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Abstract

Differentially private learning has recently
emerged as the leading approach for privacy-
preserving machine learning. Differential
privacy can complicate learning procedures
because each access to the data needs to
be carefully designed and carries a privacy
cost. For example, standard parameter tun-
ing with a validation set cannot be easily
applied. In this paper, we propose a dif-
ferentially private algorithm for the adapta-
tion of the learning rate for differentially pri-
vate stochastic gradient descent (SGD) that
avoids the need for validation set use. The
idea for the adaptiveness comes from the
technique of extrapolation in numerical anal-
ysis: to get an estimate for the error against
the gradient flow we compare the result ob-
tained by one full step and two half-steps.
We prove the privacy of the method using
the moments accountant mechanism. This
allows us to compute tight privacy bounds.
Empirically we show that our method is com-
petitive with manually tuned commonly used
optimisation methods for training deep neu-
ral networks and differentially private varia-
tional inference.

1 Introduction

Stochastic gradient descent (SGD) and its variants,
including AdaGrad (Duchi et al., 2011), RMSProp
(Tieleman and Hinton, 2012) and Adam (Kingma and
Ba, 2015), are the main workhorses of modern ma-
chine learning and deep learning. These methods are
quite sensitive to tuning the learning rate, which usu-
ally requires testing different alternatives and evaluat-
ing them on a validation dataset. When possible, this
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adds significantly to the computational cost of using
them, especially in the deep learning setting (Strubell
et al., 2019). However, there are also situations where
proper validation is difficult, such as differentially pri-
vate learning. In this setting, effective adaptive algo-
rithms can be extremely important for efficient learn-
ing. While adaptive SGD alternatives such as Ada-
Grad, RMSProp and Adam are not as sensitive to tun-
ing as plain SGD, they nevertheless require tuning for
good performance. Furthermore, Wilson et al. (2017)
argue that commonly used adaptive methods such as
AdaGrad, RMSProp and Adam can lead to very poor
generalisation performance in deep learning and that
properly tuned basic SGD is a very competitive ap-
proach.

Differential privacy (DP) (Dwork et al., 2006) has re-
cently risen as the dominant paradigm for privacy-
preserving machine learning. A number of differen-
tially private algorithms have been proposed address-
ing both important specific models (Abadi et al., 2016;
Chaudhuri and Monteleoni, 2008; Dwork et al., 2014)
as well as more general approaches to learning (Chaud-
huri et al., 2011; Dimitrakakis et al., 2014; Jälkö et al.,
2017; Park et al., 2016; Zhang et al., 2016). Dif-
ferentially private stochastic gradient descent (DP-
SGD) (Abadi et al., 2016; Rajkumar and Agarwal,
2012; Song et al., 2013) has emerged as an important
tool for implementing differential privacy for a num-
ber of applications. The introduction of very tight
bounds on the privacy loss occurring during the itera-
tive algorithm computed via the moments accountant
(Abadi et al., 2016) has made these algorithms par-
ticularly attractive. Furthermore, DP’s invariance to
post-processing means that the same privacy guaran-
tees apply to any algorithm that uses the same gra-
dient information, including adaptive and accelerated
methods. In addition to deep learning, stochastic gra-
dients and more recently the moments accountant have
been used in algorithms for other paradigms, such as
Bayesian inference (Jälkö et al., 2017; Li et al., 2019;
Wang et al., 2015).

It is clear that standard hyperparameter tuning meth-
ods typically used for tuning the learning rate are not
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directly applicable to DP learning because of the need
to account for the additional privacy loss for multi-
ple runs of the learning and validation set use. Most
previous work glosses this over, with two notable ex-
ceptions. Kusner et al. (2015) presented DP Bayesian
optimisation that accounts for the privacy loss for the
validation set, but they completely ignore training set
privacy. Liu and Talwar (2019) recently introduced
DP meta selection for DP hyperparameter tuning, but
their approach only supports random hyperparameter
search which may carry a significant computational
cost.

In this paper, we propose a rigorous adaptive method
for finding a good learning rate for SGD, and apply it
in DP learning setting. The adaptation is performed
during learning, which implies that the learning pro-
cess only has to be executed once, leading to savings
in compute time and efficient use of the privacy bud-
get. We prove the privacy of our method based on the
moments accountant mechanism.

Main contributions

We propose the first learning rate adaptive DP SGD
method. We give rigorous moment bounds for the
method, and using these bounds, we can compute
(ε, δ)-bounds using the so called moments accountant
technique. By simple derivations, we show how to
determine the additional tolerance hyperparameter in
the algorithm. In experiments we show that it is com-
petitive with optimally tuned standard optimisation
methods without any tuning. We also illustrate the
benefits when compared to the DP meta selection al-
gorithms introduced by Liu and Talwar (2019).

2 Motivation for the learning rate
adaptation: extrapolation of
differential equations

The main ingredient of the learning rate adaptation
comes from numerical extrapolation of ordinary differ-
ential equations (ODEs), see e.g. (Hairer et al., 1987).
We next describe this idea. Let g be a differentiable
function g : Rd → R. Gradient descent (GD)

θ`+1 = θ` − η`∇g(θ`) (2.1)

is a first-order method for finding a (local) minimum
of the function g. It can be seen as an explicit Euler
method with the step size η` applied to the system of
ODEs

d

dt
θ(t) = −∇g(θ), θ(0) = θ0 ∈ Rd,

which is also called the gradient flow of g.

To get an estimate of the error made in the numeri-
cal approximation (2.1), we extrapolate it as follows.
Consider one step of size η,

θ1 = θ0 − η∇g(θ0), (2.2)

and θ̂1 which is a result of two steps of size η
2 :

θ1/2 = θ0 −
η

2
∇g(θ0), θ̂1 = θ1/2 −

η

2
∇g(θ1/2).

As the following result shows, 2(θ̂1−θ1) gives anO(η3)-
accurate estimate of the local error.

Lemma 1. Assume the function g is twice differen-
tiable. Then it holds

θ(η)− θ1 = 2(θ̂1 − θ1) +O(η3),

i.e., the quantity 2‖θ̂1 − θ1‖ gives an O(η3)-estimate
of the local error generated by the GD step (2.1).

Proof. From the Taylor expansion it follows that

θ(η)− θ1 =
η2

2
Jg(θ0)∇g(θ0) +O(η3). (2.3)

Then, again by the Taylor expansion,

θ̂1 = θ0 −
η

2
∇g(θ0)−

η

2
∇g
(
θ0 −

η

2
∇g(θ0)

)
= θ0 − η∇g(θ0) +

η2

4
Jg(θ0)∇g(θ0) +O(η3).

and therefore

θ̂1 − θ1 =
η2

4
Jg(θ0)∇g(θ0) +O(η3). (2.4)

The claim follows from (2.3) and (2.4).

If at iteration ` we have the estimate

err` = ‖θ̂`+1 − θ`+1‖, (2.5)

and if a local error of magnitude τ is desired, a simple
mechanism for updating the step size is given by

η`+1 = min

(
max

(
τ

err`
, αmin

)
, αmax

)
· η`,

where αmin < 1 and αmax > 1. In all our experiments
we have used αmin = 0.9 and αmax = 1.1. In case ∇g
has a large Lipschitz constant, a condition erri < τ for
the update θ`+1 ← θ` gives a more stable algorithm.
This procedure is described in Algorithm 1.

We apply Algorithm 1 to the differentially private SGD
method. The challenge in the DP setting is that the
gradients are blurred by the SGD approximation and
the additive DP-noise.
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Algorithm 1 The update mechanism defined by the
parameters αmin, αmax, τ

Evaluate: err` ← ‖θ̂`+1 − θ`+1‖
if err` > τ : then
θ`+1 ← θ` (Discard)

end if
Update: η`+1 = min(max( τ

err`
, αmin), αmax) · η`.

3 Differential Privacy

We first recall some basic definitions of differential pri-
vacy (Dwork and Roth, 2014). We use the following
notation. An input set containing N data points is
denoted as X = (x1, . . . , xN ) ∈ XN , where xi ∈ X ,
1 ≤ i ≤ N . To give the definition of the actual differ-
ential privacy we need the following definition.
Definition 2. We say two datasets X and X ′ are
neighbours if you get one by removing/adding an el-
ement from/to the other.

We remark that the moments accountant
method (Abadi et al., 2016) computes the pri-
vacy parameters in this neighbouring relation. The
following definition formalises the (ε, δ)-differential
privacy of a randomised mechanismM.
Definition 3. Let ε > 0 and δ ∈ [0, 1]. Mecha-
nism M : XN → R is (ε, δ)-DP if for every pair
of neighbouring datasets X, X ′ and every measurable
set E ⊂ R we have

Pr(M(X) ∈ E) ≤ eεPr(M(X ′) ∈ E) + δ.

This definition is closed under post-processing which
means that if a mechanism A is (ε, δ)-differential pri-
vate, then so is the mechanism B ◦ A for all functions
B that do not depend on the data.

Assuming X and X ′ differ only by one record xi, then
by observing the outputs, the ability of an attacker
to tell whether the output has resulted from X or X ′
remains bounded. Thus, the record xi is protected.
As the record in which the two datasets differ is ar-
bitrary, by definition, the protection applies for the
whole dataset.

3.1 Moments accountant

We next recall some basic definitions and results con-
cerning the moments accountant technique which is an
important ingredient of our proposed method and cru-
cial for obtaining (ε, δ)-privacy bounds for the differ-
entially private stochastic gradient descent. We refer
to (Abadi et al., 2016) for more details.
Definition 4. Let M : XN → Y be a randomised
mechanism, and let X and X ′ be a pair of neighbouring

datasets. Let aux denote any auxiliary input that does
not depend on X or X ′. For an outcome o ∈ Y, the
privacy loss at o is defined as

c(o;M, aux, X,X ′) = log
Pr(M(aux, X) = o)

Pr(M(aux, X ′) = o)
.

Definition 5. λth moment generating function
αM(λ; aux, X,X ′) is defined as

αM(λ; aux, X,X ′) =

logEo∼M(aux,X) (exp(λc(o;M, aux, X,X ′))) .

Definition 6. Let M : XN → Y be a randomised
mechanism, and let X and X ′ be a pair of neighbouring
datasets. Let aux denote any auxiliary input that does
not depend on X or X ′. The moments accountant with
an integer parameter λ is defined as

αM(λ) = max
aux,X,X′

αM(λ; aux, X,X ′).

The privacy accounting of our proposed method is
based on the composability theorem (Abadi et al.,
2016, Thm. 2):

Theorem 7. Suppose that M consists of a sequence
of adaptive mechanisms M1, . . . ,Mk, where Mi :∏i−1
j=1 Yj × X → Yi, and Yi is in the range of the ith

mechanism, i.e., M =Mk ◦ . . . ◦M1. Then, for any
λ

αM(λ) ≤
k∑
i=1

αMi(λ), (3.1)

where the auxiliary input for αMi
(λ) is defined as all

αMj
(λ)’s outputs for j < i, and αM(λ) takes Mi’s

output, for i < k, as the auxiliary input.

Moreover, for any ε > 0, the mechanism M is (ε, δ)-
differentially private for

δ = min
λ

exp(αM(λ)− λε). (3.2)

The inequality (3.1) gives an upper bound for the to-
tal moment αM(λ) of an iterative algorithmM if the
moments αMi(λ) of each iteration i are known. Using
(3.2), the privacy parameters ε and δ can be approxi-
mated from numerically computed αM(λ)-values.

3.2 Differentially private stochastic gradient
descent

The objective is to find a minimum (with respect to
θ) of a loss function of the form

L(θ,X) =
1

N

N∑
i=1

f(θ, xi).
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At each step of the differentially private SGD, we com-
pute the gradient ∇θf(θ, xi) for a random minibatch
B, clip the 2-norm of each gradient belonging to the
minibatch, compute the average, add noise in order to
protect privacy, and take a GD step using this noisy
gradient. For a dataset X, the random mechanism to
be analysed is then

M(X) =
∑
i∈B
∇̃f(θ, xi) +N (0, C2σ2I), (3.3)

where ∇̃f(θ, xi)’s denote the gradients clipped with
a constant C > 0, i.e., ‖∇̃f(θ, xi)‖ ≤ C for all i ∈
B. The moments accountant method computes the
privacy parameters for mechanisms of the form (3.3).
We recall a result given by Abadi et al. (2016), which
indicates how the privacy parameters ε and δ scale for
the mechanism (3.3) with respect to q and σ.

Theorem 8. There exists constants c1 and c2 so
that given the sampling probability q and the number
of steps T , for any ε < c1q

2T , DP-SGD is (ε, δ)-
differentially private for any δ > 0 if we choose

σ ≥ c2
q
√
T log(1/δ)

ε
.

In experiments we compute the privacy parameters ε
and δ using the moments accountant method (Abadi
et al., 2016) which gives the numerical αM(λ)-values
for the Poisson subsampling of minibatches, i.e., for
the case where each data element is in the minibatch
with a probability q.

4 Adaptive DP algorithm

The result of applying the learning rate adaptation to
DP-SGD is depicted in Algorithm 2. We abbreviate
this method as ADADP. Instead of (2.5), we use for
the estimate the 2-norm of the function err(θ, θ̂), where

err(θ, θ̂)i =
|θi − θ̂i|

max(1, |θi|)
(4.1)

as this was found to perform better numerically. In the
neural network experiments the algorithm was found
to be stable also without the acceptance condition
erri ≤ τ so we omit it there.

4.1 Privacy preserving properties of the
method

By the very construction of Algorithm 2, we have the
following result.

Theorem 9. Let q = |B| /N , σ ≥ 1 and C > 0.
Let αM(λ) be the moments accountant of a mechanism

Algorithm 2 ADADP update mechanism defined by
the parameters αmin, αmax, τ

Draw a batch B1, with probability q = |B| /N .

Clip the gradients (with constant C) and evaluate
at θ`:

G1 ←
1

|B|

(∑
i∈B1

∇̃fθ`(xi) +N (0, C2σ2I)

)
.

Take a step of size η`:

θ`+1 ← θ` − η`G1,

Take a step of size η`
2 :

θ`+1/2 ← θ` −
η`
2
G1.

Draw a batch B2, with probability q = |B| /N ,
clip the gradients (with constant C) and evaluate
at θ`+1/2:

G2 ←
1

|B|

(∑
i∈B2

∇̃fθ`+1/2
(xi) +N (0, C2σ2I)

)
.

Take a step of size η`
2 :

θ̂`+1 ← θ`+1/2 −
η`
2
G2.

Evaluate: err` ← ‖err(θ`+1, θ̂`+1)‖
Update:
if err` > τ then
θ`+1 ← θ` (Discard)

end if
η`+1 ← min

(
max

(
τ

err`
, αmin

)
, αmax

)
· η`.

M of the form (3.3) for these parameter values. Let
M̃ denote the mechanism of Algorithm 2 using these
parameter values. Then,

αM̃(λ) ≤ 2αM(λ).

Proof. Looking at Alg. 2, we see that M̃ is a com-
position of two mechanisms, MG1(X) and MG2(X).
The SGD approximations of these mechanisms are in-
dependent, both with the sampling ratio q, and the
additive Gaussian noises are independent, both with
the variance C2σ2. Thus, by Theorem 7, for all λ > 0,

αM̃(λ) = αMG1
◦MG2

(λ)

≤ αMG1
(λ) + αMG2

(λ) = 2αM(λ).
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By Theorem 9, using the same parameter values q, σ
and C, we are allowed to run Algorithm 2 half as many
iterations as DP-SGD in order to have the same pri-
vacy for the data.

4.2 Choice of the tolerance parameter τ

With the help of the following result we are able to
choose the tolerance parameter τ such that the accu-
mulated additive noise stays bounded.
Theorem 10. Consider the intermediate variables
θ`+1 and θ̂`+1 in Algorithm 2 (the results of one full
step and two half steps). It holds

η2`
dC2σ2

2 |B|2
≤ E ‖θ`+1 − θ̂`+1‖2 ≤ η2`

dC2σ2

2 |B|2
+ η2`C

2,

where the expectation is over the additive DP noise.

Proof. From Algorithm 2 we see that

‖θ`+1 − θ̂`+1‖2

=
η2`

4 |B|2
‖g(θ`)− g(θ`+1/2) +X‖2

=
η2`

4 |B|2
(
‖g(θ`)− g(θ`+1/2)‖2

+ 2 〈 g(θ`)− g(θ`+1/2), X〉+ ‖X‖2
)
,

where

g(θ`) =
∑
i∈B1

∇̃fθ`(xi), g(θ`+1/2) =
∑
i∈B2

∇̃fθ`+1/2
(xi)

and X ∼ N (0, 2C2σ2I). As ‖g(θ)‖ ≤ C |B|, EX = 0
and E‖X‖2 = 2dC2σ2, the claim follows.

The parameter τ should be chosen such that, in addi-
tion to preventing instabilities caused by the SGD gra-
dient, the algorithm should be keep the accumulated
DP noise bounded. To this end, guided by Thm. 10,
we set the parameter τ such that the accumulated DP
noise is after T iterations approximately O(1) element-
wise.

Consider the situation where we apply DP-SGD with
a step size sequence {η`}. Then, after T steps

θT = θ0 −
1

|B|
T−1∑
`=0

η`g(θ`) +N
(
0,

T−1∑
`=0

η2`
C2σ2

|B|2
I

)
.

For simplicity assume err(θ, θ̂) = ‖θ− θ̂‖. Algorithm 2
then iteratively forces the estimate ‖θ`+1 − θ̂`+1‖ to-
wards τ . Setting ‖θ`+1 − θ̂`+1‖ to τ and assuming√
dσ � |B| we may approximate using Thm. 10

η2`
C2σ2

|B|2
≈ 2τ2

d

Using this approximation, we see that the covariance
of the additive noise after T iterations is

T−1∑
`=0

η2`
C2σ2

|B|2
I ≈

T−1∑
`=0

2τ2

d
I = T

2τ2

d
I.

Setting the tolerance parameter

τ =

√
d

2T
,

the covariance becomes I.

In our experiments with neural networks d
2T = O(1)

and we use τ = 1.0. In the small dimensional exper-
iments for Gaussian mixture models, d

2T = O(10−2)
and we use τ = 0.1. In small dimensional examples
also the Lipschitz constant of g affects more the suit-
able step size η`. We found this to imply a sharp tran-
sition from stable to unstable behaviour as the step
size grows and therefore the acceptance condition of
Alg. 1 was needed in the small dimensional experi-
ments. In the neural network experiments the condi-
tion was omitted.

5 Experiments

We compare ADADP with DP-SGD and with Adam
combined with DP gradients (DP-Adam). The Pois-
son subsampling of minibatches is approximated as
by Abadi et al. (2016), i.e., by randomly permuting the
data elements and then partitioning them into mini-
batches of a fixed size. Algorithm 2 needs two mini-
batches per iteration: one to compute the vector G1

and then the other one to compute G2. Therefore, in
one epoch we run N

2|B| iterations. Then the number of
gradient evaluations per epoch is the same as for SGD
and Adam and thus the computation times are essen-
tially equivalent. When using ADADP, the per epoch
privacy cost is then also the same for all the methods
considered, for fixed values of the parameters q and σ.

In the DP setting the methods are compared by mea-
suring the test accuracy for a given ε-value, when
δ = 10−6. The ε-values are computed using the mo-
ments accountant (Abadi et al., 2016). In the neu-
ral network experiments we use all the methods with
minibatch size |B| = 200 and run each method for 100
epochs. The initial learning rate for ADADP is set to
10−1, but the results are quite insensitive to this value
as the algorithm will converge to the desired learning
rate already during the first epoch.

The values αmin = 0.9 and αmax = 1.1 were used in
all experiments. In the neural network experiments we
use the value τ = 1.0 and in the small scale experiment
the value τ = 0.1 (see Sec. 4.2).
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All experiments are implemented using PyTorch.
Code for the experiments is provided in the supple-
mentary material. In the supplementary material we
also demonstrate that the ADADP method can help
stabilise federated learning in case the data are non-
uniformly distributed to different clients.

5.1 Datasets and test architectures for the
neural networks

We compare the methods on two standard
datasets: MNIST (LeCun et al., 1998) and CIFAR-
10 (Krizhevsky and Hinton, 2009).

In MNIST each example is a 28 × 28 size gray-level
image. The training set contains 60000 and the test
set 10000 examples. For MNIST we use a feedforward
neural network with 2 hidden layers with 256 hidden
units. As a result, the total number of parameters
for this network is 334336. We use ReLU units and
the last layer is passed to softmax of 10 classes with
cross-entropy loss. Without additional noise (σ = 0)
we reach an accuracy of around 96%.

CIFAR-10 consists of colour images classified into 10
classes. The training set contains 50000 and the test
set 10000 examples. Each example is a 32× 32 image
with three RGB channels. The CIFAR-100 dataset has
similar images classified into 100 classes. For CIFAR-
10 we use a neural network, which consists of two con-
volutional layers followed by three fully connected lay-
ers. The convolutional layers use 3 × 3 convolutions
with stride 1, followed by ReLU and max pools, with
64 channels each. The output of the second convolu-
tional layer is flattened into a vector of dimension 1600.
The fully connected layers have 500 hidden units. Last
layer is passed to softmax of 10 classes with cross-
entropy loss. The total number of parameters for this
network is about 106. Similarly to the experiments of
(Abadi et al., 2016), in the DP setting we pre-train
the convolutional layers using the CIFAR-100 dataset
and the differentially private optimisation is carried
out only for the fully connected layers.

5.2 Comparison of ADADP and DP-Adam

We first compare ADADP with optimally tuned DP-
Adam. This means that in each case we search the
best and the second best initial learning rate η0 for
Adam on a grid {. . . , 10−4.5, 10−4, 10−3.5, . . .}. We ap-
ply ADADP for 50 steps, then fix the learning rate
(denoted η50) and apply DP-SGD with the decaying
learning rate

ηk =
η50

1 + 0.1 · (k − 50)
, (5.1)

where k denotes the number of epoch (k > 50).

As Figure 1a illustrates, in case of MNIST and the
feedforward network, ADADP is competitive with the
learning rate optimised Adam and gives better results
than Adam with the second best learning rate found
from the grid. We see from Figure 1b, that in the
case of CIFAR-10 and convolutional network, ADADP
is again competitive with the learning rate optimised
Adam.
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(a) MNIST
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(b) CIFAR-10

Figure 1: DP learning using ADADP and Adam with
optimal and nearly optimal initial learning rate η0
sought from the grid {. . . , 10−4.5, 10−4, 10−3.5, . . .} for
each σ.

5.3 Comparison against the private selection
algorithm by Liu and Talwar

We next compare ADADP to the private selection al-
gorithm given by Liu and Talwar (2019, Alg. 2) (see
Figure 2). The private algorithm runs constant learn-
ing rate DP-SGD for 50 epochs and then decays as
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Figure 2: Realisations of ADADP and the private se-
lection algorithm (Liu and Talwar, 2019, Alg. 2). Each
run of ADADP requires one training of 100 epochs.
The private selection algorithm needs the more train-
ing runs the smaller the parameter γ. Both methods
have the same (ε, δ)-privacy for the training dataset.

(5.1). The private candidates for the learning rates
are ηi = 10−i/2, i = 1, . . . , 10. The private selection
algorithm has a random stopping time and γ denotes
the probability of halting the iteration and accepting
the best candidate found so far. Table 1 shows the
mean and standard deviation of the test accuracy of
the resulting model for different values of γ (a table
with more results is given in the supplementary ma-
terial). We use the CIFAR-10 test set as a validation
set for the private selection algorithm and add Laplace
noise to the score function such that the same privacy
is provided for the validation set. Notice that ADADP
does not need a validation set, there is exposure only
for the training data.

Mean acc. Std acc. Mean evals
ADADP 0.6349 0.0033 1

Priv. γ = 2−8 0.6368 0.0113 224.30
Priv. γ = 2−7 0.6317 0.0399 131.76
Priv. γ = 2−4 0.6053 0.0662 14.79
Priv. γ = 2−2 0.5467 0.1278 3.42
Priv. γ = 2−1 0.4728 0.1688 2.04

Table 1: Comparison of ADADP and the private se-
lection algorithm (Liu and Talwar, 2019, Alg. 2) for
different values of the parameter γ. ’Mean evals’ de-
notes the mean of the number of training runs (100
epochs each) needed for one evaluation of each algo-
rithm. ’Mean acc.’ and ’Std acc.’ denote the mean
and standard deviation of the test accuracy of the re-
sulting model, respectively.

5.4 Comparison of ADADP and DP-SGD

In the next experiment we illustrate the benefits of
ADADP when compared to the plain DP-SGD. We
search an optimal learning rate for DP-SGD on a grid
{. . . , 10−2.5, 10−2.0, 10−1.5, . . .} in the case σ = 2.0.
Using this learning rate for DP-SGD, we compare the
performance of DP-SGD and ADADP when σ = 4.0,
6.0 and 8.0. As we see from Figures 3 and 4, ADADP
finds an appropriate learning rate and gives better re-
sults than DP-SGD for these values of σ.
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Figure 3: ADADP and DP-SGD for MNIST. The fixed
learning rate η of SGD is tuned in the σ = 2.0-case
using the grid {. . . , 10−2.5, 10−2.0, 10−1.5, . . .}.
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Figure 4: ADADP and DP-SGD for CIFAR-10. The
fixed learning rate η of SGD is tuned in the σ = 2.0-
case using the grid {. . . , 10−2.5, 10−2.0, 10−1.5, . . .}.

5.5 Gaussian mixture model

We also compare the performance of ADADP to a
differentially private variational inference technique
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called DPVI (Jälkö et al., 2017). We test the methods
on a Gaussian mixture model, which for K compo-
nents is given by πk ∼ Dir(α), µ(k) ∼ N (0, I) and
σ(k) ∼ Inv −Gamma(1, 1), 1 ≤ k ≤ K, and for which
the likelihood is given by

p(xi|π, µ, σ) =
K∑
k=1

πkN (xi;µ
(k), σ(k)I).

The loss function is then given by

L(qξ) =
n∑
i=1

Li(qξ),

where

Li(qξ) = 〈ln p(xi|θ)〉qξ(θ) −
1

N
KL(q||p).

For the description of the posterior q and rest of the
details we refer to (Jälkö et al., 2017). We consider
synthetic training data of n = 1000 samples drawn
from K = 5 two-dimensional Gaussian distributions
centred at 0 and [±1,±1] with covariances I. The test
data consist of 100 samples drawn from the same dis-
tribution. This model has been used also by Honkela
et al. (2010).

We set the batch size |B| = 20, clipping constant
C = 1, and run the algorithms for 3000 and 8000 it-
erations, when σ = 1.2 and σ = 6.0, respectively. We
run DPVI for three best learning rates found from the
grid {. . . , 10−2.5, 10−2.0, 10−1.5, . . .}. Because of the
low dimensionality, we use here the tolerance param-
eter τ = 0.1 (see Sec. 4.2). We apply a learning rate
decay similar to (5.1) for both methods.

Figure 5 shows likelihoods of the test data as the learn-
ing progresses for σ = 6.0 (results for σ = 1.2 given in
the supplementary material). We see that ADADP is
competitive with the optimally tuned DPVI. Figure 6
illustrates how ADADP finds the suitable learning rate
for different initial learning rates η0.

6 Conclusions

We have proposed the first learning rate adaptive DP-
SGD method. By simple derivations, we have shown
how to determine the additional tolerance hyperpa-
rameter in the algorithm. Based on this, we developed
a rule for selecting the parameter and verified the ef-
ficiency of the resulting algorithm in a number of di-
verse learning problems. The results show that our ap-
proach is competitive in performance with commonly
used optimisation methods even without any tuning.
Comparisons to the DP meta selection algorithm fur-
ther illustrate the benefits of our approach. Overall,
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Figure 5: Log-likelihood L(qξ) for ADADP and for
DP-SGD for different learning rates η, when σ = 6.0.
Values of ε are for δ = 10−6.
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Figure 6: Learning rate found by ADADP for different
initial learning rates η0, when σ = 1.2 and σ = 6.0.
Here 50 iterations equals one epoch of training.

our work takes an important step towards truly DP
and automated learning for SGD-based algorithms.

As future work, it would be useful to develop a better
understanding of the tolerance hyperparameter. Fur-
thermore, it would be important to study the adapta-
tion of other key algorithmic parameters of DP-SGD,
such as the gradient clipping threshold and the mini-
batch size. Adaptive clipping in the federated learning
setting is considered by Thakkar et al. (2019). Balles
et al. (2017) provide an interesting non-private imple-
mentation of minibatch adaptation, but unfortunately
the approach cannot easily be applied in the DP case.
One interesting alternative is given by the adaptive
momentum approach (Wang et al., 2015) based on the
SGNHT algorithm (Ding et al., 2014).
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