
MaxSAT Evaluation 2020
Solver and Benchmark Descriptions

Fahiem Bacchus, Jeremias Berg, Matti Järvisalo, and Ruben Martins (editors)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/328855883?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

University of Helsinki
Department of Computer Science
Series of Publications B
Report B-2020-2

Helsinki 2020

2

PREFACE

The MaxSAT Evaluations (https://maxsat-evaluations.github.io) are a series of
events focusing on the evaluation of current state-of-the-art systems for solving optimization
problems via the Boolean optimization paradigm of maximum satisfiability (MaxSAT). Or-
ganized yearly starting from 2006, the year 2020 brought on the 15th edition of the MaxSAT
Evaluations, organized as a satellite event of the 23rd International Conference on Theory
and Applications of Satisfiability Testing (SAT 2020). Some of the central motivations
for the MaxSAT Evaluation series are to provide further incentives for further improving
the empirical performance of the current state of the art in MaxSAT solving, to promote
MaxSAT as a serious alternative approach to solving NP-hard optimization problems from
the real world, and to provide the community at large heterogenous benchmark sets for
solver development and research purposes. In the spirit of a true evaluation—rather than
a competition, unlike e.g. the SAT Competition series—no winners are declared, and no
awards or medals are handed out to overall best-performing solvers.

The 2020 evaluation consisted of a total of four tracks: three for complete solvers (one for
solvers focusing on unweighted and one for solvers focusing on weighted MaxSAT instances,
as well as a “Top-k” special track on enumerating top-k solutions, new for 2020) and a
special track for incomplete MaxSAT solvers (using two short per-instance time limits, 60
and 300 seconds, differentiating from the per-instance time limit of 1 hour imposed in the
main complete tracks). As in 2017-2019, no distinction was made between “industrial” and
“crafted” benchmarks, and no track for purely randomly generated MaxSAT instances was
organized.

Adhering to the new rules introduced in 2017, solvers were now required to be open-
source, and the source codes of all participating solvers were made available online on the
evaluation webpages after the evaluation results were presented at the SAT 2020 conference.
Furthermore, a 1-2 page solver description was required for each solver submission, to
provide some details on the search techniques implemented in the solvers. The solvers
descriptions together with descriptions of new benchmarks for 2020 are collected together
in this compilation.

Finally, we would like to thank everyone who contributed to MaxSAT Evaluation 2020 by
submitting their solvers or new benchmarks. We are also grateful for the computational
resources provided by the StarExec initiative which enabled running the 2020 evaluation
smoothly.

Fahiem Bacchus, Jeremias Berg, Matti Järvisalo, & Ruben Martins
MaxSAT Evaluation 2020 Organizers

3

4

Contents

Preface . 3

A short description of the solver EvalMaxSAT
Florent Avellaneda . 8

Loandra in the 2020 MaxSAT Evaluation
Jeremias Berg, Emir Demirović, and Peter J. Stuckey 10

Pacose: An Iterative SAT-based MaxSAT Solver
Tobias Paxian and Bernd Becker . 12

RC2-2018 MaxSAT Evaluation 2020
Alexey Ignatiev . 13

SATLike-c(w): Solver Description
Zhendong Lei and Shaowei Cai . 15

QMaxSAT in MaxSAT Evaluation 2018
Aolong Zha . 16

Stable Resolving
Julian Reisch and Peter Großmann . 17

MaxHS in the 2020 MaxSat Evaluation
Fahiem Bacchus . 19

Maxino
Mario Alviano . 21

SATLike-c: Solver Description
Zhendong Lei and Shaowei Cai . 23

Open-WBO MaxSAT Evaluation 2020
Ruben Martins, Norbert Manthey, Miguel Terra-Neves, Vasco Manquinho, and
Inês Lynce . 24

Open-WBO-Inc in MaxSAT Evaluation 2020
Saurabh Joshi, Prateek Kumar, Sukrut Rao, and Ruben Martins 26

sls-mcs and sls-lsu: Description
Andreia P. Guerreiro, Miguel Terra-Neves, Inês Lynce, José Rui Figueira, and
Vasco Manquinho . 28

SMAX — Implementing a Robust MaxSAT Interface
Norbert Manthey . 30

TT-Open-WBO-Inc-20: an Anytime MaxSAT Solver Entering MSE’20
Alexander Nadel . 32

UWrMaxSat: an Efficient Solver in MaxSAT Evaluation 2020
Marek Piotrów . 34

5

Benchmark Descriptions

BNN verification dataset for Max-SAT Evaluation 2020
Masahiro Sakai . 37

MaxSAT Evaluation 2020 - Benchmark: Identifying Maximum Probability Minimal Cut
Sets in Fault Trees
Martín Barrère and Chris Hankin . 39

Partial (Un-)Weighted MaxSAT Benchmarks: Minimizing Witnesses for Security Weak-
nesses in Reconfigurable Scan Networks
Pascal Raiola, Tobias Paxian, and Berndt Becker 44

Description of Benchmarks on Coalition Structure Generation
Xiaojuan Liao and Miyuki Koshimura . 46

On the use of Max-SAT in RBAC maintenance: Description of Benchmarks
Marco Mori and Marco Benedetti . 47

Automated synthesis of minimal hardware exploits with Checkmate and MaxSAT Solver
Changjian Zhang, Ruben Martins, Marijn J.H. Heule, and Eunsuk Kang 49

MaxSAT Benchmarks for Finding Most Compatible Phylogenetic Trees over Multi-State
Characters
Tuukka Korhonen, Jeremias Berg, and Matti Järvisalo 51

Railway Timetabling Benchmarks
Julian Reisch and Peter Großmann . 53

Description of Benchmarks on Single-Machine Scheduling
Xiaojuan Liao and Miyuki Koshimura . 54

Datasets of Networks for Benchmarking MaxSAT Evaluation 2020
Said Jabbour, Nizar Mhadhbi, Badran Raddaoui, and Lakhdar Sais 55

Rail: Benchmark Description
Zhendong Lei and Shaowei Cai . 56

STS: Benchmark Description
Zhendong Lei and Shaowei Cai . 57

Program disambiguation using MaxSAT
Daniel Ramos, Ines Lynce, Vasco Manquinho, and Ruben Martins 58

MSE20 Benchmark: The inference of tumor evolutionary history from single-cell DNA
sequencing data
Farid Rashidi Mehrabadi, Salem Malikić, and S. Cenk Sahinalp 60

Benchmarking UAQ Solvers: MAXSAT Instances
Alessandro Armando, Giorgia Gazzarata, and Fatih Turkmen 63

Solver Index . 65
Benchmark Index . 66
Author Index . 67

6

SOLVER DESCRIPTIONS

A short description of the solver EvalMaxSAT
Florent Avellaneda

Computer Research Institute of Montreal
Montreal, Canada

florent.avellaneda@gmail.com

I. INTRODUCTION

EvalMaxSAT1 is a MaxSAT solver written in modern C++
language mainly using the Standard Template Library (STL).
The solver is built on top of the SAT solver Glucose [1], but
any other SAT solver can easily be used instead. EvalMaxSAT
is based on the OLL algorithm [2] originally implemented in
the MSCG MaxSAT solver [3], [4] and then reused in the RC2
solver [5].

The OLL algorithm considers all soft variables as hard and
attempts to solve the formula. If the formula has no solution,
then a conjunction of soft variables that cannot be satisfied (a
core) is extracted. Each variable constituting this core is then
relaxed (removed from the list of soft variables or incremented
if it is a cardinality) and a new cardinality is added to the
list of soft variables encoding the constraint ”at most one
variable from the core can be false”. When the formula is
finally satisfied, we obtain a MaxSAT assignment.

In practice, the size of the cores plays an important role in
the performance of this algorithm. Indeed, the more variables
the cores contain, the more expensive the encoding of cardinal-
ities will be. Thus, once a core is found, a core minimization
phase consists of removing unnecessary variables. Although
heuristics are generally used to perform this minimization,
this phase remains very expensive. EvalMaxSAT performs this
minimization several times by calling the solver SAT with a
limited number of conflicts. In addition, the algorithm used
can easily be adapted to perform the minimization in parallel
with the core searching.

II. DESCRIPTION

The algorithm used is a modification of the OLL algorithm
(see Algorithm 1). The main modification is that when a core
is found and minimized, new variables and constraints are not
added to the SAT solver immediately. All these new constraints
will be added only when the formula becomes satisfiable, or
when finding a new solution takes too much time. By doing
that, this algorithm tries to reduce the number of implications
leading from cardinality to a soft variable.

A second modification made by the EvalMaxSAT solver
is in the minimize function. Indeed, this function will per-
form several minimizations in order to obtain small cores.
A first minimization is done by making successive calls to
solver(core) where solver calls are limited to zero conflicts.
Each call to the solver attempts to remove a literal from the

1See https://github.com/FlorentAvellaneda/EvalMaxSAT

core (a literal can be removed if the formulation remains
unsatisfiable). After that, we apply the same algorithm with
1000 limited conflicts by considering the variables in differing
orders.

Algorithm 1 (Pseudo-code of the sequential algorithm)
Input: A formula ϕ

1: cost← extractAM1(ϕ)
2: while true do
3: (st, ϕc)← SATSolver(ϕ)
4: if st = true then
5: ϕ← ϕ ∪ ϕtmp

6: (st, ϕc)← SATSolver(ϕ)
7: if st = true then
8: return cost
9: end if

10: end if
11: ϕc ← minimize(ϕ,ϕc)
12: k ← exhaust(ϕ,ϕc)
13: cost← cost+ k
14: ϕ← relax(ϕ,ϕc)
15: ϕtmp ← ϕtmp ∪ createSum(ϕc, k)
16: end while

III. IMPLEMENTATION DETAILS

Extract AM1 Two algorithms are used to extract AtMost1
constraints from soft variables. The first one uses the mcqd
library [6] to find the maximum clique in the incompatibility
graph of the soft variables; the second one uses a heuristic.

Cardinality The Totalizer Encoding [7] is used to represent
cardinalities. The implementation reuses the code from the
PySAT’s ITotalizer [8].

Exhaust After the minimization is performed, a core ex-
haustion [5] or cover optimization [9] is done.

Timeout Many timeouts are used to stop minimization when
they take too much time.

IV. MULTICORE VERSION

An interesting feature of the algorithm used is that it
is very simple to parallelize it. Although the competition
does not allow the multi-threaded calculation, this feature
has been implemented in the solver but disabled for the
competition. The architecture of the parallelized algorithm is
depicted in Figure 1. The main thread looks for new cores
to minimize and when it finds one, it removes all variables

MaxSAT Evaluation 2020: Solver and Benchmark Descriptions, volume B-2020-2 of Department of Computer Science Series of Publications B, University of Helsinki 2020.

8

Main Thread

Minimize Threads

End

No

Yes

Exhaust

Minimize

New conflict?

No

Add in Assum

Fast minimize

NoLitToUnrelax
is empty?

Yes

No

Yes

No

Yes

End

Update constraints by
consideting CardToIncrement

and CardToAdd
No

All precesses
are waiting?

Yes

LitToUnrelax
is empty?

Yes

CardToIncrement and
CardToAdd are empty?

Extract core
from

Solve(Assum)?

LitToUnrelax

CardToIncrement

CardToAdd

ConflictToMinimize

Extract AM1

Fig. 1. Algorithm architecture

present in the core from the list of soft variables (Assum).
Paralleling this, threads access the cores found by the main
thread (ConflictToMinimize), minimize them and share new
cardinalities (CardToAdd), unused variables (LitToUnrelax)
and cardinalities to be incremented (CardToIncrement). Before
searching for new cores, the main thread collects the variables
that had previously been removed but were not used in any
previous thread.

When the main thread no longer finds a core, all minimiza-
tion threads have been completed and no variables are to be
reconsidered as soft, then the main thread considers the new
cardinalities to be added and incremented before restarting the
core search. If there are no cardinalities to add or increment,
then the search is complete and we get a MaxSAT assignment.

REFERENCES

[1] G. Audemard, J. Lagniez, and L. Simon, “Improving glucose for
incremental SAT solving with assumptions: Application to MUS
extraction,” in Theory and Applications of Satisfiability Testing - SAT
2013 - 16th International Conference, Helsinki, Finland, July 8-12, 2013.
Proceedings, ser. Lecture Notes in Computer Science, M. Järvisalo and
A. V. Gelder, Eds., vol. 7962. Springer, 2013, pp. 309–317. [Online].
Available: https://doi.org/10.1007/978-3-642-39071-5\ 23

[2] A. Morgado, C. Dodaro, and J. Marques-Silva, “Core-guided MaxSAT
with soft cardinality constraints,” in Principles and Practice of Constraint
Programming - 20th International Conference, CP 2014, Lyon, France,
September 8-12, 2014. Proceedings, ser. Lecture Notes in Computer
Science, B. O’Sullivan, Ed., vol. 8656. Springer, 2014, pp. 564–573.
[Online]. Available: https://doi.org/10.1007/978-3-319-10428-7\ 41

[3] A. Morgado, A. Ignatiev, and J. Marques-Silva, “MSCG: robust
core-guided maxsat solving,” J. Satisf. Boolean Model. Comput.,
vol. 9, no. 1, pp. 129–134, 2014. [Online]. Available: https:
//satassociation.org/jsat/index.php/jsat/article/view/127

[4] A. Ignatiev, A. Morgado, V. M. Manquinho, I. Lynce, and J. Marques-
Silva, “Progression in maximum satisfiability,” in ECAI 2014 -
21st European Conference on Artificial Intelligence, 18-22 August
2014, Prague, Czech Republic - Including Prestigious Applications of
Intelligent Systems (PAIS 2014), ser. Frontiers in Artificial Intelligence

and Applications, T. Schaub, G. Friedrich, and B. O’Sullivan, Eds.,
vol. 263. IOS Press, 2014, pp. 453–458. [Online]. Available:
https://doi.org/10.3233/978-1-61499-419-0-453

[5] A. Ignatiev, A. Morgado, and J. Marques-Silva, “RC2: an efficient
maxsat solver,” J. Satisf. Boolean Model. Comput., vol. 11, no. 1, pp.
53–64, 2019. [Online]. Available: https://doi.org/10.3233/SAT190116

[6] J. Konc and D. Janezic, “An improved branch and bound algorithm for
the maximum clique problem,” proteins, vol. 4, no. 5, 2007.

[7] R. Martins, S. Joshi, V. M. Manquinho, and I. Lynce, “Reflections
on ”incremental cardinality constraints for maxsat”,” CoRR, vol.
abs/1910.04643, 2019. [Online]. Available: http://arxiv.org/abs/1910.
04643

[8] A. Ignatiev, A. Morgado, and J. Marques-Silva, “Pysat: A python
toolkit for prototyping with SAT oracles,” in Theory and Applications
of Satisfiability Testing - SAT 2018 - 21st International Conference,
SAT 2018, Held as Part of the Federated Logic Conference, FloC
2018, Oxford, UK, July 9-12, 2018, Proceedings, ser. Lecture Notes
in Computer Science, O. Beyersdorff and C. M. Wintersteiger,
Eds., vol. 10929. Springer, 2018, pp. 428–437. [Online]. Available:
https://doi.org/10.1007/978-3-319-94144-8\ 26

[9] C. Ansótegui, M. L. Bonet, J. Gabas, and J. Levy, “Improving wpm2
for (weighted) partial maxsat,” in International Conference on Principles
and Practice of Constraint Programming. Springer, 2013, pp. 117–132.

9

Loandra in the 2020 MaxSAT Evaluation
Jeremias Berg∗, Emir Demirović†, Peter Stuckey‡

∗HIIT, Department of Computer Science, University of Helsinki, Finland
†Delft University of Technology, The Netherlands

‡Monash University, Australia

F

PREPROCESS(F)

CORE-GUIDED(P(F))

LIN-SEARCH(P(F)w, τ?)

return: REC(τ?)

return: REC(τ?)

return: REC(τ?)

Input
Optimum found

Optimum found

Resources out
P(F)

Resources out
(P(F)w, τ

?) Optimum found or
resources out

Fig. 1: The structure of Loandra.

I. PRELIMINARIES

We briefly overview the Loandra MaxSAT-solver as it
participated in the incomplete track of the 2020 MaxSAT
Evaluation, focusing especially on the differences between the
2019 and 2020 versions, more detailed descriptions can be
found in [4], [10]. Loandra owes much of its existence to
Open-WBO [11], we thank the developers of Open-WBO for
their work .

We assume familiarity with conjunctive normal form
(CNF) formulas and weighted partial maximum satisfiability
(MaxSAT). Treating a CNF formula as a set of clauses a
MaxSAT instance F consists of two CNF formulas, the hard
clauses Fh and the soft clauses Fs, as well a weight wc
associated with each C ∈ Fs. A solution to F is an assignment
τ that satisfies Fh. The cost of a solution τ is the sum
of weights of the soft clauses falsified by τ . An optimal
solution is one with minimum cost over all solutions. An
unsatisfiable core κ of F is a subset of soft clauses s.t. Fh∧κ
is unsatisfiable.

II. STRUCTURE OF LOANDRA

Figure 1 overviews the structure of Loandra. In short, Loan-
dra implements core-boosted linear search [4] augmented with
tightly integrated MaxSAT preprocessing [3], [9], [10], [2].
More specifically, Loandra consists of three main components:
a) Preprocessing, b) Core-guided search, c) Linear search.

a) Preprocessing: On input F , the execution starts by
invoking the MaxPre [9] preprocessor on F using the standard
techniques of MaxPre except for blocked clause elimination
(BCE). The reason we are not using BCE is that, as detailed
in [10], intermediate solutions to instances preprocessed with
BCE are more prone to having their costs miss-interpreted
by the core-guided and linear search components of Loandra.
If MaxPre can not compute the optimal solution to F , the
preprocessed instance P(F) is handed to the core guided
phase (CORE-GUIDED in Figure 1), reusing the assumption
variables introduced during preprocessing [3].

b) Core-guided search: The core-guided phase is un-
changed from the 2019 version; as the instantiation of the core-
guided algorithm, we use a reimplementation of PMRES [12]
extended with weight aware core extraction (WCE) [5] and
clause hardening. If CORE-GUIDED is able to find an optimal
solution τ to P(F), an optimal solution REC(τ) to F is
reconstructed and returned. Otherwise i.e. if the core-guided
phase runs out of time, the final working instance P(F)w and
τ∗, the best found solution to it is handed to the linear search
component LIN-SEARCH.

c) Linear search: LIN-SEARCH, the linear search phase
of Loandra is an implementation of the SAT/UNSAT linear
search algorithm [6], extended with solution guided phase
saving and varying resolution in the style of LinSBPS [7]. The
component is for the most part the same as in the 2019 version.
The main difference is, that in the start of each resolution, the
currently best known solution τ∗ is minimized in order to
alleviate the missinterpretation of costs that might happen due
to preprocessing in the context of incomplete solving [10].

More specifically, let P(F)w = P(F) ∪ CARD be the
working instance of LIN-SEARCH where P(F) is the pre-
processed instance computed by MaxPre and CARD are the
constraints added in the core-guided phase. At the start of
each resolution, LIN-SEARCH computes a set Bs of blocking
variables and an upper bound UB over which the PB constraint
is built. The upper bound is computed based on τ∗, the current
best known solution to P(F)w. However, as shown in [10],
there can be a significant difference between COST(P(F), τ∗),
the cost of τ∗ w.r.t to P(F), and COST(F ,REC(τ∗)), the
cost of the solution to F reconstructed from τ∗. This dif-
ference might result UB, and as consequence the whole
PB constraint, being much larger than actually required. In
order to alleviate this issue LIN-SEARCH uses a simple,
procedure that iteratively fixes all variables in Bs in the
following manner. In each iteration, all variables in P(F)

MaxSAT Evaluation 2020: Solver and Benchmark Descriptions, volume B-2020-2 of Department of Computer Science Series of Publications B, University of Helsinki 2020.

10

are fixed to the polarities that they are assigned to by τ∗.
Additionally an unfixed variable b ∈ Bs is fixed to false (i.e.
to not incur cost). Then the SAT solver is used to extend
these fixings into a satisfying assignment of P(F)w. If such
an assignment τ∗b can be found, that assignment will have
COST(P(F), τ∗b) < COST(P(F), τ∗) while also agreeing with
τ∗ on all variables in P(F). The variable b is then fixed
to false in subsequent iterations. Otherwise, the variable b
is fixed to true in subsequent iterations. Notice that, due
to the nature of constraints added by CORE-GUIDED, each
individual SAT-solver call is solvable by unit propagation
alone (the constraints in CARD are basically cardinality
constraints). Even so, preliminary experiments showed that
the minimization procedure is too expensive to run for each
new solution found, which is why we restrict it to once per
resolution.

The linear phase runs until either finding an optimal solu-
tion, or running out of time, at which point a reconstruction
REC(τ∗) of the currently best known solution τ∗ to P(F)w is
returned. Notice that the reconstruction of a solution happens
only once, we use the standard, linear time, reconstruction
algorithm as implemented by MaxPre.

III. IMPLEMENTATION DETAILS

All algorithms are implemented on top of the publicly
available Open-WBO system [11] using Glucose 4.1 [1] as
the back-end SAT solver. In order to minimize I/O overhead,
we make direct use of the preprocessor interface offered by
MaxPre. The linear search algorithm uses the generalized
totalizer encoding [8] to convert the PB constraints needed
in linear search to CNF. In the evaluation, we set a 30s time
limit for the preprocessing phase and a 30 second time limit
for the core-guided phase. These limits were chosen based
on preliminary experiments. On weighted instances, the core-
guided phase is also terminated when the stratification bound
would be lowered to 1. On unweighted instances the phase
is terminated at the latest after extracting one set of disjoint
cores.

IV. COMPILATION AND USAGE

Building and using Loandra resembles building and using
Open-WBO. Before building loandra, the maxpre library needs
to be built by invoking MAKE LIB in the maxpre subfolder.
Afterwards, a statically linked version of Loandra in release
mode can be built by running MAKE RS in the base folder.

After building, Loandra can be invoked from the terminal.
Except for the formula file, Loandra accepts a number of
command line arguments: the flag -pmreslin-cglim sets the
maximum time that the core-guided phase can run for (in
seconds). The rest of the flags resemble the flags accepted
by Open-WBO; invoke ./loandra static –help-verb for more
information.

REFERENCES

[1] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
sat solvers,” in Proc IJCAI. Morgan Kaufmann Publishers Inc., 2009,
pp. 399–404.

[2] A. Belov, A. Morgado, and J. Marques-Silva, “SAT-based preprocessing
for MaxSAT,” in Proc. LPAR-19, ser. Lecture Notes in Computer
Science, vol. 8312. Springer, 2013, pp. 96–111.

[3] J. Berg, P. Saikko, and M. Järvisalo, “Improving the effectiveness of
SAT-based preprocessing for MaxSAT,” in Proc. IJCAI. AAAI Press,
2015, pp. 239–245.

[4] J. Berg, E. Demirovic, and P. J. Stuckey, “Core-boosted linear search
for incomplete maxsat,” in CPAIOR, ser. Lecture Notes in Computer
Science, vol. 11494. Springer, 2019, pp. 39–56.

[5] J. Berg and M. Järvisalo, “Weight-aware core extraction in SAT-based
MaxSAT solving,” in Proc. CP, ser. Lecture Notes in Computer Science,
2017, to appear.

[6] D. L. Berre and A. Parrain, “The sat4j library, release 2.2,” J. Satisf.
Boolean Model. Comput., vol. 7, no. 2-3, pp. 59–6, 2010. [Online].
Available: https://satassociation.org/jsat/index.php/jsat/article/view/82

[7] E. Demirovic and P. J. Stuckey, “Techniques inspired by local search
for incomplete maxsat and the linear algorithm: Varying resolution and
solution-guided search,” in CP, ser. Lecture Notes in Computer Science,
vol. 11802. Springer, 2019, pp. 177–194.

[8] S. Joshi, R. Martins, and V. M. Manquinho, “Generalized totalizer
encoding for pseudo-boolean constraints,” in Proc. CP, ser. LNCS, vol.
9255, 2015, pp. 200–209.

[9] T. Korhonen, J. Berg, P. Saikko, and M. Järvisalo, “Maxpre: An extended
maxsat preprocessor,” in SAT, ser. Lecture Notes in Computer Science,
vol. 10491. Springer, 2017, pp. 449–456.

[10] M. Leivo, J. Berg, and M. Järvisalo, “Preprocessing in incomplete
maxsat solving,” in Proc ECAI, ser. Frontiers in Artificial Intelligence
and Applications, vol. ???? IOS Press, 2020, p. (to appear).

[11] R. Martins, V. Manquinho, and I. Lynce, “Open-WBO: A modular
MaxSAT solver,” in Proc. SAT, ser. Lecture Notes in Computer Science,
vol. 8561. Springer, 2014, pp. 438–445.

[12] N. Narodytska and F. Bacchus, “Maximum satisfiability using core-
guided MaxSAT resolution,” in Proc. AAAI. AAAI Press, 2014, pp.
2717–2723.

11

Pacose: An Iterative SAT-based MaxSAT Solver
Tobias Paxian, Bernd Becker

Albert-Ludwigs-Universität Freiburg
Georges-Köhler-Allee 051
79110 Freiburg, Germany

{ paxiant | becker }@informatik.uni-freiburg.de

I. OVERVIEW

Pacose is a SAT-based MaxSAT solver, using two incre-
mental CNF encodings, a binary adder [1] and the Dynamic
Polynomial Watchdog (DPW) [2], for Pseudo-Boolean (PB)
constraints. It is an extension of QMaxSAT 2017 [3], based
on Glucose 4.2.1 [4] SAT solver. It uses a Boolean Multilevel
Optimization (BMO) pre- / inprocessing method to simplify
the instances. Additionally a trimming method is applied to cut
off unsatisfiable soft clauses and find a good initial satisfiable
weight to reduce the size of the encoding.

II. PRE- / INPROCESSING

The 2019 version of Pacose contains two new pre-/inpro-
cessing methods, Generalized Boolean Multilevel Optimiza-
tion (GBMO) and a trimming algorithm.

Multi-Objective Combinatorial Optimization (MOCO) [5]
problems are addressing multiple optimization problems with
possibly conflicting purposes. Boolean Multilevel Optimiza-
tion (BMO) [6], [7] is the mapping of MOCO to MaxSAT
solving. We generalized the plain variant of Boolean Multi-
level Optimization thereby making it possible to split addi-
tional instances, even in cases where the weight differences
of the sum of smaller weights is non-strictly smaller than the
next biggest weight.

The trimming algorithm tries to satisfy each soft clause at
least once with the additional goal to find a good approxima-
tion of the weight. It works in two phases, in the first phase it
optimizes the overall weight and in the second phase it satisfies
as many soft clauses as possible in the next solver call. After
a timeout which is based on the number of soft clauses, it
switches from the first phase to the second. An additional
timeout for each incrementally solver call is included.

III. ENCODING AND ALGORITHM

Our DPW encoding is based on the Polynomial Watchdog
(PW) encoding [8], which uses totalizer networks [9]. Essen-
tially the DPW encoding employs multiple totalizer networks
to perform a binary addition with carry on the sorted outputs.
A special algorithm to solve these instances incremental is
presented in [2].

Additionally the adder network [1] is used which has a
linear complexity in encoding size in contrast to at least O(n2)
for the DPW sorting network. With the adder network many

This work is supported by DFG “Algebraic Fault Attacks” (BE 1176/20-2)

complementary instances to the DPW encoding can be solved
and therefore it is well suited, to be chosen, together with
DPW by a heuristic, as described in the following chapter.
The algorithm and encoding are partly adapted and inspired
from QMaxSAT.

IV. HEURISTICS

Pacose uses straightforward heuristics based on available
MaxSAT benchmarks. All heuristics are based on the number
of soft clauses and the overall sum of soft weights.

• Encoding: The DPW encoding empirically works best if
the average weight for soft clauses is small, or the overall
sum of soft weights is huge (bigger than 80 billion). For
the other benchmarks the binary adder is chosen.

• Trimming: As for instances with only a few soft clauses
the trimming preprocessing algorithm is not effective, it
is only used if the benchmark contains at least a certain
amount of soft clauses.

• Compression Rate: For benchmarks with only a few soft
clauses, the encoding is smaller and additional clauses
can be added. Therefore the binary adder encoding can
solve overall more benchmarks if the compression rate is
chosen accordingly.

REFERENCES

[1] J. P. Warners, “A linear-time transformation of linear inequalities into
conjunctive normal form,” Information Processing Letters, vol. 68, no. 2,
pp. 63–69, 1998.

[2] T. Paxian, S. Reimer, and B. Becker, “Dynamic polynomial watchdog
encoding for solving weighted MaxSAT,” in International Conference on
Theory and Applications of Satisfiability Testing. Springer, 2018, pp.
37–53.

[3] M. Koshimura, T. Zhang, H. Fujita, and R. Hasegawa, “QMaxSAT: A
partial Max-SAT solver system description,” Journal on Satisfiability,
Boolean Modeling and Computation, vol. 8, pp. 95–100, 2012.

[4] G. Audemard and L. Simon, “On the glucose SAT solver,” International
Journal on Artificial Intelligence Tools, vol. 27, no. 01, p. 1840001, 2018.

[5] E. L. Ulungu and J. Teghem, “Multi-objective combinatorial optimization
problems: A survey,” Journal of Multi-Criteria Decision Analysis, vol. 3,
no. 2, pp. 83–104, 1994.

[6] J. Argelich, I. Lynce, and J. Marques-Silva, “On solving boolean
multilevel optimization problems,” in Twenty-First International Joint
Conference on Artificial Intelligence, 2009.

[7] J. Marques-Silva, J. Argelich, A. Graça, and I. Lynce, “Boolean lexico-
graphic optimization: algorithms & applications,” Annals of Mathematics
and Artificial Intelligence, vol. 62, no. 3-4, pp. 317–343, 2011.

[8] O. Bailleux, Y. Boufkhad, and O. Roussel, “New encodings of pseudo-
boolean constraints into CNF,” in International Conference on Theory
and Applications of Satisfiability Testing. Springer, 2009, pp. 181–194.

[9] O. Bailleux and Y. Boufkhad, “Efficient CNF encoding of Boolean
cardinality constraints,” in Principles and Practice of Constraint
Programming–CP 2003. Springer, 2003, pp. 108–122.

MaxSAT Evaluation 2020: Solver and Benchmark Descriptions, volume B-2020-2 of Department of Computer Science Series of Publications B, University of Helsinki 2020.

12

RC2-2018 @ MaxSAT Evaluation 2020
Alexey Ignatiev

Monash University, Australia
alexey.ignatiev@monash.edu

I. INTRODUCTION

RC2 is an open-source MaxSAT solver written in Python
and based on the PySAT framework1 [1]. It is designed to
serve as a simple example of how SAT-based problem solving
algorithms can be implemented using PySAT while sacrificing
just a little in terms of performance. In this sense, RC2 can be
seen as a solver prototype and can be made somewhat more ef-
ficient if implemented in a low-level language. RC2 is written
from scratch and implements the RC2/OLLITI (i.e. relaxable
cardinality constraints) MaxSAT algorithm [2]–[4] originally
implemented in the MSCG MaxSAT solver [3], [5]. The RC2
algorithm proved itself efficient in the previous editions of
the MaxSAT Evaluation (MSE): namely in 2014, 2015, and
2016 (see the results of the MSCG solver, which was one
of the best complete MaxSAT solvers in the aforementioned
competitions) and, more recently, in 2018 and 2019 where it
was ranked first in the complete track of the MSE.

II. DESCRIPTION

For details on the implementation of RC2, a reader is re-
ferred to [4]. Here we give a brief overview of the competition
versions of RC2-2018.

RC2 supports incrementally a variety of SAT solvers pro-
vided by PySAT, and its competition version uses Glu-
cose 3.0 [6] as an underlying SAT oracle. Two variants of
the solver were submitted to the MaxSAT Evaluation 2018 in-
cluding RC2-A and RC2-B. Both of these versions implement
the same algorithm [2], [3] and share most of the techniques
used [3]. Their major components and differences are briefly
described below.

III. VARIANTS OF THE SOLVER

The following heuristics are used by both solver vari-
ants submitted to the MaxSAT Evaluation 2018: incremental
SAT solving [7], Boolean lexicographic optimization [8] and
stratification [9] for weighted instances, unsatisfiable core
exhaustion (originally referred to as cover optimization) [9].

Additionally, the following heuristic was used in both vari-
ants of RC2: given a set S of soft clauses, a number of subsets
S′ ⊆ S were identified such that at most one soft clause in
S′ can be satisfied, i.e.

∑
c∈S′ c ≤ 1. Every subset S′ can be

treated as an unsatisfiable core of cost |S′| − 1, which can be
represented as a single clause.

The only difference between the solver variants is the
policy for unsatisfiable core minimization. In contrast to RC2-
A, RC2-B applies heuristic unsatisfiable core minimization

1http://pysathq.github.io

done with a simple deletion-based minimal unsatisfiable subset
(MUS) extraction algorithm [10]. During the core minimiza-
tion phase in RC2-B, all SAT calls are dropped after obtaining
1000 conflicts. Note that core minimization in RC2-B is
disabled for large plain MaxSAT formulas, i.e. those having
no hard clauses but more than 100000 soft clauses. The
reason is that having this many soft clauses (and, thus, as
many assumption literals) and no hard clauses is deemed to
make SAT calls too expensive. Although core minimization
is disabled in RC2-A, reducing the size of unsatisfiable cores
can be still helpful for weighted instances due to the nature of
the RC2/OLLITI algorithm, i.e. because of the clause splitting
applied to the clauses of an unsatisfiable core depending on
their weight. Therefore, when dealing with weighted instances
RC2-A trims unsatisfiable cores at most 5 times (e.g. see [3]
for details) aiming at getting rid of unnecessary clauses. Note
that core trimming is disabled in RC2-A for unweighted
MaxSAT instances and it is not used in RC2-B at all.

IV. MAXSAT EVALUATION 2020

The solver submitted to MSE 2020 brings no changes to the
underlying algorithm and heuristics. The only modifications
made include: (1) support of the new v-line format and (2)
support of Top-k track2 of the evalution. The latter is done
through maximal satisfiable subset (MSS) enumeration. In the
model enumeration mode, soft clause hardening, which is
normally operating when BLO and stratification are active, is
disabled. Also, as soon as the first top solution is computed,
BLO and stratification are disabled and the solver proceeds in
the standard mode as all soft clauses of the formula get active.

V. AVAILABILITY

RC2 is distributed as a part of the PySAT framework, which
is available under an MIT license at https://github.com/
pysathq/pysat. It can also be installed as a Python package
from PyPI:

pip install python-sat

The RC2 solver can be used as a standalone executable
rc2.py and can also integrated into a complex Python-based
problem solving tool, e.g. using the standard import interface
of Python:

from pysat.examples import rc2

2https://maxsat-evaluations.github.io/2020/topk.html

MaxSAT Evaluation 2020: Solver and Benchmark Descriptions, volume B-2020-2 of Department of Computer Science Series of Publications B, University of Helsinki 2020.

13

REFERENCES

[1] A. Ignatiev, A. Morgado, and J. Marques-Silva, “PySAT: a Python toolkit
for prototyping with SAT oracles,” in SAT, 2018, to appear.

[2] A. Morgado, C. Dodaro, and J. Marques-Silva, “Core-guided MaxSAT
with soft cardinality constraints,” in CP, 2014, pp. 564–573.

[3] A. Morgado, A. Ignatiev, and J. Marques-Silva, “MSCG: Robust core-
guided MaxSAT solving,” JSAT, vol. 9, pp. 129–134, 2015.

[4] A. Ignatiev, A. Morgado, and J. Marques-Silva, “RC2: an efficient
MaxSAT solver,” J. Satisf. Boolean Model. Comput., vol. 11, no. 1,
pp. 53–64, 2019.

[5] A. Ignatiev, A. Morgado, V. M. Manquinho, I. Lynce, and J. Marques-
Silva, “Progression in maximum satisfiability,” in ECAI, 2014, pp. 453–
458.

[6] G. Audemard, J. Lagniez, and L. Simon, “Improving Glucose for incre-
mental SAT solving with assumptions: Application to MUS extraction,”
in SAT, 2013, pp. 309–317.

[7] N. Eén and N. Sörensson, “Temporal induction by incremental SAT
solving,” Electr. Notes Theor. Comput. Sci., vol. 89, no. 4, pp. 543–560,
2003.

[8] J. Marques-Silva, J. Argelich, A. Graca, and I. Lynce, “Boolean lexico-
graphic optimization: algorithms & applications,” Annals of Mathematics
and Artificial Intelligence (AMAI), vol. 62, no. 3-4, pp. 317–343, 2011.

[9] C. Ansótegui, M. L. Bonet, J. Gabàs, and J. Levy, “Improving WPM2
for (weighted) partial maxsat,” in CP, 2013, pp. 117–132.

[10] J. M. Silva, “Minimal unsatisfiability: Models, algorithms and applica-
tions (invited paper),” in ISMVL, 2010, pp. 9–14.

14

SATLike-c(w): Solver Description
1st Zhendong Lei

State Key Laboratory of Computer Science
Institute of Software, Chinese Academy of Sciences

School of Computer Science and Technology
University of Chinese Academy of Sciences

Beijing, China
leizd@ios.ac.cn

2nd Shaowei Cai
State Key Laboratory of Computer Science

Institute of Software, Chinese Academy of Sciences
School of Computer Science and Technology
University of Chinese Academy of Sciences

Beijing, China
caisw@ios.ac.cn

Abstract—In this document, we briefly describe the techniques
employed by the SATLike-c(w) solver participation in MaxSAT
Evaluation 2020.

I. INTRODUCTION

SATLike-c(w) participates in incomplete track. SATLike-
c(w) has two engines, one is local search solver SATLike
[1] and the other is SAT-based solver TT-Open-WBO-inc [2].
First, a core-guided SAT solver is executed to find a feasible
solution. Then SATLike is executed with this feasible solution
as its initial solution. SATLike keeps working until it fails
to improve the current solution in a given time limit. After
that, TT-Open-WBO-inc is executed to continue to improve
the current solution.

II. ACKNOWLEDGEMENT

Thank Zhihan Chen for his contribution to this work.

REFERENCES

[1] Zhendong Lei and Shaowei Cai. “Solving(weighted) partial maxsat by
dynamic local search for SAT.” InProceedings of the Twenty-Seventh
International Joint Confer-ence on Artificial Intelligence, IJCAI 2018,
July 13-19, 2018,Stockholm, Sweden. pages 1346–1352, 2018.

[2] Alexander Nadel. “Anytime weighted maxsat withimproved polarity
selection and bit-vector optimization.” InClark W. Barrett and Jin Yang,
editors,2019 Formal Methodsin Computer Aided Design, FMCAD 2019,
San Jose, CA, USA,October 22-25, 2019, pages 193–202. IEEE, 2019.

MaxSAT Evaluation 2020: Solver and Benchmark Descriptions, volume B-2020-2 of Department of Computer Science Series of Publications B, University of Helsinki 2020.

15

QMAXSAT in MaxSAT Evaluation 2018
Aolong Zha

Faculty of Information Science and Electrical Engineering
Kyushu University

744 Motooka, Nishi-ku, Fukuoka, Japan
cyouryuuryuu@gmail.com

QMAXSAT is a satisfiability-based solver, which uses CNF
encoding of pseudo-Boolean (PB) constraints [1]. The effi-
ciency of MaxSAT solvers depends on critically on which
SAT solver we use and how we encode the PB constraints. The
QMAXSAT is obtained by adapting a CDCL based SAT solver
GLUCOSE 3.0 [2], [3]. In addition, we introduce a new encod-
ing method, called n-level modulo totalizer encoding in to our
solver. This encoding is a hybrid between Modulo Totalizer
(MTO) [4] and Weighted Totalizer (WTO) [5], incorporating
the idea of mixed radix base [6].

Let φ = {(C1, w1), . . . , (Cm, wm), Cm+1, . . . , Cm+m′} be
a MaxSAT [7] instance where Ci is a soft clause with weight
wi (i = 1, . . . ,m) and Cm+j is a hard clause (j = 1, . . . ,m′).
We added a new blocking variable, bi, to each soft clause
Ci(i = 1, . . . ,m). Solving the MaxSAT problem for φ is
reduced to finding a SAT model of φ′ = {C1 ∨ b1, . . . , Cm ∨
bm, Cm+1, . . . , Cm+m′}, which minimizes

∑m
i=1 wibi.

Such SAT models are obtained using a SAT solver as
follows: Run the SAT solver to get an initial model and
calculate k =

∑
i wibi in it, add PB constraint

∑
i wibi < k,

and run the solver again. If φ′ is unsatisfiable, then φ is also
unsatisfiable as the MaxSAT problem. Otherwise, the process
is repeated with the new smaller solution. The latest model is
a MaxSAT solution of φ. QMAXSAT leaves the manipulation
of the PB constraints to GLUCOSE by encoding them into SAT.

We introduce a hybrid encoding [8] which inherits modular
arithmetic from MTO and distinct combinations of weights
from WTO. The latter is essentially the same as Generalized
Totalizer, which only generate auxiliary variables for each
unique combination of weights. We also enhanced the encod-
ing by multi-level modulo arithmetic based on a mixed radix
numeral system [9]. This encoding method always produces a
polynomial-size CNF in the number of input variables.

It is important to find a suitable mixed radix base with
low time-consumption that reduces the number of auxiliary
variables for our new encoding. We select the integer whose
rate of divisibility is the highest for all weights1 as the suitable
modulus for each digit. Furthermore, we also add other heuris-
tics tailored in our implementation, such as evaluating and
voting for the candidates of modulus, dynamically adjusting
the lower limit of the required rate of divisibility, etc.

1Before selecting the next modulus, we update all the weights to their
quotients of dividing the previous selected modulus.

REFERENCES

[1] M. Koshimura, T. Zhang, H. Fujita, and R. Hasegawa, “QMaxSAT: A
Partial Max-SAT Solver,” JSAT, vol. 8, no. 1/2, pp. 95–100, 2012.

[2] G. Audemard and L. Simon, “Predicting Learnt Clauses Quality in Mod-
ern SAT Solvers,” in IJCAI 2009, Proceedings of the 21st International
Joint Conference on Artificial Intelligence, Pasadena, California, USA,
July 11-17, 2009, C. Boutilier, Ed., 2009, pp. 399–404.

[3] N. Eén and N. Sörensson, “An Extensible SAT-solver,” in Theory and
Applications of Satisfiability Testing, E. Giunchiglia and A. Tacchella,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 502–
518.

[4] T. Ogawa, Y. Liu, R. Hasegawa, M. Koshimura, and H. Fujita, “Modulo
Based CNF Encoding of Cardinality Constraints and Its Application to
MaxSAT Solvers,” in 2013 IEEE 25th International Conference on Tools
with Artificial Intelligence, Herndon, VA, USA, November 4-6, 2013.
IEEE Computer Society, 2013, pp. 9–17.

[5] S. Hayata and R. Hasegawa, “Improvement in CNF Encoding of Cardi-
nality Constraints for Weighted Partial MaxSAT,” SIG-FPAI, in Japanese,
vol. 4, no. 04, pp. 85–90, 2015.

[6] M. Codish, Y. Fekete, C. Fuhs, and P. Schneider-Kamp, “Optimal Base
Encodings for Pseudo-Boolean Constraints,” in Tools and Algorithms for
the Construction and Analysis of Systems - 17th International Conference,
TACAS 2011, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2011, Saarbrücken, Germany, March
26-April 3, 2011. Proceedings, ser. Lecture Notes in Computer Science,
P. A. Abdulla and K. R. M. Leino, Eds., vol. 6605. Springer, 2011, pp.
189–204.

[7] C. M. Li and F. Manyà, “MaxSAT, Hard and Soft Constraints,” in
Handbook of Satisfiability, ser. Frontiers in Artificial Intelligence and
Applications, A. Biere, M. Heule, H. van Maaren, and T. Walsh, Eds.
IOS Press, 2009, vol. 185, pp. 613–631.

[8] A. Zha, M. Koshimura, and H. Fujita, “A Hybrid Encoding of Pseudo-
Boolean Constraints into CNF,” in Conference on Technologies and Ap-
plications of Artificial Intelligence, TAAI 2017, Taipei, Taiwan, December
1-3, 2017. IEEE, 2017, pp. 9–12.

[9] A. Zha, N. Uemura, M. Koshimura, and H. Fujita, “Mixed Radix Weight
Totalizer Encoding for Pseudo-Boolean Constraints,” in 2017 IEEE 29th
International Conference on Tools with Artificial Intelligence, Boston,
MA, USA, November 6-8, 2017. IEEE Computer Society, 2017, pp.
868–875.

MaxSAT Evaluation 2020: Solver and Benchmark Descriptions, volume B-2020-2 of Department of Computer Science Series of Publications B, University of Helsinki 2020.

16

Stable Resolving
Julian Reisch

Synoptics GmbH Dresden, Germany
julian.reisch@synoptics.de

Peter Großmann
Synoptics GmbH Dresden, Germany

peter.grossmann@synoptics.de

Abstract—We describe Stable Resolving (SR) [6], a solver com-
peting in the incomplete track of the 2020 MaxSAT evaluation.
SR is a randomized local search heuristic for both weighted and
unweighted instances. The algorithm consists of three steps that
are executed repeatedly. In a perturbation, the search space is
explored. Then, local improvements are performed by flipping the
signs of variables in over-satisfied clauses. Finally, a simulated
annealing solution checking allows for leaving local optima.

Index Terms—MaxSAT, heuristic, local search, incomplete
solving

I. OVERALL PROCEDURE

The solver starts with a SAT-based preprocessing and a call
of the SAT-solver Glucose [2] for an initial solution before
the three steps of perturbation, improvements and solution
checking are executed repeatedly until the global timeout is
reached. The procedure is shown in Algorithm 1.

Algorithm 1 StableResolving()
Preprocess()
CalculateInitialSolution()
while timeout has not been reached do

Perturbation()
Improvements()
SolutionChecking()

end

This algorithm structure has been proposed by [1] for the
maximum independent set problem and applied in an adapted
form to transformed MaxSAT instances by [7].

II. PREPROCESS

The preprocessing consists of repeated unit clause and
pure literal propagation and bounded variable elimination (cf.
e.g. [4]) until no more pure literals or unit clauses are can be
propagated or a sixth of the global timeout is exceeded. Since
these operations are only sound for hard clauses, we label the
soft clauses, consider them as hard clauses and add an extra
soft clause for each label (cf. [3] for details). Then, for an
initial solution the SAT solver glucose [2] is called.

III. PERTURBATION

In the perturbation, we aim at altering the solution in order
to explore the search space even though the solution might
worsen. More precisely, we flip the sign of a variable picked
uniformly at random in unsatisfied clauses, selected uniformly
at random in the set of unsatisfied clauses. We do not pick
clauses or variables twice in this procedure. In addition, in

every n-th perturbation call, the selected unsatisfied clauses
are considered hard clauses and given to the SAT-solver
glucose that forces a solution where these clauses are satisfied.
Glucose has a time limit of 5 seconds for this. A subset of
unsatisfied clauses is found by first sampling a random number
k from the geometric distribution with parameter p1 and then
selecting k clauses from the set of unsatisfied clauses. As
most of the formula’s clauses remain satisfied during many
iterations, we keep and update a superset of the unsatisfied
clauses during the whole algorithm to speed up the sampling
from this superset instead collecting all unsatisfied clauses in
each perturbation step. Clauses that become unsatisfied in the
perturbation step are added to a set of unsatisfied candidate
clauses. Finally, the perturbation has a plateau search where,
again, a random number k is sampled from the geometric
distribution with parameter p2. Then, k variables are picked
uniformly at random and their signs are flipped if no clause
becomes unsatisfied by the flip.

IV. IMPROVEMENTS

The improvement part is the core of SR and works in the
following way. Starting from a random (unsatisfied) candidate
clause, SR flips the sign of a randomly chosen variable from
a set of currently unsatisfied clauses. If this flip causes other
clauses to become unsatisfied, they are added to this set. If it
leads to an over-satisfaction of a clause, the algorithm attempts
to flip yet another of this over-satisfied clause’s variables’ signs
if no further clauses become unsatisfied by that second flip.
We keep a vector containing the number of true literals for
each clause, denoted the clause’s stability, for this step and
perform it whenever the stability of a clause grows from 1 to
2. Moreover, we do not flip a variable’s sign twice during a
single improvement step. After no further clauses in the set
of currently unsatisfied clauses can be satisfied, or an iteration
limit of l is reached, the improvement for the clause ends and
we carry on with the next candidate clause. After all candidate
clauses have been tried to improve, the improvement part ends.

V. SOLUTION CHECKING

If we see the best solution found so far, we save it and con-
tinue. However, it is possible that the improvements could not
compensate the solution’s worsening of the perturbation step.
Nevertheless, with a probability that decreases exponentially
in the time elapsed, we accept that worse solution because it
might help to leave local optima. This technique is known as

MaxSAT Evaluation 2020: Solver and Benchmark Descriptions, volume B-2020-2 of Department of Computer Science Series of Publications B, University of Helsinki 2020.

17

Flag Description Type
-z global timeout int
-o file path the solution output string
-innermaxit l int
-maxstepsworse m int
-geom p1 int
-plateau p2 int
-maxstepsperturbtosat n int

simulated annealing [5]. However, after m iterations without
an update of the best solution, we restore the best solution.

VI. IMPLEMENTATION AND USAGE

The implementation of SR is in C++. The various pa-
rameters within the algorithm are set at the beginning and
according to selected features of the instance at hand, such as
the number of soft clauses or their average weight. If desired,
the parameters can be set manually when calling the solver
with the flag -autoparam. This disables the automatic setting
of parameters and all parameters listed in Table VI can be set.

REFERENCES

[1] D. V. Andrade, M. G. C. Resende, R. F. F. Werneck, ”Fast local search
for the maximum independent set problem”, in J. Heuristics, 18(4), 2012

[2] G. Audemard, L. Simon, ”Predicting learnt clauses quality in modern
sat solvers”, in Proceedings of the 21st International Jont Conference
on Artifical Intelligence (IJCAI’09), San Francisco, CA, USA, 2009

[3] A. Belov, A. Morgado, J. Marques-Silva, ”Sat-based preprocessing for
maxsat”, in McMillan, K., Middeldorp, A., Voronkov, A. (eds.) Logic
for Programming, Artificial Intelligence, and Reasoning. pp. 96–111,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2013

[4] M. Davis, H. Putnam, ”A computing procedure for quantification
theory”, in J. ACM7(3), pp. 201–215, 1960

[5] M. Pincus, ”A Monte-Carlo Method for the Approximate Solution of
Certain Types of Constrained Optimization Problems”, in Operation
Research, 18(6), 1970

[6] J. Reisch, P. Großmann, N. Kliewer, ”Stable Resolving - A Randomized
Local Search Heuristic for MaxSAT”, unpublished paper under review,
2020

[7] J. Reisch, P. Großmann, N. Kliewer, ”Conflict Resolving - A Maximum
Independent Set Heuristics for Solving MaxSAT”, in Proceedings of the
22nd International Multiconference Information Society, 1, pp. 67-71,
2019

18

MaxHS in the 2020 MaxSat Evaluation

Fahiem Bacchus
Department of Computer Science

University of Toronto
Ontario, Canada

Email: fbacchus@cs.toronto.edu

1. MaxHS

MaxHS is a MaxSat solver originally developed in [6].
It was the first MaxSat solver to utilize the Implicit Hitting
Set (IHS) approach, and its core components are described
in [6], [4], [5], [7]. Additional useful insights into IHS are
provided in [8], [9]. IHS solvers utilize both an integer
programming (IP) solver and a SAT solver in a hybrid
approach to MaxSat solving. This separation also allows
additional techniques from IP solving to be exploited in the
solver [1].

MaxHS utilizes MiniSat v2.2 as its SAT solver
and IBM’s CPLEX v12.8 as its IP solver. Interestingly
experiments with more sophisticated SAT solvers like
Glucose http://www.labri.fr/perso/lsimon/glucose/ and Lin-
geling http://fmv.jku.at/lingeling/ yielded inferior perfor-
mance. This indicates that the SAT problems being solved
are quite simple, too simple for the more sophisticated
techniques used in these SAT solvers to pay off. In fact,
simpler SAT problems are one of the original motivations
behind MaxHS [4].

Nevertheless, some changes have been made to the un-
derlying MiniSat solver. In particular, this year the MiniSat
code base was updated to maintain LBD clause scores and
to perform clause deletion using LBD scores in a manner
identical to the Glucose solver. However, this is the only
part of the Glucose that was added.

The 2020 version of MaxHS saw a large change to
implement abstract cores [2]. The notion of abstract cores is
described in the cited paper; their benefit is that the solver
can generate a single abstract core that represents an ex-
ponential number of non-abstract cores. With abstract cores
the IHS approach avoids having to generate an exponential
number of cores in some cases [6].

Also a version for the Top-K track was submitted.
A summary of the main features of MaxHS that extend

the basic IHS approach are listed below. Most of these
features are unchanged from 2019.

1.0.1. Abstract Cores. In MaxHS cores are sets of soft
clauses that jointly cannot be satisfied in any feasible so-
lution (i.e., a solution satisfying the hard clauses). A cores
is represented in the solver by a clause containing the soft
clause’s blocking variables. The IHS approach is to use a

SAT solver to collect cores and an IP solver to compute
a minimum cost set of soft clauses that can satisfy all of
the core constraints (i.e., each core specifies the constraint
that at least one soft clause in each core must be falsified).
MaxHS keep track of the computed cores and uses the Lou-
vain clustering algorithm [3] to find clusters of soft clauses
that frequently appear together in cores. These clusters of
soft clauses are then grouped together as inputs to a totalizer.
Now instead of generating cores by assuming individual soft
clauses to be true, totalizer outputs are assumed that limit
the number of soft clauses in a cluster that can be falsified.
Thus the specific identity of the soft clauses to be falsified is
ignored—all that matters is how many are falsified. MaxHS
only clusters the soft clauses when it is failing to make
progress. Furthermore, it continues to generate ordinary non-
abstract cores as well as abstract cores.

1.0.2. Top-K. In the Top-K track the solver is to return a
sequence of non-decreasing cost optimal solutions each of
which falsifies a different set of soft clauses. To achieve this
the existing code base was modified—later these changes
can be added as an option. The following changes were
required

• A preprocessing time pure literal detection was re-
moved. Literals that appear in only one polarity in both
the hard and the soft clauses of the input formula can be
set to true without affecting the optimal solution. How-
ever, subsequent top-k solutions might require negating
a pure literal. So pure literal reduction was turned off
in the top-k version.

• Boolean Lexicographic Optimization (BLO) was turned
off. This also is a preprocessing step. Let S be the set
of soft clauses and H be the set of hard clauses of
the instance. In BLO if a set B ⊆ S of soft clauses
can be found such that (a) B ∪ H is satisfiable and
(b) the sum of weights of the remain soft clauses (i.e.,
those in S −B) is less than the minimum weight soft
clause in B, then all clauses in B can be made hard.
That is, BLO detects the case where all of the clauses
in B can be satisfied and it is better to falsify all
clauses not in B rather than falsify a single clause in
B. MaxHS performs BLO hardening of soft clauses as
a preprocessing step, but for top-k this was turned off.

MaxSAT Evaluation 2020: Solver and Benchmark Descriptions, volume B-2020-2 of Department of Computer Science Series of Publications B, University of Helsinki 2020.

19

• LP reduced cost hardening [1] used in MaxHS was
turned off. This technique relies on an upper bound
on the solution cost to harden soft clauses, however
with top-k when looking for the next solution the upper
bound can increase making such hardening invalid.

Other than these changes the implementation of top-k is
simple: simply add a blocking clause computed from the
previous found solution and then reoptimize with this added
constraint. This blocking clause specifies that at least one of
the previously satisfied soft clauses must now be falsified,
forcing the solver to find an new optimal solution falsifying
a different set of soft clauses from before as required.
(The new solution is an optimal solution of the now more
constrained formula, it is not usually an optimal solution of
the original formula.)

1.0.3. Termination based on Bounding. MaxHS maintains
an upper bound (and best model found so far) and a lower
bound on the cost of an optimal solution (the IP solver
computes valid lower bounds). MaxHS terminates when
the gap between the lower bound and upper bound is low
enough (with integer weights when this gap is less than 1,
the upper bound model is optimal). This means that MaxHS
no longer needs to wait until the IP solver returns an hitting
set whose removal from the set of soft clauses yields SAT;
it can return when the IP solver’s best lower bound is close
enough to show that the best model is optimal.

1.0.4. Early Termination of Cplex. In early versions of
MaxHS, the IP solver was run to completion forcing it to
find an optimal solution every time it is called. However,
with bounding, optimal solutions are not always needed. In
particular, if the IP solver finds a feasible solution whose
cost is better than the current best model it can return that:
either the IP solution is feasible for the MaxSat problem, in
which case we can lower the upper bound, or it is infeasible
in which case we can obtain additional cores to augment the
IP model (and thus increase the lower bound). Terminating
the IP solver before optimization is complete can yield
significant time savings.

1.0.5. Reduced Cost fixing via the LP-Relaxation. Using
an LP relaxation and the reduced costs associated with the
optimal LP solution, some soft clauses can be hardened or
immediately falsified. See [1] for more details.

1.0.6. Mutually Exclusive Soft Clauses. Sets of soft
clauses of which at most one can be falsified or at most
one can be satisfied are detected. Sets where at most one
soft clause can be satisfied are re-encoded to a new MaxSat
problem with one soft clause to represent condition that one
of these previous soft clauses is satisfied. With abstract cores
it was found that sets where at most one soft clause can be
falsified were no longer helpful, and these are not used in
this version.

1.0.7. Other clauses to the IP Solver. Problems with a
small number of variables are given entirely to the IP solver,

so that it directly solves the MaxSat problem. In this case
the SAT solver is used to first compute some additional
clauses and cores, and to find a better initial model for the
IP solver. This additional information from the SAT solver
often makes the IP solver much faster than just running the
IP solver and represents an alternate way of hybridizing SAT
and IP solvers.

1.0.8. Other techniques for finding Cores. MaxHS itera-
tively calls the IP solver to obtain a hitting set of the cores
computed so far. If that hitting set does not yield an optimal
MaxSat solution then more cores must be added to the IP
solver. In some of these iterations very few cores can be
found causing only a slight improvement to the IP solver’s
model. This results in a large number of time consuming
calls to the IP solver. Two method were developed to aid
this situation (a) we ask the IP solver for more solutions and
generate cores from these as hitting sets as well and (b) if
we have a new upper bound model we try to improve this
model by converting it to a minimal correction set (MCS). In
converting the upper bound model to an MCS we either find
a better model (lowering the upper bound) or we compute
additional conflicts that can be added to the IP solver.

References

[1] Bacchus, F., Hyttinen, A., Järvisalo, M., Saikko, P.: Reduced cost fixing
in maxsat. In: Beck, J.C. (ed.) Principles and Practice of Constraint
Programming - 23rd International Conference, CP 2017, Melbourne,
VIC, Australia, August 28 - September 1, 2017, Proceedings. Lecture
Notes in Computer Science, vol. 10416, pp. 641–651. Springer (2017),
https://doi.org/10.1007/978-3-319-66158-2 41

[2] Berg, J., Bacchus, F., Poole, A.: Abstract Cores in Implicit Hitting Set
MaxSat solving. In: Theory and Applications of Satisfiability Testing
- SAT 2020 - 23rd International Conference, SAT 2019 Proceedings.
Lecture Notes in Computer Science, Springer (2020), in press

[3] Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast
unfolding of communities in large networks. Journal of Statistical
Mechanics: Theory and Experiment 2008(10), P10008 (Oct 2008),
https://doi.org/10.1088%2F1742-5468%2F2008%2F10%2Fp10008

[4] Davies, J., Bacchus, F.: Solving MAXSAT by solving a sequence
of simpler SAT instances. In: Proc. CP. Lecture Notes in Computer
Science, vol. 6876, pp. 225–239. Springer (2011)

[5] Davies, J., Bacchus, F.: Exploiting the power of MIP solvers in
MaxSAT. In: Proc. SAT. Lecture Notes in Computer Science, vol.
7962, pp. 166–181. Springer (2013)

[6] Davies, J.: Solving MAXSAT by Decoupling Optimization and Sat-
isfaction. Ph.D. thesis, University of Toronto (2013), http://www.cs.
toronto.edu/∼jdavies/Davies Jessica E 201311 PhD thesis.pdf

[7] Davies, J., Bacchus, F.: Postponing optimization to speed up MAXSAT
solving. In: Proc. CP. Lecture Notes in Computer Science, vol. 8124,
pp. 247–262. Springer (2013)

[8] Saikko, P., Berg, J., Järvisalo, M.: LMHS: A SAT-IP hybrid MaxSAT
solver. In: Proc. SAT. Lecture Notes in Computer Science, vol. 9710,
pp. 539–546. Springer (2016)

[9] Saikko, P.: Re-implementing and Extending a Hybrid SAT-IP Approach
to Maximum Satisfiability. Master’s thesis, University of Helsinki
(2015), http://hdl.handle.net/10138/159186

20

Maxino
Mario Alviano

Department of Mathematics and Computer Science
University of Calabria

87036 Rende (CS), Italy
ORCID: 0000-0002-2052-2063

Abstract—Maxino is based on the k-ProcessCore algorithm,
a parametric algorithm generalizing OLL, ONE and PMRES.
Parameter k is dynamically determined for each processed
unsatisfiable core by a function taking into account the size of
the core. Roughly, k is in O(logn), where n is the size of the
core. Satisfiability of propositional theories is checked by means
of a pseudo-boolean solver extending Glucose 4.1 (single thread).
Top-k is implemented by disabling hardening and using blocking
clauses involving the soft literals associated with soft clauses in
the input formula.

Index Terms—component, formatting, style, styling, insert

A VERY SHORT DESCRIPTION OF THE SOLVER

The solver MAXINO is build on top of the SAT solver
GLUCOSE [7] (version 4.1). MaxSAT instances are normalized
by replacing non-unary soft clauses with fresh variables, a
process known as relaxation. Specifically, the relaxation of
a soft clause φ is the clause φ ∨ ¬x, where x is a variable
not occurring elsewhere; moreover, the weight associated
with clause φ is associated with the soft literal x. Hence,
the normalized input processed by MAXINO comprises hard
clauses and soft literals, so that the computational problem
amounts to maximize a linear function, which is defined by
the soft literals, subject to a set of constraints, which is the
set of hard clauses.

The algorithm implemented by MAXINO to address such a
computational problem is based on unsatisfiable core analysis,
and in particular takes advantage of the following invariant:
A model of the constraints that satisfies all soft literals is an
optimum model. The algorithm then starts by searching such
a model. On the other hand, if an inconsistency arises, the
unsatisfiable core returned by the SAT solver is analyzed. The
analysis of an unsatisfiable core results into new constraints
and new soft literals, which replace the soft literals involved in
the unsatisfiable core. The new constraints are essentially such
that models satisfying all new soft literals actually satisfy all
but one of the replaced soft literals. Since there is no model
that satisfies all replaced soft literals, it turns out that the
invariant is preserved, and the process can be iterated.

Specifically, the algorithm implemented by MAXINO is K,
based on the k-ProcessCore procedure introduced by Alviano
et al. [2]. It is a parametric algorithm generalizing OLL [3],
ONE [2] and PMRES [8]. Intuitively, for an unsatisfiable core
{x0, x1, x2, x3}, ONE introduces the following constraint:

x0 + x1 + x2 + x3 + ¬y1 + ¬y2 + ¬y3 ≥ 3
y1 → y2 y2 → y3

where y1, y2, y3 are fresh variables (the new soft literals that
replace x0, x1, x2, x3). OLL introduces the following con-
straints (the first immediately, the second if a core containing
y1 is subsequently found, and the third if a core containing y2
is subsequently found):

x0 + x1 + x2 + x3 + ¬y1 ≥ 3
x0 + x1 + x2 + x3 + ¬y2 ≥ 2
x0 + x1 + x2 + x3 + ¬y3 ≥ 1

Concerning PMRES, it introduces the following constraints:

x0 ∨ x1 ∨ ¬y1 z1 ↔ x0 ∧ x1
z1 ∨ x2 ∨ ¬y2 z2 ↔ z1 ∧ x2
z2 ∨ x3 ∨ ¬y3

which are essentially equivalent to the following constraints:

x0 + x1 + ¬z1 + ¬y1 ≥ 2 z1 → y1
z1 + x2 + ¬z2 + ¬y2 ≥ 2 z2 → y2
z2 + x3 + ¬y3 ≥ 1

where y1, y2, y3 are fresh variables (the new soft literals that
replace x0, x1, x2, x3), and z1, z2 are fresh auxiliary variables.

Algorithm K, instead, introduces a set of constraints of
bounded size, where the bound is given by the chosen param-
eter k, and is specifically 2 · (k+1). ONE, which is essentially
a smart encoding of OLL, is the special case for k = ∞,
and PMRES is the special case for k = 1. For the example
unsatisfiable core, another possibility is k = 2, which would
results in the following constraints:

x0 + x1 + x2 + ¬z1 + ¬y1 + ¬y2 ≥ 3 z1 → y1 y1 → y2
z1 + x3 + ¬y3 ≥ 1

In this version of MAXINO, the parameter k is dynamically
determined based on the size of the analyzed unsatisfiable
core: k ∈ O(log n), where n is the size of the core.

The analysis of unsatisfiable core is preceded by a shrink
procedure [1]. Specifically, a reiterated progression search
is performed on the unsatisfiable core returned by the SAT
solver. Such a procedure significantly reduce the size of the
unsatisfiable core, even if it does not necessarily returns an
unsatisfiable core of minimal size. Since minimality of the
unsatisfiable cores is not a requirement for the Additionally,
satisfiability checks performed during the shrinking process
are subject to a budget on the number of conflicts, so that the
overhead due to hard checks is limited. Specifically, the budget
is set to the number of conflicts arose in the satisfiability

MaxSAT Evaluation 2020: Solver and Benchmark Descriptions, volume B-2020-2 of Department of Computer Science Series of Publications B, University of Helsinki 2020.

21

check that lead to detecting the unsatisfiable core; if such a
number is less than 1000 (one thousand), the budget is raised
to 1000. The budget is divided by 2 every time the progression
is reiterated.

Weighted instances are handled by stratification and in-
troducing remainders [4]–[6]. Specifically, soft literals are
partitioned in strata depending on the associated weight.
Initially, only soft literals of greatest weight are considered,
and soft literals in the next stratum are added only after a
model satisfying all considered soft literals is found. When
an unsatisfiable core is found, the weight of all soft literals
in the core is decreased by the weight associated with last
added stratum. Soft literals whose weight become zero are
not considered soft literals anymore.

Finally, a preprocessing step is performed on unweighted
instances, which essentially iterates on all hard clauses of
the input theory, sorted by length, and checks whether they
already witness some unsatisfiable core. Specifically, an hard
clause witnesses an unsatisfiable core if all literals in the clause
are the complement of a soft literal. If this is the case, the
unsatisfiable core is analyzed immediately. The rationale for
such a preprocessing step is that hard clauses in the input
theory are often small, and the smaller the better for the
unsatisfiable core based algorithms.

REFERENCES

[1] Mario Alviano and Carmine Dodaro. Anytime answer set optimization
via unsatisfiable core shrinking. TPLP, 16(5-6):533–551, 2016.

[2] Mario Alviano, Carmine Dodaro, and Francesco Ricca. A maxsat
algorithm using cardinality constraints of bounded size. In Qiang Yang
and Michael Wooldridge, editors, Proceedings of the Twenty-Fourth
International Joint Conference on Artificial Intelligence, IJCAI 2015,
Buenos Aires, Argentina, July 25-31, 2015, pages 2677–2683. AAAI
Press, 2015.

[3] Benjamin Andres, Benjamin Kaufmann, Oliver Matheis, and Torsten
Schaub. Unsatisfiability-based optimization in clasp. In 28th International
Conference on Logic Programming, pages 211–221, Budapest, Hungary,
September 2012.

[4] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. Solving (weighted)
partial maxsat through satisfiability testing. In SAT 2009, pages 427–440,
Swansea, UK, June 2009. Springer.

[5] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. SAT-based
MaxSAT algorithms. Artificial Intelligence, 196(0):77–105, March 2013.

[6] Josep Argelich, Inês Lynce, and João P. Marques Silva. On solving
boolean multilevel optimization problems. In 21st International Joint
Conference on Artificial Intelligence, pages 393–398, Pasadena, Califor-
nia, July 2009. IJCAI Organization.

[7] Gilles Audemard and Laurent Simon. Predicting learnt clauses quality
in modern SAT solvers. In 21st International Joint Conference on
Artificial Intelligence, pages 399–404, Pasadena, California, July 2009.
IJCAI Organization.

[8] Nina Narodytska and Fahiem Bacchus. Maximum satisfiability using
core-guided MaxSAT resolution. In Twenty-Eighth AAAI Conference on
Artificial Intelligence, pages 2717–2723, Québec City, Canada, July 2014.
AAAI Press.

22

SATLike-c: Solver Description
1st Zhendong Lei

State Key Laboratory of Computer Science
Institute of Software, Chinese Academy of Sciences

School of Computer Science and Technology
University of Chinese Academy of Sciences

Beijing, China
leizd@ios.ac.cn

2nd Shaowei Cai
State Key Laboratory of Computer Science

Institute of Software, Chinese Academy of Sciences
School of Computer Science and Technology
University of Chinese Academy of Sciences

Beijing, China
caisw@ios.ac.cn

Abstract—In this document, we briefly describe the techniques
employed by the SATLike-c solver participation in MaxSAT
Evaluation 2020.

I. INTRODUCTION

SATLike-c participates in incomplete track. SATLike-c has
two engines, one is local search solver SATLike [1] and the
other is SAT-based solver Loandra [2]. First, a core-guided
SAT solver is executed to find a feasible solution. Then
SATLike is executed with this feasible solution as its initial
solution. SATLike keeps working until it fails to improve the
current solution in a given time limit. After that, Loandra is
executed to continue to improve the current solution.

REFERENCES

[1] Zhendong Lei and Shaowei Cai. “Solving(weighted) partial maxsat by
dynamic local search for SAT.” InProceedings of the Twenty-Seventh
International Joint Confer-ence on Artificial Intelligence, IJCAI 2018,
July 13-19, 2018,Stockholm, Sweden. pages 1346–1352, 2018.

[2] Jeremias Berg, Emir Demirovic and Peter J. Stuckey, “Core-Boosted
Linear Search for Incomplete MaxSAT” Integration of Constraint Pro-
gramming, Artificial Intelligence, and Operations Research - 16th In-
ternational Conference, CPAIOR 2019, Thessaloniki, Greece, June 4-
7, 2019, Proceedings. vol-ume 11494 of Lecture Notes in Computer
Science, pages 39–56. Springer, 2019.

MaxSAT Evaluation 2020: Solver and Benchmark Descriptions, volume B-2020-2 of Department of Computer Science Series of Publications B, University of Helsinki 2020.

23

Open-WBO @ MaxSAT Evaluation 2020
Ruben Martins

rubenm@cs.cmu.edu
CMU, USA

Norbert Manthey
nmanthey@conp-solutions.com

Dresden, Germany

Miguel Terra-Neves, Vasco Manquinho, Inês Lynce
{neves,vmm,ines}@inesc-id.pt

INESC-ID/IST, Portugal

I. INTRODUCTION

OPEN-WBO [1] is an open source MaxSAT solver that
supports several MaxSAT algorithms [2], [3], [4], [5], [6],
[7], [8] and SAT solvers [9], [10], [11]. OPEN-WBO is
particularly efficient for unweighted MaxSAT and has been
one of the best solvers in the MaxSAT Evaluations from
2014 to 2017. Five versions of OPEN-WBO were submitted
to different tracks at MaxSAT Evaluation 2020: open-wbo-
res-mergesat-v1, open-wbo-res-mergesat-v2, open-wbo-
res-glucose-v1, open-wbo-res-glucose-v2, and open-wbo-
topk. The remainder of this document describes the differences
between these versions.

II. SAT SOLVERS

OPEN-WBO is based on the data structures of MIN-
ISAT 2.2 [9], [12]. Therefore, solvers based on MINISAT 2.2
can be used as a potential back-end solver. For the MaxSAT
Evaluation 2019, we use GLUCOSE 4.1 [10], [13], [14] as the
back-end SAT solver of the versions that end in glucose and
MERGESAT [11] as the back-end SAT solver of the versions
that end in mergesat.

MERGESAT is a new CDCL solver developed by Norbert
Manthey and it is based on the SAT competition winner of
2018, MAPLELCMDISTCHRONOBT [15], and adds several
known techniques. For restarts, only partial backtracking is
used, learned clause minimization is implemented more ef-
ficiently, and also applies simplification again in case the
first swipe resulted in a simplification. Finally, the time-
based decision heuristic switch is made deterministic by using
solving steps. Furthermore, subsumption and self-subsuming
resolution is used as inprocessing. To support being used inside
MaxSAT solvers, the incremental search feature had to been
enabled again.

III. MAXSAT ALGORITHMS

In this section, we briefly describe the algorithms used for
the complete and top-k tracks at the MSE2020.

A. Complete Unweighted Track

Four versions were submitted to the complete un-
weighted track: open-wbo-res-mergesat-v1, open-wbo-
res-mergesat-v2, open-wbo-res-glucose-v1, open-wbo-
res-glucose-v2.

All versions use a variant of the unsatisfiability-based algo-
rithm MSU3 [3] and the OLL algorithm [7]. This algorithm

works by iteratively refining a lower bound λ on the num-
ber of unsatisfied soft clauses until an optimum solution is
found. We use an incremental version of this algorithm by
taking advantage of the incremental version of the Totalizer
encoding [4]. We also extended the incremental MSU3 algo-
rithm [4] with resolution-based partitioning techniques [8]. We
represent a MaxSAT formula using a resolution-based graph
representation and iteratively join partitions by using a prox-
imity measure extracted from the graph representation of the
formula. The algorithm ends when only one partition remains
and the optimal solution is found. Since the partitioning of
some MaxSAT formulas may be unfeasible or not significant,
we heuristically choose to run either MSU3 with partitions
or without partitions. In particular, we do not use partition-
based techniques when one of the following criteria is met:
(i) the formula is too large (> 1,000,000 clauses), (ii) the
ratio between the number of partitions and soft clauses is too
high (> 0.8), (iii) the sparsity of the graph is too small (<
0.04), or (iv) there exist some at-most-one relations between
soft clauses (> 10), i.e. if one soft clause is satisfied it implies
that some other soft clauses will be unsatisfied.

The difference between versions v1 and v2 is that version
v1 uses the MSU3 algorithm when the partitioning algorithm
is not applicable, whereas v2 uses the OLL algorithm.

B. Top-k Track

For the top-k track, we use a linear search SAT-UNSAT
to find the optimal solution. Once the optimal solution is
found, we change to the (W)MSU3 algorithm and enumerate
solutions until we exhaust the search space or we find k
solutions. Each algorithm is incremental but the swap is made
in a non-incremental fashion. For the unweighted track, we
use the incremental Totalizer encoding for MSU3 [4] and the
incremental SWC encoding for WMSU3 [16].

These algorithms are not optimized for the top-k track and
should be consider a baseline for future improvements.

C. Preprocessing

We perform identification of unit cores and at-most-one
relations between soft clauses by using unit propagation. A
similar technique is done in RC2 [17], the winner of the
MaxSAT Evaluation 2018.

D. Other

OPEN-WBO now supports printing the certificate in a
compact mode using 0’s and 1’s.

MaxSAT Evaluation 2020: Solver and Benchmark Descriptions, volume B-2020-2 of Department of Computer Science Series of Publications B, University of Helsinki 2020.

24

IV. AVAILABILITY

The latest release of OPEN-WBO is available under a MIT
license in GitHub at https://github.com/sat-group/open-wbo.

ACKNOWLEDGMENTS

We would like to thank Laurent Simon and Gilles Audemard
for allowing us to use GLUCOSE 4.1 in the MaxSAT Evalu-
ation. We would also like to thank Niklas Eén and Niklas
Sörensson for the development of MINISAT 2.2. Additionally,
we would like to thank all the collaborators on previous
versions of OPEN-WBO, namely Saurabh Joshi and Mikoláš
Janota. Finally, we would like to thank David Chen for his
study on the impact of disjoint cores, unit cores, and at-most-
one relations between soft clauses that were done in the scope
of Independent Studies at CMU.

REFERENCES

[1] R. Martins, V. Manquinho, and I. Lynce, “Open-WBO: a Modular
MaxSAT Solver,” in SAT, ser. LNCS, vol. 8561. Springer, 2014, pp.
438–445.

[2] V. Manquinho, J. Marques-Silva, and J. Planes, “Algorithms for
Weighted Boolean Optimization,” in SAT. Springer, 2009, pp. 495–
508.

[3] J. Marques-Silva and J. Planes, “On Using Unsatisfiability for Solving
Maximum Satisfiability,” CoRR, 2007.

[4] R. Martins, S. Joshi, V. Manquinho, and I. Lynce, “Incremental Cardi-
nality Constraints for MaxSAT,” in CP. Springer, 2014, pp. 531–548.

[5] R. Martins, V. Manquinho, and I. Lynce, “On Partitioning for Maximum
Satisfiability,” in ECAI. IOS Press, 2012, pp. 913–914.

[6] R. Martins, V. M. Manquinho, and I. Lynce, “Community-based parti-
tioning for maxsat solving,” in SAT. Springer, 2013, pp. 182–191.

[7] A. Morgado, C. Dodaro, and J. Marques-Silva, “Core-Guided MaxSAT
with Soft Cardinality Constraints,” in CP. Springer, 2014, pp. 564–573.

[8] M. Neves, R. Martins, M. Janota, I. Lynce, and V. M. Manquinho,
“Exploiting Resolution-Based Representations for MaxSAT Solving,” in
SAT. Springer, 2015, pp. 272–286.

[9] N. Eén and N. Sörensson, “An Extensible SAT-solver,” in SAT.
Springer, 2003, pp. 502–518.

[10] G. Audemard and L. Simon, “Predicting Learnt Clauses Quality in
Modern SAT Solvers,” in IJCAI, 2009, pp. 399–404.

[11] N. Manthey, “Mergesat,” in Proceedings of SAT Competition 2019:
Solver and Benchmark Descriptions, 2019.

[12] N. Sörensson, N. Een, and N. Manthey. (2018, May) GitHub repository
for MiniSat. https://github.com/conp-solutions/minisat.

[13] G. Audemard, J.-M. Lagniez, and L. Simon, “Improving glucose for in-
cremental sat solving with assumptions: Application to mus extraction,”
in SAT. Springer, 2013.

[14] G. Audemard and L. Simon. (2018, May) Glucose’s home page.
http://www.labri.fr/perso/lsimon/glucose.

[15] A. Nadel and V. Ryvchin, “Chronological backtracking,” in SAT.
Springer, 2018, pp. 111–121.

[16] R. Martins, S. Joshi, V. M. Manquinho, and I. Lynce, “On using
incremental encodings in unsatisfiability-based maxsat solving,” JSAT,
vol. 9, no. 1, pp. 59–81, 2014.

[17] A. Ignatiev, A. Morgado, and J. Marques-Silva, “PySAT: A Python
Toolkit for Prototyping with SAT Oracles,” in Proc. SAT, ser. Lecture
Notes in Computer Science, O. Beyersdorff and C. M. Wintersteiger,
Eds., vol. 10929. Springer, 2018, pp. 428–437.

25

Open-WBO-Inc in MaxSAT Evaluation 2020
Saurabh Joshi, Prateek Kumar
{sbjoshi,cs15btech11031}@iith.ac.in

Indian Institute of Technology Hyderabad, India

Sukrut Rao
sukrut.rao@mpi-inf.mpg.de

Max Planck Institute for Informatics, Germany

Ruben Martins
rubenm@cs.cmu.edu

CMU, USA

I. INTRODUCTION

Open-WBO-Inc [1], [2] is developed on top of Open-
WBO [3], [4], [5] and placed first and second on the weighted
incomplete tracks for 60 and 300 seconds respectively in the
MaxSAT Evaluation 2018, and third on both these tracks in the
MaxSAT Evaluation 2019. For many applications that can be
encoded into MaxSAT, it is important to quickly find solutions
even though these may not be optimal. Open-WBO-Inc is
designed to find a good solution1 in a short amount of time.
Since Open-WBO-Inc is based on Open-WBO, it can use any
MiniSAT-like solver [6]. For this evaluation, we use Glucose
4.1 [7] as our back-end SAT solver.

II. ALGORITHMS

For the MaxSAT Evaluation 2020, we restrict Open-WBO-
Inc to the weighted category where it uses the novel ap-
proximation algorithms that have been recently proposed [1],
[2]. In particular, we submitted three versions of Open-
WBO-Inc: inc-bmo-complete, inc-bmo-satlike, and inc-
bmo-satlike19.

All versions are based on bounded multilevel optimiza-
tion [8] using a variant of linear search algorithm SAT-
UNSAT [9]. The algorithms used in these versions consider
n objective functions where n is the number of different
weights in the MaxSAT instance. This is done by performing a
sequence of calls to a SAT solver and refining an upper bound
µ on the number of unsatisfied soft clauses. To restrict µ at
each iteration, we need to encode cardinality constraints into
CNF, for which incremental Totalizer encoding [4] has been
used. Once the upper bound µ for a given objective function
cannot be improved, it is frozen, and the next objective
function in the order is optimized.

An optimal solution, if found when using this algorithm, is
not necessarily an optimal solution for the input formula. inc-
bmo-complete and inc-bmo-satlike versions differ between
them when this occurs. inc-bmo-complete keeps the best-
known solution and resumes the search using the LSU algo-
rithm which can potentially find better solutions and prove
optimality. In contrast, inc-bmo-satlike changes the search
algorithm to SATLike [10], a MaxSAT stochastic algorithm.
The best model found by the first phase is passed to SATLike
as its initial starting model.

1By “good solution” we mean that it can be potentially suboptimal but is
not far from the optimal solution.

The inc-bmo-satlike19 version corresponds to the best
performing version of Open-WBO-Inc in the MaxSAT Eval-
uation 2019. For the versions of this year, we added a conflict
limit of 107 on each SAT call when performing the multilevel
optimization phase. This prevents the solver from being stuck
in some optimization level and never entering the final phase.
We have also included the Target-Optimum-Rest-Conservative
(TORC) and Target-Score-Bum (TSB) heuristics [11]. The
TORC heuristic changes the default polarity of the SAT solver
to take into consideration the MaxSAT formula. Relaxation
variables that may appear in the cardinality constraints of the
multilevel optimization algorithm are always set to polarity
false. For the remaining variables, the polarity is set according
to the best model found during search. The TSB heuristic
bumps the score of all relaxation variables to make them more
likely to be picked at the beginning of the search. Additionally,
we also now support printing a compact certificate using 0’s
and 1’s instead of variable ids.

III. AVAILABILITY

We submit the source of Open-WBO-Inc as part of our
submissions to the MaxSAT Evaluations 2020. The inc-bmo-
complete version and the full Open-WBO-Inc framework is
available under a MIT license in GitHub at https://github.com/
sbjoshi/Open-WBO-Inc.

ACKNOWLEDGMENTS

We would like to thank Laurent Simon and Gilles Audemard
for allowing us to use Glucose in the MaxSAT Evaluation.
We would also like to thank Vasco Manquinho, Inês Lynce,
Mikoláš Janota, Miguel Terra-Neves and Norbert Manthey for
their contributions to Open-WBO on which Open-WBO-Inc
is based.

REFERENCES

[1] S. Joshi, P. Kumar, R. Martins, and S. Rao, “Approximation Strategies
for Incomplete MaxSAT,” in CP. Springer, 2018.

[2] S. Joshi, P. Kumar, S. Rao, and R. Martins, “Open-WBO-Inc: Approx-
imation Strategies for Incomplete Weighted MaxSAT,” in Journal on
Satisfiability, Boolean Modeling and Computation. IOS Press, 2019.

[3] R. Martins, V. Manquinho, and I. Lynce, “Open-WBO: a Modular
MaxSAT Solver,” in SAT, ser. LNCS, vol. 8561. Springer, 2014, pp.
438–445.

[4] R. Martins, S. Joshi, V. Manquinho, and I. Lynce, “Incremental Cardi-
nality Constraints for MaxSAT,” in CP. Springer, 2014, pp. 531–548.

[5] M. Neves, R. Martins, M. Janota, I. Lynce, and V. Manquinho, “Exploit-
ing Resolution-Based Representations for MaxSAT Solving,” in SAT.
Springer, 2015, pp. 272–286.

[6] N. Eén and N. Sörensson, “An Extensible SAT-solver,” in SAT.
Springer, 2003, pp. 502–518.

MaxSAT Evaluation 2020: Solver and Benchmark Descriptions, volume B-2020-2 of Department of Computer Science Series of Publications B, University of Helsinki 2020.

26

[7] G. Audemard and L. Simon, “Predicting Learnt Clauses Quality in
Modern SAT Solvers,” in IJCAI, 2009, pp. 399–404.

[8] J. Marques-Silva, J. Argelich, A. Graça, and I. Lynce, “Boolean lexico-
graphic optimization: algorithms & applications,” Annals of Mathematics
and Artificial Intelligence, vol. 62, no. 3-4, pp. 317–343, 2011.

[9] D. Le Berre and A. Parrain, “The Sat4j library, release 2.2,” Journal on
Satisfiability, Boolean Modeling and Computation, vol. 7, no. 2-3, pp.

59–6, 2010.
[10] Z. Lei and S. Cai, “Solving (Weighted) Partial MaxSAT by Dynamic

Local Search for SAT,” in IJCAI. ijcai.org, 2018, pp. 1346–1352.
[11] A. Nadel, “Anytime weighted maxsat with improved polarity selection

and bit-vector optimization,” in Proc. Formal Methods in Computer
Aided Design, C. W. Barrett and J. Yang, Eds. IEEE, 2019, pp. 193–
202.

27

sls-mcs and sls-lsu: Description

Andreia P. Guerreiro1, Miguel Terra-Neves1,2, Inês Lynce1, José Rui Figueira3, and
Vasco Manquinho1

1INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Portugal
{andreia, ines, vmm}@sat.inesc-id.pt

2OutSystems, Portugal
miguel.neves@outsystems.com

3CEG-IST, Instituto Superior Técnico, Universidade de Lisboa, Portugal
figueira@tecnico.ulisboa.pt

1 Introduction
We developed improved versions of sls-mcs and
sls-lsu, two solvers that integrate SAT-based
techniques in a Stochastic Local Search (SLS)
solver for MaxSAT. In these solvers, the control of
the solving process changes from SAT-based pro-
cedures to stochastic procedures and vice-versa.
At each step, each procedure tries to build upon
the information received from the other, instead of
being independent procedures. The idea is to use
the SLS solver as the main procedure and, occa-
sionally, use an unsatisfiability-based algorithm to
correct the SLS current (unsatisfiable) assignment
into a satisfiable one, and use a procedure based
on Minimal Correction Subset (MCS) enumera-
tion or on the Linear Sat-Unsat (LSU) algorithm
to improve the current solution. We submitted
new versions of sls-mcs and sls-lsu for the un-
weighted incomplete MaxSAT track, and two new
versions of sls-mcs for the weighted incomplete
MaxSAT track.

2 Using SAT Techniques in
Local Search

One of the shortcomings of SLS algorithms is
that these solvers have difficulties in dealing with
highly constrained formulas. Therefore, it might
be the case that the SLS algorithm is unable to
satisfy the set of hard clauses or gets stuck in some
local minima. In these cases, using SAT-based
techniques to find a satisfiable assignment would
be beneficial.

2.1 Assignment Correction

Consider the case when the SLS algorithm is un-
able to change from an unsatisfiable assignment ν
into a better assignment. Our solver performs a
correction to ν in order to guide the SLS algorithm
to the feasible region of the search space. First, we
start by building a set of assumption literals cor-

responding to the assignment ν. Next, a SAT call
on the set of hard clauses, φh, is made. Clearly, if
ν is not feasible, then this call returns UNSAT and
returns an unsatisfiable core. The assumption lit-
erals that occur in such an unsatisfiable core are
removed from the set of assumptions, and a new
SAT call is made. The same procedure is repeated
until a satisfiable assignment is found.

A conflict limit is defined for the correction pro-
cedure. If the conflict budget is not enough to
find a satisfiable assignment, then our algorithm
applies a similar procedure with a more aggressive
strategy where at each iteration 50% of the liter-
als in the set of assumptions are removed. Since
the correction procedure only depends on the hard
clauses, there is no guarantee regarding its quality.
As a result, we also apply a SAT-based improve-
ment procedure.

2.2 Assignment Improvement

Given a MaxSAT instance φ, a set of assump-
tions A, a satisfiable assignment ν, and conflict
budget, the goal of this assignment improvement
algorithm is to find a better quality solution for φ
through an MCS enumeration procedure.

The algorithm starts by building a working for-
mula from the set of hard clauses φh and the set of
assumptions A. Next, the algorithm iterates over
all MCSes of φ, constrained to the set of assump-
tions A and returns the best assignment found.
Each time a new MCS is found, a blocking clause
is added to prevent the enumeration of the same
MCS later on. The algorithm returns the best so-
lution found before the conflict budget runs out.
Note that the set of literals A restricts the MCS
enumeration procedure. This results in a localized
MCS enumeration.

Many different improvement procedures can be
devised, including the usage of complete methods.
For example, an alternative is to replace the MCS
enumeration algorithm by a call to a Linear Sat-

1

MaxSAT Evaluation 2020: Solver and Benchmark Descriptions, volume B-2020-2 of Department of Computer Science Series of Publications B, University of Helsinki 2020.

28

Unsat algorithm (LSU). The call to the LSU algo-
rithm is also limited to a number of conflicts, and
all literals in A are forced to be satisfied. Hence,
the LSU call is also restricted to a localized region
of the search space.

3 Incomplete Track

We developed the solvers sls-mcs and sls-lsu,
that integrate an SLS algorithm with the as-
signment correction and assignment improvement
procedures [1], which we submitted to MaxSAT
Evaluation 2019. As SATLike [3], an SLS algo-
rithm, was one of the best performing solvers in
the incomplete solver track in the MaxSAT Eval-
uation 2018, we used SATLike in our implemen-
tation [1]. We developed and submitted improved
versions of sls-mcs and sls-lsu. The main dif-
ference to the versions proposed in [1] and sub-
mitted to MaxSAT Evaluation 2019 is in the first
call to the assignment correction algorithm. If no
satisfiable assignment was yet found by the SLS
algorithm, then the set of assumptions A is empty
in the first SAT call.

3.1 Unweighted Instances

Two solvers were submitted for the unweighted
incomplete track: sls-mcs and sls-lsu. In
sls-mcs, the SATLike solver1 is extended with
the assignment correction algorithm and the as-
signment improvement algorithm based on MCS
enumeration. The difference from sls-mcs to
sls-lsu is on the assignment improvement algo-
rithm. In sls-lsu, the linear sat-unsat assign-
ment improvement algorithm is used.

Both sls-mcs and sls-lsu use the Glucose
SAT solver (version 4.1) on the assignment cor-
rection procedure. Moreover, the CLD [4] algo-
rithm is used as the MCS algorithm in sls-mcs.
The linear sat-unsat algorithm used in sls-lsu is
an adapted version of the one available at the
open-wbo open source MaxSAT solver. The con-
flict limits of the correction and the improvement
algorithms were set to 105. In both sls-mcs and
sls-lsu, the assignment correction/improvement
algorithm is called when SATlike has reached half
of the maximum number of iterations without im-
provement. In such a case, the correction algo-
rithm is called if the current assignment ν does
not satisfy all hard clauses, otherwise the improve-
ment algorithm is directly called with approxi-
mately half of the literals in the current assign-
ment ν as assumptions. These assumption literals
are randomly chosen from ν.

1The source code of SATLike is publicly available at the
2018 MaxSAT evaluation https://maxsat-evaluations.

github.io/2018/descriptions.html

3.2 Weighted Instances

Two versions of the solver were submitted for
the weighted incomplete track: sls-mcs and
sls-mcs2. In both versions, the stratified CLD al-
gorithm [5] is used as the MCS algorithm. Unlike
sls-mcs, sls-mcs2 does not consider the assump-
tions A as hard clauses in the MCS enumeration
procedure.

Acknowledgments

We would like to thank Zhendong Lei and Shaowei
Cai for making the code of SATLike available on-
line. This work was supported by national funds
through FCT under projects UIDB/50021/2020
and PTDC/CCI-COM/31198/2017.

References

[1] Guerreiro, A.P., Terra-Neves, M., Lynce, I.,
Figueira, J.R., Manquinho, V.: Constraint-
based techniques in stochastic local search
maxsat solving. In: Schiex, T., de Givry, S.
(eds.) Principles and Practice of Constraint
Programming. pp. 232–250. Springer Interna-
tional Publishing (2019)

[2] Lang, J. (ed.): Proceedings of the Twenty-
Seventh International Joint Conference on Ar-
tificial Intelligence, IJCAI 2018, July 13-19,
2018, Stockholm, Sweden. ijcai.org (2018)

[3] Lei, Z., Cai, S.: Solving (weighted) partial
maxsat by dynamic local search for SAT. In:
Lang [2], pp. 1346–1352

[4] Marques-Silva, J., Heras, F., Janota, M.,
Previti, A., Belov, A.: On Computing Min-
imal Correction Subsets. In: International
Joint Conference on Artificial Intelligence. pp.
615–622 (2013)

[5] Terra-Neves, M., Lynce, I., Manquinho,
V.M.: Stratification for constraint-based
multi-objective combinatorial optimization.
In: Lang [2], pp. 1376–1382

2

29

SMAX – Implementing a Robust MaxSAT Interface
Norbert Manthey

nmanthey@conp-solutions.com
Dresden, Germany

I. INTRODUCTION

The main aim of the MaxSAT solver SMAX is to showcase
how a MaxSAT solver can be used as a library. Consequently,
it can be understood as a prototype implementation which does
not focus on solver performance as the highest priority. The
solver has to following properties:

• implement a C++interface as a library
• be easily consumable, by being available as MIT license
• implement in a robust, modular way
• support reproducable partial solving, based on solving

steps.
The implementation allows to provide the solver as a shared
library, which opens the door for integration into tools that
require a Python or Java interface. Consequently, solver fail-
ures and exceptions are caught by the library itself, and errors
are handled accordingly. All code is version controlled with
git submodules, to allow reproduction of solver binaries or
libraries. Continuous testing is used to make sure that updated
code can be used as solving backend via a shared library,
and furthermore checks for errors via valgrind. Finally, a
Maxsat fuzzer1 is used to test whether random input behaves
as expected.

II. SOLVER INTERNALS

The idea behind the solver is open to switch solving
backends. The initial implementation follows an approach that
makes software licenses simple, by focussing on software that
is available as MIT license.

A. Solver Interface

The solver implements a C++interface to a MaxSAT engine.
The interface is scatched in Figure 1. The interface aims at
allowing failure inside the solver, as well as providing an
assignment to start from and a number of steps to perform,
so that partial and reproducible solver calls are possible.
Discussions on the interface are welcome.

B. MaxSAT Solvers

The solver uses OPEN-WBO [1] as the current MaxSAT
backend, which is an open source MaxSAT solver that supports
several MaxSAT algorithms and SAT solvers [2], [3], [4]. To
make sure all used code is available under MIT license, the
GLUCOSE 4.1 code of the OPEN-WBO package had to be
removed.

1The fuzzer is available at https://github.com/conp-solutions/maxsat-fuzzer.
git.

The used OPEN-WBO version is an older version, as initial
changes have been added early and rebasing them to a current
version has not been considered yet. Consequently, eventual
bug fixes might be currently missing in SMAX. Furthermore,
additional patches had to be added to OPEN-WBO to allow
pragmatic access to internal data structures like the found
bound or the last model to be handled internally. Some part
of SMAX basically provides an input parser and an output
generator based on the available data structures of OPEN-
WBO, with the additional abstraction layer in between.

We currently use a single, predefined, configuration of
OPEN-WBO to simplify the interface to the MaxSAT library.

C. SAT Solvers

OPEN-WBO is based on the data structures of MIN-
ISAT 2.2 [2], [5]. Therefore, solvers based on MINISAT 2.2
can be used as a potential back-end solvers.

MERGESAT [4] is a CDCL solver based on the SAT com-
petition winner of 2018, MAPLELCMDISTCHRONOBT [6].
While being based on MINISAT 2.2, MERGESAT aims at
providing recent solving techniques while being compatible
with the solver API of MINISAT 2.2. Among others, MERGE-
SAT implements partial backtracking, an efficient version of
learned clause minimization, as well as inprocessing based
on subsumption and self-subsuming resolution. Comparesed to
MAPLELCMDISTCHRONOBT, the incremental search feature
has to been enabled again.

D. Competition Tracks

The solver has been submitted to the complete tracks of the
competition only, although the implementation supports partial
solving. However, the current implementation does not support
to forward a signal from the solver wrapper into the solver to
obtain the currently best known solution. Furthermore, support
for Top-K has not been integrated yet, also because the used
OPEN-WBO version does not support this feature.

Two variants of the solver have been submitted. The only
difference is the SAT backend, namely MINISAT 2.2 and
MERGESAT. The reason to submit these two solvers is to
show the performance difference when using a more recent
SAT backend.

III. AVAILABILITY

The solver SMAX is available under a MIT license in GitHub
at https://github.com/conp-solutions/smax. The repository is
setup to briefly check new changes with continuous integra-
tion.

MaxSAT Evaluation 2020: Solver and Benchmark Descriptions, volume B-2020-2 of Department of Computer Science Series of Publications B, University of Helsinki 2020.

30

class MaxSATSolver

/** Return codes for the caller to compute a MaxSAT solution */
enum ReturnCode

UNKNOWN = 0,
SATISFIABLE = 1,
UNSATISFIABLE = 2,
OPTIMAL = 3,
ERROR = 4,

;

/** This integer represents the version of the MaxSAT interface */
unsigned getVersion () const;

/** This string contains the name of the used backend */
const char* getSolverName () const;

/** Initialize the MaxSAT solver for a given formula */
MaxSATSolver(int nVars, int nClausesEstimate = 8192);

/** A call to this method frees all resources of the solver. */
˜MaxSATSolver();

/** Return error number code in case the last call to another method failed */
int getErrno() const;

/** Add a clause to the solver */
bool addClause(const std::vector<int> &literals, uint64_t weight = 0);

/** Add an at-most-k constraint to the solver */
bool addAtMostK(const std::vector<int> &literals, const unsigned k);

/** Compute a MaxSAT solution for the added (weighted) formula */
ReturnCode compute_maxsat(std::vector<int> &model,

uint64_t &cost,
uint64_t maxCost = UINT64_MAX,
const std::vector<int> *startAssignment = 0,
int64_t maxMinimizeSteps = -1);

Fig. 1. This figure briefly summaries the interface that is offered to the MaxSAT solver backend implementation. A well documented version of this file can
be found at https://github.com/conp-solutions/smax/blob/master/include/MaxSATSolver.h.

ACKNOWLEDGMENTS

The current solver uses OPEN-WBO as a backend engine,
and is heavily based on that solver. Hence, the contibutors of
that solver own a large part of this tool: Ruben Martins, as well
as Miguel Terra-Neves, Vasco Manquinho and Inês Lynce.
Additionally, we would like to thank all the collaborators on
previous versions of OPEN-WBO, namely Saurabh Joshi and
Mikoláš Janota.

REFERENCES

[1] R. Martins, V. Manquinho, and I. Lynce, “Open-WBO: a Modular
MaxSAT Solver,” in SAT, ser. LNCS, vol. 8561. Springer, 2014, pp.
438–445.

[2] N. Eén and N. Sörensson, “An Extensible SAT-solver,” in SAT. Springer,
2003, pp. 502–518.

[3] G. Audemard and L. Simon, “Predicting Learnt Clauses Quality in
Modern SAT Solvers,” in IJCAI, 2009, pp. 399–404.

[4] N. Manthey, “Mergesat,” in Proceedings of SAT Competition 2019: Solver
and Benchmark Descriptions, 2019.

[5] N. Sörensson, N. Een, and N. Manthey. (2018, May) GitHub repository
for MiniSat. https://github.com/conp-solutions/minisat.

[6] A. Nadel and V. Ryvchin, “Chronological backtracking,” in SAT.
Springer, 2018, pp. 111–121.

31

TT-Open-WBO-Inc-20:
an Anytime MaxSAT Solver Entering MSE’20

Alexander Nadel
Email: alexander.nadel@cs.tau.ac.il

Abstract—This document describes the solver
TT-Open-WBO-Inc-20, submitted to the four incomplete
tracks of MaxSAT Evaluation 2020. TT-Open-WBO-Inc-20 is
the 2020 version of our solver TT-Open-WBO-Inc [5], which
came in first at both the weighted, incomplete categories at
MaxSAT Evaluation 2019. TT-Open-WBO-Inc-20 has the
following two major new features as compared to the previous
version: 1) We now support unweighted anytime MaxSAT. We
apply the Mrs. Beaver algorithm [3], enhanced by several
heuristics from the WMB algorithm [4]; 2) We have integrated
into TT-Open-WBO-Inc-20 our new Polosat algorithm for
solving the problem of generic optimization in SAT [6].

I. INTRODUCTION

In this document, we assume that a MaxSAT instance
comprises a set of hard satisfiable clauses H and a target
bit-vector (target) T = {tn, tn�1, . . . , t1}, where each target
bit ti is a Boolean variable associated with a strictly positive
integer weight wi. The weight of a variable assignment µ is
O(T, µ) =

Pn
i=1 µ(ti)⇥wi, that is, the overall weight of T ’s

bits, satisfied by µ. Given a MaxSAT instance, a MaxSAT
solver is expected to return a model having the minimum
possible weight.

Below, we briefly document: 1) Our new Polosat al-
gorithm for the OptSAT problem of optimizing a generic
Pseudo-Boolean function in SAT. Polosat is applied
in both the weighted and unweighted components of
TT-Open-WBO-Inc-20; 2) The weighted component of
TT-Open-WBO-Inc-20; 3) The unweighted component of
TT-Open-WBO-Inc-20.

Although we did our best to document our solver as
precisely as possible, inevitably, we had to omit some details
due to space restrictions. OptSAT, Polosat and the weighted
component of our solver are described in full detail in [6].

II. THE Polosat ALGORITHM FOR GENERIC
OPTIMIZATION IN SAT (OPTSAT)

Recall that a Pseudo-Boolean (PB) function is a function
that maps every full assignment to a real number.

We now state the OptSAT problem. Given a satisfiable
formula F (V) in CNF and an objective Pseudo-Boolean (PB)
function , OptSAT returns a model µ to F , such that for
every model µ0 to F , it holds that (µ) (µ0). OptSAT can
be thought of as a generalization of MaxSAT, which supports
arbitrary PB functions, whereas MaxSAT is restricted to linear
PB functions.

In this document, we assume that the objective function
 is strictly monotone in a set of observable variables.

More specifically, let Obs ✓ V be a set of observables
and : [0, 1]

|V | ! R be a PB function. Then: 1) is
restrictable to Obs, iff for every two assignments ✓ and �,
such that ✓(v) = �(v) for every v 2 Obs, it holds that
 (✓) = (�); 2) is strictly monotone in observables Obs,
iff is restrictable to Obs and for every assignment ✓ and
every variable v 2 Obs, such that ✓(v) = 1, it holds that
 (✓¬v) < (✓).

Note that the objective function O(T, µ) in MaxSAT is
strictly monotone in the target bits. First, O(T, µ) depends
only on the target bits. Second, when one of the target bits
decreases, O(T, µ) decreases too, hence O(T, µ). Hence, an
OptSAT algorithm can be applied to solve MaxSAT.

Below, we present our anytime Polosat algorithm for
solving OptSAT. It can be used incrementally under assump-
tions, similarly to modern SAT solvers. Our algorithm is
incomplete; it works until a fixed-point, but does not guarantee
that the eventual solution is optimal. In this document, we
present the strictly monotone version of Polosat. As we
shall see, to solve MaxSAT, we integrate Polosat into
higher-level MaxSAT algorithms (rather than applying solely
Polosat).

Fixing the polarity of a variable v to a Boolean value �
during SAT solver’s invocation means assigning v the value
�, whenever v is chosen by the solver’s decision heuristic.
Intuitively, Polosat carries out a purely SAT-based local
search algorithm, based on polarity-fixing.
Polosat is shown in Alg. 1. It receives three parameters:

1) A satisfiable CNF formula F (if the invocation is incremen-
tal, assume that F contains all the clauses, provided by the
user so far); 2) A (possibly empty) set of assumptions Asmp.
The assumptions are guaranteed to hold for one particular
invocation of the algorithm; 3) The observables Obs; 4) The
objective PB function to minimize : [0, 1]

|V | ! R.
The algorithm maintains an instance of an incremental SAT

solver throughout its execution and the best model so far µ.
Polosat starts with initializing µ with a model by invoking
the SAT solver (line 3). Then, it operates in iterations, where
each iteration is called an epoch (lines 5 to 16). Each epoch
tries to improve µ. An epoch is good if it manages to improve
µ, otherwise it is bad. Our incomplete algorithm finishes
whenever a bad epoch is completed.

Each epoch tries to improve the best model so far µ in a loop
(lines 8 to 16) by looking for a better solution near µ when,
for each loop iteration, one of the variables is forced to flip its
value. In addition, the observables are always fixed to 0. The

MaxSAT Evaluation 2020: Solver and Benchmark Descriptions, volume B-2020-2 of Department of Computer Science Series of Publications B, University of Helsinki 2020.

32

loop inside each epoch goes over a set of literals B, initialized
by all the observable variables assigned to 1 by µ (line 6).
For each variable v, Polosat tries to find a model near µ
with v flipped. This is carried out by fixing the polarities of
all the variables, except for the observables, to their values in
µ (line 10), followed by a SAT invocation with ¬v as a hard
assumption (line 11). If the problem is satisfiable and a model
� better than µ if found, then: 1) µ is updated to �, 2) the
epoch is marked as good. In addition, any observable assigned
to 0 in any model is removed from B.

Algorithm 1 Polosat

1: function SOLVE(CNF F ; Literals Asmp; Variables Obs;
 : [0, 1]

|V | ! R)
Require: F is satisfiable and is strictly monotone in Obs

2: Fix the polarities of the observables Obs to 0
3: µ := SAT(Asmp) . µ: the best model so far
4: is good epoch := 1
5: while is good epoch do . One loop is an epoch
6: B := {v : v 2 Obs, µ(v) = 1}
7: is good epoch := 0
8: while B is not empty do
9: v := B.front(); B.dequeue()

10: Fix the polarities of the observables Obs to 0
and all the other variables (that is, V \ Obs) to µ

11: � := SAT(Asmp [{¬v})
12: if SAT then . Satisfiable
13: if (�) < (µ) then
14: µ := � . Update the best model so far
15: is good epoch := 1 . Good epoch!
16: B := {v : v 2 B,�(v) = 1}

III. THE WEIGHTED COMPONENT

We have integrated Polosat into the Bounded Multilevel
Optimization (BMO)-based anytime MaxSAT algorithm [2],
which we call BMO-based Clustering (BC), implemented
already in [2], [5].

BC [2] clusters all the target bits to disjoint classes based
on their weight. That is, all the targets of the same weight w
belong to the same class. Then, the algorithm sorts the classes
according to their weight and goes over them one-by-one
starting with the class associated with the highest weight. BC
tries to falsify as many target bits in each class as possible with
incremental SAT invocations. After BC completes processing
one class, it fixes the overall number of falsified target bits in
that class.

Our implementation simply replaces every SAT invocation
with a Polosat invocation in BC with the target T as the
observables and O(T, µ) as the objective function. However,
there are several subtleties: a) We exclude from the set of
observables the bits which belong to the fixed classes; b) We
sort the observables by their weight in decreasing order; c) We
randomly shuffle the observables within each class before
every Polosat invocation to diversify Polosat’s execution.

A. Polosat Enhancements

We modified Polosat to keep track of the number of
Models Per Second (MPS) throughout its execution starting
immediately after the initial SAT invocation. MPS is updated
and tested after each SAT invocation. If MPS is lower than
1, the current invocation of Polosat is terminated, and the
high-level BC algorithm falls backs to invoking a plain SAT
solver instead of Polosat for the rest of its execution. Falling
back to SAT makes sense, since SAT/Polosat queries tend
to become more difficult as the algorithm advances towards
the ideal, hence MPS is unlikely to increase.

Furthermore, we use the conflict threshold of 1000 for all
the SAT invocations inside Polosat, except for the first one.

The two enhancements above are detailed in [6]. On top
of that, we have modified Polosat to include an additional
SAT invocation before the one which checks if the current
observable v can be flipped (line 11). Let R be the subset
of the literals in µ which correspond to all the observables
that appear before v in Obs (where the polarity of each such
literal is determined by µ). We add R to the assumptions for
our additional SAT invocation. We proceed with the original
SAT invocation at line 11, only if no model better than µ
was found by the first invocation. Otherwise, we proceed to
the next loop iteration. This adjustment essentially combines
Polosat and WMB.

IV. THE UNWEIGHTED COMPONENT

The unweighted component uses the Mrs. Beaver al-
gorithm [3], enhanced by the following two heuristics from
Sect. 4.1 in [4]: global stopping condition for OBV-BS and
size-based switching to complete part.

We have integrated Polosat into our algorithm by simply
replacing SAT invocations with Polosat invocations. We
apply all the Polosat enhancements from Sect. III-A in our
unweighted component, where the adapted strategy is used
with the threshold of 2 (rather than 1).

In addition, we use chronological backtracking [7] (with the
configuration {T = 100,C = 0}), which we have implemented
in the underlying SAT solver Glucose 4.1 [1]. Furthermore,
we take advantage of the TORC polarity selection heuristic [4]
throughout the algorithm’s execution.

REFERENCES

[1] G. Audemard and L. Simon. On the glucose SAT solver. Int. J. Artif.
Intell. Tools, 27(1):1840001:1–1840001:25, 2018.

[2] S. Joshi, P. Kumar, S. Rao, and R. Martins. Open-wbo-inc: Approximation
strategies for incomplete weighted maxsat. J. Satisf. Boolean Model.
Comput., 11(1):73–97, 2019.

[3] A. Nadel. Solving maxsat with bit-vector optimization. In SAT 2018,
pages 54–72, 2018.

[4] A. Nadel. Anytime weighted maxsat with improved polarity selection
and bit-vector optimization. In FMCAD 2019, pages 193–202, 2019.

[5] A. Nadel. TT-Open-WBO-Inc: Tuning Polarity and Variable Selection
for Anytime SAT-based Optimization. Department of Computer Science
Report Series B, Finland, 2019. Department of Computer Science, Uni-
versity of Helsinki.

[6] A. Nadel. On optimizing a generic function in SAT. In FMCAD 2020,
2020. To appear.

[7] A. Nadel and V. Ryvchin. Chronological backtracking. In SAT 2018,
pages 111–121, 2018.

33

UWrMaxSat: an Efficient Solver in MaxSAT
Evaluation 2020

Marek Piotrów
Institute of Computer Science, University of Wrocław

Wrocław, Poland
marek.piotrow@uwr.edu.pl

Abstract—UWrMaxSat has been created recently at the Uni-
versity of Wrocław. It is a complete solver for partial weighted
MaxSAT instances. It incrementally uses COMiniSatPS by
Chanseok Oh (2016) as an underlying SAT solver, but may be
compiled with other MiniSat-like solvers. It was developed on
the top of KP-MiniSat+ - our PB-solver that was presented at
Pragmatics of SAT 2018 and which is an extension of the well-
known MiniSat+ solver. In its main configuration, UWrMaxSat
applies an unsatisfiability-core-based OLL procedure and uses
the sorter-based pseudo-Boolean constraint encoding that was
first implemented in kp-minisatp to translate cardinality and
pseudo-Boolean constraints into CNF. It can switch to a binary
search after a given time and then it uses our new encoding of
a pseudo-Boolean goal function, where different bounds on its
value are set only by assumptions.

Index Terms—MaxSAT-solver, UWrMaxSAT, COMiniSatPS,
sorter-based encoding, core-guided, complete solver

I. INTRODUCTION

At Pragmatics of SAT 2018 workshop, Michał Karpiński
and Marek Piotrów presented a new pseudo-Boolean constraint
solver called KP-MiniSat+ [6] that was created as an extension
of MiniSat+ 1.1 solver by Eén and Sörensson (2012) [3]. In
the solver we replaced the encoding based on odd-even sorting
networks by a new one using our construction of selection
networks called 4-Way Merge Selection Networks [7]. We also
optimized mixed radix base searching procedure and added
a few other optimizations based on literature. This year the
encoding was extended in such a way that a goal function is
encoded only once and then SAT-solver assumptions are used
to set different bounds on its value. Our experiments showed
that the solver is competitive to other state-of-art pseudo-
Boolean solvers.

In 2018 KP-MiniSat+ was extended to deal with MaxSAT
instances and called UWrMaxSat. In 2019 the new solver was
submitted to MaxSAT Evaluation, where it was ranked second
places in both main tracks: Weighted Complete Track and
Unweighted Complete Track.

II. DESCRIPTION

In this year version of UWrMaxSat (denoted as 1.1), there
are several extension to the version 1.0 submitted to MaxSat
Evaluation 2019. We give a brief description of them below.
For the main features of UWrMaxSat 1.0 see [13]. We continue
to use incrementally COMiniSatPS by Chanseok Oh (2016)
[12] as an underlying SAT solver, but this year it was patched

to better deal with assumptions: all of them are enqueued
at once (at level 1) by the SAT solver. The technique was
proposed by Hickey and Bacchus in [4].

The default search strategy used by UWrMaxSat is a core-
guided linear unsat-sat one, where unsatisfiability cores are
processed by the OLL procedure [1], [5], [10] and cardinality
constraints generated by it are encoded with the help of 4-
Way Merge Selection Networks [7] and Direct Networks [2].
The general description of search strategies used by MaxSat
solvers can be found, for example, in [11].

If the linear unsat-sat searching is unsuccessful for a pre-
defined time, it can be switched to a binary search similar
to that of MiniSat+ [3] without restarting the SAT solver. In
such a case, a pseudo-Boolean goal function is created for the
relaxation variables of the remaining soft clauses and encoded
by our new technique [8], where the function is translated into
SAT clauses only once and the different bounds on its value
are set and submitted to the SAT solver by assumptions. The
lower and upper bounds found before the switching define an
initial binary-search interval.

Due to a new “top-k” track and the corresponding re-
quirements of MaxSat Evaluation 2020, UWrMaxSat can now
output the top k models of an MaxSat instance (starting from
the optimal one). To use this, an argument -top=k should be
given to UWrMaxSat. In the solver, the hardening technique
was changed in the following way: a decreasing sequence of
upper bounds is recorded and if there are at least k of them,
then the last k-th one is used in the hardening procedure. After
each solution found, a blocking clause consisting of relaxation
variables is added to the instance, the value of k is decreased
and the search is continued. In addition, the models can be
output as a binary 0-1 string (with the help of -bm).

Finally, the solver can deal with unbounded integer weights,
when it is compiled with the -D BIG WEIGHTS option.
Moreover, it can be linked with MaxPre, an extended open-
source preprocessor for weighted partial MaxSAT problems,
which was created at University of Helsinki a few years ago
[9]. To this end, it should be compiled with the -D MAXPRE
option. Note that none of these two options was used in the
competition version of UWrMaxSat 1.1, which is submitted
to both complete tracks and both top-k tracks (weighted and
unweighted). The switching of the search techniques is only
used in the complete-weighted track.

MaxSAT Evaluation 2020: Solver and Benchmark Descriptions, volume B-2020-2 of Department of Computer Science Series of Publications B, University of Helsinki 2020.

34

ACKNOWLEDGMENTS

I would like to thank Chankseok Oh for his agreement to use
COMiniSatPS in the MaxSAT Evaluation. I would like also to
thank Niklas Eén and Niklas Sörensson for the development
of MiniSat 2.2 and MiniSat+ 1.1.

REFERENCES

[1] Benjamin Andres, Benjamin Kaufmann, Oliver Matheis, and Torsten
Schaub. Unsatisfiability-based optimization in clasp. In Technical
Communications of the Twenty-eighth International Conference on Logic
Programming (ICLP’12, volume 17, pages 212–221, 2012.

[2] Roberto Ası́n, Robert Nieuwenhuis, Albert Oliveras, and Enric
Rodrı́guez-Carbonell. Cardinality networks: a theoretical and empirical
study. Constraints An Int. J., 16(2):195–221, 2011.

[3] Niklas Eén and Niklas Sörensson. Translating pseudo-boolean con-
straints into sat. Journal on Satisfiability, Boolean Modeling and
Computation, 2:1–26, 2006.

[4] Randy Hickey and Fahiem Bacchus. Speeding up assumption-based sat.
In Mikoláš Janota and Inês Lynce, editors, Theory and Applications of
Satisfiability Testing – SAT 2019, pages 164–182, Cham, 2019. Springer
International Publishing.

[5] Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva. Rc2: an
efficient maxsat solver. Journal on Satisfiability, Boolean Modeling and
Computation, pages 53–64, 2019.

[6] Michał Karpiński and Marek Piotrów. Competitive sorter-based encod-
ing of pb-constraints into sat. In Daniel Le Berre and Matti Järvisalo,
editors, Proceedings of Pragmatics of SAT 2015 and 2018, volume 59
of EPiC Series in Computing, pages 65–78. EasyChair, 2019.

[7] Michał Karpiński and Marek Piotrów. Encoding cardinality constraints
using multiway merge selection networks. Constraints An Int. J., Apr
2019.

[8] Michał Karpiński and Marek Piotrów. Incremental encoding of pseudo-
boolean goal functions based on comparator networks. In Proceedings
of the 23th International Conference on Theory and Applications of
Satisfiability Testing (SAT 2020), to appear in Lecture Notes in Computer
Science. Springer, 2020.

[9] Tuukka Korhonen, Jeremias Berg, Paul Saikko, and Matti Järvisalo.
MaxPre: An extended MaxSAT preprocessor. In Serge Gaspers and
Toby Walsh, editors, Proceedings of the 20th International Conference
on Theory and Applications of Satisfiability Testing (SAT 2017), volume
10491 of Lecture Notes in Computer Science, pages 449–456. Springer,
2017.

[10] Antonio Morgado, Carmine Dodaro, and Joao Marques-Silva. Core-
guided maxsat with soft cardinality constraints. In Barry O’Sullivan,
editor, Principles and Practice of Constraint Programming, Lecture
Notes in Computer Science, pages 564–573, Cham, 2014. Springer
International Publishing.

[11] António Morgado, Federico Heras, Mark H. Liffiton, Jordi Planes, and
João Marques-Silva. Iterative and core-guided maxsat solving: A survey
and assessment. Constraints An Int. J., 18(4):478–534, 2013.

[12] Chanseok Oh. Improving SAT Solvers by Exploiting Empirical Charac-
teristics of CDCL. PhD thesis, New York University, 2016.

[13] Marek Piotrów. Uwrmaxsat - a new minisat+-based solver in maxsat
evaluation 2019. pages 11–12, 2019.

35

BENCHMARK DESCRIPTIONS

BNN verification dataset for
Max-SAT Evaluation 2020

Masahiro Sakai
masahiro.sakai@gmail.com

Abstract—This article describes a MaxSAT benchmarks that
encode the problem of finding minimal adversarial examples
for binarized neural networks, and the dataset is submitted to
MaxSAT Evaluation 2020.

Index Terms—SAT, MaxSAT, binarized neural networks, ad-
versarial examples

I. INTRODUCTION

Binarized Neural Networks (BNN) [1] are neural networks
that their parameters (weights) and inputs are restricted to
binary value. Due to these characteristics they are memory
efficient and computationally efficient but also are suitable for
analysis using SAT-based methods.

One of the interested properties about neural networks is
existence of adversarial examples [2], [3]. Given a neural
network f and its input data x, an adversarial example is
a slightly modified input data x′ = x + τ which causes
misclassification, i.e. f(x) 6= f(x+τ). Existence of adversarial
example may pose a security challenge when deploying the
model, therefore it is an important problem to analyze the
robustness of neural networks against adversarisal examples.

Narodytska, et al. [4] proposed a SAT-based methods to
certify the absence of adversarial examples for given BNN
f and x within ‖τ‖∞ ≤ ε. Our formulation is based on
theirs, but we recast it to an optimization problem in the
form of maximum satisfiablity problem (MaxSAT) instead of
a satisfiability problem (SAT) and we also make some other
modifications in encoding as well.

II. INPUT DATASETS AND TRAINING

As in [4], we use digit images from MNIST dataset [5], and
its two variants: the MNIST-rot and the MNIST-back-image
[6]. Each input image is represented as 8-bit 784 (= 28× 28)
dimension vectors {0, . . . , 255}784.

Our binarized neural networks have the same architecture
as in [4] (see the paper for details). We first scale input image
x ∈ {0, . . . , 255}784 to [0, 1]784, and apply (trained) batch
normalization and binarization layers to get binarized image
{−1,+1}784. We denote binarization part as

bin : {0, . . . , 255}784 → {−1,+1}784

bin(x1, . . . , x784) = (bin1(x1), . . . ,bin784(x784))

bini : {0, . . . , 255} → {−1,+1}.
Note that the binarization is performed depending on compo-
nents (i.e. pixel locations).

After that, several internal layers and a output linear layer
follow. We denote this part as

g : {−1,+1}784 → R10,

and its output is called logits.
Then

f(x) = argmaxc∈{0,...,9}g(bin(x))c

is the function that our binarized neural network computes.
We implemented and trained BNN models using deep learn-

ing framework Chainer [7]. Our implementation is available
at https://github.com/msakai/bnn-verification .

III. SAT ENCODING

In the following we identify {false, true} with {0, 1} for
notational simplicity.

A. Inputs and decision variables

In the encoding of [4], they use raw 8-bit image (x′ ∈
{0, . . . , 255}784) as decision variables and add constraints like
x′i ∈ [x− ε, x+ ε].

We instead use binarized image in {−1,+1}784 as decision
variables and represent bini(xi) as 2zi − 1 using a boolean
variables zi. We consider original 8-bit image as dependent
variables, and use them in cost function instead of defining
them as decision variables.

B. Relationship between inputs and logits

The g part is encoded to CNF in a way similiar to [4],
but we use totalizer [8] instead of sequential counter [9] for
encoding cardinality constraints.

C. Relationship between logits and outputs

For the argmax part, let logits ∈ R10 be output of g, and
let {yc}c∈{0,...,9} be ten boolean variables representing output
of f (i.e. yi ⇔ f(x′) = i).

The fact that {yc}c is a one-hot vector can be expressed as
cardinality constraint

∑
i yi = 1.

Also, if yc then c-th logit must be largest, i.e.

yc → logitsc ≥ logitsc′ for all c′.

Because logitsc is represented as (
∑

j Wc,j(2uj − 1)) + bc
where Wc,j ∈ {−1,+1} and uj are some boolean variables

MaxSAT Evaluation 2020: Solver and Benchmark Descriptions, volume B-2020-2 of Department of Computer Science Series of Publications B, University of Helsinki 2020.

37

introduced in encoding of g, this can be expressed as condi-
tional cardinality constraints:

yc →
∑

j

(Wc,j −Wc′,j)

2
uj

≥
⌈∑

j(Wc,j −Wc′,j) + bc′ − bc
4

⌉
.

We encode those (conditional) cardinality constraints using
totalizer.

Finally, if f(x) = c then we add ¬yc to require the input
to be misclassified.

IV. COST FUNCTION

As we want to find an adversarial example with the smallest
perturbation, we want to set a cost for modifying xis. Because
our decision variable is zis, this corresponds to adding a soft
constraint1 zi = bini(xi)+1

2 with appropriate cost of violation.
First, we define δi as the smallest change of xi to flip its

binarized value, i.e. bini(xi+δi) 6= bini(xi). If it is impossible
to flip (this is the case when bini is constant function), we
define δi to be ⊥.

Then it is easy to define cost functions to minimize Lp-
norms including L∞-norm.

A. Lp-norms for p 6=∞
We add zi = bini(xi)+1

2 as a soft constraint with cost |δi|p
for each i if δi 6=⊥, and add it as a hard constraint if δi =⊥.
Note that we get unweighted (partial) Max-SAT instances in
case of L0-norm.

B. L∞-norm

Let ∆ = {|δi| | δi 6=⊥} and w1 < . . . < w|∆| ∈ ∆
be sorted in ascending order, and we introduce new boolean
variable rk called relaxation variable for each wk. Then we
add following constraints.
• Unit soft clause (¬rk) with cost |wk| for each k ∈
{1, . . . , |∆|}.

• Relaxation variables are lower closed: rk → rk−1 for
each k > 0

• zi is allowed to be flipped only when corresponding
relaxation variable is true: ¬rk → zi = bini(xi)+1

2 for
each i with |δi| = wk.

• zi is fixed if it cannot be flipped: zi = bini(xi)+1
2 for each

i with δi =⊥.

V. PROBLEM FILES

We choose 20 images (2 images for each digit class) from
test data of each data set (mnist, mnist rot, mnist back image)
that trained BNN models predicted true label.

Adversarial example finding problem is generated for each
image using the BNN model trained for the dataset. Generated
instances have 1.8 M variables and 132 M clauses on average.

1As we assume a concrete x, right hand side is 0 or 1, therefore this
constraint is represented as a unit clause ¬zi or zi

File names are in the form of “bnn_{dataset_name}_
{instance number}_label{true label}_
adversarial_norm_inf_totalizer.wcnf” where
• dataset name is mnist, mnist rot or mnist back

image,
• instance number is image number in test dataset,
• true label is one of 0 . . . 9.

REFERENCES

[1] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and
Y. Bengio, “Binarized neural networks,” in Advances in Neural
Information Processing Systems 29, D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon, and R. Garnett, Eds. Curran
Associates, Inc., 2016, pp. 4107–4115. [Online]. Available:
http://papers.nips.cc/paper/6573-binarized-neural-networks.pdf

[2] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” in International
Conference on Learning Representations, 2014. [Online]. Available:
http://arxiv.org/abs/1312.6199

[3] I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in International Conference on Learning
Representations, 2015. [Online]. Available: http://arxiv.org/abs/1412.6572

[4] N. Narodytska, S. P. Kasiviswanathan, L. Ryzhyk, M. Sagiv, and
T. Walsh, “Verifying properties of binarized deep neural networks,”
in Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence, (AAAI-18), the 30th innovative Applications of Artificial
Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational
Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana,
USA, February 2-7, 2018, S. A. McIlraith and K. Q. Weinberger,
Eds. AAAI Press, 2018, pp. 6615–6624. [Online]. Available:
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16898

[5] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[6] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio, “An
empirical evaluation of deep architectures on problems with many factors
of variation,” in Proceedings of the 24th International Conference on
Machine Learning, ser. ICML ’07. New York, NY, USA: Association
for Computing Machinery, 2007, p. 473–480. [Online]. Available:
https://doi.org/10.1145/1273496.1273556

[7] S. Tokui, R. Okuta, T. Akiba, Y. Niitani, T. Ogawa, S. Saito, S. Suzuki,
K. Uenishi, B. Vogel, and H. Yamazaki Vincent, “Chainer: A deep
learning framework for accelerating the research cycle,” in Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. ACM, 2019, pp. 2002–2011.

[8] O. Bailleux and Y. Boufkhad, “Efficient cnf encoding of boolean cardinal-
ity constraints,” in Principles and Practice of Constraint Programming –
CP 2003, F. Rossi, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
2003, pp. 108–122.

[9] C. Sinz, “Towards an optimal CNF encoding of boolean cardinality
constraints,” in Principles and Practice of Constraint Programming - CP
2005, P. van Beek, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
2005, pp. 827–831.

38

MaxSAT Evaluation 2020 - Benchmark:
Identifying Maximum Probability Minimal Cut Sets

in Fault Trees
Martı́n Barrère and Chris Hankin

Institute for Security Science and Technology, Imperial College London, UK
{m.barrere, c.hankin}@imperial.ac.uk

Abstract—This paper presents a MaxSAT benchmark focused
on the identification of Maximum Probability Minimal Cut Sets
(MPMCSs) in fault trees. We address the MPMCS problem by
transforming the input fault tree into a weighted logical formula
that is then used to build and solve a Weighted Partial MaxSAT
problem. The benchmark includes 80 cases with fault trees of
different size and composition as well as the optimal cost and
solution for each case.

Index Terms—MaxSAT, Benchmark, Fault trees, Fault Tree
Analysis, Reliability, Cyber-Physical Security, Dependability.

I. PROBLEM OVERVIEW

Fault Tree Analysis (FTA) is an analytical tool aimed at
modelling and evaluating how complex systems may fail.
FTA is widely used as a risk assessment tool in safety
and reliability engineering for a broad range of industries
including aerospace, power plants, nuclear plants, and others
high-hazard fields [1]. Essentially, a fault tree is a directed
acyclic graph (DAG) which involves a set of basic events (e.g.
component failures) that are combined using logic operators
(e.g. AND and OR gates) to model how these events may lead
to an undesired state of the system normally represented at the
root of the tree (top level event).

Our work is focused on a novel measure for FTA in the
form of a hybrid analysis technique that involves quantitative
and qualitative aspects of fault trees. From a qualitative
perspective, we focus on Minimal Cut Sets (MCS). An MCS
is a minimal combination of events that together cause the
top level event. As such, MCSs are fundamental for structural
analysis. The problem is that, in large scenarios, computing all
MCSs might be very expensive and there might be hundreds
of MCSs, which makes it hard to handle and prioritise which
MCSs should be attended first. In that context, the goal of
this work is to identify the MCS with maximum probability.
We call this problem the MPMCS. This is an NP-complete
problem and we use a MaxSAT-based approach to address it.

II. SIMPLE EXAMPLE

The fault tree shown in Fig. 1 illustrates the different combi-
nations of events that may lead to the failure of an hypothetical
Fire Protection System (FPS) based on [2]. The FPS can
fail if either the fire detection system or the fire suppression

This work has been supported by the European Union’s Horizon 2020
research and innovation programme under grant No 739551 (KIOS CoE).

mechanism fails. In turn, the detection system can fail if
both sensors fail simultaneously (events x1 and x2), while the
suppression mechanism may fail if there is no water (x3), the
sprinkler nozzles are blocked (x4), or the triggering system
does not work. The latter can fail if neither of its operation
modes (automatic (x5) or remotely operated) works properly.
The remote control can fail if the communications channel
fails (x6) or the channel is not available due to a cyber attack,
e.g. DDoS attack (x7). Each basic event has an associated
value that indicates its probability of occurrence p(xi).

Fig. 1. Fault tree of a cyber-physical fire protection system (simplified)

A fault tree F can be represented as a Boolean equation
f(t) that expresses the different ways in which the top event
t can be satisfied [3]. In our example, f(t) is as follows:

f(t) = (x1 ∧ x2) ∨ (x3 ∨ x4 ∨ (x5 ∧ (x6 ∨ x7)))

The objective is to find the minimal set of logical variables
that makes the equation f(t) true and whose joint probability
is maximal among all minimal sets. In our example, the
MPMCS is {x1, x2} with a joint probability of 0.02.

III. MAXSAT FORMULATION STRATEGY

Given a fault tree and its logical formulation f(t), we carry
out a series of steps to compute the MPMCS as follows.

1. Logical transformation. Since we are interested in
minimising the number of satisfied clauses, which is opposed
to what MaxSAT does (maximisation), we flip all logic gates
but keep all events in their positive form. In our example, we
obtain: g(t) = (x1 ∨ x2) ∧ (x3 ∧ x4 ∧ (x5 ∨ (x6 ∧ x7))).

MaxSAT Evaluation 2020: Solver and Benchmark Descriptions, volume B-2020-2 of Department of Computer Science Series of Publications B, University of Helsinki 2020.

39

Then, the objective is to satisfy ¬g(t) where the falsified
variables will indicate the minimum set of events that must
simultaneously occur to trigger the top level event. A more
detailed explanation of this transformation can be found in
[4]. We then use the Tseitin transformation to produce in
polynomial time an equisatisfiable CNF formula [5].

2. MaxSAT weights. Due to the fact that MaxSAT is addi-
tive in nature and the MPMCS problem involves the multipli-
cation of decision variables, we transform the probabilities into
a negative log-space so the multiplication becomes a sum. In
addition, many SAT solvers only support integer weights so we
perform a second transformation by right shifting (multiplying
by 10) every value until the smallest value is covered with an
acceptable level of precision. For example, 0.001 and 0.00007
would become 100 and 7 (right shift 5 times). Additional
variables introduced by the Tseitin transformation have weight
0. We then specify the problem as a Partial Weighted MaxSAT
instance by assigning the transformed probability values as a
penalty score for each decision variable.

3. Parallel SAT-solving architecture. Since different SAT
solvers normally use different resolution techniques, some of
them are very good at some instances and not that good at
others. To address this issue, we run multiple SAT-solvers
in parallel and pick the solution of the solver that finishes
first. We have experimentally observed that the combination of
different solvers provides good results in terms of performance
and scalability. Once the solution has been found, we translate
back the transformed values into their stochastic domain and
output the MCS with maximum probability.

IV. FAULT TREE GENERATION

The benchmark presented in this paper relies on our open
source tool MPMCS4FTA [6]. We have used MPMCS4FTA to
generate and analyse synthetic pseudo-random fault trees of
different size and composition. We use AND/OR graphs as the
underlying structure to represent fault trees. The benchmark
presented in [7] also considers AND/OR graphs as a means to
represent operational dependencies between components in in-
dustrial control systems [8]. However, the instances presented
in this paper differ in that: 1) they are restricted to directed
acyclic graphs (DAGs), 2) only the basic events represented
at the leaves of the fault tree involve a probability of failure,
and 3) leaves can have more than one parent in order to relax
the definition of strict logical trees.

We control the size and composition of a random
fault tree of size n according to a configuration R =
(RAT , RAND, ROR). RAT ∈ [0, 1] indicates the proportion
of atomic nodes (basic events) with respect to size n (e.g. 0.2
means 20%) whereas RAND and ROR indicate the proportion
of AND and OR nodes respectively. To create a fault tree
of size n, we first create two lists: L = {l1, . . . , lm} and
A = {a1, . . . , as}. L is a random sequence of AND and OR
nodes with the specified proportions for each operator where
m = n ∗ (RAND + ROR). A is a list of atomic nodes where
s = n ∗RAT , thus n = m+ s. In addition, each atomic node
has a random probability of failure p(ai) ∈ [0, 1].

To ensure connectivity, we first create the root node t and
connect l1 to t (l1 → t). Then, for each logic node li in
the sequence L, we randomly choose k nodes lj ahead (thus
j > i) and create k edges (lj → li) in the tree. When the
remaining nodes in L are not enough to cover k nodes, we
use random atomic nodes from A. At this point, we also make
sure that li points to at least one previous node in the sequence
L. If that is not the case, we choose a random node lh (with
h < i) and create an edge (li → lh). Once the sequence L
has been processed, we traverse the list A and connect each
atomic node ai as follows. First, we draw a random value k′

between 1 and k. Then, we add random edges (ai → lj) from
ai to logic nodes lj until we cover k′ connections.

V. BENCHMARK DESCRIPTION

Out dataset includes 80 cases in total, and can be obtained
at [6]. It contains fault trees with four different sizes: 2500,
5000, 7500, and 10000 nodes (20 cases each). For each tree
size, we consider two different graph configurations, R1 =
(0.8, 0.1, 0.1) and R2 = (0.6, 0.2, 0.2), which determine the
composition of the fault trees (10 cases each). Table I shows
the identifiers of the cases within each one of these categories.

#Nodes/Configurations R1 = (0.8, 0.1, 0.1) R2 = (0.6, 0.2, 0.2)

2500 1 to 10 11 to 20

5000 21 to 30 31 to 40

7500 41 to 50 51 to 60

10000 61 to 70 71 to 80

TABLE I
BENCHMARK CASES AND CONFIGURATIONS

Each case is specified in an individual .wcnf (DIMACS-like,
weighted CNF) file named with the case id and the number
of nodes involved. The weight for hard clauses (top value)
has been set to 2.0× 109. The weight of each soft constraint
is an integer value that corresponds to the transformation
(right shifting) of the probability value in −log space. Tables
II and III detail each case as well as the results obtained
with our tool. The field id identifies each case. gNodes and
gEdges indicate the total number of nodes and edges in the
fault tree. gAT, gAND, and gOR, indicate the approximate
composition of the graph in terms of atomic (basic events),
AND, and OR nodes. tsVars and tsClauses show the number
of variables and clauses involved in the MaxSAT formulation
after applying the Tseitin transformation. time shows the
resolution time reported by MPMCS4FTA in milliseconds.
Currently, the MaxSAT solvers used in MPMCS4FTA are
SAT4J [9] and a Python-based linear programming approach
using Gurobi [10]. size indicates the number of nodes identi-
fied in the MPMCS solution. intLogCost indicates the cost
of the solution in −log space as an integer value (right
shifted). logCost indicates the cost of the solution in −log
space. MPMCS probability indicates the joint probability of
the MPMCS. These experiments have been performed on a
MacBook Pro (16-inch, 2019), 2.4 GHz 8-core Intel Core i9,
32 GB 2666 MHz DDR4.

2

40

id gNodes gEdges gAT gAND gOR tsVars tsClauses time size intLogCost logCost MPMCS probability

1 2500 7151 2002 250 250 1978 6258 618 1 246 2.46E-4 0.999754

2 2500 7192 2002 250 250 4268 15026 850 447 464771733 464.771733 1.42239870668983E-202

3 2500 7196 2002 250 250 1207 3763 290 1 27591 0.027591 0.972787

4 2500 7140 2002 250 250 4211 14673 833 1 238 2.38E-4 0.999763

5 2500 7107 2002 250 250 3907 13325 821 1 7879 0.007879 0.992153

6 2500 7202 2002 250 250 3410 11350 749 70 81474531 81.474531 4.147681160335815E-36

7 2500 7126 2002 250 250 3304 10922 711 1 315 3.15E-4 0.999685

8 2500 7181 2002 250 250 3752 12713 826 1 2576 0.002576 0.997428

9 2500 7157 2002 250 250 3011 9847 625 1 4301 0.004301 0.995709

10 2500 7156 2002 250 250 642 1982 211 19 12423488 12.423488 4.0231156723921624E-6

11 2500 6831 1502 500 500 3873 14170 912 1 28842 0.028842 0.971571

12 2500 6782 1502 500 500 2377 7941 550 1 32680 0.03268 0.96785

13 2500 6814 1502 500 500 3216 11235 700 13 10769787 10.769787 2.1025796252653052E-5

14 2500 6700 1502 500 500 3268 11376 728 197 207945092 207.945092 4.9088521396478804E-91

15 2500 6897 1502 500 500 3063 10555 817 1 3262 0.003262 0.996744

16 2500 6849 1502 500 500 2044 6765 470 1 191116 0.191116 0.826037

17 2500 6787 1502 500 500 3158 10955 723 1 284520 0.28452 0.752376

18 2500 6872 1502 500 500 3433 12147 773 139 130484455 130.484455 2.1453798325228181E-57

19 2500 6821 1502 500 500 2506 8439 534 17 9662887 9.662887 6.36019885647539E-5

20 2500 6831 1502 500 500 3848 14095 821 1 3507 0.003507 0.996501

21 5000 14324 4002 500 500 4149 13224 932 229 217397271 217.397271 3.8565352927569054E-95

22 5000 14313 4002 500 500 8532 29961 925 614 641968767 641.968767 1.5912873405576694E-279

23 5000 14329 4002 500 500 6971 23338 842 240 251915559 251.915559 3.9351584673463555E-110

24 5000 14361 4002 500 500 8020 27645 843 1 793 7.93E-4 0.999209

25 5000 14370 4002 500 500 8965 32190 843 1 1858 0.001858 0.998144

26 5000 14317 4002 500 500 5443 17581 827 1 3615 0.003615 0.996391

27 5000 14407 4002 500 500 8113 28023 842 277 253971185 253.971185 5.035082961027143E-111

28 5000 14365 4002 500 500 8952 32153 837 1041 994658460 994.65846 0.0

29 5000 14321 4002 500 500 8859 31477 833 379 378308687 378.308687 5.051735441001231E-165

30 5000 14316 4002 500 500 7948 27315 830 1 970 9.7E-4 0.999032

31 5000 13607 3002 1000 1000 6384 22218 938 1 2530 0.00253 0.997474

32 5000 13730 3002 1000 1000 7330 26390 863 65 63984958 63.984958 1.62844121698006E-28

33 5000 13687 3002 1000 1000 3181 10354 683 1 25289 0.025289 0.975029

34 5000 13600 3002 1000 1000 6293 21870 834 407 424495269 424.495269 4.413071223454673E-185

35 5000 13712 3002 1000 1000 7361 26650 895 179 171277203 171.277203 4.1251154050451916E-75

36 5000 13709 3002 1000 1000 6231 21647 831 22 19249301 19.249301 4.366753474609794E-9

37 5000 13612 3002 1000 1000 6202 21523 931 257 273826234 273.826234 1.2035873310274229E-119

38 5000 13664 3002 1000 1000 4482 14952 824 1 4317 0.004317 0.995693

39 5000 13631 3002 1000 1000 7395 26641 827 83 89562456 89.562456 1.2695246380697898E-39

40 5000 13641 3002 1000 1000 7825 28775 831 1 5974 0.005974 0.994045

TABLE II
BENCHMARK DESCRIPTION - CASES 1 TO 40

3

41

id gNodes gEdges gAT gAND gOR tsVars tsClauses time size intLogCost logCost MPMCS probability

41 7500 21502 6002 750 750 8871 28951 965 1 160 1.6E-4 0.999841

42 7500 21515 6002 750 750 7191 23069 852 1 393 3.93E-4 0.999607

43 7500 21497 6002 750 750 5716 18114 843 1 1095 0.001095 0.998906

44 7500 21536 6002 750 750 6476 20645 849 600 607247314 607.247314 1.8912103369207186E-264

45 7500 21472 6002 750 750 10277 34266 859 251 235979386 235.979386 3.279829621872166E-103

46 7500 21607 6002 750 750 10235 34064 849 31 27638401 27.638401 9.927826703704467E-13

47 7500 21609 6002 750 750 11377 38597 920 689 644477962 644.477962 1.2810988897753624E-280

48 7500 21397 6002 750 750 4488 14083 815 1 18442 0.018442 0.981728

49 7500 21410 6002 750 750 12792 44789 1031 668 672741572 672.741572 6.81228495760467E-293

50 7500 21566 6002 750 750 13253 47290 851 1 9154 0.009154 0.990888

51 7500 20454 4502 1500 1500 11031 39763 972 1 2151 0.002151 0.997852

52 7500 20450 4502 1500 1500 8927 30739 855 1 738 7.38E-4 0.999263

53 7500 20616 4502 1500 1500 11843 43792 894 1 37 3.7E-5 0.999964

54 7500 20530 4502 1500 1500 9961 35071 1053 502 480184105 480.184105 2.8797108920892045E-209

55 7500 20563 4502 1500 1500 9462 32930 1368 769 739302414 739.302414 8.45E-322

56 7500 20493 4502 1500 1500 9084 31398 833 1 7545 0.007545 0.992484

57 7500 20491 4502 1500 1500 4922 16088 817 1 104472 0.104472 0.9008

58 7500 20594 4502 1500 1500 5943 19507 987 267 256660486 256.660486 3.4340775952647096E-112

59 7500 20406 4502 1500 1500 9340 32356 898 158 148111431 148.111431 4.74472781242486E-65

60 7500 20445 4502 1500 1500 8882 30572 827 1 14066 0.014066 0.986033

61 10000 28613 8002 1000 1000 16234 56222 1087 1 1904 0.001904 0.998099

62 10000 28675 8002 1000 1000 14261 47804 914 197 185985480 185.98548 1.6901841317920728E-81

63 10000 28558 8002 1000 1000 13755 45717 893 1 43 4.3E-5 0.999957

64 10000 28738 8002 1000 1000 13370 44343 882 1 127 1.27E-4 0.999874

65 10000 28752 8002 1000 1000 15537 53105 917 643 606121928 606.121928 5.826520007473361E-264

66 10000 28803 8002 1000 1000 9981 32065 852 1 796 7.96E-4 0.999205

67 10000 28632 8002 1000 1000 13418 44550 861 448 439405919 439.405919 1.4772121624185204E-191

68 10000 28830 8002 1000 1000 17774 63650 874 1 3047 0.003047 0.996959

69 10000 28717 8002 1000 1000 14505 48831 861 1 1691 0.001691 0.998311

70 10000 28604 8002 1000 1000 16032 55089 855 1 436 4.36E-4 0.999564

71 10000 27114 6002 2000 2000 15244 55476 2286 652 652324945 652.324945 5.016628484164324E-284

72 10000 27515 6002 2000 2000 10588 36029 867 1 15974 0.015974 0.984154

73 10000 27411 6002 2000 2000 9596 32332 862 422 440653751 440.653751 4.240514855635819E-192

74 10000 27271 6002 2000 2000 15985 59167 873 1 2033 0.002033 0.997969

75 10000 27228 6002 2000 2000 13506 47651 2223 621 639112478 639.112478 2.7423451190246526E-278

76 10000 27345 6002 2000 2000 12066 41598 1253 326 307525901 307.525901 2.779537506735469E-134

77 10000 27310 6002 2000 2000 10310 34812 835 1 10970 0.01097 0.989091

78 10000 27306 6002 2000 2000 12092 41711 1004 228 218680041 218.680041 1.0684631282749114E-95

79 10000 27315 6002 2000 2000 14069 50130 848 1 1447 0.001447 0.998555

80 10000 27375 6002 2000 2000 14851 53699 859 1 180 1.8E-4 0.999821

TABLE III
BENCHMARK DESCRIPTION - CASES 41 TO 80

4

42

REFERENCES

[1] E. Ruijters and M. Stoelinga, “Fault tree analysis: A survey of the state-
of-the-art in modeling, analysis and tools,” Computer Science Review,
vol. 15-16, pp. 29 – 62, 2015.

[2] S. Kabir, “An overview of Fault Tree Analysis and its application in
model based dependability analysis,” Expert Systems with Applications,
vol. 77, pp. 114 – 135, 2017.

[3] W. Vesely, M. Stamatelatos, J. Dugan, J. Fragola, J. Minarick III,
and J. Railsback, “Fault Tree Handbook with Aerospace Applications,”
Office of Safety and Mission Assurance, NASA Headquarters, US, 2002.

[4] M. Barrère and C. Hankin, “Fault Tree Analysis: Identifying Maximum
Probability Minimal Cut Sets with MaxSAT,” https://arxiv.org/abs/2005.
03003, May 2020.

[5] G. S. Tseitin, “On the Complexity of Derivation in Propositional
Calculus,” in Studies in Constructive Mathematics and Mathematical
Logic, Part II, A. Slisenko, Ed., 1970, pp. 234–259.

[6] M. Barrère, “MPMCS4FTA - Maximum Probability Minimal Cut Sets
for Fault Tree Analysis,” https://github.com/mbarrere/mpmcs4fta, March
2020.

[7] M. Barrère, C. Hankin, N. Nicolaou, D. Eliades, and T. Parisini,
“MaxSAT Evaluation 2019 - Benchmark: Identifying Security-Critical
Cyber-Physical Components in Weighted AND/OR Graphs. In MaxSAT
Evaluation 2019 (MSE19),” https://arxiv.org/abs/1911.00516, 2019.

[8] M. Barrère, C. Hankin, N. Nicolaou, D. Eliades, and T. Parisini,
“Measuring cyber-physical security in industrial control systems via
minimum-effort attack strategies,” Journal of Information Security
and Applications, vol. 52, pp. 1–17, June 2020. [Online]. Available:
https://doi.org/10.1016/j.jisa.2020.102471

[9] “SAT4J,” http://www.sat4j.org/, Cited June 2020.
[10] Gurobi, “Gurobi Optimizer,” https://www.gurobi.com/, 2020, Cited June

2020.

5

43

Partial (Un-)Weighted MaxSAT Benchmarks:
Minimizing Witnesses for Security Weaknesses

in Reconfigurable Scan Networks
Pascal Raiola, Tobias Paxian and Bernd Becker

Faculty of Engineering, University of Freiburg
{ raiolap | paxiant | becker }@informatik.uni-freiburg.de

Abstract—The proposed benchmarks describe optimization
problems for a security application, which investigates data flow
security weaknesses of recofigurable scan networks (RSNs). The
goal of the optimization problem is to minimize both the amount
of times so-called Scan Path Branching is used and to reduce the
information contained in the witness of the data flow security
weakness, so that the witness is of human-readable size.

Index Terms—IEEE Std 1687, IJTAG, Reconfigurable Scan
Networks, RSN, Partial Weighted MaxSAT, Benchmark, security
weaknesses

I. INTRODUCTION

For on-chip diagnosis (and other purposes) reconfigurable
scan networks (RSNs, cf. IEEE Std 1687 [1]) are increasingly
deployed in industrial designs. However, if no adequate pre-
cautions are taken by the designer, an attacker might exploit
the powerful observability and controllability properties of an
RSN, exploiting e.g. a so-called data flow security weakness;
further details on data flow security weaknesses and how to
resolve them are found e.g. in [2], [3]. For large RSNs taking
those precautions without algorithmic support is virtually
impossible.

The technique of [4] generates in a first step a set of
conditions (called “witness”) to instantiate an insecure data
flow. Since such witnesses contain often by far too much (not-
needed) information to be human-readable, the MaxSAT solver
Pacose [5] was invoked to reduce the “witnesses” to “minimal
witnesses”, which are much more compact, but at the same
time provide all the information necessary for a witness.

The proposed benchmarks allow to calculate the above
described minimization, where each benchmark models the
problem of minimizing a certain witness. The original in-
stances vary in complexity, ranging from small benchmarks
with only 47 soft clauses to very large benchmarks with
more than 1.2 million soft clauses and nearly 30 million hard
clauses.

II. PRELIMINARIES

A. Reconfigurable Scan Network
An example reconfigurable scan network (RSN) is illus-

trated in Figure 1. In an RSN, different active scan paths can
be configured. Figure 1 pictures the active scan path if all scan
multiplexers are set to 1 (green dashed line). An assignment
to the select signals of all scan multiplexers is called an RSN
configuration.

0

1

B

C

E

F1 F2 F3

select signal sel1

scan-outscan-in

scan path when all
scan multiplexer select
signals are set to 1

A

M1 M2

0

1
GfA fB

select signal sel2

D

Fig. 1. Reconfigurable scan network with 9 scan flip-flops (A to G), 2 fan-
outs (fA and fB) and 2 scan multiplexers (M1 and M2)

B. Attack Scenario

In the following we will present the data flow security
threat, that has been investigated by [2] and [3]: If scan
infrastructure is introduced, components deeply inside the
circuit become connected with each other. Those components
might be from different vendors and sources, where one is
untrusted potentially due to lower security standards: A sensor
module might be very vulnerable to side-channel attacks, as
it hardly contains secret information. Thus, an attacker must
be prevented from shifting confidential data over a scan path
involving such an untrusted module. Similarly, automated tests
must not shift confidential data over such a scan path.

It should also be noted, that the data stream in Figure 1
(green dashed line) not only follows the illustrated direct path,
but additionally branches at each fan-out (illustrated for fA as
blue dotted line). If B is located inside a third-party module,
it should be considered, that data on the scan path potentially
also enters the third-party module. If this third-party module
is untrusted, correct behavior of the scan infrastructure inside
that module cannot be guaranteed.

Therefore, even though a module is not part of the current
scan path, it might still leak sensitive data e.g. via a side-
channel attack. If an attacker exploits such a leak, we say that
Scan Path Branching (SPB) was used for the attack and speak
of an indirect scan path.

III. PROBLEM DESCRIPTION

Information on a security weakness can be expressed as
a witness, i.e. instructions on how to exploit the security
weakness. [4] generates such witnesses, which at first contain
in general by far too much information to be human-readable.
To provide condensed information on the weakness, a witness
containing as little information as possible is to be determined.

MaxSAT Evaluation 2020: Solver and Benchmark Descriptions, volume B-2020-2 of Department of Computer Science Series of Publications B, University of Helsinki 2020.

44

This corresponds to formulating and solving a MaxSAT prob-
lem with a suitable MaxSAT solver.

A. Building the CNF(s)

The SAT-encoding of the presented RSN security problem
is introduced in [4] and uses the encoding of [6] as basis. It
models the state of the RSN during the scan configurations,
which are used for the witnessed data flow weakness. Naturally
all clauses of the RSN model are hard clauses. Two more (unit)
hard clauses are added, which enforce the beginning and the
end of the insecure data path.

The three possible values (0, 1 or don’t care) of scan
registers and signal lines of the RSN are denoted with two
Boolean variables, where a helper variable is true if and only
if the respective value is don’t care. For each helper variable
a soft clause of weight 1 is employed. For clarity, the set of
these soft clauses is called SDC .

These hard and soft clauses fully describe the problem of
minimizing the so-called direct witness and are thus partial
unweighted MaxSAT problems. Only for the minimization
of the so-called shortest witness, more soft clauses were
utilized, leading to partial weighted MaxSAT problems: Since
the technique Scan Path Branching (SPB) is in general an
elaborate technique, the witness-minimization also included
soft clauses to minimize the use of SPB. To do so, for every
potential point to employ SPB for an attack (i.e. for every
scan multiplexer), one soft clause was added, which models,
that SPB was not used at that point. The weight of every such
soft clause was set to be higher than all the weights of SDC

combined, i.e. to |SDC |+ 1.

B. Interpreting the MaxSAT solution

The weight of the satisfied soft clauses can be used to
show the effectiveness of the minimization. For the goal of the
application, a designer needs the full variable assignment of
the solution. Then, the designer can use all variables, which
are not set to don’t care, to straightforwardly see the core
of the security weakness and choose a method to fix the
weakness. It is also important to minimize the usage of SPB
for the shortest witness, since a security weakness without
SPB potentially requires more drastic countermeasures, which
solve other security weaknesses on-the-fly.

C. File Name Convention

The file name consists of the following parts (in order,
separated with dashes):

• Every file name starts with the description of the MaxSAT
problem: “RSN Security Min Witness”

• Then follows one of the two words “shortest” and “di-
rect”, stating which witness was minimized with the
described MaxSAT problem.

• Next, the name of the RSN benchmark, for which the
witness is generated. Only problems generated by large
RSN benchmarks of the BASTION benchmark sets ITC
’16 [7] and DATE ’19 [3] were chosen for the proposed
MaxSAT benchmark set.

• Lastly, the letter ‘D’, followed by a hexadecimal digit,
describing which of 16 probability distributions was used
to randomly generate security properties of the RSN.

For example, the proposed MaxSAT benchmark for the
MaxSAT problem of minimizing a shortest witness for the
RSN of the benchmark Mingle of probability distribution 8 is
named:

RSN Security Min Witness-Shortest-Mingle-D8.wcnf

REFERENCES

[1] “IEEE standard for access and control of instrumentation embedded
within a semiconductor device,” IEEE Std 1687-2014, pp. 1–283, 2014.

[2] P. Raiola, M. A. Kochte, A. Atteya, L. R. Gómez, H. Wunderlich,
B. Becker, and M. Sauer, “Detecting and resolving security violations in
reconfigurable scan networks,” in 24th IEEE International Symposium on
On-Line Testing And Robust System Design, IOLTS 2018, Platja D’Aro,
Spain, July 2-4, 2018, 2018, pp. 91–96.

[3] P. Raiola, B. Thiemann, J. Burchard, A. Atteya, N. Lylina, H. Wunderlich,
B. Becker, and M. Sauer, “On secure data flow in reconfigurable scan
networks,” in Design, Automation & Test in Europe Conference &
Exhibition, DATE, 2019, pp. 1016–1021.

[4] P. Raiola, T. Paxian, and B. Becker, “Minimal witnesses for security
weaknesses in reconfigurable scan networks,” in To be published in
Proceedings of the 25th IEEE European Test Symposium (ETS), 2020.

[5] T. Paxian, S. Reimer, and B. Becker, “Dynamic polynomial watchdog
encoding for solving weighted MaxSAT,” in International Conference on
Theory and Applications of Satisfiability Testing. Springer, 2018, pp.
37–53.

[6] R. Baranowski, M. A. Kochte, and H.-J. Wunderlich, “Reconfigurable
scan networks: Modeling, verification, and optimal pattern generation,”
ACM Trans. Design Automation of Electronic Systems (TODAES), vol. 20,
no. 2, pp. 30:1–30:27, 2015.

[7] A. Tsertov, A. Jutman, S. Devadze, M. S. Reorda, E. Larsson, F. G.
Zadegan, R. Cantoro, M. Montazeri, and R. Krenz-Baath, “A suite of
IEEE 1687 benchmark networks,” in IEEE International Test Conference,
ITC. IEEE, 2016, pp. 1–10.

45

Description of Benchmarks on Coalition Structure
Generation

Xiaojuan Liao
Chengdu University of Technology

Chengdu, China
liao xiaojuan@126.com

Miyuki Koshimura
Kyushu University
Fukuoka, Japan

koshi@inf.kyushu-u.ac.jp

I. PROBLEM DESCRIPTION

Coalition Structure Generation (CSG), which is one of
the main research issues in the domain of coalition games,
involves partitioning a set of agents to maximize the total
value of all the coalitions. The general assumption for solving
the CSG problem is that given any coalition structure, the
coalition’s value is not affected by how non-members are
partitioned. Such settings are known as Characteristic Function
Games (CFGs), where the value of a coalition is given by
characteristic function v : 2A → R that assigns a real-
valued payoff to each coalition C ⊆ A. The value of coalition
structure CS is called social welfare, denoted as V (CS),
given by V (CS) =

∑
Ci∈CS

v (Ci). The objective of solving

the CSG problem is to find an optimal coalition structure that
maximizes the social welfare, i.e., given A, find CS∗ such
that ∀CS ∈ Π(A) , V (CS∗) ≥ V (CS) . When the number
of agents becomes large, compact methods of representing
characteristic functions are exploited, such as MC-net [1],
which largely reduce the space necessary for representation.

An MC-net consists of set of rules R. Each ri ∈ R
is expressed as Ii → wi, where wi ∈ R, and Ii is the
condition of rule ri, denoted by a conjunction of literals,
i.e., {a1 ∧ · · · ∧ al ∧ ¬al+1 ∧ · · · ∧ ¬ami}, where mi is the
number of agents in Ii. For ri, Pi denotes the positive literals
where Pi = {aj}l

j=1, and Ni denotes the negative literals
where Ni = {aj}mi

j=l+1. Rule ri applies to coalition C if
Pi ⊆ C and Ni ∩ C = ∅. Set of rules R′ ⊆ R is called
feasible if there exists coalition structure CS where each rule
r ∈ R′ applies to some C ∈ CS.

Based on MC-nets, Weighted Partial MaxSAT (WPM) en-
coding has shown high efficiency in solving the CSG problem
[2], [3], [5], which encodes a set of constraints into Boolean
propositional logic and employs an off-the-shelf WPM solver
to find out the optimal solution.

II. PARAMETERS USED FOR GENERATING THE INSTANCES

The way of generating instances follows earlier works [4]–
[6], summarized as follows. First, we created a coalition with
one random agent and repeatedly added a new random agent
with probability α until an agent is not added or the coalition
includes all agents. The value of a rule is uniformly at random
chosen between 0 and the number of agents in the rule.

In addition, for each coalition that contains more than one
agent, we convert an agent from positive to negative with p
probability. Furthermore, we convert the value of a coalition
from positive to negative with q probability. Throughout the
experiment, we set the number of rules equal to the number
of agents. Parameter α = 0.55 and p = q = 0.2.

III. FILE NAME CONVENTION

We generated two types of instances, named easy and hard.
Folder ⟨easy⟩ contains 98 instances, and folder ⟨hard⟩ has
six instances. Instances in ⟨easy⟩ can be solved within 3600
seconds by sat4j [7] on a 2.0GHz quad-core Intel i7-4510U
processor with 8GB RAM, while those in ⟨hard⟩ cannot. The
name of each file follows the form ⟨#rules − index.wcnf⟩,
where #rules represents the number of rules.

REFERENCES

[1] S. Ieong and Y. Shoham, “Marginal contribution nets: a compact
representation scheme for coalitional games,” In Proceedings 6th ACM
Conference on Electronic Commerce, pp. 193C-202, 2005.

[2] X. Liao and M. Koshimura, “A Comparative Analysis and Improvement
of MaxSAT Encodings for Coalition Structure Generation under MC-
Nets,” Journal of Logic and Computation, vol. 29, no. 6, pp. 913–931,
2019.

[3] X. Liao, M. Koshimura, K. Nomoto, S. Ueda, Y. Sakurai, and M. Yokoo,
“ Improved WPM Encoding for Coalition Structure Generation under
MC-Nets,” Constraints, vol. 24, no. 1, pp. 25–55, 2019.

[4] S. Ueda, T. Hasegawa, N. Hashimoto, N. Ohta, A. Iwasaki and M.
Yokoo, “Handling negative value rules in MC-net-based coalition struc-
ture generation,” In International Conference on Autonomous Agents
and Multiagent Systems, pp. 795C804, 2012.

[5] X. Liao, M. Koshimura, H. Fujita and R. Hasegawa, “Solving the
coalition structure generation problem with MaxSAT,” In IEEE 24th
International Conference on Tools with Artificial Intelligence, pp.
910C915, 2012.

[6] S. Ueda, A. Iwasaki, V. Conitzer, N. Ohta, Y. Sakurai, M. Yokoo,
“Coalition structure generation in cooperative games with compact
representations,” Autonomous Agents and Multi-Agent Systems, vol.
32, pp. 503-533, 2018.

[7] Le Berre, D., and Parrain, A, “The sat4j library, release 2.2, system de-
scription,” Journal on Satisfiability, Boolean Modeling and Computation,
vol. 7, pp. 59-C64, 2010.

MaxSAT Evaluation 2020: Solver and Benchmark Descriptions, volume B-2020-2 of Department of Computer Science Series of Publications B, University of Helsinki 2020.

46

On the use of Max-SAT in RBAC maintenance:
Description of Benchmarks

Marco Mori∗ and Marco Benedetti†
Bank of Italy

ICT Department, Centro Donato Menichella
Email: ∗marco.mori@bancaditalia.it, †marco.benedetti@bancaditalia.it

Abstract—Many organisations implement a Role-Based Access
Control (RBAC) model to ease the management of permissions
required to access digital resources and to enforce basic security
principles, i.e., “Least Privilege” and “Separation of Duties”. In
this context, periodic technological and business changes, together
with human errors, require a continuous and systematic revision
of the assignment of permissions to users in order to incorporate
missing assignments (exceptions) or to revoke permissions that
were granted by mistake or are no longer required (violations).

This note describes a set of benchmarks which encode such
RBAC maintenance tasks as Weighted Partial Max-SAT (WPMS)
instances, that once solved lead to optimal (w.r.t. metrics defined
on the overall RBAC state) ways of (i) incorporating exceptions,
(ii) excluding violations, and (iii) managing in a single step a set
of multiple exceptions and violations.

A brief descriptions is provided to frame the problem domain
along with details on the generation of the benchmark instances.

I. RBAC MAINTENANCE

RBAC (Role-Based Access Control) model simplifies the
management of permissions by defining roles which include
the permissions required to execute a specific task (1). Users
gain the permissions included in at least one of their assigned
roles. In this context, an RBAC state can be seen as a couple of
Boolean matrices: One representing the assignments of roles
to users and the other representing the assignments of per-
missions to roles. The actual permission-to-user assignments
result from the product of these two matrices.

Various causes may invalidate the set of deployed roles
as described in an RBAC state: Roles may have to be re-
vised to consider missing (exceptions) or revoked (violations)
permission-to-user assignments which may follow either from
technological/business changes or from possible errors.

We consider the RBAC maintenance process described
in (2; 3; 4) to fix single and multiple exceptions and violations
by balancing two conflicting objectives, i.e., (i) optimising
the current RBAC state and (ii) reducing the transition cost
with respect to the original state. In (5) the complete RBAC
maintenance process has been formalised as a Weighted Partial
Max-Sat (WPMS) problem and validated through an extensive
set of experiments based on real-world instances. In (6),
it is described how the WPMS benchmark can optimally
incorporate single exceptions into an input RBAC state (7).
This note extends the benchmark presented in (6) with WPMS
instances aiming at excluding single violations and incorpo-
rating multiple exceptions/violations into a given RBAC state.

II. BENCHMARKS DESCRIPTION

We created our benchmarks starting from four different
RBAC datasets of increasing size. The smallest one is a tiny
permission-to-user assignment matrix representing a simple
organization (SmallComp); the remaining three matrices be-
long to three different datasets available in the role mining
literature (8), namely Domino, University and Firewall1 (see
Table I). In the remainder of this note, we describe the
benchmark instances aiming at managing single exceptions/vi-
olations (Section II-A) and multiple exceptions/violations in
one problem instance (Section II-B).

Dataset Users Permissions Density

SmallComp 11 11 0.207
Domino 79 231 0.039

University 493 56 0.143
Firewall1 365 709 0.123

TABLE I: Original RBAC Datasets.

A. Single exceptions/violations
Starting from each of the four matrices, we generate (i) a

list of randomly selected exceptions to incorporate, (ii) a list
of randomly selected violations to revoke and (iii) an input
RBAC state, created by applying the Fastminer algorithm (9)
to the input matrix (after removing the exceptions).

Given these inputs, we generate a different WPMS instance
for each single exception/violation and for twenty-one distinct
values of the balancing parameter β ∈ [0, 1] sampled at regular
intervals (β close to 0 means “try to remain as close as possible
to the origin state” and β close to 1 means “try to optimize
as much as possible, regardless of the original state”).

Table II.a and II.b show the number of exceptions/violations
included, the values of β, and the characteristics of the Max-
SAT formulas belonging to each dataset.

Naming Convention. We adopt the following naming
convention: Each instance file is named by concatenating
the strings “role” with the name of the dataset it refers
to (“smallcomp” or “domino” or “university” or
“firewall1”) with the value of the parameter β with the
index of the exception. For example, the file named:

“role_domino_0.5_6.cnf”

contains a WPMS instance in DIMACS format that encodes
the problem of incorporating exception number 6 into the
“domino” benchmark using 0.5 as balancing factor.

MaxSAT Evaluation 2020: Solver and Benchmark Descriptions, volume B-2020-2 of Department of Computer Science Series of Publications B, University of Helsinki 2020.

47

(a) Max-SAT encodings: single exceptions

Dataset #Excs #β #V #C #Ch #Cs

SmallComp 12 21 6.860 · 102 2.994 · 103 2.629 · 103 3.650 · 102
Domino 19 21 7.366 · 104 1.448 · 106 1.424 · 106 2.389 · 104

University 10 21 3.238 · 105 2.644 · 106 2.597 · 106 4.782 · 104
Firewall1 32 21 1.912 · 107 1.884 · 108 1.888 · 108 6.236 · 105

(b) Max-SAT encodings: single violations

Dataset #Viols #β #V #C #Ch #Cs

SmallComp 12 21 6.580 · 102 2.936 · 103 2.571 · 103 3.650 · 102
Domino 19 21 7.351 · 104 1.448 · 106 1.424 · 106 2.389 · 104

University 10 21 3.237 · 105 2.644 · 106 2.596 · 106 4.782 · 104
Firewall1 32 21 1.918 · 107 1.884 · 108 1.878 · 108 6.236 · 105

(c) Max-SAT encodings: multiple exceptions/violations

Dataset #Runs #β #V #C #Ch #Cs

SmallComp 10 11 1.246 · 104 4.928 · 104 4.451 · 104 4.774 · 103
Domino 10 11 5.684 · 107 1.117 · 107 1.101 · 107 1.658 · 105

University 10 11 1.764 · 106 1.436 · 107 1.414 · 107 2.169 · 105

TABLE II: Benchmark instances originated from single exceptions (a), single violations (b), and multiple exceptions/violations
(c). #V , #C, #Ch, and #Cs are the number of variables, clauses, hard clauses, and soft clauses in the Max-SAT encoding.

B. Multiple excpetions/violations

We generated a set of WPMS instances meant to fix several
exceptions/violations in one single step, starting from the
initial SmallComp, Domino, and University RBAC matrices.

For each dataset, we adopt a Markov chain model to
generate multiple lists of exceptions and violations. According
to this model, the selection of permissions which are related
to one another is favoured: Either manipulating different
permissions of the same user, or altering the same permission
for different users. Then, for each list of exceptions and
violations, we delete the exceptions from the corresponding
input permission-to-user matrix and we generate an RBAC
state as for the single exception/violation case (Section II-A).

Starting from such input, we generate WPMS instances for
each list of exceptions/violations and for eleven values of the
balancing parameter β ∈ [0, 1] sampled at regular intervals.

Table II.c shows the number of exceptions/violations, the
values of β and the WPMS encoding details for each dataset.

Naming Convention. Each instance is named by concate-
nating the string “role” with the name of the dataset, the
string “multiple”, the value of the balancing parameter
β and, finally, the index of the exception/violation list to
incorporate. For example, the file named:

“role_university_multiple_0.1_7.cnf”

contains a WPMS instance in DIMACS format that encodes
the problem of incorporating exception/violation list number
7 into the “university” benchmark, with β = 0.1.

III. ACKNOWLEDGEMENTS

We thank the original creators of the role-mining datasets
and Ian M. Molloy for providing us with the corresponding
set of standardized domino, university, and firewall1 matrices.

REFERENCES

[1] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chan-
dramouli, “Proposed NIST Standard for Role-Based Access
Control,” ACM Transactions on Information and System Security
(TISSEC), vol. 4, no. 3, pp. 224–274, 2001.

[2] A. Kern, M. Kuhlmann, A. Schaad, and J. Moffett, “Observations
on the Role Life-cycle in the Context of Enterprise Security
Management,” in Proceedings of the 7th ACM Symposium on
Access Control Models and Technologies, ser. SACMAT ’02.
ACM, 2002, pp. 43–51.

[3] H. L. Wachs, “How to succeed with role management and avoid
common pitfalls,” in Gartner Database. Research Document
G00262708. Gartner, Inc., Stamford, CT 06902-7700, U.S., May
2014.

[4] B. Iverson, “Take control of enterprise role management,” in
Gartner Database. Research Document G00262285. Gartner,
Inc., Stamford, CT 06902-7700, U.S., Feb 2015.

[5] M. Benedetti and M. Mori, “On the use of Max-SAT and PDDL
in RBAC maintenance,” Cybersecurity, vol. 2, no. 1, p. 19, Jul
2019.

[6] M. Benedetti and M. Mori, “Parametric RBAC Maintenance
via Max-SAT: Benchmarks description,” in MaxSAT Evaluation
2019: Solver and Benchmark Descriptions. Eds. Fahiem Bac-
chus and Matti Järvisalo and Ruben Martins. Series of Publica-
tions B-2019-2. Department of Computer Science, University of
Helsinki. 2019.

[7] M. Benedetti and M. Mori, “Parametric RBAC Maintenance via
Max-SAT,” in Proceedings of the 23rd ACM on Symposium on
Access Control Models and Technologies, ser. SACMAT ’18.
ACM, 2018, pp. 15–25.

[8] I. Molloy, N. Li, T. Li, Z. Mao, Q. Wang, and J. Lobo,
“Evaluating Role Mining Algorithms,” in Proceedings of the 14th
ACM Symposium on Access Control Models and Technologies.
ACM, 2009, pp. 95–104.

[9] J. Vaidya, V. Atluri, and J. Warner, “Roleminer: Mining Roles
using Subset Enumeration,” in Proceedings of the 13th ACM
Conference on Computer and Communications security. ACM,
2006, pp. 144–153.

48

Automated synthesis of minimal hardware exploits
with Checkmate and MaxSAT Solver

Changjian Zhang
School of Computer Science
Carnegie Mellon University

Pittsburgh, USA
changjiz@andrew.cmu.edu

Ruben Martins
School of Computer Science
Carnegie Mellon University

Pittsburgh, USA
rubenm@cs.cmu.edu

Marijn J.H. Heule
School of Computer Science
Carnegie Mellon University

Pittsburgh, USA
mheule@cs.cmu.edu

Eunsuk Kang
School of Computer Science
Carnegie Mellon University

Pittsburgh, USA
eunsukk@cs.cmu.edu

I. INTRODUCTION

This document provides descriptions for the WCNF in-
stance files submitted to the MaxSAT Evaluation 2020, in-
cluding flush reload min.wcnf, meltdown min.wcnf, and spec-
tre min.wcnf.

II. BACKGROUND

Alloy [1] is a modeling language based on first-order
relational logic, and the Alloy Analyzer, with Kodkod [2] as its
back-end solving engine, can perform fully automated analysis
by bounded model checking. Given a formula and a bound
on the number of atoms in the universe, the Alloy Analyzer
checks whether there exists a model that satisfies the formula
by translating it into a Boolean Satisfiability Problem (SAT
problem).

CheckMate [3] is an automated tool based on Alloy [1]
for synthesizing proof-of-concept exploit code for hardware
security, such as Meltdown [4] and Spectre [5]. It uses “micro-
architecturally happens-before” (µhb) graph [6] to model and
analyze the execution process of micro-operations in a CPU.
In a µhb graph (e.g., Figure 1d), the column refers to the
instructions of one or more computer programs, and the row
refers to the execution stages of an instruction in the CPU.
A node is an event of an instruction at a certain stage, and a
directed line represents the precedence of two events.

Figure 1 shows the overview process of CheckMate. For
a given micro-architecture of a CPU, developers first create
its corresponding Alloy specification, as shown in Figure 1a
and 1b. An attack pattern is represented as a µhb sub-graph
pattern as in Figure 1c. Then, by given the specification of a
CPU and an attack pattern, CheckMate uses Alloy to synthesis
a program (i.e., a µhb graph) which contains the attack pattern,
as shown in Figure 1d and 1e.

In sum, CheckMate reduces the hardware exploit synthesis
problem to a graph synthesis problem. It uses Alloy to model
the problem, and Alloy solves the problem by using a SAT
solver. According to the paper, CheckMate intends to synthe-
size the “smallest” graph representing a security litmus test.
Security litmus tests are the most compact representation of an
exploit program, meaning they contain the minimal number of
operations necessary to produce the exploit pattern of interest
[3].

However, SAT solvers usually do not provide guarantees on
the solution of a problem. Thus, the authors of CheckMate
have to enumerate all the solutions of a problem and use
additional Python programs to process the results. At the same
time, we are working on an extension of Alloy which allows
developers to specify maximality or minimality in their Alloy
problems by translating an Alloy problem into a MaxSAT
problem. With this extension, developers can use Alloy to
find out the optimal solutions to their problems. We use
CheckMate as a case study to evaluate the practicality and
performance of our extension. And flush reload min.wcnf,
meltdown min.wcnf, and spectre min.wcnf are the MaxSAT
problems generated by our extension and CheckMate in order
to synthesis the security litmus tests.

III. DESCRIPTION OF EACH FILE

Each WCNF file corresponds to a problem used in the
original CheckMate evaluation [3] respectively.

flush reload min.wcnf corresponds to the model with
the FLUSH+RELOAD exploit pattern and 4 instruc-
tions as the bound, which should successfully produce
a FLUSH+RELOAD attack. In our evaluation1, SAT4J-
MAXSAT [7] spent 3.89 minutes to solve this problem.

meltdown min.wcnf corresponds to the model with the
FLUSH+RELOAD exploit pattern and 5 instructions as the
bound, which should successfully produce an attack repre-
sentative of the Meltdown attack. In our evaluation, SAT4J-
MAXSAT spent 25.10 minutes to solve this problem.

spectre min.wcnf corresponds to the model with the
FLUSH+RELOAD exploit pattern and 6 instructions as the
bound, which should successfully produce an attack repre-
sentative of the Spectre attack. In our evaluation, SAT4J-
MAXSAT spent 58.75 minutes to solve this problem.

Although we can now produce the minimal exploit programs
by using MaxSAT solvers, CheckMate still has the need to
enumerate all or partial of the solutions because of that a
model may produce several distinct litmus tests. Compared to
enumerating the solutions in an arbitrary order, it might still be
helpful for developers to enumerate the solutions in a particular

1We use a machine with a 6 core, 12 thread, 3.6GHz CPU and 32 GB
memory to conduct the evaluation.

MaxSAT Evaluation 2020: Solver and Benchmark Descriptions, volume B-2020-2 of Department of Computer Science Series of Publications B, University of Helsinki 2020.

49

(a) µarch of a CPU (b) Alloy spec of (a) (c) FLUSH+RELOAD µhb pattern

(d) Synthesized µhb graph containing the attack pattern (e) The µhb sub-graph in (d) corresponding to the attack pattern
in (c)

Fig. 1: Overview of CheckMate [3]

order. Especially when there are too many possible solutions,
developers may be able to find enough useful information
from the first few iterations. However, in our evaluation, the
performance for SAT4J-MAXSAT to enumerate solutions is
extremely bad, especially it cannot find all the solutions for the
last two problems, meltdown min.wcnf and spectre min.wcnf,
after 24 hours.

ACKNOWLEDGMENT

Special thanks to Caroline Trippel for engaging with us for
providing insights on the current challenges of CheckMate.

REFERENCES

[1] D. Jackson, Software Abstractions: logic, language, and analysis. MIT
press, 2012.

[2] E. Torlak and D. Jackson, “Kodkod: A relational model finder,” in
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2007, pp. 632–647.

[3] C. Trippel, D. Lustig, and M. Martonosi, “CheckMate: Automated
synthesis of hardware exploits and security litmus tests,” Proceedings
of the Annual International Symposium on Microarchitecture, MICRO,
vol. 2018-Octob, pp. 947–960, 2018.

[4] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard,
P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown,” arXiv
preprint arXiv:1801.01207, 2018.

[5] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher et al., “Spectre attacks: Exploiting
speculative execution,” in 2019 IEEE Symposium on Security and Privacy
(SP). IEEE, 2019, pp. 1–19.

[6] D. Lustig, M. Pellauer, and M. Martonosi, “Pipecheck: Specifying and
verifying microarchitectural enforcement of memory consistency models,”
in 2014 47th Annual IEEE/ACM International Symposium on Microar-
chitecture. IEEE, 2014, pp. 635–646.

[7] D. Le Berre and A. Parrain, “The sat4j library, release 2.2, system de-
scription,” Journal on Satisfiability, Boolean Modeling and Computation,
vol. 7, pp. 59–64, 2010.

50

MaxSAT Benchmarks for Finding Most Compatible
Phylogenetic Trees over Multi-State Characters

Tuukka Korhonen, Jeremias Berg, Matti Järvisalo
HIIT, Department of Computer Science, University of Helsinki, Finland

The benchmark set contains MaxSAT instances related to
the NP-hard maximum compatibility problem of phylogenetic
characters. In this problem the input is a set of characters
(attributes) on a set of taxa (species). The task is to find the
largest subset of characters that admits a perfect phylogeny
on the taxa. A set of characters on a set of taxa admits a
perfect phylogeny if there is an evolutionary tree describing
the evolution of the taxa so that each character state evolves
only once [9].

The maximum compatibility problem can be formulated in
terms of triangulations of colored graphs [1]. Recently [6] a
state-of-the-art hybrid approach combining MaxSAT and the
so called Bouchitté-Todinca algorithm [2], [3] has been pro-
posed for solving the problem. In short, the hybrid approach
works by casting the maximum compatibility problem as the
problem of computing a specific minimal triangulation of a
colored graph G. The triangulation problem is solved by first
enumerating the so called potential maximal cliques (PMCs) of
G and then using them in order to form a MaxSAT instance F
s.t. an optimal solution to F can be mapped into an optimal
solution of the maximal compatibility problem. After some
very recent improvements to PMC enumeration [5], currently
the bottleneck of this hybrid approach is solving the MaxSAT
instance. Hence improvements in MaxSAT solver technology
on these benchmarks will directly translate to improvements
in the state-of-the-art in solving maximum compatibility.

I. PROBLEM DESCRIPTION

For more discussion on the maximum compatibility problem
itself, we direct the reader to [9]. Here we focus on describing
the MaxSAT encoding for solving the formulation of the prob-
lem in terms of minimal triangulations of undirected graphs.
We assume familiarity with propositional logic, Boolean sat-
isfiability and partial maximum satisfiability.

An undirected graph G consists of a set V (G) of vertices
and a set E(G) of edges. The graph G is chordal if every
cycle of length at least 4 has a chord, i.e. an edge joining two
non-adjacent vertices. A chordal graph H is a triangulation
of G if V (H) = V (G) and E(G) ⊆ E(H). H is a minimal
triangulation of G if no triangulation H ′ of G has E(H ′) ⊂
E(H). We denote the set of minimal triangulations of G by
MT(G). The fill edges of a triangulation H ∈ MT(G) are all
edges in the set E(H)\E(G). A set S ⊂ V (G) is a clique of
G if G contains an edge between each pair of vertices in S and
maximal if no S′ ⊃ S is a clique (of G). A set Ω ⊆ V (G) is
a potential maximal clique of G if there exists a H ∈ MT(G)

such that Ω is a maximal clique of H . We denote the set of
PMCs of G by Π(G). A coloring c : V (G) → N of G is a
function that assigns a color (represented by a natural number)
to each node in G s.t. no adjacent vertices of G are assigned
the same color.

The MaxSAT encoding used to form the benchmarks makes
use of the fact that, informally speaking, every H ∈ MT(G)
can be formed by i) selecting a subset Π(G)s ⊆ Π(G) that
satisfies some criteria, and ii) completing each Ω ∈ Π(G)s into
a clique, i.e. adding an edge between each pair u, v ∈ Ω [2].

With this, the problem that these MaxSAT benchmarks
focus on can be stated as follows. Given an input graph G, a
coloring c : V (G) → N of G and Π(G), compute a minimal
triangulation H ′ ∈ MT(G) that minimises the number of
colors with fill edges between them, i.e.

H ′ ∈ arg min
H∈MT(G)

|{c(u) | {u, v} ∈ E(H)\E(G)∧c(u) = c(v)}|.

II. MAXSAT ENCODING

Given a graph G, the set Π(G) and a coloring c : V (G)→ N
the encoding used to make these benchmarks forms a MaxSAT
instance F s.t. each solution τ to F corresponds to a minimal
triangulation Hτ ∈ MT(G) and the graph Hτo corresponding
to an optimal solution τo of F minimizes the number of fill
edges added between nodes of the same color.

In more detail, the central variables of F are Yc′ for each
color c′ and PΩ for each Ω ∈ Π(G). Given a solution τ to F
the Hτ is formed by completing each Ω for which τ(PΩ) = 1
into a clique. The hard clauses of F ensure that Hτ ∈ MT(G)
and that τ(Yc) = 0 if Hτ contains an edge between two nodes
both having the color c. The soft clauses of F encode the
optimisation criterion by including a soft clause of form (Yc)
for each color c that is satisfied only if Hτ doesn’t include
any fill-edges between nodes that both have the color c.

We note that the number of potential maximal cliques can
be exponential in the number of vertices of the graph, and
therefore the encoding can have an exponential size compared
to the original input. However, this does not make solving
the encoding trivial: In [6] it was shown that the maximum
compatibility problem remains NP-hard even in the case when
the encoding is considered to be a part of the input.

More details on the encoding can be found in [6]. An
interesting aspect of the benchmarks in the context of the
Evaluation is that they are all Horn MaxSAT [7].

MaxSAT Evaluation 2020: Solver and Benchmark Descriptions, volume B-2020-2 of Department of Computer Science Series of Publications B, University of Helsinki 2020.

51

III. BENCHMARK DESCRIPTION

This benchmark set contains 90 MaxSAT benchmarks
based on graphs experimented on in [6], [5]. Out of
these 89 are synthetic, generated by the ms generator
(MS XXX YY ZZ-T.WCNF) [4] and one corresponds to an
application in Indo-European languages (INDO.WCNF) [8].
The instances generated with the ms generator each have an
equal number of taxa and characters (XXX), which ranges
between 50 and 400 in the instances. This is also the number
of soft clauses in these instances. The number of character
states (YY) ranges between 4 and 40 and the recombination
parameter (ZZ/10) ranges between 1 and 4.

The instances are quite large, the number of clauses in them
ranges between 5774045 and 73789633 and the number of
variables between 121142 and 3343513. In spite of their size,
we expect at least 60 of them to be solvable within a few
hours by current state-of-the-art MaxSAT solvers.

REFERENCES

[1] M. Bordewich, K. T. Huber, and C. Semple, “Identifying phylogenetic
trees,” Discrete Mathematics, vol. 300, no. 1-3, pp. 30–43, 2005.

[2] V. Bouchitté and I. Todinca, “Treewidth and minimum fill-in: Grouping
the minimal separators,” SIAM Journal on Computing, vol. 31, no. 1, pp.
212–232, 2001.

[3] ——, “Listing all potential maximal cliques of a graph,” Theoretical
Computer Science, vol. 276, no. 1-2, pp. 17–32, 2002.

[4] R. R. Hudson, “Generating samples under a Wright-Fisher neutral model
of genetic variation,” Bioinformatics, vol. 18, no. 2, pp. 337–338, 2002.

[5] T. Korhonen, “Finding optimal tree decompositions,” Master’s thesis,
University of Helsinki, https://ethesis.helsinki.fi/en/, June 2020.

[6] T. Korhonen and M. Järvisalo, “Finding most compatible phylogenetic
trees over multi-state characters,” in Proceedings of the 34th AAAI
Conference on Artificial Intelligence. AAAI Press, 2020, pp. 1544–
1551.

[7] J. Marques-Silva, A. Ignatiev, and A. Morgado, “Horn maximum sat-
isfiability: Reductions, algorithms and applications,” in Proceedings of
the 18th EPIA Conference on Artificial Intelligence, ser. Lecture Notes
in Computer Science, E. C. Oliveira, J. Gama, Z. A. Vale, and H. L.
Cardoso, Eds., vol. 10423. Springer, 2017, pp. 681–694.

[8] D. Ringe, T. Warnow, and A. Taylor, “Indo-European and computational
cladistics,” Transactions of the Philological Society, vol. 100, no. 1, pp.
59–129, 2002.

[9] C. Semple and M. Steel, Phylogenetics. Oxford University Press, 2003.

52

Railway Timetabling Benchmarks
Julian Reisch

Synoptics GmbH Dresden, Germany
julian.reisch@synoptics.de

Peter Großmann
Synoptics GmbH Dresden, Germany

peter.grossmann@synoptics.de

Abstract—We describe the railway timetabling benchmark
instances submitted for the MaxSAT competition 2020. The in-
stances are encodings from the real-world application of railway
timetabling. Each instance encodes a maximum independent set
(MIS) problem where the vertices of the graph correspond to slots
of trains and are joint by edges if the slots have conflicts. Then,
a solution of the MIS is a conflict-free timetable. The slots are
constructed as columns during a column generation procedure.

Index Terms—MaxSAT, benchmarks, railway timetabling

I. PROBLEM DESCRIPTION

We study the problem of scheduling all freight trains in
a railway network simultaneously. That is, for each train,
construct a slot such that no two slots of different trains have
a conflict [2]. As there are numerous possible slots for each
train, we apply a (heuristic) column generation approach where
iteratively, new slots for each train are constructed [1], [3].
In each iteration of the column generation, the set of slots
for each train increases and pairs of slots can have a conflict
meaning that at most one of them can be part of a solution.
The task is to assign to as many trains as possible one of their
slots such that no two chosen slots of different trains have a
conflict. Moreover, in the weighted case, each slot has a weight
that reflects the ratio of the slot’s traveling time to the optimal
traveling time of the train. Then, the task is to assign at most
one slot per train such that the sum of weights is maximized
and no two conflicting slots are assigned.

II. ENCODING

In each iteration of the column generation approach, we
have an undirected graph G = (V,E) whose vertices corre-
spond to slots and two vertices are joint by an edge either if the
two slots belong to the same train or if they have a conflict. In
the weighted case, each vertex has a weight. The task is to find
an independent set of maximum size (or weight, respectively)
in G. Therefore, we encode each edge {v, w} as a hard clause
¬v ∨ ¬w and each vertex as a soft clause v which yields
an (weighted) MaxSAT instance where v = true translates
to vertex v being in the independent set. Then, an optimal
solution of the (weighted) MaxSAT instance is an optimal
solution of the (weighted) MIS.

III. INSTANCES

In Table I, we see the instances and bounds on their
optimal solution, from three runs of the column generation,
one for a subnetwork, one for single day and one for multiday
timetabling. The value of an optimal solution is given by

the gap which is the sum (of weights) of unsatisfied soft
clauses. The indices indicate the iteration number of the
column generation. Hence, there are at most k many slots
for each train in the k-th iteration. Table II shows the bounds
on the optimal solution on the same instances where the slots
are weighted. The lower and upper bounds on the optimal
solutions were taken from an LP-relaxation by Gurobi and
our best known solution, respectively.

TABLE I
SIZES OF UNWEIGHTED INSTANCES AND BOUNDS ON OPTIMAL

SOLUTIONS.

Graph
Instance

#trains #vars #clauses lower
bound

upper
bound

Subnetwork7 2327 10736 104111 0 6393
Subnetwork9 2327 12317 155443 0 7903
SingleDay2 5359 10655 46641 0 6150
SingleDay3 5359 14175 106732 0 9448
SingleDay15 5359 45761 1001983 0 25507
SingleDay37 5359 87039 11150309 0 82255
MultiDay0 56558 113116 340362 0 27643
MultiDay1 56558 169572 1108668 0 73903
MultiDay2 56558 215657 2312475 0 116350
MultiDay3 56558 253930 3854064 0 152915
MultiDay4 56558 287405 5697062 0 185424

TABLE II
BOUNDS ON OPTIMAL SOLUTIONS OF WEIGHTED INSTANCES.

Graph Instance lower
bound

upper
bound

Subnetwork7 weighted 29998 43247
Subnetwork9 weighted 64321 82885
SingleDay2 weighted 0 12300
SingleDay3 weighted 17571 35474
SingleDay15 weighted 3450793 3647369
SingleDay37 weighted 43209438 44038586
MultiDay0 weighted 0 27643
MultiDay1 weighted 0 147806
MultiDay2 weighted 230156 460028
MultiDay3 weighted 690890 1053071
MultiDay4 weighted 1493000 2018469

REFERENCES

[1] F. Dahms, D. Pöhle, A.-L. Frank, S. Kühn, ”Transforming automatic
scheduling in a working application for a railway infrastructure man-
ager”, Rail Norrköping Conference, 2019

[2] K. Nachtigall, J. Opitz, ”Modelling and solving a train path assignment
model”, in Proceedings of the International Conference on Operations
Research, 2014

[3] J. Reisch, P. Großmann, D. Pöhle, N. Kliewer, ”Deriving application-
speific column generation principles for automatic freight train
timetabling”, 3rd Conference on the EURO Working Group on the
Practice of Operational Research, 2020

MaxSAT Evaluation 2020: Solver and Benchmark Descriptions, volume B-2020-2 of Department of Computer Science Series of Publications B, University of Helsinki 2020.

53

Description of Benchmarks on Single-Machine
Scheduling

Xiaojuan Liao
Chengdu University of Technology

Chengdu, China
liao xiaojuan@126.com

Miyuki Koshimura
Kyushu University
Fukuoka, Japan

koshi@inf.kyushu-u.ac.jp

I. PROBLEM DESCRIPTION

In real-time systems where tasks have timing requirements,
once the workload exceeds the system’s capacity, missed
deadlines may incur system overload. In this situation, finding
optimal scheduling that maximizes the number of on-time
tasks is critical in both theory and practice. A real-time system
is comprised of a finite set of real-time tasks {τ1, . . . , τn} that
are waiting to be executed. All the tasks request a uniprocessor
for execution when they arrive in the system. Each task τj

can be represented by a 3-tuple τj = (rj , pj , dj), where j is
a task’s index; rj is the release time, i.e., the earliest time at
which τj can start; pj is the required processing time, and dj

is the deadline, i.e., the time by which τj must be completed.
Naturally, rj +pj ≤ dj . Each task is divided into several non-
divisible fragments, between which preemption may occur.
Tasks may have dependency relations. If task τj depends on
τi, then τj can only start after τi is completed. If a task is
finished before its deadline, it is called on-time; otherwise, it
is late and worthless to the system. The scheduling objective is
to maximize the number of on-time tasks in real-time systems.

Formulating the single-machine scheduling problem as par-
tial MaxSAT has been shown to be efficient [1]. In the
MaxSAT formulation, scheduling features are encoded as
hard clauses and the constraint of meeting task deadlines
are considered to be soft. An off-the-shelf MaxSAT solver is
employed to satisfy as many deadlines as possible, provided
that all the hard clauses are met.

II. PARAMETERS USED FOR GENERATING THE INSTANCES

The method of creating scheduling problems is summarised
as follows [2]. Tasks’ release times are determined according
to uniform distribution with arriving rate λ, which represents
the number of tasks that arrive per 100 time units. Clearly, a
larger λ indicates more tasks arriving in the system during a
specific period of time, thus leading to more serious overload.
For each task τj , the processing time pj and the number
of fragments in τj are given. The value of deadline dj is
calculated by the formula dj = rj + sfj ∗pj , where sfj is the
slack factor that reflects the tightness of the deadline, randomly
ranging from 1 to 4. The number of rule pairs with dependency
relations was set 10% to the total number of tasks.

III. FILE NAME CONVENTION

We generated four different types of instances. For each
type, 100 problem instances were generated. The parameter
setting of each type is given as follows.

(1) Instances in folder ⟨lam20 − n500 − p13 − frag3⟩1

• lam20: lambda = 20.
• n500: The number of tasks to be scheduled is 500.
• p13: The processing time of each task is randomly

generated from 1 to 13.
• frag3: The number of non-preemptive fragments of

each task is randomly generated from 1 to 3.
(2) Instances in folder ⟨lam20 − n100 − p13 − frag12⟩:

• lam20: lambda = 20.
• n100: The number of tasks to be scheduled is 100.
• p13: The processing time of each task is randomly

generated from 1 to 13.
• frag12: The number of non-preemptive fragments

of each task is randomly generated from 1 to 12.
(3) Instances in folder ⟨lam100 − n100 − p13 − frag3⟩:

• lam100: lambda = 100.
• n100: The number of tasks to be scheduled is 100.
• p13: The processing time of each task is randomly

generated from 1 to 13.
• frag3: The number of non-preemptive fragments of

each task is randomly generated from 1 to 3.
(4) Instances in folder ⟨lam20 − n100 − p100 − frag3⟩:

• lam20: lambda = 20.
• n100: The number of tasks to be scheduled is 100.
• p100: The processing time of each task is randomly

generated from 1 to 100.
• frag3: The number of non-preemptive fragments of

each task is randomly generated from 1 to 3.

REFERENCES

[1] X. Liao, H. Zhang, M. Koshimura, R. Huang, and W. Yu, “Maximum
Satisfiability Formulation for Optimal Scheduling in Overloaded Real-
Time Systems,” Pacific Rim International Conference on Artificial
Intelligence, pp. 618–631, 2019.

[2] Z. Chen, H. Zhang, Y. Tan, and Y. Lim, “SMT-based scheduling for
overloaded real-time systems,” IEICE Transactions on Informations and
Systems, vol. E100-D, no. 5, pp. 1055–1066, 2017.

1This parameter setting is consistent with previous work [1].

MaxSAT Evaluation 2020: Solver and Benchmark Descriptions, volume B-2020-2 of Department of Computer Science Series of Publications B, University of Helsinki 2020.

54

Datasets of Networks for Benchmarking MaxSAT
Evaluation 2020

Said Jabbour
CRIL - CNRS UMR 8188

Université d’Artois
France

jabbour@cril.fr

Nizar Mhadhbi
CRIL - CNRS UMR 8188

Université d’Artois
France

mhadhbi@cril.fr

Badran Raddaoui
SAMOVAR, Télécom SudParis
Institut Polythechnique de Paris

France
badran.raddaoui@telecom-sudparis.eu

Lakhdar Sais
CRIL - CNRS UMR 8188

Université d’Artois
France

sais@cril.fr

The analysis of large networks has become very usefull in a
wide range of applications including social sciences, biology
and complex systems. This paper describes a set of instances of
networks for benchmarking MaxSAT Evaluation 2020. These
datasets were used in [1]–[3]. All instances provided here are
wcnf formulae encoded in DIMACS wcnf format.

Amazon:
This instance represents a network that was collected by
crawling Amazon website. It is based on Customers Who
Bought This Item Also Bought feature of the Amazon website.
If a product i is frequently co-purchased with product j, the
graph contains an edge from i to j.

DBLP:
The DBLP computer science bibliography provides a com-
prehensive list of research papers in computer science. This
instance represents a co-authorship network where two authors
are connected if they publish at least one paper together.

Youtube:
Youtube is a video-sharing web site that includes a social
network. This instance represents the Youtube social network
where users form friendship each other and users can create
groups which other users can join.

Railway:
This instance represents the Indian Railway network that
consists of nodes representing stations, where two stations a
and b are connected by an edge if there exists at least one
train-route such that both a and b are scheduled halts on that
route.

Football:
This instance represents the network of American football
games between Division IA colleges during regular season Fall
of 2000. The vertices in the graph represent teams (identified
by their college names), and edges represent regular-season
games between the two teams they connect.

Karate:
This instance represents the karate social network where the
data was collected from the members of a university karate
club by Wayne Zachary in 1977. Each node represents a

member of the club, and each edge represents a tie between
two members of the club.

RiskMap:
This instance represents a graph which is a map of the popular
strategy board game,Risk. It is a political map of the Earth,
divided into 42 territories, which are grouped into 6 continents.
Therefore, the graph is comprised of 42 vertices and 83 edges.

Politics Book:
This instances describes a network where nodes represent
books about USpolitics sold by the online bookseller Ama-
zon.com while edges represent frequent co-purchasing of
books by the samebuyers on Amazon.

REFERENCES

[1] S. Jabbour, N. Mahdhbi, B. Raddaoui, and L. Sais, “Triangle-Driven
Community Detection in Large Graphs Using Propositional Satisfia-
bility,” 32nd IEEE International Conference on Advanced Information
Networking and Applications. pp. 437–444, 2018.

[2] S. Jabbour, N. Mahdhbi, B. Raddaoui, and L. Sais, “Detecting Highly
Overlapping Community Structure by Model-based Maximal Clique
Expansion,” IEEE International Conference on Big Data. pp. 1031–1036,
2018.

[3] S. Jabbour, N. Mahdhbi, B. Raddaoui, and L. Sais, “SAT-based models
for overlapping community detection in networks,” Computing. pp.
1275–1299, 2020.

MaxSAT Evaluation 2020: Solver and Benchmark Descriptions, volume B-2020-2 of Department of Computer Science Series of Publications B, University of Helsinki 2020.

55

Rail: Benchmark Description
1st Zhendong Lei

State Key Laboratory of Computer Science
Institute of Software, Chinese Academy of Sciences

School of Computer Science and Technology
University of Chinese Academy of Sciences

Beijing, China
leizd@ios.ac.cn

2nd Shaowei Cai
State Key Laboratory of Computer Science

Institute of Software, Chinese Academy of Sciences
School of Computer Science and Technology
University of Chinese Academy of Sciences

Beijing, China
caisw@ios.ac.cn

Abstract—In this document, we briefly describe the benchmark
Rail submitted in MaxSAT Evaluation 2020.

I. PROBLEM DOMAIN

The Set Covering Problem (SCP) are NP-hard and have
many real world applications. Given an universal set X and a
set Y which contains many subsets of X with ∪∀y∈Y = X .
Each element in Y is associated with a weight w(y) and the
goal is to find a set F ⊆ Y of the smallest total weight but
still contains all elements in X , that is, ∪∀y∈F = X . We use
U = (X,Y,W) to denote a SCP instance.

II. BENCHMARK DESCRIPTION

The benchmark Rail contains real-world weighted SCP
instances that arise from an application in Italian railways.
Rail instances are encoded into Weighted Partail MaxSAT [1]
which have two significant features:
• Hard clauses only contain positive literals.
• Soft clauses are unit clauses which only contain a nega-

tive literal.
The file name convention of each instance is “rail” plus

a number n where n is the number of hard clauses of each
instance, e.g. “rail2536.wcnf” (2536 is the number of hard
clauses of this instance).

REFERENCES

[1] Z. Lei and S. Cai, “Solving set cover and dominating set via maxi-
mum satisfiability,” in The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of
Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium
on Educational Advances in Artificial Intelligence, EAAI 2020, New York,
NY, USA, February 7-12, 2020, pp. 1569–1576, AAAI Press, 2020.

MaxSAT Evaluation 2020: Solver and Benchmark Descriptions, volume B-2020-2 of Department of Computer Science Series of Publications B, University of Helsinki 2020.

56

STS: Benchmark Description
1st Zhendong Lei

State Key Laboratory of Computer Science
Institute of Software, Chinese Academy of Sciences

School of Computer Science and Technology
University of Chinese Academy of Sciences

Beijing, China
leizd@ios.ac.cn

2nd Shaowei Cai
State Key Laboratory of Computer Science

Institute of Software, Chinese Academy of Sciences
School of Computer Science and Technology
University of Chinese Academy of Sciences

Beijing, China
caisw@ios.ac.cn

Abstract—In this document, we briefly describe the benchmark
STS submitted in MaxSAT Evaluation 2020.

I. PROBLEM DOMAIN

The Set Covering Problem (SCP) are NP-hard and have
many real world applications. Given an universal set X and a
set Y which contains many subsets of X with ∪∀y∈Y = X .
Each element in Y is associated with a weight w(y) and the
goal is to find a set F ⊆ Y of the smallest total weight but
still contains all elements in X , that is, ∪∀y∈F = X . We use
U = (X,Y,W) to denote a SCP instance.

II. BENCHMARK DESCRIPTION

The benchmark (STS) which is from Steiner Triple Sys-
tems, contains unweighted SCP instances. STS instances are
encoded into unweighted Partail MaxSAT [1] which have two
significant features:
• Hard clauses only contain positive literals.
• Soft clauses are unit clauses which only contain a nega-

tive literal.
The file name convention of each instance is “data” plus a

number n where n is the number of variables of each instance,
e.g. “data.135.wcnf” (135 is the number of variables of this
instance).

REFERENCES

[1] Z. Lei and S. Cai, “Solving set cover and dominating set via maxi-
mum satisfiability,” in The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of
Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium
on Educational Advances in Artificial Intelligence, EAAI 2020, New York,
NY, USA, February 7-12, 2020, pp. 1569–1576, AAAI Press, 2020.

MaxSAT Evaluation 2020: Solver and Benchmark Descriptions, volume B-2020-2 of Department of Computer Science Series of Publications B, University of Helsinki 2020.

57

Program disambiguation using MaxSAT
Daniel Ramos∗, Ines Lynce∗, Vasco Manquinho∗, and Ruben Martins†
∗ INESC-ID/Instituto Superior Técnico, Universidade de Lisboa, Portugal

{drr,ines,vmm}@sat.inesc-id.pt
† Carnegie Mellon University, USA

rubenm@cs.cmu.edu

I. INTRODUCTION

Programming-by-example [1] (PBE) is a field of program
synthesis that has gained increasing interest in recent years.
One of the goals of PBE is to allow people with little
programming knowledge to automate tedious tasks without
having to write programs. The idea is of PBE simple: the
user specifies his intent using a set of input-output examples,
and the program synthesizer searches for a program that maps
the inputs into the outputs.

One major concern in PBE is that specifying user-intent
through input-output examples usually leads to ambiguity.
In other words, there might be multiple non-equivalent pro-
grams that satisfy the input-output examples the user provides.
Moreover, these programs can behave very differently when
provided with a different set of inputs. In the worst-case, the
programs might only produce the correct output for the user-
provided input-output examples. To ascertain that program
synthesizers do not return spurious programs to the user,
we propose two user-interaction models to disambiguate the
programs that synthesizers find throughout the search process
[2]. To minimize the number of user interactions, we use an
unweighted MaxSAT formulation.

II. BENCHMARK DESCRIPTION

To disambiguate the programs generated by synthesizers, we
propose two interaction models: OPTIONS (based on multiple-
choice questions), and YES/NO (based on yes/no questions).
In both interaction models, our goal is to disambiguate the
programs while minimizing the number user interactions.

A. OPTIONS Interaction Model

In the OPTIONS interaction model, in order to minimize the
number of interactions, the goal is to find a small input such
that all programs provide a different output. Thus, in each
interaction, the user is asked to pick the correct output for a
given input.

Given a set of n programs P1,P2, . . . ,Pn, we start by
encoding the symbolic representation of all programs in SAT:

φP1
∧ . . . ∧ φPn

(1)

We also force the inputs of the programs to be the same:

∀i,j∈{1..n},i<j : Ii = Ij (2)

Subsequently, for each pair of programs Pi and Pj , we
create a Boolean variable bij such that bij is true if and only
if Pi and Pj produce the same output:

∀i,j∈{1..n},i<j : (oi = oj)⇔ (bij) (3)

Finally, we add to the formula a soft unit clause ¬bij for
every variable bij . The optimal solution to this formula corre-
sponds to the input that maximizes the pair-wise differences
between the programs P1,P2, . . . ,Pn.

B. YES/NO Interaction Model
In the YES/NO interaction model, the goal is to identify

a small input such that the programs are split in two evenly
sized sets A and B according to the following rules:

1) every program must be in either set A or B;
2) if two programs output the same, then they must be in

the same set.
3) if two programs produce different outputs, at least one

of them must be in set B.
After we generate such input, we can simply ask the user if
the output of the desired program corresponds to the output
of the programs in A. If it is, we can discard all programs in
B, otherwise we discard all programs in A.

Similarly to the OPTIONS model, we start by encoding the
symbolic representation of the n programs P1,P2, . . . ,Pn in
SAT. We force the programs’ inputs to be equal, and create
Boolean variables bij such that bij is true if and only if Pi

and Pj output the same:

φP1
∧ . . . ∧ φPn

(4)
∀i,j∈{1..n},i<j : Ii = Ij (5)
∀i,j∈{1..n},i<j : (oi = oj)⇔ (bij) (6)

Additionally, for each program Pi, we create two Boolean
variables pAi and pBi , denoting if program Pi belongs to either
set A (pAi is true) or B (pBi is true). According to the rules
previously discussed, each program must be in either A and
B, thus we add the following constraints:

∀i∈{1..n} : (pAi + pBi = 1) (7)

Furthermore, if two programs output the same, they must be
in the same set. Otherwise, if two programs produce different
outputs, at least one of them must be in B:

∀i,j∈{1..n},i<j : (bij)⇒
(
(pAi ∧ pAj) ∨ (pBi ∧ pBj)

)
(8)

∀i,j∈{1..n},i<j : (¬bij)⇒ (pBi ∨ pBj) (9)

MaxSAT Evaluation 2020: Solver and Benchmark Descriptions, volume B-2020-2 of Department of Computer Science Series of Publications B, University of Helsinki 2020.

58

Finally, our formulation is to find an input that evenly
assigns the programs to the two sets. Thus, we add a set of soft
constraints corresponding to the minimization of the following
absolute value: ∣∣∣∣∣

n∑

i=1

pAi −
n∑

i=1

pBi

∣∣∣∣∣ (10)

III. DATASET DESCRIPTION

Our dataset contains 195 benchmarks from real disam-
biguation tasks. From the 195 benchmarks, 58 are formulas
generated for OPTIONS interactions, and the remaining 137
benchmarks are from YES/NO interactions.

The benchmarks correspond to interactions in the domain
of table transformations. Thus, the optimal solution to each
benchmark is an input table that produces the best possible
user-interaction for the respective model. To make the in-
teractions user-friendly, we bounded the number of rows of
the possible input tables to 5. The benchmarks have different
sizes and levels of difficulty: in some benchmarks we try to
disambiguate as many as 10 programs, whereas in others we
only need to distinguish between 2 programs.

IV. ACKNOWLEDGEMENTS

This work was supported by national funds through FCT,
Fundação para a Ciência e a Tecnologia, under projects
UIDB/50021/2020, DSAIPA/AI/0044/2018 and project ANI
045917 financed by FEDER and FCT.

REFERENCES

[1] Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. Program syn-
thesis. Found. Trends Program. Lang., 4(1-2):1–119, 2017.

[2] Daniel Ramos, Jorge Pereira, Ines Lynce, Vasco Manquinho, and Ruben
Martins. Unchartit: An interactive framework for program recovery from
charts. Manuscript submitted for publication.

59

MSE20 Benchmark: The inference of tumor
evolutionary history from single-cell DNA

sequencing data
Farid Rashidi Mehrabadi

Cancer Data Science Laboratory
Center for Cancer Research

National Cancer Institute
National Institutes of Health

Bethesda, USA
farid.rashidimehrabadi@nih.gov

Salem Malikić
Department of Computer Science

Indiana University
Bloomington, USA

salemmalikic05@gmail.com

S. Cenk Sahinalp
Cancer Data Science Laboratory

Center for Cancer Research
National Cancer Institute

National Institutes of Health
Bethesda, USA

cenk.sahinalp@nih.gov

I. INTRODUCTION

Single-cell sequencing (SCS) of DNA yields high resolution
data for studying a history of tumor evolution. However,
due to elevated noise rates present in the available SCS
datasets, inferring tumor evolutionary history from SCS data
is not a straightforward task and requires the development
of sophisticated computational tools. In [1], given a binary
genotype matrix obtained from SCS data of some tumor, the
search for the most likely tree of tumor evolution is performed
in the space of mutation trees by the use of Markov chain
Monte Carlo based approach. In [2], we show that this problem
can also be expressed as an instance of Constraint Satisfaction
Programming and solved deterministically by utilizing the
available CSP solvers. Here we present the formulation from
[2] and provide 400 problem instances of varying difficulty.

II. PROBLEM OVERVIEW

We assume that the input is given in the form of a ternary
genotype matrix I with n rows (corresponding to cells) and m
columns (corresponding to mutations). The set of values that
Ii,j can take consists of 0, 1 and ?. These values represent the
status of mutation j in cell i as inferred by mutation calling
from raw SCS data. Ii,j = 0 indicates absence of mutation j in
cell i, whereas Ii,j = 1 indicates its presence. In some cases,
we have insufficient information to call any of the former
two states and set Ii,j to ? (these are also known as missing
entries). Due to technical limitations of the sequencing process
and imperfect mutation calling, the matrix I usually contains
false negative mutation calls, typically at the rate between 0.10
and 0.30 (i.e., between 10% and 30%). In addition, some false
positive mutation calls might also be present, but usually at a
lower rate (< 0.01).

Given the observed matrix I , our goal is to infer the most
likely tree of evolution of the sequenced tumor. In [2] we show
that finding the optimal tree can be reduced to search in the

space of conflict-free matrices, which consists of all binary
matrices X of size n×m such that∣∣∣∣∣∣

Xi,a Xi,b

Xj,a Xj,b

Xh,a Xh,b

∣∣∣∣∣∣
6=

∣∣∣∣∣∣

0 1
1 0
1 1

∣∣∣∣∣∣
.

for each triplet of rows (i, j, h) and each pair of columns
(a, b). More precisely, we are looking for conflict free matrix
Y for which P (I | Y) is maximized, with P (I | Y) defined
as follows

P (I | Y) =
∏

(i,j)∈S
P (Ii,j | Yi,j) (1)

where S is set of all pairs of integers (i, j) such that 1 ≤ i ≤ n,
1 ≤ j ≤ m and Ii,j ∈ {0, 1}. Individual terms P (Ii,j | Yi,j)
are computed according to the following scoring scheme

P (Ii,j = 0 | Yi,j = 0) = (1− α)
P (Ii,j = 0 | Yi,j = 1) = β

P (Ii,j = 1 | Yi,j = 0) = α

P (Ii,j = 1 | Yi,j = 1) = (1− β). (2)

where α and β denote the false positive and false negative
error rates of the SCS data and are given as input parameters.

III. WMAX-SAT FORMULATION

We will now express the problem presented in the previous
section as an instance of wMax-SAT. Observe first that (2) can
be rewritten in its equivalent form

P (Ii,j = 0 | Yi,j) = β ·
(
1− α
β

)1−Yi,j

,

P (Ii,j = 1 | Yi,j) = α ·
(
1− β
α

)Yi,j

. (3)

Now, for each entry of the matrix Ii,j we declare matching
Boolean variable Yi,j . For these entries of Ii,j that are equal

MaxSAT Evaluation 2020: Solver and Benchmark Descriptions, volume B-2020-2 of Department of Computer Science Series of Publications B, University of Helsinki 2020.

60

to 0 we also declare Boolean variables Zi,j and add hard
constraint which ensures that Zi,j is negation of Yi,j . An
example of such constraint is

(Yi,j ∨ Zi,j) ∧ (¬Yi,j ∨ ¬Zi,j) .
Note that maximizing P (I | Y) is equivalent to maximizing

log(P (I | Y)). Here, we assume that each log is taken
with base 10. Combining this with equations (1) and (3)
and dropping constant terms we get that this maximization
is equivalent to maximizing the weight of the following “soft”
constraints:

if Ii,j = 0 weight for Zi,j is: log
1− α
β

if Ii,j = 1 weight for Yi,j is: log
1− β
α

.

It remains to add constraints that ensure that variables Y
form a conflict free matrix. To achieve this, for each pair of
mutations (p, q) and each (a, b) ∈ {(0, 1), (1, 0), (1, 1)} we
introduce Boolean variable Bp,q,a,b. Our aim is that variable
Bp,q,a,b is set to 1 if there exists row r such that Yr,p = a
and Yr,q = b. This can be enforced by adding the following
constraints for all 1 ≤ i ≤ n and 1 ≤ p, q ≤ m:

¬Yi,p ∨ ¬Yi,q ∨Bp,q,1,1
Yi,p ∨ ¬Yi,q ∨Bp,q,0,1
¬Yi,p ∨ Yi,q ∨Bp,q,1,0.

Finally, to ensure that Y is conflict-free matrix we add the
following constraint

¬Bp,q,0,1 ∨ ¬Bp,q,1,0 ∨ ¬Bp,q,1,1.
We refer to [2] and [3] for more details about the latest set

of constraints related to the variables Bp,q,a,b.

Values of coefficients log 1−α
β and log 1−β

α presented above
are real numbers, whereas the specifications in MaxSAT Eval-
uation 2020 require all coefficients to be positive integers
smaller than 263. In addition, the sum of all coefficients must
be smaller than 264−1. In the practical applications, we usually
have α < 0.5 and β < 0.5 which guarantees that the values
of coefficients are positive. Note that these values increase
as α and β decrease. But even in the case of extremely small
values of α and β, namely α = 10−10 and β = 10−10 we have
that log 1−α

β and log 1−β
α are both smaller than 24. Assuming

n ≤ 500 and m ≤ 500, which is the case in all of the instances
described below, the sum of all coefficients is not greater than

500 · 500 · 24 < 222.

Looking at the other extreme, even for unrealistically high
values of noise rates, namely α = β = 0.4, we have that both
coefficients values are greater than 0.10.

In order to obtain instances that satisfy all requirements
from MaxSAT Evaluation 2020 and yield solutions that are
identical or very close (in terms of the likelihood defined
in (1)) to the optimal solution obtained when solving the

instance with real weights, we multiply coefficients log 1−α
β

and log 1−β
α with 238 and round the obtained values to the

nearest integer. Due to the previously presented inequalities,
we have that each coefficient is positive integer smaller than
242 and the sum of all coefficients is smaller than 260, which
is well within the specified bounds.

IV. BENCHMARK INSTANCES

Every instance file name contains the information about the
following parameters:
• simNo: simulation number
• s: number of subclones
• m: number of mutations
• n: number of single-cells
• fp: false positive error rate of SCS data
• fn: false negative error rate of SCS data

An example filename is:

simNo_2-s_15-m_300-n_300-fp_0.01-fn_0.20.wcnf

where simulation number is 2, number of subclones is 15,
number of mutations is 300, number of single-cells is 300,
false positive error rate is 0.01 and false negative error rate is
0.20.

In our benchmarking dataset the value of simNo ranges
from 1 to 10, the number of subclones is 5 or 15, false positive
rate of SCS data is 0.01 or 0.0001 and false negative rate of
SCS data is 0.05 or 0.20. This gives in total 10 · 2 · 2 · 2 = 80
distinct combinations of (simNo, s, fp, fn). For each of
these combinations, (n,m) take each of the values from the
set {(50, 50), (50, 100), (100, 100), (300, 300), (500, 100)},
which gives 80 · 5 = 400 instances in total. In all instances
we also introduced missing entries at 0.05 rate.

The benchmark can be downloaded at https://drive.google.
com/open?id=1zaKUrXbuQz1FZNNeycrlrS iP4sZu2BX

Note that full details of generating simulated data can be
found in [2] and [4]. In case you are interested in additional
simulated data please contact us directly at the following email
address: salemmalikic05@gmail.com.

For further reading, we refer to [5], where similar approach
for studying tumor evolution from SCS data was presented and
to [6], where the potential of SAT-solving in finding solutions
to some hard problems in Computational and Systems Biology
was explored.

REFERENCES

[1] K. Jahn, J. Kuipers, and N. Beerenwinkel, “Tree inference for single-cell
data,” Genome Biology, vol. 17, no. 1, May 2016. [Online]. Available:
http://dx.doi.org/10.1186/s13059-016-0936-x

[2] S. Malikic, F. R. Mehrabadi, S. Ciccolella, M. K. Rahman, C. Ricketts,
E. Haghshenas, D. Seidman, F. Hach, I. Hajirasouliha, and S. C.
Sahinalp, “PhISCS: a combinatorial approach for subperfect tumor
phylogeny reconstruction via integrative use of single-cell and bulk
sequencing data,” Genome Research, vol. 29, no. 11, p. 1860–1877, Oct.
2019. [Online]. Available: http://dx.doi.org/10.1101/gr.234435.118

61

[3] D. Gusfield, Y. Frid, and D. Brown, Integer Programming Formulations
and Computations Solving Phylogenetic and Population Genetic
Problems with Missing or Genotypic Data. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, pp. 51–64. [Online]. Available:
https://doi.org/10.1007/978-3-540-73545-8 8

[4] S. Malikic, K. Jahn, J. Kuipers, S. C. Sahinalp, and N. Beerenwinkel,
“Integrative inference of subclonal tumour evolution from single-cell
and bulk sequencing data,” Nature Communications, vol. 10, no. 1, Jun.
2019. [Online]. Available: http://dx.doi.org/10.1038/s41467-019-10737-5

[5] E. Sadeqi Azer, F. Rashidi Mehrabadi, X. C. Li, S. Malikić, A. A.
Schäffer, E. M. Gertz, C.-P. Day, E. Pérez-Guijarro, K. Marie, M. P.
Lee, and et al., “PhISCS-BnB: A Fast Branch and Bound Algorithm for
the Perfect Tumor Phylogeny Reconstruction Problem,” bioRxiv, Feb.
2020. [Online]. Available: http://dx.doi.org/10.1101/2020.02.06.938043

[6] H. Brown, L. Zuo, and D. Gusfield, “Comparing Integer Linear
Programming to SAT-Solving for Hard Problems in Computational and
Systems Biology,” Lecture Notes in Computer Science, p. 63–76, 2020.
[Online]. Available: http://dx.doi.org/10.1007/978-3-030-42266-0 6

62

Benchmarking UAQ Solvers: MAXSAT Instances
Alessandro Armando

DIBRIS
University of Genova

Genova, Italy
alessandro.armando@unige.it

Giorgia Gazzarata
DIBRIS

University of Genova
Genova, Italy

giorgia.gazzarata@dibris.unige.it

Fatih Turkmen
University of Groningen
Groningen, Netherlands

f.turkmen@rug.nl

Abstract—The User Authorization Query problem is an impor-
tant optimization problem that arises in the context of Role-Based
Access Control. Although the problem is intractable in the worst
case, a number of approaches to tackle the problem have been
put forward, including the reduction to MAXSAT. We propose a
set of benchmarks of MAXSAT problems obtained by encoding
a number of synthetically generated, yet realistic, UAQ problems
of increasing complexity.

I. INTRODUCTION/PROBLEM OVERVIEW

Role-based Access Control (RBAC) [1] is one of the
most popular access control models. Instead of assigning
permissions directly to subjects (e.g. applications), in RBAC
permissions are assigned to roles and roles are assigned to
subjects. It is widely recognized that the use of roles simplifies
the definition and administration of the policy. To illustrate
consider the RBAC policy where roles Admin, DBReader,
DBUpdater are assigned permissions WriteTape, ReadDB
and WriteDB respectively, while application BackupApp is
assigned roles Admin and DBReader and application WebApp
is assigned roles DBReader and DBUpdater. This policy grants
BackupApp the permissions ReadDB and WriteTape, while it
grants WebApp the permission ReadDB and WriteDB.

Not all roles assigned to a subject need to be readily
available to that subject: they must be activated first. In the
RBAC model a session represents the set of active roles. Thus,
in a given session a subject can only use the permissions
associated to the roles that are active in that session. RBAC
policies may also include Dynamic Mutually Exclusive Roles
(DMER) constraints, i.e. contraints of the form

DMER(rs, t)

stating that r̂s = |rs| roles from the set of (conflicting)
roles rs = {R1, ..., Rrs} cannot be simultaneously active in
any session. DMER constraints are useful to enforce Separa-
tion of Duty constraints. For instance, let App be assigned
roles Admin, DBReader and DBUpdater. The constraint
DMER({Admin,DBUpdater}, 2) ensures that in any given
session App cannot possibly activate roles Admin and DBUp-
dater, whereas DMER({Admin,DBReader,DBUpdater}, 3)
ensures that in any given session App can activate at most
two out of the roles in the given set.

Let Plb and Pub be two sets of permissions such that Plb ⊆
Pub. The User Authorization Query (UAQ) Problem [2] is the
problem of determining an optimum set of roles to activate

in order to grant the subject the permissions in Plb, while
satisfying a given set of DMER constraints. The selected roles
may additionally grant a subset of permissions in Pub, but this
is subject to the objective of either minimizing or maximizing
this subset.

The UAQ problem is key for systems offering permission
level user-system interaction (as opposed to role level interac-
tion, where the user must explicitly tell the roles she wants to
activate). The UAQ problem has received a growing attention
in the last few years by the scientific community: the problem
has been shown to be intractable in the worst case [3], yet a
number of procedures have been put forward.

An encoding of the UAQ problem into MAXSAT is pro-
posed in [4] along with experimental results obtained by
using zChaff [1] as solver (following the maximal satisfaction
algorithms introduced in [3] to implement the minimal and
maximal satisfaction cases) with solving times in the order
of seconds even for relatively simple problems. For instance,
finding a minimal solution to UAQ problems with 33 roles
takes more than 7 seconds on average. More recently [5]
extends the encoding proposed in [4] so to support a wider
class of constraints, including DMER constraints spanning
over the session histories as well as over multiple sessions
of the same user. The experimental results, obtained with a
state-of-the-art solver, namely QMaxSAT [6], show than even
large UAQ problems can be solved with ease.

Unsurprisingly, UAQ problems whose MAXSAT encodings
are difficult to solve even by state-of-the-art solvers do exist.
The MAXSAT instances in our porposed benchmark set have
been obtained by encoding samples from four families of
synthetically generated UAQ problems.

II. MAXSAT EVALUATION 2020

The benchmarks submitted to MaxSAT Evaluation 2020 are
the ones designed and used for the experiments in [7]. In
these experiments, the benchmarks are used to compare the
following solvers:

• 2D-Opt-Search [8], which is a search-based solver;
• 2D-Opt-CNF [8], which combines the reduction of the

UAQ Decision Problem to SAT, a state-of-the-art SAT
solver, and a binary search;

• AQUA [9], a SAT-based solver that implements a reduc-
tion of the UAQ problem to PMAXSAT and uses any
state-of-the-art PMAXSAT solver to tackle the problem.

MaxSAT Evaluation 2020: Solver and Benchmark Descriptions, volume B-2020-2 of Department of Computer Science Series of Publications B, University of Helsinki 2020.

63

The results show that AQUA outperforms the other two solvers
over the vast majority of the instances. The design of the
benchmarks was guided by the methodology introduced in [7].
The methodology leverages the asymptotic complexity results
provided in [10] to discriminate classes of UAQ problems that
should be easy to solve (polynomial time) from the ones that
should be hard to solve (exponential time). As a consequence,
in case of a hard benchark (a ploynomial-time technique to
solve it is not known):

• If the benchmark is solved in exponential time, the
benchmark represents the UAQ problem complexity;

• If the benchmark is solved in polynomial time, the bench-
mark does not represent the UAQ problem complexity.

Otherwise, if the benchmark is easy (a ploynomial-time tech-
nique to solve it is known):

• If it is solved in polynomial time, the solver performs
well over that class of problems;

• If it is solved in exponential time, the solver does not
perform well over that class of problems.

The methodology then leads to:
• Benchmarks capable to stress-test solvers along dimen-

sions of the problem for which no polynomial-time
technique is known;

• Benchmarks capable to check the solvers effectiveness,
by determining whether they efficiently solve problems
that are known to be solvable in polynomial time.

The benchmarks submitted to MaxSAT Evaluation 2020 are
an improvement of the ones submitted in 2018 [11], when the
methodology described above was not available yet. The suite
of benchmarks uaq consists of 23 parametric benchmarks of
UAQ problems parametric in one of the following dimensions:

• |R|: the number of roles;
• |P |: the number of permissions. In the proposed bench-

marks, |P | = |Pub|. In fact, as explained in [7], it is easy
to reduce any UAQ problem to an equivalent problem in
which this condition holds;

• R̂P : the number of roles to which each permission is
assigned;

• |C|: the number of DMER constraints;
• r̂s: the number of roles involved in every DMER con-

straint;
• t̂: the bound used in every DMER constraint;
• |Plb|: the number of permissions required by the user.

The other dimensions are fixed and set following the methodol-
ogy. 11 benchmarks have the safety objective (minimization of
permissions in Pub\Plb) and 12 have the availability objective
(maximization of permissions in Pub \ Plb).

The instances are named using the following con-
vention: uaq-family-obj-nrNR-npNP-rppRPP-ncNC-rsRS-tT-
plbPLB n.dimacs, where:

• obj is the optimization objective, namely minimization
(min) or maximization (max) of permissions in Pub \Plb;

• family is the family of the problem instance, namely the
benchmark parameter: nr for |R|, np for |P | = |Pub|,

rpp for R̂P , nc for |C|, rs for r̂s, t for t̂, and plb for
Plb;

• NR is the number of roles, |R|;
• NP is the number of permissions, |P | = |Pub|;
• RPP is the number of roles to which each permission is

assigned, R̂P ;
• NC is the number of DMER constraints, |C|;
• RS and T are the features of the DMER constraints, r̂s

and t̂;
• PLB is the number of permissions whose activation is

requested, |Plb|;
• n is the number identifying the instance.

The interested user can find more information in [7] and [12].

REFERENCES

[1] R. Sandhu, E. Coyne, H. Feinstein, and C. Youmann, “Role-Based
Access Control Models,” IEEE Computer, vol. 2, no. 29, pp. 38–47,
1996.

[2] Y. Zhang and J. B. D. Joshi, “UAQ: a framework for user authorization
query processing in RBAC extended with hybrid hierarchy and con-
straints,” in SACMAT, 2008, pp. 83–92.

[3] L. Chen and J. Crampton, “Set covering problems in role-based access
control,” in Proceedings of the 14th European conference on Research
in computer security, ser. ESORICS’09, 2009, pp. 689–704.

[4] G. T. Wickramaarachchi, W. H. Qardaji, and N. Li, “An efficient frame-
work for user authorization queries in RBAC systems,” in SACMAT,
2009, pp. 23–32.

[5] A. Armando, S. Ranise, F. Turkmen, and B. Crispo, “Efficient run-time
solving of rbac user authorization queries: pushing the envelope,” in
Second ACM Conference on Data and Application Security and Privacy
(CODASPY), 2012, pp. 241–248.

[6] M. Koshimura, “Qmaxsat: Q-dai maxsat solver,” in
http://sites.google.com/site/qmaxsat/, 2011.

[7] A. Armando, G. Gazzarata, and F. Turkmen, “Benchmarking uaq
solvers,” in Proceedings of the 25th ACM Symposium on Access Control
Models and Technologies, 2020, pp. 145–152.

[8] N. Mousavi and M. V. Tripunitara, “Mitigating the intractability of the
user authorization query problem in role-based access control (rbac),”
in NSS, 2012, pp. 516–529.

[9] A. Armando, G. A. Gazzarata, and F. Turkmen, “Aqua: An efficient
solver for the user authorization query problem,” in Proceedings of
the 25th ACM Symposium on Access Control Models and Technologies,
2020, pp. 153–154.

[10] N. Mousavi and M. V. Tripunitara, “Hard instances for verification
problems in access control,” in Proceedings of the 20th ACM Symposium
on Access Control Models and Technologies, Vienna, Austria, June 1-3,
2015, 2015, pp. 161–164.

[11] A. Armando and G. Gazzarata, “Rbac user query authorization problem:
Maxsat instances,” MaxSAT Evaluation 2018, p. 41.

[12] G. Gazzarata, “Extensions and experimental evaluation of
sat-based solvers for the uaq problem,” Ph.D. dissertation,
University of Genova (Italy), 5 2020. [Online]. Available:
https://github.com/GioGazza/uaq prolem/tree/master/publications

64

Solver Index

EvalMaxSAT, 8

Loandra, 10

MaxHS, 19
Maxino, 21

Open-WBO, 24
Open-WBO-Inc, 26

Pacose, 12

QMaxSAT, 16

RC2, 13

SATLike-c, 23
SATLike-cw, 15
sls-lsu, 28
sls-mcs, 28
SMAX, 30
Stable Resolving (SR), 17

TT-Open-WBO-Inc-20, 32

UWrMaxSat, 34

65

Benchmark Index

Adversial examples for binary neu-
ral networks, 37

Automated synthesis of hardware
exploits, 49

Coalition structure generation, 46

Finding Most Compatible Phy-
logenetic Trees over Multi-
State Characters, 51

Network analysis, 55

Program disambiguation, 58

Railway timetabling, 53
Role-based access control main-

tenance, 47

Set covering, 56, 57
Single-machine scheduling, 54

Tumor evolution, 60

User authorization query prob-
lem, 63

Witnesses for security weaknesses
in reconfigurable scan net-
works, 44

66

Author Index

Alviano, Mario, 21
Armando, Alessandro, 63
Avellaneda, Florent, 8

Bacchus, Fahiem, 19
Barrère, Martín, 39
Becker, Bernd, 12
Becker, Berndt, 44
Benedetti, Marco, 47
Berg, Jeremias, 10, 51

Cai, Shaowei, 15, 23, 56, 57

Demirović, Emir, 10

Figueira, José Rui, 28

Gazzarata, Giorgia, 63
Großmann, Peter, 17, 53
Guerreiro, Andreia P., 28

Hankin, Chris, 39
Heule, Marijn J.H., 49

Ignatiev, Alexey, 13

Järvisalo, Matti, 51
Jabbour, Said, 55
Josho, Saurabh, 26

Kang, Eunsuk, 49
Korhonen, Tuukka, 51
Koshimura, Miyuki, 46, 54
Kumar, Prateek, 26

Lei, Zhendong, 15, 23, 56, 57
Liao, Xiaojuan, 46, 54
Lynce, Inês, 24, 28
Lynce, Ines, 58

Malikić, Salem, 60
Manquinho, Vasco, 24, 28, 58
Manthey, Norbert, 24, 30
Martins, Ruben, 24, 26, 49, 58
Mehrabadi, Farid Rashidi, 60
Mhadhbi, Nizar, 55
Mori, Marco, 47

Nadel, Alexander, 32

Paxian, Tobias, 12, 44
Piotrów, Marek, 34

Raddaoui, Badran, 55
Raiola, Pascal, 44
Ramos, Daniel, 58
Rao, Sukrut, 26
Reisch, Julian, 17, 53

Sahinalp, S. Cenk, 60
Sais, Lakhdar, 55
Sakai, Masahiro, 37
Stuckey, Peter J., 10

Terra-Neves, Miguel, 24, 28
Turkmen, Fatih, 63

Zha, Aolong, 16
Zhang, Changjian, 49

67

