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We present a systematic study of the positron lifetime as a function of measurement

temperature in SrTiO3 single crystals grown in different conditions and by different

synthesis methods. We combine our experimental results with state-of-the-art theo-

retical calculations of positron annihilation parameters. We find that the essentially

omnipresent 180 − 190 ps lifetime component is most likely the TiSr antisite defect,

possibly coupled with one or more oxygen vacancies, supporting the importance of

the TiSr antisite related defects in SrTiO3.
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I. INTRODUCTION

Strontium titanate (SrTiO3) is the prototype perovskite-structured complex oxide with

a relatively wide band gap of 3.25 eV1. SrTiO3 bulk crystals serve as substrates for growth

of many complex oxides, while SrTiO3-based thin film heterostructures have been the topic

of intense study for the past two decades2. When materials synthesis reaches the level of

quality where the the densities of extended defects are low enough not to affect the material

properties in a significant manner, the attention is typically turned to point defects. In

SrTiO3, the main point defect of interest has been the O vacancy due to its abundance

both at surfaces and in the bulk2,3. The phenomena related to point defects on the Sr and

Ti sublattices have been studied much less, in particular from the point of view of their

experimental characterization. Recently, some attention has been given to the TiSr antisite

related defects and their possible association with ferroelectricity in SrTiO3
4–8.

Positron annihilation spectroscopy is a method that is particularly suitable for studying

vacancy-type defects on the cation sublattice(s) in compound semiconductors9. In addition

to vacancy-type defects, positrons are also sensitive to negatively charged defects without

excess open volume, such as ionized acceptor impurities9. In some cases positrons have

also been shown to be sensitive to small-size impurity atoms substituting for larger metal

atoms, such as Li on Zn site in ZnO10,11 or Be on Ga site in GaN12. A handful of pa-

pers has been published13–21 on applying positron annihilation spectroscopy, in particular

positron lifetime spectroscopy, to study vacancy-type defects in SrTiO3. Defect-related

positron lifetimes ranging from ∼170 ps to ∼320 ps have been reported in SrTiO3, with

values in the 180 − 190 ps range being the most frequently observed13–20. The positron

lifetimes of ∼180 ps and ∼280 ps have been associated with cation monovacancies, VTi

and VSr, respectively, through direct comparison to positron lifetimes calculated with the

atomic superposition method13,16–20. However, even when using the most recent theoretical

methods, the predictive value of the calculated lifetimes on the absolute scale has room for

improvement22–24. Instead, reliable comparison of experimental and theoretically calculated

lifetimes is possible through the changes caused by defects relative to the positron lifetime

in the perfect (defect-free) lattice, also called as the bulk positron lifetime. Unfortunately,

the positron lifetime in SrTiO3 lattice is still unresolved, with reported – mostly indirectly

obtained – values scattered in a wide range from ∼135 ps to ∼160 ps13,15,21, making the
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experiment-theory comparison difficult.

In our work, we make an attempt at interpreting in detail the positron lifetimes measured

in SrTiO3 bulk crystals in terms of the most abundant defects detected by the positrons. To

do this, we present a systematic study of the positron lifetime as a function of measurement

temperature, crucial for resolving the effects of different charge states of the defects9, in

SrTiO3 grown in different conditions and by different synthesis methods. We combine our

experimental results with state-of-the-art theoretical calculations of positron annihilation

parameters25. We find that the essentially omnipresent 180−190 ps component is most likely

the TiSr antisite defect, possibly coupled with one or more oxygen vacancies, supporting the

importance of the TiSr antisite related defects in SrTiO3
4–7. Importantly, even with our

systematic approach, this interpretation is unfortunately based on indirect evidence, calling

for further investigations to resolve the question.

II. METHODS

A. Experimental

The SrTiO3 single crystals were grown from the melt by using the Czochralski (Cz) and

edge-defined film-fed growth (EFG) methods at temperatures of about 2350 K in slightly

oxygen enriched argon atmospheres at atmospheric pressure26. The samples EFG-A1 and

EFG-A2 were prepared from the same EFG crystal, where the O2 concentration was con-

tinuously lowered (from 1550 to 2 ppmv) during growth, so that for the samples denoted

as EFG-A1 and EFG-A2 it was about 2 ppmv and 450 ppmv O2, respectively. The oxygen

concentration was measured at the gas outlet of the growth chamber by using a capillary

coupled mass spectrometer. The samples EFG-B and EFG-C are from different growth runs,

where the oxygen supply was constant and significantly higher (1550 ppmv) than for the

samples EFG-A1/2. The Czochralski sample Cz-D was grown at the highest oxygen concen-

tration of about 1600 ppmv. For all experiments (except for EFG-A1/2) the given oxygen

concentrations correspond to the nominal compositions adjusted by mass flow controllers at

the gas inlet to the growth chamber.

The positron lifetime in the samples was studied with a standard fast positron lifetime

setup. The 22Na positron source material was sealed in 3 µm thick Al foil and sandwiched
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between two identical samples. The positron lifetime was measured with two scintillator-

photomultiplier detectors with a Gaussian timing resolution of 250 ps (full width at half

maximum). The measurements were performed as a function of sample temperature with

the help of a closed-cycle He cryostat with a high-temperature interface. A total of 106

counts was accumulated at each measurement point. Positron annihilations in the source as

well as positronium (400 ps, 2%; 210 ps, 3%; 1500 ps, 0.1-0.3 %) were subtracted from the

spectra before analysis.9

The positron lifetime spectra were decomposed by fitting a sum of exponential lifetime

components, n(t) =
∑

i Iiexp(−t/τi), convoluted with the Gaussian resolution function.

Positrons annihilate in the state i with intensity Ii and lifetime τi. A positron state i

can either be a delocalised state in the lattice or a localised state trapped in a defect of

open volume. The average lifetime τave =
∑

i τiIi is insensitive to fitting procedures, and

it can be determined with an accuracy better than 1 ps. If only one defect is significantly

trapping positrons, the interpretation of the lifetime decomposition is relatively simple as the

longer lifetime component corresponds the defect lifetime τ2 = τD. Temperature-resolved

experiments can detect charge states of vacancies due to temperature dependent positron

trapping to charged defects. The trapping rate of a negatively charged vacancy enhances at

low temperatures according to T−1/2 whereas positively charged defects do not trap positrons.

In this work, fitting more than two lifetime components to the experimental lifetime data

did not produce statistically reliable results.

B. Theoretical calculations

The structure of cubic perovskite SrTiO3 is shown in Fig. 1. Both cations have O atoms

as their nearest neighbors. Ti has 6 O atoms as nearest neighbors whereas Sr has 12 O atoms.

The Sr atoms have also longer distance to the neighboring O atoms by a factor of
√

2. We

calculated the positron lifetime in SrTiO3 lattice, antisites and cation monovacancies both

with and without surrounding O vacancies and in cation divacancies complexed with O

vacancies.

Positron states and annihilation in the SrTiO3 lattice and its defects are modeled using

the approach detailed in Ref. 22. We apply a cubic 3× 3× 3 supercell with 135 atoms, and

use the experimental lattice parameter of 3.905 Å. The electronic and ionic structures were

4

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
10

30
4



modeled using density functional theory within the local-density approximation27 (LDA) and

projector augmented-wave method28 as implemented in the VASP code.29–31 The repulsive

forces on ions due to the localized positron were taken into account when considering trapped

positrons.22 Positron states and lifetimes were calculated using the LDA correlation potential

and enhancement factor.32

Instead of performing fully self-consistent two-component calculations in which both the

electron and positron densities are solved fully self-consistently, we assume in the case of

both delocalized and trapped positron states that the positron density does not affect the

average electron density and take the zero-positron density limits of the functionals. This

scheme has been shown to give results that agree with more self-consistent modeling.33 The

LDA enhancement typically predicts too short lifetimes in comparison with the experiment

but lifetime differences of defects relative to the lattice lifetime can be compared with high

confidence.10,22 On the other hand, the choice of the one-component exchange-correlation

functional applied for electrons does not have much significance in this work. Positron

annihilation characteristics, such as the lifetime, mainly depend on the predicted defect ge-

ometry. The positron is not sensitive to otherwise important properties such as the predicted

electron energy band gap and the Ti d shell configuration in SrTiO3 (the motivation why its

density functional works often involve a Hubbard U term). The latter is due a compensation

mechanism34,35 in which the positron density follows any changes in the electron density, for

example, due to an improved description. This keeps their mutual overlap, affecting the

annihilation rate, constant.

III. RESULTS AND ANALYSIS

A. Experiments

Figure 2 shows the average positron lifetime τave measured as a function of temperature

in all 5 samples. The most prominent feature is that at low temperatures (below 150 K) the

average positron lifetime converges to 185± 3 ps in all samples. At thigh temperatures the

average positron lifetimes exhibit three different types of behavior.

Sample Cz-D. The average positron lifetime is constant 183 ps below 250-300 K. Above

300 K, the average positron lifetime decreases all the way to 165 ps at 600 K. Below 300 K,
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FIG. 1. The cubic perovskite structure of SrTiO3 (Ref. 36). Sr has 12 O atoms as nearest neighbors,

and Ti has 6 O atoms.

the lifetime decomposition shows only a single lifetime component. At temperatures 300-600

K, a second lifetime component emerges. However, the statistical uncertainty (standard de-

viation) of the lifetime decomposition is significant (average τ2=220± 40 ps, I2=15± 10 %).

Hence, we do not show the fitted components nor do we analyze them in more detail.

Samples EFG-A1 and EFG-A2. Figure 3 shows the average positron lifetime as well as

the two fitted components as a function of measurement temperature in the samples EFG-A1

and EFG-A2. The average positron lifetime, τave, increases with temperature above 150-200

K. The two samples have the same constant average lifetime of 185 ps below 150 K. The

average lifetimes differ slightly at high temperatures, with the largest difference at 600 K

being 7 ps. Two lifetime components can be resolved above 250 K and the intensity I2 of

the second lifetime component τ2 increases from zero to 30− 35 % at 600 K. The second

lifetime component is constant τ2 = 320± 20 ps and the statistical error estimate of the

fitting procedure decreases with the increasing intensity of the component. The value of

first lifetime component, τ1, coincides with τave at 250 K and decreases with the increase of

I2.
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FIG. 2. The average positron lifetime τave measured in the SrTiO3 samples as a function of

temperature.

Samples EFG-B and EFG-C. Figure 4 shows the average positron lifetime as well as the

two fitted components as a function of measurement temperature in the samples EFG-B and

EFG-C. The average positron lifetime decreases with increasing temperature above 300 K,

but clearly less than in sample Cz-D. The lifetime decomposition succeeds above 200−

300 K. The second lifetime component τ2 in sample EFG-B has a roughly constant value

of 255± 15 ps for whole the temperature range. For EFG-C, the second lifetime component

increases with temperature: roughly constant and similar to τ2 in EFG-B up to 450 K, and
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FIG. 3. The average lifetimes τave, the decomposed lifetime components τ1 and τ2, and the intensity

of the second component I2 in samples EFG-A1 and EFG-A2. The intensity of the first component

is 1− I2. An error weighted average of the τ2 in both samples is also shown τ= 320± 20 ps.
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above 400 K, increasing up to 340 ps at 600 K. For the sample EFG-B, the intensity of the

second lifetime component I2 emerges at 300 K and increases to 35 % at 400 K. Above 400 K,

and decreases steadily down to 20 % at 600K. The values of I2 in sample EFG-C scatter

around a constant value of roughly 35 % between 200 K and 400 K. Above 400 K, I2 in EFG-

C also decreases steadily but with a steeper slope, down to 10 % at 600 K. The different

trends in intensity I2 and the value of the second lifetime component τ2 in samples EFG-B

and EFG-C compensate each other in such a way that the average positron lifetimes in both

samples have similar values above 400 K. The behavior of the first lifetime component τ1 in

both samples is opposite to I2.

B. Theoretical calculations

The calculations show that VO does not trap positrons, similarly as the SrTi antisite also

when neighbored by an oxygen vacancy. Instead, the TiSr antisite traps positrons in spite of

the relatively small associated open volume. It should be noted that theoretical calculations

predict two stable configurations for the TiSr antisite, both off-center, labeled [100] (ground

state) and [110] (metastable state) based on the direction of the relaxation.5 The calculated

positron lifetimes are shown in Table I. The positron lifetime in SrTiO3 lattice is 128 ps.

For historical naming reasons, we denote positron lifetime in the lattice as τB where ”B”

stands for ”bulk”. The shortest positron defect lifetime was found in TiSr in the off-center

[100] configuration (τB + 32 ps). The positron lifetime in the larger cation vacancy (VSr) is

expectedly longer (τB + 105 ps) than in VTi (τB + 44 ps).

As Sr has a larger a number of neighboring O atoms than Ti, and the Sr-O distance

is larger than the Ti-O distance, the Sr vacancy lifetime is less sensitive to the number of

neighboring VO than the lifetime in VTi-nVO. The VSr, VSr-VO and VSr-2VO are essentially

indistinguishable, and even adding 6 VO to VSr only increases the vacancy lifetime by 30

ps. Interestingly, the same applies to the TiSr antisite. Even when comparing TiSr [110]

and TiSr-VO [1̄1̄0] configurations6 where the effect of the additional neighboring O vacancy

is expected to be the largest, the positron lifetime hardly changes (τB + 40ps). In contrast,

already adding one VO to VTi extends the lifetime by almost 20 ps, and each additional VO

strongly increases the lifetime, with the VTi-6VO exhibiting a lifetime 130 ps longer than the

isolated VTi. The positron lifetimes of cation divacancies connected with oxygen vacancies
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FIG. 4. The average lifetimes τave, the decomposed lifetime components τ1 and τ2, and the intensity

of the second component I2 in samples EFG-B and EFG-C. The intensity of the first component is

1− I2. An error weighted average of the τ2 in EFG-B is shown τ= 255± 15 ps. Trendlines of the

intensities of the second lifetime component I2 illustrate the difference in behavior above 400 K.
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TABLE I. Positron lifetimes predicted with theoretical calculations.

Defect Lifetime (ps) Defect Lifetime (ps)

lattice 128 VO no trapping

TiSr τB + 32 . . . 42 SrTi no trapping

TiSr-VO τB + 40 SrTi-VO no trapping

VSr τB + 105 VTi τB + 44

VSr-VO τB + 107 VTi-VO τB + 61

VSr-2VO τB + 109 VTi-2VO τB + 72

VSr-4VO τB + 121 VTi-4VO τB + 101

VSr-6VO τB + 136 VTi-6VO τB + 173

2VSr-VO τB + 113 2VTi-VO τB + 65

2VSr-4VO τB + 136 2VTi-4VO τB + 64

are in the range of cation monovacancies decorated with VO.

IV. DISCUSSION

A. Three vacancy-type defects

The saturation of the average positron lifetime below 300 K in sample Cz-D indicates

that all positrons annihilate as trapped at a vacancy-type defect with a positron lifetime

of 185± 5 ps. Above 300 K, this saturation trapping fades out and the average lifetime

decreases reaching 165 ps at 600 K implying that the lifetime in SrTiO3 lattice is at most

τB ≤ 165 ps, the shortest of the average positron lifetimes measured in this work.

In samples EFG-A1 and EFG-A2, the same vacancy defect with positron lifetime of

185± 5 ps is trapping all positrons below 150 K. At high temperatures, positron trapping

to a vacancy defect with a positron lifetime of τD =320± 20 ps increases. The defect re-

sponsible for the 320± 20 ps positron lifetime is present in samples EFG-A1 and EFG-A2

in different concentrations, as τave and I2 are slightly higher in EFG-A2. The 320± 20 ps

lifetime component represents clearly only one defect as the extracted lifetime is constant for

the whole decomposition temperature range (>300 K) in both samples, and the two samples
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with different defect concentrations give the same lifetime component (Fig.3).

The 185± 5 ps defect is trapping all positrons below 200 K also in samples EFG-B and

EFG-C. At temperatures above 200 K, where the saturation trapping to this defect begins to

roll off, the lifetime decomposition resolves two lifetime components. The constant value of

τ2 in EFG-B and the plateau in EFG-C suggest the presence of a 255± 15 ps defect-related

lifetime (Fig. 4). The fact that the second lifetime component, τ2, in sample EFG-C increases

from 220 ps to above 300 ps is a ”text book example” of multiple defect lifetimes being mixed

into a single fitted lifetime component. The results suggest that all three observed vacancy

defects contribute to τ2. Below 300 K in sample EFG-C, τ2 appears as a combination of

185± 5 ps (or at least shorter than 220 ps) and 255± 15 ps defect lifetimes, above 300 K the

185± 5 ps vacancy ceases to trap positrons, and above 400 K the positron trapping shifts

from the 255± 15 ps vacancy towards the vacancy responsible for the positron lifetime of

320± 20 ps (or longer).

Altogether, at least three distinct vacancy-type defects were found to contribute to the

positron annihilation data at temperatures above the observed saturation trapping to the

185± 5 ps defect. Fitting more than two lifetime components to the experimental data was

not possible, for which the most likely reason is that the different components are too close

to each other. Generally, the ratio of two lifetime components should be more than 1.5

for them to be separable in the fitting. This severely complicates the identification of the

defects affecting the positron annihilation spectra. Further challenges in defect identification

are imposed by the lack of a proper reference sample that could reliably be interpreted as

producing the positron lifetime characterizing the SrTiO3 lattice (τB).

As an example, we consider the highest-temperature data obtained in the sample EFG-A1.

A simple assumption that at 600 K only the 320 ps defect would be trapping positrons would

allow us to use the single-defect trapping model37 for estimating the lifetime in SrTiO3 lattice

through τB = (τ1τ2)/(τ1 + τ2 − τave). However, this gives a value of roughly 180 ps, which is

obviously wrong as the lifetime in lattice must satisfy τB . 165 ps (see Sec. III). The reason

for the too large a value is the mixing of the 185 ps defect lifetime with τ1 in the fitting.

In spite of all the complications generated by the large number of different vacancy-

type defects in the samples, the above considerations also provide a possibility to make an

estimate for positron lifetime in SrTiO3 lattice. As the sample Cz-D appears to contain only

the 185 ps defect, we can place a lower bound on τ1 keeping in mind that it should not be
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resolvable in the analysis. The ”1.5 ratio rule” pointed out above implies that τ1 & 110 ps,

if τ2 = 185 ps (which is within the limits of the poor fitting result for Cz-D, see Sec. III).

With the single defect model, this gives the estimate τB & 155 ps. Hence, we arrive at our

estimate for the positron lifetime in SrTiO3 lattice as τB ≈ 155 ps.

B. Temperature dependent trapping at the 185 ps vacancy defect

The clearest feature of the positron lifetime results, and common to all samples, is the sat-

uration trapping at low temperatures at the defect with the positron lifetime of 185± 5 ps.

However, the temperature behavior of the trapping to this defect is non-trivial. An increased

trapping rate at low temperatures is usually interpreted as a fingerprint of negative defects

for which the trapping coefficient is proportional to T−1/2 (Ref. 38). The temperature de-

pendence of the trapping at the 185± 5 ps defect is significantly steeper. The results show

that at low temperatures (<150 K in EFG-A1, EFG-A2 and EFG-C, <300 K in EFG-B and

Cz-D), the 185± 5 ps vacancy traps all positrons, meaning that the positron trapping rate

of the vacancy is significantly larger than any other trapping or annihilation rate. Above

a sample-dependent temperature, the trapping rate drops rather dramatically taking into

account the temperature range, resembling a ∼ T−3 dependence instead of T−1/2.

This kind of stronger temperature dependence, where the trapping changes from a

”strong-trapping” to essentially ”no-trapping” regime when temperature is increased, sug-

gests that positrons are able to escape (thermally) from the trap9. The onset of this type

of effect at around 300-400 K corresponds to a defect binding energy of ∼ 130 meV, and

at around 150 K to a binding energy of ∼ 70 meV39–41. It is important to note that

these values correspond to states with a large radius of the trapped state and no increase

in positron lifetime (compared to the lattice) is usually associated. The lifetime of the

185 ps defect is only ∼ 30 ps longer than in the lattice, relying on the estimate in the

present work. Hence, the open volume of defect is rather small resulting in a smaller-than

usual binding energy (typically for vacancies 1 eV), and could at high temperatures allow

positrons escaping the defect. Similar observations have been made for small substitutional

impurities on the metal sublattice in ZnO and GaN10,12, where the defects have vacancy

character with strongly reduced open volume from the positron perspective. In the case

where these low binding energies are associated with hydrogen-like Rydberg states around a

13
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negative non-open volume defect (negative ion), observing two different binding energies for

apparently the same defect could be interpreted as two different charges states, e.g., 2- and

3- (as the binding energy is proportional to Z2)40. In the case of a neutral defect, a possible

explanation is that the defect in question appears in slightly different atomic configurations,

resulting in different binding energies without major changes to the lifetime. For defects on

the Sr site, a similar effect could be brought by the coupling with one or two O vacancies

(see Table I).

A similar faster-than-T−1/2 decrease in trapping to the 185± 5 ps defect can also be seen

in the temperature-resolved positron lifetime results published earlier13. In those results, the

positron trapping to the 185± 5 ps defect is in saturation at low temperatures (below 100 K),

and towards 293 K the average lifetime decreases to 165 ps. In principle, the temperature

dependence in both our data and the data published in Ref. 13 could be explained by

changes in the charge states of the defects (involving both negative/neutral and positive

charge states, as the changes in trapping rates are several orders of magnitude) due the

motion of the Fermi level with temperature. However, the number of free parameters in

building such a model for explaining these results is significantly higher than in the ”shallow

vacancy model” described above. Hence, we refrain from discussing this possibility in more

detail.

C. Defect identities

Saturation trapping to a defect occurs in practice when the trapping rate κD to this

particular defect exceeds the annihilation rate in the lattice by two orders of magnitude:

κD ≥ 100τ−1
B . The trapping rate is related to the defect concentration cD through κD =

µDcD, where µD is the trapping coefficient. For negatively charged defects µD ' 5×1015 s−1

at 150 K, and for neutral defects µD ' 1× 1015 s−1 irrespective of temperature. Hence, the

saturation trapping condition can be expressed as cD ≥ 100 . . . 500 ppm, corresponding to

∼ 1 . . . 5× 1019 cm−3 in SrTiO3. As a consequence, the 185 ps defect is extremely abundant

in all the studied samples. As this defect lifetime is the most frequently observed defect

lifetime in literature13–20, identifying this defect is of great importance for understanding

the properties of SrTiO3. At the highest measurement temperatures, where the trapping

to this defect has vanished to a large extent, the average positron lifetime measured in the
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EFG samples is still closer to τB ≈ 155 ps than to the respective defect lifetime of 255 ps or

320 ps found in the sample, allowing us to estimate that the concentrations of these defects

are at most in the low-1017 cm−3 range.

Detailed identification of vacancy-type defects based on positron lifetime experiments

is at its best when experimental and calculated lifetimes can be reliably compared. As

the predictive power of the state-of-the-art theoretical calculations in terms of the absolute

scale of positron lifetimes is low due to the different choices of approximations resulting in a

wide range of, e.g., lifetimes in SrTiO3 lattice, reliable comparison requires a common point

of reference for experiment and theory. If a sample producing a single component in the

lifetime spectrum can be reliably identified as producing the lifetime in the SrTiO3 lattice,

the situation is optimal. However, in the case of SrTiO3 this is not the case. There are a

few reports where a single lifetime of 135-140 ps is reported and interpreted as the lifetime in

SrTiO3 lattice14,15,21. These values have been obtained by performing the experiments in a

single sample at room temperature with Kapton-encapsulated Na sources that produce very

strong source components in the spectra, increasing the uncertainty of the fitting procedures.

Also, the fitting procedures (e.g., source corrections) have not been described in detail in

these reports, making the comparison to our results difficult. A careful and systematic

study13, where several samples were studied as a function of temperature with different

types of positron sources, reports an estimated lifetime in SrTiO3 lattice of τB ≈ 155 ps.

This coincides with our interpretation (see Sec. IV A). It should be noted, however, that

both our interpretation and that in Ref. 13 rely on experiments, analysis and interpretation

of lifetime spectra containing more than one component. Further investigations are required

to obtain better insight into this matter. In the following analysis, we use τB ≈ 155 ps as

the lifetime in lattice in our experiments.

The theoretical calculations (see Table I) show that VO does not trap positrons, and that

the simple elemental vacancies VSr and VTi should have positron lifetimes ∼ 105 ps and

∼ 45 ps longer than in the lattice, respectively. In our experiments, this would translate to

∼ 260 ps for VSr and ∼ 200 ps for VTi. The only simple defect producing a lifetime close

to ∼ 30 ps longer than in the lattice in the calculations, corresponding to 185 ps in the

experiments, is the TiSr antisite. Hence, we identify the defect producing the 185 ps lifetime

component as the TiSr antisite. As the effect of adding one or more VO to Sr-site open

volume defects is minimal, it is possible that the observed TiSr antisite defects are coupled

15
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with O vacancies.

This identification is in line with several other findings. First, the samples studied in

this work were grown from stoichiometric melts, but due to the evaporation of SrO(g) a

slight TiO2 excess in the melt can be expected at increased growth durations,42 making

it unlikely that the most dominant defects would occur as vacancies on the Ti sublattice.

In fact, theoretical calculations predict that VSr are more favorable than VTi already at

stoichiometric Sr/Ti conditions3. Second, theoretical calculations also suggest that TiSr

antisites are energetically favorable in TiO2-rich SrTiO3, and in neutral charge state in the

upper half of the bandgap5,8. Third, the existence of TiSr antisites has been experimentally

observed with scanning transmission electron microscopy (STEM) in heteroepitaxial SrTiO3

thin films,7 suggesting that they can be present in SrTiO3 in large concentrations. Finally,

SrTiO3 tends to be oxygen deficient43 - hence the presence of a high concentration of O

vacancies is natural. Theoretical calculations also predict that forming of a TiSr-VO pair is

energetically favorable5,6. We also suggest that the 185 ps lifetime observed in many earlier

reports13–20, based on measurements in commercial SrTiO3 crystals grown by the Verneuil

method in addition to Cz and EFG methods, is also the TiSr antisite instead of the VTi

proposed in those reports, as Verneuil growth tends to lead to material rich in Ti as well44.

Following the above reasoning and comparing with Table I, the defect producing the

experimental 255± 15 ps positron lifetime is interpreted as the Sr vacancy VSr (τB + 95 ±

15 ps), possibly coupled with one or two O vacancies. The experimental results also point at

a negative charge state in the case of the 255± 15 ps vacancy as the intensity related to this

lifetime decreases in both samples above 400 K (see Fig. 4), in line with the negative charge

states predicted for VSr
3. Similarly, the defect responsible for the experimental 320± 20 ps

is interpreted as one or more Sr vacancies clustered with multiple O vacancies. This defect

appears neutral in the experiments, as typically expected for large cation-oxygen vacancy

complexes in oxides. Interestingly, nanovoids formed by multiple Sr-O divacancies have been

previously observed in top-seeded solution grown SrTiO3 crystals45.

The identification of the defects as suggested above is in line with the differences in the

growth conditions of the single crystal SrTiO3 samples. Compared to EFG-A1 and EFG-A2,

the oxygen concentration during growth and post-growth processes was significantly higher

for the samples EFG-B and EFG-C. The latter samples are the ones with Sr vacancies, while

the former contain the large Sr vacancy - O vacancy clusters (with multiple O vacancies).
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This is reasonable as the samples EFG-A1/2 also show clear indications of oxygen deficiencies

through to the blue-black coloration43. The other samples are yellowish (EFG) or yellowish-

brownish (Czochralski), which clearly shows that the back-diffusion of oxygen took place.

It is worth to mention that the growing crystals are deficient in oxygen at temperatures

very close to the melting point and only a sufficiently high oxygen partial pressure will

allow back-diffusion of oxygen at lower temperatures. For the Czochralski grown crystal

(sample Cz-D) we assume that the high pulling rates between 20 and 70 mm/h (see also

Ref. 42 crystal C2) compared to the EFG crystals (between 1 and 7 mm/h) inhibited the

formation of Sr vacancies in the bulk, since the more SrO is available during growth, the

less likely is the formation of this type of defect8. The low formation enthalpies of TiSr

antisites could explain their persistence under these harsh conditions during the Czochralski

growth. Finally, we wish to point out that time-dependent factors both during growth and

post-growth processes can play an important role in the formation and/or stabilization of

specific kinds of defects.

V. CONCLUSIONS

We performed temperature-dependent positron lifetime measurements on SrTiO3 single

crystals grown in different conditions. Three different vacancy-type defects were found in the

samples with positron lifetimes 185± 5 ps, 255± 15 ps and 320± 20 ps. The 185± 5 ps de-

fect is present in all the measured samples at very high concentrations (at least ∼ 1019 cm−3).

The presence of the other two defects depends on the growth conditions, and their con-

centrations are at most in the low-1017 cm−3 range. Based on detailed analysis of the

temperature-dependent positron data and comparison to state-of-the-art theoretical calcu-

lations, we suggest that the 185± 5 ps defect is the TiSr antisite, possibly coupled with one

or two O vacancies. The defects with longer lifetimes are identified as Sr vacancies in the

negative charge state (255± 15 ps) and as neutral clusters containing multiple Sr and O

vacancies (320± 20 ps). We also suggest that the abundant TiSr antisite related defect is

responsible for the ∼ 185 ps lifetime component reported in earlier studies13–20 in SrTiO3

single crystals as well.

Our work highlights the importance of being able to reliably resolve lifetime components

in the positron lifetime spectrum, and of having a reliable estimate of the positron lifetime
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in the lattice, if defect identification is aimed for. This cannot be achieved by performing a

single experiment on a single sample at a single temperature (typically room temperature).

The mixing of different defect-related lifetime components in the analysis in SrTiO3 is an

important issue, and complicates the analysis of the data, as showed in the case of each

of the studied samples. Performing experiments across a wide temperature range does

not prevent this mixing from taking place, but helps in recognizing its occurrence and in

providing indisputable evidence of positrons annihilating as trapped at defects. Another

complication is the identification of the proper reference lifetime in the SrTiO3 lattice for

accurate quantification of the changes caused by the defects. These issues require further

detailed investigations in order to reliably identify the point defects governing the properties

of SrTiO3 crystals.
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