
Computing Tight Differential Privacy Guarantees Using FFT

Antti Koskela Joonas Jälkö Antti Honkela
University of Helsinki Aalto University University of Helsinki

Abstract

Differentially private (DP) machine learning
has recently become popular. The privacy
loss of DP algorithms is commonly reported
using (ε, δ)-DP. In this paper, we propose
a numerical accountant for evaluating the
privacy loss for algorithms with continuous
one dimensional output. This accountant
can be applied to the subsampled multidi-
mensional Gaussian mechanism which under-
lies the popular DP stochastic gradient de-
scent. The proposed method is based on a
numerical approximation of an integral for-
mula which gives the exact (ε, δ)-values. The
approximation is carried out by discretising
the integral and by evaluating discrete con-
volutions using the fast Fourier transform
algorithm. We give both theoretical error
bounds and numerical error estimates for the
approximation. Experimental comparisons
with state-of-the-art techniques demonstrate
significant improvements in bound tightness
and/or computation time.

1 Introduction

Differential privacy (DP) (Dwork et al., 2006) has
clearly been established as the dominant paradigm for
privacy-preserving machine learning. Early work on
DP machine learning focused on single shot pertur-
bations for convex problems (Chaudhuri et al., 2011),
while contemporary research has focused on iterative
algorithms such as DP stochastic gradient descent
(SGD) (Rajkumar and Agarwal, 2012; Song et al.,
2013; Abadi et al., 2016b) .

Evaluating the privacy loss of an iterative algorithm
is based on the composition theory of DP. The so-
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called advanced composition theorem of (Dwork et al.,
2010) showed how to trade decreased ε with slightly
increased δ in (ε, δ)-DP. This was further improved e.g.
by Kairouz et al. (2017). The privacy amplification
by subsampling (Chaudhuri and Mishra, 2006; Beimel
et al., 2013; Bassily et al., 2014; Wang et al., 2015) is
another component that has been studied to improve
the privacy bounds.

A major breakthrough in obtaining tighter compo-
sition bounds came from using the entire privacy
loss profile of DP algorithms instead of single (ε, δ)-
values. This was first introduced by the moments ac-
countant (Abadi et al., 2016b). The development of
Rényi differential privacy (RDP) (Mironov, 2017) al-
lowed tight bounds on the privacy cost of composi-
tion, and recently proposed amplification theorems for
RDP (Balle et al., 2018; Wang et al., 2019) showed how
subsampling affects the privacy cost of RDP. Zhu and
Wang (2019) gave tight RDP bounds for the Poisson
subsampling method.

Using the recently introduced privacy loss distribu-
tion (PLD) formalism (Sommer et al., 2019), we com-
pute tight (ε, δ)-DP bounds on the composition of sub-
sampled Gaussian mechanisms, using discrete Fourier
transforms to evaluate the required convolutions. We
show numerically that the achieved privacy bounds are
tighter than those obtained by Rényi DP compositions
and the moments accountant.

Within this computational framework, in addition
to the commonly considered Poisson subsampling
method, we are also able to compute tight privacy
bounds for the subsampling with replacement and sub-
sampling without replacement methods.

2 Differential Privacy

We first recall some basic definitions of differential pri-
vacy (Dwork and Roth, 2014). We use the following
notation. An input dataset containing N data points
is denoted as X = (x1, . . . , xN ) ∈ XN , where xi ∈ X ,
1 ≤ i ≤ N .

Definition 1. We say two datasets X and Y are
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neighbours in remove/add relation if you get one by
removing/adding an element from/to to other and de-
note it with ∼R. We say X and Y are neighbours in
substitute relation if you get one by substituting one
element in the other. We denote this with ∼S.
Definition 2. Let ε > 0 and δ ∈ [0, 1]. Let ∼ define
a neighbouring relation. MechanismM : XN → R is
(ε, δ,∼)-DP if for every X ∼ Y and every measurable
set E ⊂ R it holds that

Pr(M(X) ∈ E) ≤ eεPr(M(Y ) ∈ E) + δ.

When the relation is clear from context or irrelevant,
we will abbreviate it as (ε, δ)-DP. We call M tightly
(ε, δ,∼)-DP, if there does not exist δ′ < δ such that
M is (ε, δ′,∼)-DP.

3 Privacy loss distribution

We first introduce the basic tool for obtaining tight
privacy bounds: the privacy loss distribution (PLD).
The results in this section can be seen as continuous
versions of their discrete counterparts given by Meiser
and Mohammadi (2018) and Sommer et al. (2019). De-
tailed proofs are given in Appendix. The results apply
for both neighbouring relations ∼S and ∼R. We focus
on mechanisms of the following form.
Definition 3. Let M : XN → R be a randomised
mechanism and let X ∼ Y . Let fX(t) denote the den-
sity function ofM(X) and fY (t) the density function
of M(Y ). Assume fX(t) > 0 and fY (t) > 0 for all
t ∈ R. We define the privacy loss function of fX over
fY as

LX/Y (t) = log
fX(t)

fY (t)
.

The following gives the definition of the privacy loss
distribution via its density function for differentiable
privacy loss functions. We note that the assumptions
hold especially for the subsampled Gaussian mecha-
nism which is considered in Sec. 6.
Definition 4. Suppose LX/Y : R → D, D ⊂ R is
a continuously differentiable bijective function. The
privacy loss distribution (PLD) of M(X) over M(Y )
is defined to be a random variable which has the density
function

ωX/Y (s) =

{
fX
(
L−1
X/Y (s)

) dL−1
X/Y

(s)

ds , s ∈ LX/Y (R),

0, else.

For the discrete valued versions of the following result,
see (Sommer et al., 2019, Lemmas 5 and 10).
Lemma 5. Assume (ε,∞) ⊂ LX/Y (R). M is tightly
(ε, δ)-DP for

δ(ε) = max{δX/Y (ε), δY/X(ε)},

where

δX/Y (ε) =

∫ ∞
ε

(1− eε−s)ωX/Y (s) ds,

and similarly for δY/X(ε).

The PLD formalism is essentially based on Lemma A.2
which states that the mechanism M is tightly (ε, δ)-
DP with

δ(ε) = max
X∼Y

{∫
R

max{fX(t)− eεfY (t), 0} dt,

∫
R

max{fY (t)− eεfX(t), 0} dt

}
.

The integral representation of Lemma 5 is then ob-
tained by change of variables. Denoting s = LX/Y (t),
it clearly holds that fY (t) = e−sfX(t) and

max{fX(t)− eεfY (t), 0}

=

{
(1− eε−s)fX(t), if s > ε,

0, otherwise.

By change of variables t = L−1
X/Y (s), we obtain the

representation of Lemma 5.

We get the tight privacy guarantee for compositions
from a continuous counterpart of the results given by
Sommer et al. (2019, Thm. 1).
Theorem 6. Consider k consecutive applications
of a mechanism M. Let ε > 0. The compo-
sition is tightly (ε, δ)-DP for δ given by δ(ε) =
max{δX/Y (ε), δY/X(ε)}, where

δX/Y (ε) =

∫ ∞
ε

(1− eε−s)
(
ωX/Y ∗k ωX/Y

)
(s) ds,

where ωX/Y ∗k ωX/Y denotes the k-fold convolution of
ωX/Y (a similar formula holds for δY/X(ε)).

4 The discrete Fourier transform

The discrete Fourier transform F and its inverse F−1

are linear operators Cn → Cn that decompose a com-
plex vector into a Fourier series, or reconstruct it from
its Fourier series. Suppose x = (x0, . . . , xn−1), w =
(w0, . . . , wn−1) ∈ Rn. Then, F and F−1 are defined
as (Stoer and Bulirsch, 2013)

(Fx)k =
∑n−1

j=0
xje
−i2πkj/n,

(F−1w)k =
1

n

∑n−1

j=0
wje

i2πkj/n.

Evaluating Fx and F−1w takes O(n2) operations,
however evaluation via the Fast Fourier Transform



Antti Koskela, Joonas Jälkö, Antti Honkela

(FFT) (Cooley and Tukey, 1965) reduces the compu-
tational cost to O(n log n).

The convolution theorem (Stockham Jr, 1966) states
that for periodic discrete convolutions it holds that∑n−1

i=0
viwk−i = F−1(Fv �Fw), (4.1)

where � denotes the elementwise product of vectors
and the summation indices are modulo n.

5 Description of the method

We next describe the numerical method for computing
tight DP-guarantees for continuous one dimensional
distributions.

5.1 Truncation of convolutions

We first approximate the convolutions on a truncated
interval [−L,L] as

(ω ∗ ω)(x) ≈
∫ L

−L
ω(t)ω(x− t) dt =: (ω ~ ω)(x).

To obtain periodic convolutions for the discrete Fourier
transform we need to periodise ω. Let ω̃ be a 2L-
periodic extension of ω such that ω̃(t + n2L) = ω(t)
for all t ∈ [−L,L) and n ∈ Z. We further approximate∫ L

−L
ω(t)ω(x− t) dt ≈

∫ L

−L
ω̃(t)ω̃(x− t) dt. (5.1)

5.2 Discretisation of convolutions

Divide the interval [−L,L] on n equidistant points
x0, . . . , xn−1 such that

xi = −L+ i∆x, where ∆x = 2L/n.

Consider the vectors

ω =

[ ω0

...
ωn−1

]
and ω̃ =

[
ω̃0

...
ω̃n−1

]
,

where

ωi = ω(−L+ i∆x) and ω̃i = ω̃(i∆x).

Assuming n is even, from the periodicity it follows that

ω̃ = Dω, where D =

[
0 In/2
In/2 0

]
.

We approximate (5.1) using a Riemann sum and the
convolution theorem (4.1) as

(ω̃ ~ ω̃)(i∆x) =

∫ L

−L
ω̃(t)ω̃(i∆x− t) dt

≈∆x
∑n−1

`=0
ω̃` ω̃i−` (indices modulo n)

=∆x
[
F−1

(
F(ω̃)�F(ω̃)

)]
i
.

Discretisation of k-fold truncated convolutions leads to
k-fold discrete convolutions and to the approximation

(ω̃ ~k ω̃)(−L+ i∆x)

≈ (∆x)k−1
[
DF−1

(
F(ω̃)�k

)]
i

= (∆x)−1
[
DF−1

(
F(Dω∆x)�k

)]
i
,

where �k denotes kth elementwise power of vectors.

5.3 Approximation of the δ(ε)-integral

Finally, using the discretised convolutions we approx-
imate the integral formula for the exact δ-value. De-
note the discrete convolution vector

Ck = (∆x)−1
[
DF−1

(
F(Dω∆x)�k

)]
and the starting point of the discrete sum

`ε = min{` ∈ Z : −L+ `∆x > ε}.

Using the vector Ck =
[
Ck0 . . . Ckn−1

]T , we approx-
imate the integral formula given in Thm. 6 as a Rie-
mann sum:

δ(ε) =

∫ ∞
ε

(1− eε−s)(ω ∗k ω)(s) ds

≈ ∆x
∑n−1

`=`ε

(
1− eε−(−L+`∆x)

)
Ck` .

(5.2)

We call this method the Fourier Accountant (FA) and
describe it in the pseudocode of Alg. 1. The compu-
tational cost of the method is dominated by applying
FFT and its inverse. Thus Alg. 1 has running time
complexity O(n log n). We give in Sec. 7 estimates to
determine the parameters L and n such that the error
caused by approximations is below a desired level.

5.4 Computing ε(δ) using Newton’s method

In order to get the function ε(δ), we compute the in-
verse of δ(ε) using Newton’s method. From (5.2) it
follows that (see Lemma D.1 of Appendix)

δ′(ε) = −
∫ ∞
ε

eε−s(ω ∗k ω)(s) ds. (5.3)

Thus, in order to find ε such that δ(ε) = δ̄, we apply
Newton’s method (Stoer and Bulirsch, 2013) to the
function δ(ε)− δ̄ which gives the iteration

ε`+1 = ε` −
δ(ε`)− δ̄
δ′(ε`)

.

Evaluating δ′(ε) for different values of ε is cheap using
the formula (5.3) and an approximation analogous to
(5.2). As is common practice, we use as a stopping
criterion

∣∣δ(ε`)− δ̄∣∣ ≤ τ for some prescribed tolerance
parameter τ . The iteration was found to converge in
all experiments with an initial value ε0 = 0.
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Algorithm 1 Fourier Accountant algorithm
Input: privacy loss distribution ω, number of com-
positions k, truncation parameter L, number of dis-
cretisation points n.

Evaluate the discrete distribution values

ωi = ω(−L+ i∆x), i = 0, . . . , n− 1, ∆x = 2L
n .

Set

ω =

[ ω0

...
ωn−1

]
Evaluate

Ck = (∆x)−1
[
DF−1

(
F(Dω∆x)�k

)]
,

`ε = min{` ∈ Z : −L+ `∆x > ε}.

Evaluate the approximation

δ(ε) ≈ ∆x
∑n−1

`=`ε

(
1− eε−(−L+`∆x)

)
Ck` .

5.5 Approximation for varying mechanisms

Our approach also allows computing privacy cost of a
composite mechanismM1 ◦ . . . ◦Mk, where the PLDs
of the mechanisms Mi vary. This is needed for ex-
ample when accounting the privacy loss of Stochastic
Gradient Langevin Dynamics iterations (Wang et al.,
2015), where decreasing the step size increases σ.

In this case the function δ(ε) is given by Thm. A.7 of
Appendix by an integral formula of the form

δ(ε) =

∫ ∞
ε

(1− eε−s)(ω1 ∗ . . . ∗ ωk)(s) ds,

where ωi’s are PLD distributions determined by the
mechanismsMi, 1 ≤ i ≤ k.
Denoting C = (∆x)−1

[
DF−1

(
F1 � . . .� Fk

)]
, where

Fi = F(Dωi∆x) and ωi’s are obtained from discreti-
sations of ωi’s (as in Sec. 5.2), then δ(ε) can be ap-
proximated as in (5.2).

6 Subsampled Gaussian mechanism

The main motivation for this work comes from privacy
accounting of the subsampled Gaussian mechanism
which gives privacy bounds for DP-SGD (Abadi et al.,
2016b). In Appendix, we show that the worst case pri-
vacy analysis of DP-SGD can be carried out by anal-
ysis of one dimensional probability distributions. We
derive the privacy loss distributions for three different
subsampling methods: Poisson subsampling with both
∼R- and ∼S-neighbouring relations, sampling with-
out replacement with ∼S-neighbouring relation and

sampling with replacement with∼S-neighbouring rela-
tion. We note the following related works. Balle et al.
(2018) consider RDP bounds for these three subsam-
pling methods, Wang et al. (2019) give improved RDP
bounds for the case of sampling without replacement
and Zhu and Wang (2019) give tight RDP bounds for
the case of Poisson subsampling.

6.1 Poisson subsampling for (ε, δ,∼R)-DP

We start with the Poisson subsampling method, where
each member of the dataset is included in the stochas-
tic gradient minibatch with probability q. This
method is also used in the moments accountant (Abadi
et al., 2016b), and also considered by Meiser and Mo-
hammadi (2018) and Wang et al. (2019). As we show
in Appendix, the (ε, δ,∼R)-DP analysis of the Poisson
subsampling is equivalent to considering the following
one dimensional distributions:

fX(t) = q 1√
2πσ2

e
−(t−1)2

2σ2 + (1− q) 1√
2πσ2

e
−t2

2σ2 ,

fY (t) = 1√
2πσ2

e
−t2

2σ2 .

Here σ2 denotes the variance of the additive Gaussian
noise. Using Definition 3, the privacy loss function is
given by

LX/Y (t) = log
q

1√
2πσ2

e
−(t−1)2

2σ2 +(1−q) 1√
2πσ2

e
−t2
2σ2

1√
2πσ2

e
−t2
2σ2

= log
(
q e

2t−1

2σ2 + (1− q)
)
.

Now LX/Y (R) = (log(1− q),∞) and LX/Y is again a
strictly increasing continuously differentiable bijective
function in the whole R. Straightforward calculation
shows that

L−1
X/Y (s) = σ2 log

es − (1− q)
q

+
1

2
.

Moreover,

d

d s
L−1
X/Y (s) =

σ2es

es − (1− q) .

The privacy loss distribution ωX/Y is determined by
the density function given in Def. 4. Lemma A.9
and its corollary explain the observation that gener-
ally δX/Y > δY/X .

6.2 Sampling without replacement for
(ε, δ,∼S)-DP

We next consider the ∼S-neighbouring relation and
sampling without replacement. In this case the batch
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size m is fixed and each member of the dataset con-
tributes at most once for each minibatch. Here q =
m/n, where n denotes the total number of data sam-
ples. Without loss of generality we consider here the
density functions

fX(t) = q 1√
2πσ2

e
−(t−1)2

2σ2 + (1− q) 1√
2πσ2

e
−t2

2σ2 ,

fY (t) = q 1√
2πσ2

e
−(t+1)2

2σ2 + (1− q) 1√
2πσ2

e
−t2

2σ2 .

The privacy loss function is now given by

LX/Y (t) = log

(
q e

2t−1

2σ2 + (1− q)
q e

−2t−1

2σ2 + (1− q)

)
.

We see that LX/Y (R) = R and again that LX/Y is a
strictly increasing continuously differentiable function.
With a straightforward calculation we find that

L−1
X/Y (s) = σ2 log

( 1

2c

(
− (1− q)(1− es)

+
√

(1− q)2(1− es)2 + 4c2es
))
,

where c = q e−
1

2σ2 .

Using Lemma A.9 and the property fY (−t) = fX(t),
we see that δ = δY/X = δX/Y .

We remark that in (ε, δ,∼S)-DP, the Poisson subsam-
pling with the sampling parameter γ is equivalent to
the case of the sampling without replacement with
q = γ, as in both cases the differing element is in-
cluded in the minibatch with probability γ.

6.3 Sampling with replacement

Consider next the sampling with replacement and the
∼S-neighbouring relation. Again the batch size is
fixed, however this time each element of the minibatch
is drawn from the dataset with probability q. Thus the
number of contributions of each member of the dataset
is not limited. Then `, the number of times the differ-
ing sample x′ is in the batch, is binomially distributed,
i.e., ` ∼ Binomial(1/n,m), where m denotes the batch
size and n the total number of data samples.

Without loss of generality, we consider here the density
functions

fX(t) = 1√
2πσ2

m∑
`=0

(
1

n

)`(
1− 1

n

)m−`(
m

`

)
e

−(t−`)2

2σ2 ,

fY (t) = 1√
2πσ2

m∑
`=0

(
1

n

)`(
1− 1

n

)m−`(
m

`

)
e

−(t+`)2

2σ2 .

The privacy loss function is then given by

LX/Y (t) = log

( ∑m
`=0 c`x

`∑m
`=0 c`x

−`

)
,

where

c` =

(
1

n

)`(
1− 1

n

)m−`(
m

`

)
e

−`2

2σ2 , x = e
t
σ2 .

Since c` > 0 for all ` = 1, . . . ,m, clearly
∑m
`=0 c`x

` is
strictly increasing as a function of t and

∑m
`=0 c`x

−` is
strictly decreasing. Moreover, we see that∑m

`=0 c`x
`∑m

`=0 c`x
−` → 0 as t→ −∞

and ∑m
`=0 c`x

`∑m
`=0 c`x

−` →∞ as t→∞.

Thus, LX/Y (R) = R and LX/Y (t) is a strictly increas-
ing continuously differentiable function in its domain.
To find L−1

X/Y (s) one needs to solve LX/Y (t) = s, i.e.,
one needs to find the single positive real root of a poly-
nomial of order 2m. As in the case of subsampling
without replacement, here δ = δY/X = δX/Y .

7 Error estimates

We give error estimates for the Poisson subsampling
method with the neighbouring relation ∼R. Thus, in
this section ω denotes the PLD density function de-
fined in Sec. 6.1. The estimates are determined by the
parameters L and n, the truncation interval radius and
the number of discretisation points, respectively.

The total error consists of (see Thm. C.1 in Appendix)

1. The errors arising from the truncation of the con-
volution integrals and periodisation.

2. The error from neglecting the tail integral∫ ∞
L

(1− eε−s)(ω ∗k ω)(s) ds. (7.1)

3. The numerical errors in the approximation of the
convolutions (ω ∗k ω) and in the Riemann sum
approximation (5.2).

We obtain bounds for the first two sources of error, i.e.,
for the tail integral (7.1) and the periodisation error,
using the Chernoff bound (Wainwright, 2019)

P[X ≥ t] = P[eλX ≥ eλt] ≤ E[eλX ]

eλt
,

which holds for any random variable X and all λ > 0.
Denoting also the PLD random variable by ω, the mo-
ment generating function E[eλω] is related to the log
of the moment generating function of the privacy loss
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function L = LX/Y as follows. Define (see also (Abadi
et al., 2016b))

α(λ) := log E
t∼fX(t)

[eλL(t)].

By the change of variable s = L(t) we have

E[eλω] =

∫ ∞
−∞

eλsω(s) ds

=

∫ ∞
log(1−q)

eλsfX(L−1(s))
dL−1(s)

ds
ds

=

∫ ∞
−∞

eλL(t)fX(t) dt = eα(λ).

(7.2)

Using existing bounds for α(λ) given by Abadi et al.
(2016b) and Mironov et al. (2019), we bound E[eλω]
and obtain the required tail bounds.

7.1 Periodisation and truncation of
convolutions

We have the following bound for the error arising from
the periodisation and the truncation of the convolution
integrals. The proof is given in Appendix, Lemma C.6.

Lemma 7. Let 0 < q < 1
2 . Let ω be defined as in

Sec. 6.1, and let L ≥ 1. Then, for all x ∈ R,∣∣∣∣∣
∫ L

ε

(ω ∗k ω − ω̃ ~k ω̃)(x) dx

∣∣∣∣∣ ≤ Lkσe−
(σ2L+C)2

2σ2

+ eα(L/2)e−
L2

2 + 2
∑∞

n=1
ekα(nL)e−2(nL)2 ,

where C = σ2 log( 1
2q )− 1

2 .

For example, setting σ, q as in the example of Figure 2,
and k = 2 · 104, the first term is O(10−16) already for
L = 4.0. The second term dominates the rest of the
bound of Lemma 7 and it is much smaller than the
tail bound (7.3) (eα(L/2) vs. ekα(L/2)). Therefore,
this error is much smaller than estimates for the tail
integral (7.1) and it is neglected in the estimates.

7.2 Convolution tail bound

Let ω denote the PLD density function. Now, the
tail of the integral representation for δ (Thm. 6), with
L > ε, can be bounded as∫ ∞

L

(1− eε−s)(ω ∗k ω)(s) ds <

∫ ∞
L

(ω ∗k ω)(s) ds.

We consider both upper bounds and estimates for the
tail integral of convolutions.

7.2.1 Analytic tail bound

Using the Chernoff bound we derive an analytic bound
for the tail integral of convolutions. In a certain sense
this is equivalent to finding bounds for the RDP pa-
rameters, since an RDP bound gives a bound also for
the moment generating function E[eλω] needed in the
Chernoff bound. The following result is derived from
recent RDP results (Mironov et al., 2019). The proof
and an illustration of the result are given in Appendix.
Theorem 8. Suppose q ≤ 1

5 and σ ≥ 4. Let L be
chosen such that λ = L/2 satisfies

1 <λ ≤ 1

2
σ2c− 2 log σ,

λ ≤
1
2σ

2c− log 5− 2 log σ

c+ log(qλ) + 1/(2σ2)
,

where c = log
(

1 + 1
q(λ−1)

)
. Then, we have

∫ ∞
L

(ω ∗k ω)(s) ds ≤
(

1 +
2q2(L2 + 1)L2

σ2

)k
e−

L2

2 .

In order to avoid the restriction on σ in Thm. 8, we
consider an approximative bound.

7.2.2 Tail bound estimate

We next derive an approximative tail bound using the
α(λ)-bound given by Abadi et al. (2016b). Denote
Sk :=

∑k
i=1 ω

i, where ωi denotes the PLD random
variable of the ith mechanism. Since ωi’s are indepen-
dent, E[eλSk ] =

∏k
i=1 E[eλω

i

] and the Chernoff bound
shows that∫ ∞

L

(ω ∗k ω)(s) ds = P[Sk ≥ L] ≤ ekα(λ)e−λL

for any λ > 0. We recall the result by Abadi et al.
(2016b, Lemma 3) which holds for the Poisson sub-
sampling method.
Lemma 9. Let σ ≥ 1 and q < 1

16σ , then for any
positive integer λ ≤ σ2 ln 1

qσ ,

α(λ) ≤ q2λ(λ+ 1)

(1− q)σ2
+O(q3λ3/σ3).

Suppose the conditions of Lemma 9 hold for λ = L/2.
Substituting the bound of Lemma 9 to the Chernoff
bound and neglecting the O(q3λ3/σ3)-term gives the
approximative upper bound∫ ∞
L

(ω ∗k ω)(s)ds / exp

(
k
q2(L2 + 1)L2
(1− q)σ2

)
e−

L2

2 . (7.3)

For example, when q = 0.01 and σ = 2.0, the condi-
tions of Lemma 9 hold for λ up to ≈ 9.5 (i.e. (7.3)
holds for L up to ≈ 19). Figure 2 of Appendix shows
the convergence of the bound (7.3) in this case.
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7.3 Discretisation errors

Derivation of discretisation error bounds can be car-
ried out using the so called Euler–Maclaurin formula
(Sec. C.3 in Appendix). This requires bounds for
higher order derivatives of ω. As an illustrating ex-
ample, consider the bound (recall ∆x = 2L/n)∣∣∣∣∣

∫ L

−L
ω(s) ds−∆x

∑n−1

`=0
ω(−L+ `∆x)

∣∣∣∣∣
≤ ∆xω(L) +

(∆x)2

12
max

t∈[−L,L]
|ω′′(t)|

≤ ∆xσe−
−(σ2L+C)2

2σ2 +
(∆x)2

12
max

t∈[−L,L]
|ω′′(t)| ,

where C = σ2 log( 1
2q ) − 1

2 . By Lemma D.4,
maxt |ω′′(t)| has an upper bound O(σ3/q3). With
bounds for higher order derivatives, tighter error
bound could be obtained. In a similar fashion, bounds
for the errors for the approximation (5.2) could be de-
rived. However, we resort to numerical estimates.

7.3.1 Estimate for the discretisation error

Consider the error arising from the Riemann sum

In := ∆x
∑n−1

`=`ε

(
1− eε−(−L+`∆x)

)
Ck` .

As we show in Sec. C.3 of Appendix, it holds

En :=

∫ L

ε

(1− eε−s)(ω̃ ~k ω̃)(s) ds− In

=K∆x+O((∆x)2) = K
2L

n
+O

((2L

n

)2)
for some constant K independent of n. Therefore,

2(In − I2n) = En +O((∆x)2)

which leads us to use as an estimate

err(L, n) := 2 |In − I2n| (7.4)

for the numerical error En.

8 Experiments

In all experiments, we consider the Poisson subsam-
pling with (ε, δ,∼R)-DP (Sec. 6.1).

We first illustrate the numerical convergence of FA for
δ(ε) and the estimates (7.3) and (7.4), when k = 104,
q = 0.01, σ = 1.5 and ε = 1.0 (Tables 1 and 2). We
emphasise that the error estimates (7.3) and (7.4) rep-
resent the distance to the tight δ(ε)-value. Full numer-
ical tables are given in Appendix, Sec. D.2.

n FA err(L, n)
5 · 104 0.0491228786423 2.01 · 10−2

2 · 105 0.0496013846114 1.06 · 10−6

8 · 105 0.0496014103252 2.66 · 10−11

3.2 · 106 0.0496014103163 2.22 · 10−12

Table 1: Convergence of δ(ε)-approximation with re-
spect to n (when L = 12) and the estimate (7.4). The
tail bound estimate (7.3) is O(10−24).

L FA estimate (7.3)
2.0 0.0422160172923 3.32 · 10−1

6.0 0.0496014103158 3.32 · 10−6

10.0 0.0496014103134 1.36 · 10−16

12.0 0.0496014103163 8.30 · 10−24

Table 2: Convergence of the δ(ε)-approximation with
respect to L (when n = 3.2 · 106) and the error esti-
mate (7.3). The estimate err(L, n) = O(10−12).

We first compare the Fourier accountant method to the
privacy accountant method included in the Tensorflow
library (Abadi et al., 2016a) which is the moments
accountant method (Abadi et al., 2016b) (Figure 1).
We use q = 0.01 and σ ∈ {1.0, 2.0, 3.0}, for number
of compositions k up to 104. We set the parameters
L = 12 and n = 5 · 106 for the approximation of the
exact integral. Then, for σ = 1.0, the tail integral error
estimate (7.3) is at most O(10−13) and the estimate
err(L, n) is at most O(10−10). For σ = 2.0, 3.0 the
error estimates are smaller.

We next compare FA to the RDP accountant method
described by Zhu and Wang (2019) (Figure 2). Al-
though the RDP accountant gives tight RDP-bounds,
there is a small gap to the tight (ε, δ,∼R)-DP.

As we see from Figures 1b and 2, the moments ac-
countant and the RDP bound (Zhu and Wang, 2019)
do not capture the true ε-bound for small number of
compositions k, whereas FA gives tight bounds.

Figure 3 shows a comparison of FA to the Berry–
Esseen theorem based bound given by Sommer et al.
(2019, Thm. 6). The Berry–Esseen bound suffers from
the error term which converges as O(k−

1
2 ).

Lastly, we compare FA to the Privacy Buckets (PB)
algorithm (Meiser and Mohammadi, 2018) (Figure 4).
The additional ratio parameter of PB was tuned for
the experiments. The algorithm seems to suffer from
some instabilities which is also mentioned by Meiser
and Mohammadi (2018). For larger σ and smaller q
PB gave bounds closer to that of FA, however the com-
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Figure 1: Comparison of the Tensorflow moments ac-
countant and the Fourier accountant. Here q = 0.01.
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Figure 2: Comparison of the RDP bound for the Pois-
son subsampling (Zhu and Wang, 2019) and FA. Here
δ = 10−6, q = 0.01.

pute times were always much bigger, as in experiments
of Figure 4.
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Figure 3: Comparison of the Berry–Esseen bound and
FA for (ε, δ,∼R)-DP. Here k = 5 · 104, q = 0.01.
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Figure 4: Comparison of the Privacy Buckets algo-
rithm (nrB = number of buckets) and FA. Legend con-
tains compute times. Here k = 212, σ = 1.0, q = 0.02.

9 Conclusions

We have presented a novel approach for computing
tight privacy bounds for DP. Although we have focused
on the subsampled Gaussian mechanism (with various
subsampling strategies), our method is applicable also
to other mechanisms. We remark that the assumptions
of Def. 4 would not hold for example for the Laplace
mechanism: then the PLD distribution becomes a dis-
crete/continuous mixture distribution. However, us-
ing Lemma A.2 the integral formula of Thm. 6 can be
shown to hold also in this case and the FA algorithm
can also be applied to this case. This is left for future
work. As future work, it would also be interesting to
carry out a full error analysis for the discretisation er-
ror. Moreover, evaluating the privacy parameters for
compositions involving both continuous and discrete
valued mechanisms is an interesting objective.
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