation for SQL Practice ITiCSE ’20, June 15–19, 2020, Trondheim, Norway

REFERENCES
[1] Alberto Abelló, M Elena Rodríguez, Toni Urpí, Xavier Burgués, M José Casany,

Carme Martín, and Carme Quer. 2008. LEARN-SQL: Automatic assessment of
SQL based on IMS QTI specification. In 2008 Eighth IEEE International Conference
on Advanced Learning Technologies. IEEE, 592–593.

[2] Alireza Ahadi, Vahid Behbood, Arto Vihavainen, Julia Prior, and Raymond Lister.
2016. Students’ syntactic mistakes in writing seven different types of SQL queries
and its application to predicting students’ success. In Proceedings of the 47th ACM
Technical Symposium on Computing Science Education. ACM, 401–406.

[3] Alireza Ahadi, Julia Prior, Vahid Behbood, and Raymond Lister. 2015. A quantita-
tive study of the relative difficulty for novices of writing seven different types
of SQL queries. In Proceedings of the 2015 ACM Conference on Innovation and
Technology in Computer Science Education. ACM, 201–206.

[4] Alireza Ahadi, Julia Prior, Vahid Behbood, and Raymond Lister. 2016. Students’
semantic mistakes in writing seven different types of SQL queries. In Proceedings
of the 2016 ACM Conference on Innovation and Technology in Computer Science
Education. ACM, 272–277.

[5] Huda Al-Shuaily and Karen Renaud. 2010. SQL Patterns-A New Approach for
Teaching SQL. In 8th HEA Workshop on Teaching, Learning and Assessment of
Databases, Abertay-Dundee. 29–40.

[6] M. Allahbakhsh, B. Benatallah, A. Ignjatovic, H. R. Motahari-Nezhad, E. Bertino,
and S. Dustdar. 2013. Quality Control in Crowdsourcing Systems: Issues and
Directions. IEEE Internet Computing 17, 2 (March 2013), 76–81. https://doi.org/
10.1109/MIC.2013.20

[7] Micheal Axelsen, A Faye Borthick, and Paul Bowen. 2001. A model for and the
effects of information request ambiguity on end-user query performance. ICIS
2001 Proceedings (2001), 68.

[8] A Faye Borthick, Paul L Bowen, Donald R Jones, and Michael Hung Kam Tse.
2001. The effects of information request ambiguity and construct incongruence
on query development. Decision Support Systems 32, 1 (2001), 3–25.

[9] Stefan Brass and Christian Goldberg. 2006. Semantic errors in SQL queries: A
quite complete list. Journal of Systems and Software 79, 5 (2006), 630–644.

[10] Gretchen I Casterella and Leo Vijayasarathy. 2013. An experimental investigation
of complexity in database query formulation tasks. Journal of Information Systems
Education 24, 3 (2013), 6.

[11] Seth Chaiklin. 2003. The zone of proximal development in Vygotsky’s analysis
of learning and instruction. Vygotsky’s educational theory in cultural context 1
(2003), 39–64.

[12] Paul Denny, Andrew Luxton-Reilly, and John Hamer. 2008. The PeerWise
System of Student Contributed Assessment Questions. In Proceedings of the
Tenth Conference on Australasian Computing Education - Volume 78 (ACE ’08).
Australian Computer Society, Inc., Darlinghurst, Australia, Australia, 69–74.
http://dl.acm.org/citation.cfm?id=1379249.1379255

[13] Paul Denny, Andrew Luxton-Reilly, John Hamer, and Helen Purchase. 2009.
Coverage of Course Topics in a Student Generated MCQ Repository. In Proceed-
ings of the 14th Annual ACM SIGCSE Conference on Innovation and Technology
in Computer Science Education (ITiCSE ’09). ACM, New York, NY, USA, 11–15.
https://doi.org/10.1145/1562877.1562888

[14] Paul Denny, Andrew Luxton-Reilly, and Beth Simon. 2009. Quality of student
contributed questions using PeerWise. In Proceedings of the Eleventh Australasian
Conference on Computing Education-Volume 95. Australian Computer Society, Inc.,
55–63.

[15] Paul Denny, Andrew Luxton-Reilly, Ewan Tempero, and Jacob Hendrickx. 2011.
CodeWrite: supporting student-driven practice of java. In Proceedings of the 42nd
ACM technical symposium on Computer science education. ACM, 471–476.

[16] Olive Jean Dunn. 1961. Multiple comparisons among means. Journal of the
American statistical association 56, 293 (1961), 52–64.

[17] Masoud I El Agha, Abdallah M Jarghon, and Samy S Abu-Naser. 2018. SQL Tutor
for Novice Students. (2018).

[18] Alan Fekete. 2005. Teaching transaction management with SQL examples. In
ACM SIGCSE Bulletin, Vol. 37. ACM, 163–167.

[19] John Hamer, Helen C. Purchase, Paul Denny, and Andrew Luxton-Reilly. 2009.
Quality of Peer Assessment in CS1. In Proc. of the 5th International Workshop on
Computing Education Research Workshop (ICER ’09). ACM, New York, NY, USA,
27–36.

[20] Joseph E. Hollingsworth. 2008. Teaching QueryWriting: An Informed Instruction
Approach. SIGCSE Bull. 40, 3 (June 2008), 351. https://doi.org/10.1145/1597849.
1384393

[21] Jeff Howe. 2006. The Rise of Crowdsourcing. Wired magazine 14, 6 (2006), 1–4.
[22] Alison Hull and Benedict du Boulay. 2015. Motivational and metacognitive

feedback in SQL-Tutor. Computer Science Education 25, 2 (2015), 238–256.
[23] Claire Kenny and Claus Pahl. 2005. Automated tutoring for a database skills

training environment. Vol. 37. ACM.
[24] H Laine. 2001. SQL-trainer. In Proceedings of Kolin Kolistelut/Koli Calling–First

Annual Baltic Conference on Computer Science Education, Report A-2002, Vol. 1.
13–17.

[25] Robert L Leitheiser and Salvatore T March. 1996. The influence of database struc-
ture representation on database system learning and use. Journal of Management
Information Systems 12, 4 (1996), 187–213.

[26] Roman Lukyanenko, Jeffrey Parsons, and Yolanda F. Wiersma. 2014. The IQ of
the Crowd: Understanding and Improving Information Quality in Structured
User-Generated Content. Information Systems Research 25, 4 (2014), 669–689.
https://doi.org/10.1287/isre.2014.0537

[27] Raina Mason, Carolyn Seton, and Graham Cooper. 2016. Applying cognitive load
theory to the redesign of a conventional database systems course. Computer
Science Education 26, 1 (2016), 68–87.

[28] Antonija Mitrovic. 1998. A knowledge-based teaching system for SQL. In Pro-
ceedings of ED-MEDIA, Vol. 98. 1027–1032.

[29] Antonija Mitrovic. 2003. An intelligent SQL tutor on the web. International
Journal of Artificial Intelligence in Education 13, 2-4 (2003), 173–197.

[30] Claus Pahl, Ronan Barrett, and Claire Kenny. 2004. Supporting active database
learning and training through interactive multimedia. ACM SIGCSE Bulletin 36,
3 (2004), 27–31.

[31] Nea Pirttinen, Vilma Kangas, Irene Nikkarinen, Henrik Nygren, Juho Leinonen,
and Arto Hellas. 2018. Crowdsourcing Programming Assignments with Crowd-
Sorcerer. In Proceedings of the 23rd Annual ACM Conference on Innovation and
Technology in Computer Science Education (ITiCSE 2018). ACM, New York, NY,
USA, 326–331. https://doi.org/10.1145/3197091.3197117

[32] Nea Pirttinen, Vilma Kangas, Henrik Nygren, Juho Leinonen, and Arto Hellas.
2018. Analysis of Students’ Peer Reviews to Crowdsourced Programming As-
signments. In Proceedings of the 18th Koli Calling International Conference on
Computing Education Research (Koli Calling 2018). ACM, New York, NY, USA, 5.

[33] Gang Qian. 2018. Teaching SQL: a divide-and-conquer method for writing queries.
Journal of Computing Sciences in Colleges 33, 4 (2018), 37–44.

[34] Catherine Roster, Gerald Albaum, and Robert Rogers. 2006. Can cross-
national/cultural studies presume etic equivalency in respondents’ use of extreme
categories of Likert rating scales? International Journal of Market Research 48, 6
(2006), 741–759.

[35] Kate Sanders, Marzieh Ahmadzadeh, Tony Clear, Stephen H. Edwards, Mikey
Goldweber, Chris Johnson, Raymond Lister, Robert McCartney, Elizabeth Patitsas,
and Jaime Spacco. 2013. The Canterbury QuestionBank: Building a Repository
of Multiple-choice CS1 and CS2 Questions. In Proceedings of the ITiCSE Working
Group Reports Conference on Innovation and Technology in Computer Science
Education-working Group Reports (ITiCSE -WGR ’13). ACM, New York, NY, USA,
33–52. https://doi.org/10.1145/2543882.2543885

[36] Clifford A. Shaffer, Ville Karavirta, Ari Korhonen, and Thomas L. Naps. 2011.
OpenDSA: Beginning a Community active-eBook Project. In Proceedings of the
11th Koli Calling International Conference on Computing Education Research (Koli
Calling ’11). ACM, New York, NY, USA, 112–117. https://doi.org/10.1145/2094131.
2094154

[37] John B Smelcer. 1995. User errors in database query composition. International
Journal of Human-Computer Studies 42, 4 (1995), 353–381.

[38] Josep Soler, Ferran Prados, Imma Boada, and Jordi Poch. 2006. A Web-based
tool for teaching and learning SQL. In International Conference on Information
Technology Based Higher Education and Training, ITHET.

[39] Lovisa Sundin and Quintin Cutts. 2019. Is it feasible to teach query programming
in three different languages in a single session? A study on a pattern-oriented
tutorial and cheat sheets. In Proceedings of the 1st UK & Ireland Computing
Education Research Conference. 1–7.

[40] Toni Taipalus. 2019. A Notation for Planning SQL Queries. Journal of Information
Systems Education 30, 3 (2019), 2.

[41] Toni Taipalus and Piia Perälä. 2019. What to Expect and What to Focus on in
SQL Query Teaching. In Proceedings of the 50th ACM Technical Symposium on
Computer Science Education. ACM, 198–203.

[42] Toni Taipalus, Mikko Siponen, and Tero Vartiainen. 2018. Errors and compli-
cations in SQL query formulation. ACM Transactions on Computing Education
(TOCE) 18, 3 (2018), 15.

https://doi.org/10.1109/MIC.2013.20
https://doi.org/10.1109/MIC.2013.20
http://dl.acm.org/citation.cfm?id=1379249.1379255
https://doi.org/10.1145/1562877.1562888
https://doi.org/10.1145/1597849.1384393
https://doi.org/10.1145/1597849.1384393
https://doi.org/10.1287/isre.2014.0537
https://doi.org/10.1145/3197091.3197117
https://doi.org/10.1145/2543882.2543885
https://doi.org/10.1145/2094131.2094154
https://doi.org/10.1145/2094131.2094154

	Abstract
	1 Introduction
	2 Related Work
	2.1 Crowdsourcing in CS Education
	2.2 Quality of Crowdsourced Content
	2.3 Learning and Teaching SQL

	3 System Description
	3.1 Creating Content
	3.2 Practice and Feedback
	3.3 Assessment of SQL Assignments
	3.4 Integrations

	4 Methodology
	4.1 Context and Data
	4.2 Research Questions and Approach

	5 Results
	5.1 Descriptive Statistics
	5.2 Overall Feedback on Assignments
	5.3 Feedback Correlations
	5.4 Comparing Feedback from Teacher's Assignments with Students' Assignments
	5.5 Behavior and Feedback

	6 Discussion
	6.1 Limitations

	7 Conclusions
	References

