
Developer’s Perspective on Containerized Development Envi-
ronments — A Case Study and Review of Gray Literature

Ilkka Kuisma

Helsinki December 8, 2019

UNIVERSITY OF HELSINKI
Department of Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/328855836?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Faculty of Science Department of Computer Science

Ilkka Kuisma

Developer’s Perspective on Containerized Development Environments — A Case Study and Review of
Gray Literature

Computer Science

Master’s thesis December 8, 2019 49 pages + 0 appendices

Context: The advent of Docker containers in 2013 provided developers with a way of bundling
code and its dependencies into containers that run identically on any Docker Engine, effectively
mitigating platform and dependency related issues. In recent years an interesting trend has emerged
of developers attempting to leverage the benefits provided by the Docker container platform in their
development environments.

Objective: In this thesis we chart the motivations behind the move towards Containerized Devel-
opment Environments (CDE) and seek to categorize claims made about benefits and challenges
experienced by developers after their adoption. The goal of this thesis is to establish the current
state of the trend and lay the groundwork for future research.

Methods: The study is structured into three parts. In the first part we conduct a systematic
review of gray literature, using 27 sources acquired from three different websites. The sources
were extracted for relevant quotes that were used for creating a set of higher level concepts for
expressed motivations, benefits, and challenges. The second part of the study is a qualitative
single-case study where we conduct semi-structured theme interviews with all members of a small-
sized software development team that had recently taken a containerized development environment
into use. The case team was purposefully selected for its practical relevance as well as convenient
access to its members for data collection. In the last part of the study we compare the transcribed
interview data against the set of concepts formed in the literature review.

Results: Cross-environment consistency and a simplified initial setup driven by a desire to increase
developer happiness and productivity were commonly expressed motivations that were also expe-
rienced in practice. Decreased performance, required knowledge of Docker, and difficulties in the
technical implementation of CDE’s were mentioned as primary challenges. Many developers expe-
rienced additional benefits of using the Docker platform for infrastructure provisioning and shared
configuration management. The case team additionally used the CDE as a platform for imple-
menting end to end testing, and viewed the correct type of team and management as necessary
preconditions for its successful adoption.

Conclusions: CDE’s offer many valuable benefits that come at a cost and teams have to weigh
the trade-off between consistency and performance, and whether the investment of development
resources to its implementation is warranted. The use of the Docker container platform as an
infrastructure package manager could be considered a game-changer, enabling development teams
to provision new services like databases, load-balancers and message brokers with just a few lines
of code. The case study reports one account of an improved onboarding experience and points
towards an area for future research. CDE’s would appear to be a good fit for microservice oriented
teams that seek to foster a DevOps culture, as indicated by the experience of the case team. The
implementation of CDE’s is a non-trivial challenge that requires expertise from the teams and
developers using them. Additionally, the case team’s novel use of containers for testing appears to
be an interesting research topic in its own right.

ACM Computing Classification System (CCS):
Software and its engineering → Software creation and management → Software development tech-
niques

Tiedekunta — Fakultet — Faculty Laitos — Institution — Department

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Oppiaine — Läroämne — Subject

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

ii

Contents

1 Introduction 1

2 Background 2

2.1 Continuous Integration . 2

2.2 Typical Continuous Integration Workflow 2

2.3 Works on My Machine Syndrome . 2

2.4 Continuous Delivery and DevOps . 3

2.5 Dependency Hell and Containers . 3

2.6 Containers and the Docker Platform 4

2.7 Containers in Development Environments 4

3 Research Approach 6

3.1 Research Questions . 6

3.2 Structure of the Study . 6

3.3 Part I: Review of Gray Literature . 8

3.3.1 Rationale for Gray Literature 8

3.3.2 Constructing the Search String 8

3.3.3 Inclusion and Exclusion Criteria 9

3.3.4 Data Extraction . 9

3.3.5 Concept Formation . 9

3.4 Part II: Case Study . 11

3.4.1 Case Selection . 11

3.4.2 Case Description . 11

3.4.3 Data Collection and Units of Analysis 12

3.4.4 Data Analysis . 13

4 Results 15

4.1 Part I: Review of Gray Literature . 15

4.1.1 What are the Stated Reasons Behind Moving to a Container-
ized Development Environment? 15

4.1.2 What Benefits do Developers Claim to Experience with Con-
tainerized Development Environments? 18

iii

4.1.3 What Challenges do Developers Claim to Experience with
Containerized Development Environments? 20

4.2 Part II: Case Study . 22

4.2.1 Background and Creation . 23

4.2.2 Motivations and Drivers . 24

4.2.3 Key Features . 25

4.2.4 The Experienced Benefits . 26

4.2.5 The Experienced Challenges 28

4.2.6 What its Adoption Required 29

4.2.7 Views and Experiences of Onboarding 30

4.2.8 Suitability for Projects and Teams 31

4.3 Summary and Comparison of Results 32

5 Discussion 34

5.1 Simple Setup and Consistency . 35

5.2 Underlying Developer Pain Points . 36

5.3 Developer Onboarding . 36

5.4 Disposable Environments and Project Switching 37

5.5 Infrastructure Package Management and Microservices 38

5.6 Shared Configuration and Tooling . 39

5.7 Cross-Environment Performance Issues 39

5.8 Non-Trivial Construction . 40

5.9 Resources and Support from Management 41

5.10 Local Development Tools and Changes in Workflow 41

5.11 End to End Testing . 42

5.12 Use of Gray Literature . 42

5.13 Threats to Validity and Limitations 44

6 Conclusions 46

1

1 Introduction

The ”works on my machine” syndrome is a condition that occurs whenever something
that worked on a developer’s machine fails to run once it is executed in another
environment (Humble and Farley 2010; Erfani Joorabchi et al. 2014). Causes for the
syndrome are numerous but one common culprit is the lack of parity across execution
environments (Spinellis 2012). This means that a missing library or environment
variable, or any other difference across environments is enough to cause this issue.

The emergence of various practices and tools like continuous integration and auto-
mated deployment scripts have helped combat the effects of this syndrome (Humble
and Farley 2010; Meyer 2014). The advent of Docker containers in 2013 provided
developers with a way of creating immutable images of software bundled with all
dependencies required to run the application (What is a Container? 2019). The
promise of Docker is that when these immutable images are executed as containers,
they will run exactly the same on any Docker Engine regardless of the underlying
platform (Merkel 2014).

In recent years, there has been an emerging trend of leveraging the benefits provided
by containers to combat the ”works on my machine” syndrome in development en-
vironments. We use the term Containerized Development Environment (CDE) to
refer to the various implementations of development environments utilizing Docker
containers in some capacity.

In this thesis we conducted a joint review of gray literature and qualitative single-
case study with the aim of charting the motivations behind this trend as well as the
benefits and challenges that developers claim to experience after taking container-
ized development environments into use. The study is comprised of three parts; in
the first part we conducted a semi-systematic literature review to create an initial
set of concepts of claimed motivations, benefits, and challenges. In the second part
of the study we conducted semi-structured theme interviews with a small-sized de-
velopment team that had recently taken a containerized development environment
into use. In the third and final part of the study we compared the results from the
two cases, in part to validate the findings and in part to enrich our interpretation
of the results.

The underlying goal of this thesis is to lay the groundwork for further research
by establishing an understanding of the current state of containerized development
environments. We hope to uncover novel and interesting approaches that can be
investigated in more detail in future work.

2

2 Background

2.1 Continuous Integration

Continuous integration introduced the idea of continually building and testing the
codebase with every change to ensure that the software was never in a broken state
(Humble and Farley 2010). In practice, continuous integration requires the use of
version control which contains the entire codebase along with everything needed to
build and run the software (Duvall et al. 2007; Meyer 2014). The current state of
the software as it exists in version control is referred to as the mainline or trunk of
the codebase (Duvall et al. 2007).

In order to verify that the software is in a functional state, continuous integration
requires an automated build process along with a suite of automated tests. It is
common practice to use a separate continuous integration server that builds and
tests the software automatically on every change committed to the codebase in a
separate continuous integration environment.

It is also commonly suggested that the continuous integration environment should
be as close a copy of the production environment as possible. (Duvall et al. 2007)

2.2 Typical Continuous Integration Workflow

Continuous integration is characterized as a practice rather than a set of tools (Hum-
ble and Farley 2010; Rogers 2004). The typical development workflow when using
continuous integration starts with developers checking out a copy of the mainline
from version control onto their local machines. The software is then developed in the
local development environment and is referred to as a working copy of the software.

Once the developer is done making changes to the code, along with any associated
automated tests, the developer will update their local working copy with new changes
that have been added to the mainline in version control. Once the changes have been
consolidated, the developer builds and runs the software in their local development
environment and upon passing commits the working copy to version control.

Typically this action of committing code to version control will automatically trigger
the building and running of tests in a separate continuous integration environment.
If the software is built successfully and the automated test suite passes, the com-
mitted code becomes the new mainline of the software. If the build fails or the tests
do not pass, the developer must locate and fix the issues before continuing with any
work.

2.3 Works on My Machine Syndrome

So far we have mentioned three different environments that the software runs on:
the local development environments of developers, the continuous integration envi-

3

ronment, and the production environment where released versions of the software
are deployed. Even with the use of continuous integration it is possible to witness
defects in the production environment that do not appear in the local development
environment. This is referred to as the works on my machine syndrome (Humble and
Farley 2010). The syndrome not only exists between production and development
environments but can also exist across the development environments of developers
working on the same codebase.

2.4 Continuous Delivery and DevOps

Continuous integration deals with the development of software but not the deploy-
ment of software into production. Continuous delivery seeks to pick up where con-
tinuous integration left off, by addressing the bottlenecks experienced in the delivery
process (Humble and Farley 2010). The goal of continuous delivery is to make sure
that the software is always in a releasable state.

Continuous delivery is extended by continuous deployment, where each validated
change that is made to the codebase is automatically deployed to production if
it passes the required checks. In practice this is done by introducing a deployment
pipeline — an automated collection of tools and processes for moving the software all
the way from version control to the production environment through the appropriate
stages of quality control and other operations.

Continuous deployment, continuous delivery, and continuous integration are closely
related to DevOps, which can be characterized as a methodology aimed at bridging
the gap between the development of software and its operations (Jabbari et al.
2016). Some definitions also emphasize that DevOps has a lot to do with mindset
(Rajkumar et al. 2016) and that it prescribes a specific kind of DevOps culture
(Davis and Daniels 2016).

2.5 Dependency Hell and Containers

One of the issues that continuous delivery deals with is dependency management. By
dependencies, we refer to all the other pieces of software that are required in order
to run the application — it is worth noting that dependencies in our use of the word
refer to specific entities, and not a relation between two entities. Dependency hell is
a problem that occurs when the developed application has specific requirements for
dependencies that are missing or unmet when it is deployed to production (Humble
and Farley 2010).

Container technologies such as Docker present a potential solution to this problem
by packaging the components of the software along with their dependencies into
isolated containers (Merkel 2014). By doing so, the packaged components of the
software become portable and can be run on any system that runs Docker (What
is a Container? 2019). Containers are a powerful tool that can be used in the

4

packaging and deployment stages of continuous deployment pipelines (Jaramillo et
al. 2016).

2.6 Containers and the Docker Platform

Containers are characterized as lightweight counterparts to virtual machines, offering
virtualization at the operating system level as opposed to the hardware level (Merkel
2014). Docker is a container platform that leverages existing technologies like LXC’s
(LinuX Containers) in order to create a tool that is geared towards the needs of
developers (Fink 2014). Due to its wide adoption among developers, our discussion
regarding containers will focus exclusively on the Docker platform.

The Docker platform allows developers to package their code along with the runtime,
system libraries, and other configurations required to run the application successfully
(What is a Container? 2019). Docker images become containers when they are
executed on the Docker Engine, promising to run the same on any platform.

The Docker platform also consists of the Docker Hub which is a public registry
hosting large amounts of ready-made Docker container images. Developers can
find officially supported images for popular libraries and services like Nginx and
MongoDB as well as runtimes for popular programming languages like Node.js and
Python, and more.

2.7 Containers in Development Environments

Containers are commonly used in production environments, but there is a growing
trend of using containers also in development: developers are running the compo-
nents of the System Under Development (SUD) inside of containers on their local
development machines. We use the term Containerized Development Environment
(CDE) to refer to this new way of working, that is taking shape and starting to see
wider adoption.

One key feature of CDE’s is to move all of the dependencies of the SUD inside of
containers. External components like databases are simple to take into use because
ready-made container images for running them are available via Docker Hub, for
example. Additionally, the proprietary source code being developed is executed in
runtimes that are installed and configured inside of containers. Developers do not
need to install any databases, runtimes, or other dependencies directly onto their
local machines in order to be able to run the SUD.

The source code of the application being developed is stored and edited in the local
file system on the development machine. The source code files are then shared with
a container that executes the source code in the container’s runtime. This sharing
of files between the container and its host is accomplished by mounting the source
code into the container as a volume or bind mount (Manage data in Docker 2019).

Container orchestration platforms assist the configuration and management of con-

5

tainer deployment in production (Khan 2017). The Docker Compose orchestration
tool makes it possible to specify the configuration of multiple containers in one file,
and start all of the containers with a single command (Overview of Docker Compose
2019). Docker Compose is featured in many CDE’s for managing the configuration
of the SUD on the development machine.

While there are many other implementation details related to CDE’s, these are
the most common concepts you see in most examples presented in blog posts and
tutorials online. The purpose of this thesis is not to provide a technical overview
of CDE’s, but rather to chart the motivations behind the trend and the experiences
people have had with using containers in their development environments.

6

3 Research Approach

3.1 Research Questions

This thesis seeks to form an understanding of the emerging phenomenon of con-
tainerized development environments by answering the following research questions.

RQ1. What reasons do developers state as the motivation behind moving to a con-
tainerized development environment?

RQ2. What benefits do developers claim to experience with containerized develop-
ment environments?

RQ3. What challenges do developers claim to experience with containerized devel-
opment environments?

By finding answers to these questions, we aim to create an overview of containerized
development environments and to lay the groundwork for future research. The
questions are intentionally formulated in a way to capture self-reported claims made
by developers regarding containerized development environments. An additional
goal of the study is to find reports of novel and interesting features, that can be
followed up on and investigated in more detail in future work.

One natural follow-up to the research questions presented in this thesis, would be to
ask what projects or situations the containerized development environment is best
suited for — this thesis will contain some discussion related to this but it will not
be the primary focus. Once an understanding of the motivations for containerized
development environments has been established, one could also ask if other solutions
exist for fulfilling similar needs and requirements.

In the following sections we present the research approach and methodology used
in this thesis. The study is conducted in multiple parts, and we will begin with
a description of the overall structure of the study. In the sections that follow, we
describe each of the methods used in the different parts of the study in more detail.

3.2 Structure of the Study

The study is structured into three separate parts: a review of gray literature, a
case study, and a joint discussion and comparison of the results obtained from the
previous two. The literature review is conducted first to create an initial set of
concepts that answer to the three research questions regarding motivations, benefits,
and challenges. A qualitative single-case study is conducted afterwards to get a
second data set that is compared against the results of the literature review. In the
Discussion we take a look at the differences and similarities between the two sets
of results, partly to validate our findings and partly to create a more detailed and
richer interpretation of the results.

7

Figure 1: Overall structure of the study.

Various online blogs and forums contain discussion and reports about the opinions,
claims, and experiences of individual developers working with containerized devel-
opment environments, making it a suitable choice of literature regarding the scope
of our research questions. We systematically conduct a review of gray literature
by using Advanced Google Search to find relevant online sources, after which each
source is stripped of quotes that speak of a challenge, motivation, or benefit. For
each set of quotes we conduct free-form concept formation to identify the higher
level topics related to motivations, benefits, and challenges.

In the second part of the study we conduct a qualitative single-case study by inter-
viewing all members of a development team that had recently taken a containerized
development environment into use. The data for the case study is gathered through
semi-structured theme interviews that are recorded and then transcribed. The tran-
scriptions are analyzed to identify higher level themes and topics that emerge during
the interviews.

The purpose of the literature review is to capture many different opinions and expe-
riences from a large number of different developers and projects, while the purpose
of the case study is to gather highly detailed information from a team of developers
working on the same project. In the third and final part of our study, we compare
the results from the literature review and the case study, and report our findings.

8

3.3 Part I: Review of Gray Literature

3.3.1 Rationale for Gray Literature

We purposefully chose to source the material for our literature review from online
forums and blogs commonly used for discussing the topic. These types of websites
contain many reports about the opinions, claims, and experiences of individual de-
velopers working with CDE’s, making it a suitable choice regarding the scope of our
research questions. In addition to the relevance of the material, its high availability
was another important factor — we wanted to have a large enough collection of
opinions and experiences in order to create as complete an overview as possible.

3.3.2 Constructing the Search String

An initial free-form Google search was conducted to locate key sources discussing
the issue. Based on these sources we were able to identify a handful of websites that
were commonly used for discussing the topic:

1. https://www.reddit.com

2. https://www.medium.com

3. https://hackernoon.com

We used the Google Search functionality for restricting the search to the listed
websites and constructed a search string that returned the key sources and others
similar to them:

site:medium.com
local

AND
development

AND
environment

AND
(container OR docker)

AND
(experience OR opinion OR thoughts)

The same search string was ran against all websites except Hacker Noon which
required the removal of the final clause concerning thoughts and experiences in
order to return the desired sources.

9

3.3.3 Inclusion and Exclusion Criteria

We came up with the following inclusion and exclusion criteria to select the sources
to be included in this thesis:

1. The discussion must be no older than three years old.

2. The discussion has to contain some information specifically about claimed
benefits, challenges, or motivations of developers using containers for local
development.

The Docker platform has evolved over time and we wanted to form an understanding
of the current state of containerized development environments. We defined the
first criterion for this reason and the specific time-frame of three years was selected
based on our set of key sources and initial free-form survey. The reasoning behind
the second criterion was to filter out tutorials and other sources that do not contain
relevant information.

Only the first 20 search results from each website were checked against the criteria
in order to cast as wide a net as possible, while maintaining a manageable workload
for data extraction.

After performing the search and filtering the results against our listed criteria, we
ended up with a total number of 27 sources that are shown in Table 1.

3.3.4 Data Extraction

Each included source was read in detail and its contents were extracted with the
form shown in Table 2 to find the relevant information pertaining to the research
questions. The sources were stripped for quotes that either spoke of a motivation to
adopt the use of a containerized development environment or were an explicit state-
ment of claimed benefits or challenges after adoption. Even if positive statements
appeared to be grounded in experience, they would be categorized as a motivation
rather than a benefit if no explicit claim was made about having experienced the
benefit in practice.

The extracted data were used to come up with a separate set of concepts for each
three of the categories. First, the extracted quotes were collected and divided into
three separate sets based on their category. The same process for concept formation
was then repeated for each set of quotes.

3.3.5 Concept Formation

The review uses the concept-centric approach described by Webster and Watson
(2002) and follows their recommendation for compiling concept matrices as we an-
alyzed the extracted quotes. The final concept matrices presented in the Results

10

Table 1: Sources selected for the review of gray literature.

SID Reference
S1 Using Docker Containers As Development Machines (2018, October 10)

https : / / medium . com / rate - engineering / using - docker - containers - as - development - machines -
4de8199fc662

S2 r/docker - Can you do ALL of your local development? (2017, September 20)
https://reddit.com/r/docker/comments/718t1v/can_you_do_all_of_your_local_development/

S3 How to create consistent development environments that just work (2017, February 6)
https : / / hackernoon . com/how - to - create - consistent - development - environments - that - just - work -
55be5417341b

S4 Don’t install Postgres. Docker pull Postgres (2018, September 4)
https://hackernoon.com/dont-install-postgres-docker-pull-postgres-bee20e200198

S5 Introducing a Rails 5.1 development environment for Docker (2018, February 3)
https : / /medium . com/@michiels / introducing - a - rails - 5 - 1 - development - environment - for - docker -
a783f00ac908

S6 The Benefits of using Docker for Development and Operations (2017, September 28)
https ://medium.com/uptime- 99/the- benefits - of - using- docker - for - development- and- operations -
2c5256ad89bc

S7 The Advantages of Using Docker for Web Development (2018, February 19)
https://codeburst.io/the-advantages-of-using-docker-for-web-development-23096c457fad

S8 Efficient development with Docker and docker-compose (2018, November 9)
https://hackernoon.com/efficient-development-with-docker-and-docker-compose-e354b4d24831

S9 r/docker - Using Docker as a Development Environment? (2016, July 22)
https://reddit.com/r/docker/comments/4u1zyf/using_docker_as_a_development_environment_
anyone/

S10 Development Environments with Docker (2015, December 31)
https://medium.com/on-docker/development-environments-with-docker-89657c7b4ea2

S11 Our development environment with Docker (2016, November 22)
https://blog.dockbit.com/our-development-environment-with-docker-ca6868f436dd

S12 Docker Development WorkFlow — a guide with Flask and Postgres (2018, January 8)
https://medium.freecodecamp.org/docker-development-workflow-a-guide-with-flask-and-postgres-
db1a1843044a

S13 Why using docker in your local dev environment is probably not a great idea (2018, April 9)
https://medium.com/canal-tech/why-using-docker-in-your-local-dev-environment-is-probably-not-a-
great-idea-3836c6823d60

S14 r/docker - Docker as a stable development environment? (2016, February 6)
https://reddit.com/r/docker/comments/44h608/docker_as_a_stable_development_environment/

S15 Dockerized Odoo Development (2019, January 27)
https://medium.com/@reedrehg/easier-odoo-development-278bbaab38c8

S16 Develop in Docker: a Node backend and a React front-end talking to each other (2018, May 31)
https://medium.com/@xiaolishen/develop-in-docker-a-node-backend-and-a-react-front-end-talking-
to-each-other-5c522156f634

S17 Why and How to Use Docker for Development (2015, April 28)
https://medium.com/travis-on-docker/why-and-how-to-use-docker-for-development-a156c1de3b24

S18 Why use Docker? 3 reasons from a development perspective (2018, October 11)
https://hackernoon.com/why-use-docker-3-reasons-from-a-development-perspective-8f46cf68c864

S19 Docker workflow for React/Web applications (2017, October 25)
https://hackernoon.com/docker-workflow-for-react-web-applications-b62b09571736

S20 An Introduction to Docker Through Story (2017, December 28)
https://hackernoon.com/an-introduction-to-docker-through-story-8ae5594d7446

S21 How Docker Changed My Workflow (2017, December 7)
https://hackernoon.com/how-docker-changed-my-workflow-b953b79b73ff

S22 r/PHP - Dockerize local development or not? (2017, April 28)
https://reddit.com/r/PHP/comments/681ny3/dockerize_local_development_or_not/

S23 r/docker - Docker for development, why, and how? (2017, August 17)
https://reddit.com/r/docker/comments/982cag/docker_for_development_why_and_how/

S24 How we happily dockerized our development environment (part 1/2) (2016, March 10)
https : / / hackernoon . com/how - we - happily - dockerized - our - development - environment - part - 1 - 2 -
b05fd6927a53

S25 r/devops - Local development environment, docker or Vagrant + VM? (2017, October 28)
https ://reddit . com/r/devops/comments/799co3/ local_development_environment_docker_or_
vagrant_vm/

S26 r/docker - Do you Develop in Docker or Dockerize your application after the fact? (2017, November 27)
https://reddit.com/r/docker/comments/7fw0m8/do_you_develop_in_docker_or_dockerize_your/

S27 r/PHP - How to increase Docker performace for local dev on windows AND mac? (2017, March 31)
https://reddit.com/r/PHP/comments/62kne2/how_to_increase_docker_performace_for_local_
dev/

11

Table 2: Data Extraction Form, Literature Review.

Identification
URL Hyperlink to source
Primary Data (Collected as a list of items)
Quote Direct citation from source
Category Motivation, challenge or benefit

follow the format of the examples presented by Webster and Watson (2002) with
the addition of a column for the total source count per concept.

The quotes were examined in detail individually and were assigned to an initial
concept. Each quote was first checked against all pre-existing concepts and assigned
to one if it aligned with a pre-existing concept. If the quote did not match any of
the existing concepts, a new concept was created and the quote was assigned to it.

Once the initial assignments were completed, the quotes and concepts were examined
once more. If concepts were overlapping they were merged together, and those with
different core ideas were separated. Finally, the extracted data were compared
against the sets of categories to tally up the frequency of each concept.

3.4 Part II: Case Study

3.4.1 Case Selection

The case study portion of this thesis was conducted as a qualitative single-case
study, where an information-rich case was purposefully selected for its convenience
and practical relevance. The team and project that were selected for the study
were relevant to the research questions and overall topic, as the project was one
where the team had recently taken a containerized development environment into
use. The composition and history of the team was known by the author of this
thesis beforehand as he was a member of the case team working on the project. In
addition to convenient access to the team and its members, this also provided us
with additional insight pertaining to the relevance of the case.

3.4.2 Case Description

The software development team that was selected for the case, is part of the TOSKA
research group at the University of Helsinki. The project that the team works on
is an academic decision support system, aimed at providing real-time data visual-
ization and analysis for decision makers and administrators at the university. The
team had taken a containerized development environment into use in the project
approximately half a year before the time of writing, and was actively using it.

12

The team was comprised of four developers and one manager. One developer had
been part of the team for two years, two of the developers had been part of the team
for one year, and one developer had been in the team for four months. The latest
member of the team had joined the project after the CDE was already in use, and
all others were part of the team during its adoption. The manager was the original
founder of the research group and had recruited all developers of the team.

The team is self-organizing and all developers share the title of full stack developer
in their job description. The team uses a modified lightweight form of Kanban for
organizing its tasks, and does not follow any strict software development framework.
The team is DevOps-oriented and embraces continuous integration, continuous de-
livery and deployment, containerization, and many other DevOps staples. At the
time of writing, the system under design was transitioning from a traditional multi-
tier architecture towards a microservices architecture.

3.4.3 Data Collection and Units of Analysis

The data collection method used in this study was semi-structured theme interviews,
that were conducted with selected members of the team separately. We interviewed
three of the team’s developers and the team’s manager, who are listed in Table 3.
No additional material related to the team or project was collected.

Table 3: Identifiers and descriptions for the interviewed members of the team.

ID Role Joined Team Description
I1 Manager 2 years ago Founder of the research group.
I2 Developer 2 years ago Did not participate in CDE implementation.
I3 Developer 1 year ago Active member during CDE implementation.
I4 Developer 4 months ago Joined after CDE was already in use.

We defined three different units of analysis for the case study: the individual devel-
opers, the development team, and the project itself. These units of analysis were
selected to garner a holistic view of the impact that the containerized development
environment had at different levels relating to the project.

The interview questions were drafted under the guidance of a senior researcher and
were later reviewed by the same person for improvements and errors. The purpose
of the interview questions was to initiate the discussion on the themes and the
questions were designed to cover topics related to the different units of analysis.
The final revised list of interview questions is as follows:

1. What is your background in the project?

2. What is your job description in the project?

13

3. How did you first learn about Docker containers?

4. Why did you start using Docker containers?

5. How would you describe the CDE in your own terms?

What parts does it contain?

What does it do?

6. Why was the CDE taken into use by the team?

7. How has the CDE developed and evolved over time?

8. What are your overall thoughts and feelings on the CDE?

9. What effects has the CDE had on your work?

What is different?

What has changed?

10. Has the adoption of a CDE required something of you?

11. Has the adoption of a CDE required something from your team?

12. Have there been any surprising experiences or effects with using the CDE?

13. Would you use a CDE again in another project or recommend it to others?

14. Is there anything you would like to add on the topic?

15. Is there a topic that was not addressed in the questions?

All of the interviews were held within the same week and lasted for half an hour
each. The interviews were conducted in Finnish as all members of the team were
native Finnish speakers. All of the interviews were held in person except for one
that was done over Skype. The audio from all of the interviews was recorded for
transcription purposes.

3.4.4 Data Analysis

Once the interviews had been conducted, the recordings were transcribed and data
was extracted from the transcripts with the form shown in Table 4. The transcripts
were then analyzed in two separate parts: in the first part we went through each of
the extracted responses and assigned them to a higher level topic or theme that was
discussed in the response. In the second part we took the responses for each separate
theme and assigned a more detailed concept that was specific to that particular topic.

14

Table 4: Data Extraction Form, Interviews.

Identification
Interviewee Name of the interviewee.
Primary Data (Collected as a list of items)
Question Question that led to the response.
Quote Citation from transcript.

15

4 Results

The results from the literature review and case study are presented in two separate
parts. The results from the literature review are presented first and the results from
the interviews second. This section concludes with a short summary and comparison
of the key findings from the results.

4.1 Part I: Review of Gray Literature

After filtering the search results against our listed criteria we ended up with a total
number of 27 sources that are shown in Table 1. We then performed the concept
formation and analysis for each of the three categories.

4.1.1 What are the Stated Reasons Behind Moving to a Containerized
Development Environment?

Twenty-one of the included sources contained some expressed motivation for adopt-
ing a containerized development environment. The concept matrix for these sources
is shown in Table 5.

Fourteen sources expressed cross-environment consistency as a motivation, meaning
the desire to have a development environment that would run consistently across
different platforms and machines without platform-related issues:

“This allows developers to work on a common container configuration
that runs on the same OS and toolset, thereby eliminating cross-platform
compatibility issues almost completely.” (S1)

This ties in closely with developer happiness and productivity, a concept referring to
the desire to improve the working experience of developers through automating com-
mon manual tasks and other means. The following source describes how time spent
on environment configuration and general frustration could potentially be lessened
by using containerization, thus improving productivity and developer satisfaction:

“With the amount of time I spend screwing around with dev environ-
ments, it seems like an investment in Docker will be worth it, and I’m
tired of the ‘works on my machine’ problem anyway.” (S2)

The concept of developer happiness was among the most mentioned motivations
(11 mentions) and statements regarding it typically contained powerful language
indicating pains caused by consistency issues:

“. . . the one thing that has brought me to the brink of insanity more than
any other is dealing with development environments.” (S3)

16

Table 5: Expressed motivation behind moving to a containerized development envi-
ronment. The references for the source identifiers are defined in Table 1.

C
oncept

S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
S11
S12
S13
S14
S15
S16
S17
S18
S19
S20
S21

Total
C
ross-E

nvironm
ent

C
onsistency

x
x

x
x

x
x

x
x

x
x

x
x

x
x

14
D
eveloper

H
appiness

and
P
roductivity

x
x

x
x

x
x

x
x

x
x

x
11

Sim
ple

Setup
x

x
x

x
x

x
x

x
x

x
10

B
uilt-In

D
ependency

M
anagem

ent
x

x
x

x
x

x
x

7
O
nboarding

x
x

x
x

x
x

x
7

D
isposable

E
nvironm

ent
x

x
x

x
x

5
P
roduction-like

E
nvironm

ent
x

x
x

x
4

LocalC
I

x
x

2
E
nable

E
xperim

entation
x

x
2

B
uilt-In

C
onfiguration/Tooling

x
1

17

Many of the statements that expressed the desire to improve developer happiness
and productivity attributed it to a simplified initial setup process. The following
source describes how the entire setup of the development environment can be done
with just a few commands:

“Installing software is hard. And it has nothing to do with your expertise
as a developer . . . Docker provides a way out of this mess by reducing the
task of installing and running software to as little as two commands. . . ”
(S4)

The simple setup concept is tightly linked to and enabled by built-in dependency
management, meaning the ability to automate the task of installing and configuring
dependencies and make it a part of the initial setup:

“In theory, developers would only need to download Docker and a text
editor of their choice, and not have to install external tools and depen-
dencies.” (S1)

The simple setup concept was considered to help with and speed up the onboarding
of new developers to teams and projects:

“We also wanted to simplify the initial setup process for all our appli-
cations across the board. This will speed up the onboarding process for
new engineers who join our team.” (S1)

Five sources were motivated by having easily disposable environments and not having
to install shared dependencies on developers’ workstations. The following source
describes this as being desirable as it makes it easier to reset the environment for
the different applications being developed on his workstation:

“Having a development environment per app also helps cleaning out any
databases and Sidekiq queues and gem interdependencies. So you always
have fresh and clean environment and you don’t have to recompile Ruby
for each differing version on your workstation.” (S5)

Developers and teams that used containers and Docker for the deployment of their
projects also mentioned the explicit motivation of developing the exact same artifact
that would be deployed to production:

“When you have your application in a Docker container, you can be sure
that the code you’re testing locally is exactly the same build artifact that
goes into production.” (S6)

18

Among the lesser mentioned motivations for adopting the CDE was the ability to
run continuous integration tests locally:

“This gives developers the ability to conduct on-demand integration tests
by spinning up containers for the required services, satisfying our 3rd re-
quirement. Allow developers to conduct independent integration tests.”
(S1)

Two sources mentioned that the containerized development environment would en-
able experimentation of different services and their versions:

“Another example to consider is if you want to check how different ver-
sions of a library affect page rendering speed for your web interface. You
can simply install different versions of the library in different instances
of your front end container while keeping the application and database
containers the same.” (S7)

Lastly, one source mentioned the ability to add built-in configuration and tooling to
the development environment as a reason for adopting the CDE. The source provides
the example of adding tooling and configuration to create automatic test execution
into the environment:

“The result of this (setup) is that every code change will now automati-
cally execute all tests. . . This makes test-driven development with Docker
trivial.” (S8)

4.1.2 What Benefits do Developers Claim to Experience with Container-
ized Development Environments?

Thirteen of the included sources expressed some claim about benefits with container-
ized development environments. The concept matrix for these sources is shown in
Table 6.

Four sources mentioned the benefit of cross-environment consistency after adopting
a containerized development environment. The following source claims that the
unified development environment has helped decrease consistency issues:

“Our shop very successfully uses Docker for providing a unified devel-
opment environment that makes it much harder to say ‘Works on my
machine’.” (S9)

Many sources (9 mentions) made a claim about having experienced the benefit of
achieving the simple setup in practice. The following source demonstrated through a
tutorial how setting up the example environment was possible with two commands:

19

Table 6: Benefits that were claimed to have been experienced after moving to a
containerized development environment. The references for the source identifiers
are defined in Table 1. Concepts are listed in order of appearance in the text.

Concept S1 S4 S7 S8 S9 S1
0

S1
1

S2
2

S2
3

S1
2

S1
3

S2
4

S2
5

Total
Simple Setup x x x x x x x x 8

Infrastructure Package Manager x x x x x x x 7
Shared Configuration & Tooling x x x x x x x 7
Cross-Environment Consistency x x x x x 5

Developer Happiness/Productivity x x x x x 5
Disposable Environment x x x 3

Hosting External Applications Easily x x x 3
Onboarding x 1

“The result of all of this is a local development environment that on your
computer with a git clone and running and continuously iterating from
the moment you type: docker-compose up -d.” (S10)

Only one source mentioned improved developer onboarding in practice. The source
claims that new developers have been able to quickly setup a working development
environment due to the simple setup:

“The setup described above has enabled any new developer joining our
team to have things running locally with a single command in under 10
mins.” (S11)

Four sources contained a claim of improved developer happiness and productivity
after adopting the use of containerized development environments. The following
source claims that using Docker was the most productive thing they had recently
done and highlighted the importance of environment setup and distribution:

“Using Docker was one of the most beneficial and productive things I
did in the past couple years. . . . Docker helps me a lot with environment
setups also environment sharing. . . ” (S22)

Disposable environments that require no installation of dependencies directly on the
developer’s machine had been mentioned as a benefit in three sources. The following
excerpt describes one developer’s claims of being able to easily setup and dispose of
virtual environments:

“You can spin up whole stacks of virtual servers that work together- like
a whole MEAN stack, or a whole ELK stack, in under an hour. . . And
trash it just as fast if you don’t like it.” (S23)

20

The previous claim also brings up the benefit of using the Docker platform as an
infrastructure package manager. Eight sources in total mentioned this benefit of
being able to provision and experiment with different services with ease, and then
distribute them across the team. The following source illustrates this benefit by
claiming that adding Redis to the project environment could be done easily with
a few lines of code, and that his team could recreate the same environment by
rebuilding the container images of the CDE:

“I could add a couple more lines and have a full production setup with
Nginx and Gunicorn. If I wanted to use Redis for session caching or as
a queue, I could do that very quickly and everyone on my team would
be able to have the same environment when they rebuilt their Docker
Images.” (S12)

Three sources highlighted the benefit of using the CDE specifically for the manage-
ment and distribution of external services like databases and message brokers. The
following source claims that based on their experience, the containers in CDE’s are
best suited for hosting these external services (applications) locally:

“What we have realized after all the trial and error is that Docker contain-
ers are best suited for developers to run self-hosted applications quickly
and easily. Developers can then test their code by connecting to these
local instances instead of connecting to remotely hosted instances.” (S1)

The benefit of shared configuration and tooling was mentioned in 7 sources. In the
following excerpt one developer explains that the different configurations of services
can be included as a part of the project’s repository and then shared across the
development team:

“. . . you can commit all these interwoven hardware emulations to your
source code repository as text files, to be shared and replicated identically
to your dispersed team worldwide.” (S23)

4.1.3 What Challenges do Developers Claim to Experience with Con-
tainerized Development Environments?

Twelve of the included sources expressed some claim about a challenge that was ex-
perienced in the adoption of containerized development environments. The concept
matrix for these sources is shown in Table 7.

Two sources mentioned developer frustration that was experienced as a result of the
compounding of minor issues. The following source exemplifies this by claiming that
the compounding ends up deteriorating the developer experience:

“. . . this caused a lot of little inconveniences which when taken individ-
ually aren’t that big of a deal but if you pile them together you get a
really deteriorated development experience.” (S13)

21

Table 7: Challenges that were claimed to have been experienced after moving to
a containerized development environment. The references for the source identifiers
are defined in Table 1. Concepts are listed in order of appearance in the text.

Concept S1 S2 S3 S9 S1
0

S1
1

S2
2

S1
2

S1
3

S2
6

S1
4

S2
7

Total
Implementation x x x x x x x 7

Decreased Performance x x x x x x 6
Requires Docker & DevOps Skills x x x x x 5
Non-Linux Performance Issues x x x 3

Issues With Volumes x x x 3
Developer Frustration x x 2
Debugging Difficulty x x 2

IDE Integration & CLI Tools x x 2
Not For Desktop & Embedded x 1

Six sources mentioned challenges that were experienced due to decreased perfor-
mance when running software inside of containers. The following source claims that
common commands and tasks in their development process doubled in execution
time:

“. . . every command took almost twice as long to complete. From es-
lint verification to our unit test suite every task seemed to take forever
compared to before docker. This caused the apparition of unhealthy
behaviors in our development team. . . ” (S13)

Three sources claimed the existence of performance issues on non-Linux platforms
specifically. The following source goes as far as to claim that CDE’s are unusable
for developers who do not use Linux as their development platform:

“. . . that’s why volumes are 60 times slower in Mac and Windows when
you do that. It’s basically useless for devs on Windows and Mac OS X.”
(S26)

Issues with volumes both in terms of performance and crashing were mentioned in
three sources. The following source provides an example of how the switching of
branches caused many files to change in the volume which then lead the application
to crash:

“. . . switching from one branch to another would cause tens of files to
change at once and could make our Docker crash into a state where we
weren’t able to start the application again.” (S13)

Debugging difficulties were mentioned in two sources which shared some relation
with claims about challenges in IDE integration and the use of CLI tools :

22

“Debugging is now harder. If your IDE has to connect to the interpreter,
then you need a way to tell it to use the interpreter within the container
to execute the code.” (S22)

Seven sources claimed challenges that were experienced in the implementation and
configuration of the containerized development environment. The following source
elaborates on this by saying that constructing a CDE requires both knowledge of
the tool and an understanding of what is suitable for the needs of the project:

“There is no Docker way to construct a development environment.
Docker is a composable tool, not a holy book. Instead of trying to
copy someone else’s Docker based build system, take the time to learn
the tool, meditate on your needs, and then create an environment where
you’ve used Docker to reduce your pain points.” (S10)

The challenges related to implementation were closely tied to the challenge of ac-
quiring the required Docker and DevOps Skills for the development team which was
mentioned in five sources. The following source claims specifically that familiarity
is required not only in Docker, but Linux and DevOps in general:

“The only potential downside with Docker, is that to feel comfortable
using it, you need to not only learn how Docker works, but you need
to have some level of familiarity with Linux and DevOps concepts like
containers, networking, etc.” (S3)

Lastly, one source mentioned the limitation of containers in the development of desk-
top and embedded systems. The source claims that since the application deployment
in these contexts is not done with Docker, there is nothing to gain in containerizing
the application:

“Desktop and embedded work don’t have deployment under Docker. If
I’m doing Windows development I have to build an installer and launch a
VM to make sure it works. If I’m doing embedded work I need to reflash
my hardware using our manufacturing process. Nothing is gained on the
deployment side.” (S14)

This concludes the literature review portion of this study. The results brought forth
in this and the following section covering the case study are summarized briefly in
Section 4.3 and discussed further in Section 5.

4.2 Part II: Case Study

Upon analyzing the interview data we identified eight different topics. Some of the
topics emerged as a result of the interview questions and others emerged naturally

23

during conversation. The topics ranged from the history of how and why the CDE
came about (4.2.1), to the experiences the team members had with the CDE (4.2.4 –
4.2.5), to a more general evaluation of what the CDE required from the team (4.2.6)
and what would make it a suitable choice for a team or project (4.2.8). We will go
through the interview results topic by topic, in the aforementioned order. Excerpts
from the interview transcripts will be included for each topic and the interviewees
will be referenced by the identifiers defined in Table 3.

4.2.1 Background and Creation

The containerized development environment was not adopted by the team in a single
event, but rather the move towards it happened step-by-step, as was noted by the
project manager of the team. One of the longer standing employees states that when
he joined, containers were used exclusively in production:

“Originally only the production system was run using containers and we
did not really use them locally.” (I1)

Containers were first introduced into the development environment for running ex-
ternal services like databases. The longest standing member of the team pointed out
that there had been an attempt to create a containerized development environment
early on in the project before the other developers had joined:

“We had two ways of running the system, either locally or in containers.
I think that we had some technical issues with using containers, and we
decided to move forward with the project instead of trying to fix the
issues, which is why we abandoned it in the beginning . . . I feel like at
the time it was more about learning to use Docker than anything else.”
(I2)

The next step towards the CDE happened when the team introduced a new service
along with its external dependencies into the system. The team created a new CLI
tool to help with the setup of the project:

“...something was difficult, and we started to work on the CLI that would
automatically setup the development environment at the click of a but-
ton. This was because there were so many moving parts that the manual
setup was laborious and painful.” (I3)

The CLI did not initially run the entire development system in containers. Only the
external dependencies were set up and run with Docker, and the other services were
set up with custom scripts. The motivation to fully containerize the application,
was to get rid of the overhead related to maintaining these scripts:

24

“. . . that gave us the idea, that instead of trying to get the Bash scripts
to work on everyone’s machine, it would just be smarter to do it all with
Docker.” (I3)

New issues and pain points emerged after the move to a fully containerized devel-
opment environment was made. The project manager recalled that one member of
the team felt, that they would have to either fully adopt or abandon the CLI:

“I remember that one of the members of our team kept saying that the
‘CLI doesn’t work’. He also brought up the idea, that we should make
the decision to either abandon the CLI or switch to it exclusively.” (I1)

The team made the switch to the exclusive use of the CDE version of the CLI,
and the issues related to it were eventually fixed. Members of the team who had
initially experienced problems, said that now the CLI works to the point where they
almost do not remember the issues. The CDE has continued to evolve after its initial
adoption, partly as a result of moving towards a microservice architecture:

“...new parts of the system are now implemented as new services run-
ning in their own containers, and this is the general direction of our
application.” (I4)

The team had also added developer tools to the CDE that were configured and
automatically setup in every development environment:

“We have also added new tools like Adminer, that we use for accessing
the development databases from a web UI . . . before we had to access
the database from the command line.” (I4)

The team had also built their new end-to-end testing strategy around the container-
ized development environment:

“This new way of doing end-to-end testing with Cypress relies heavily on
it (the CDE).” (I1)

4.2.2 Motivations and Drivers

The containerized development environment came about when the team made its
first step towards a microservices architecture as was explained by the members
during the interview. The increase in services and the particular effect it had on the
setup of the development environment were mentioned as a primary motivation and
driver for the emergence of the CDE:

“Especially now, when we are adding new services like Apache Kafka to
our system, setting up the environment would get out of control if we
had to install them manually.” (I1)

25

This was also viewed from the perspective of the CDE being an enabler for the move
towards the microservices architecture, and the increase in services appeared to be
what was creating the need for a simpler setup:

“. . . it is possible that only after taking the CDE into use, have we have
been able to move towards the microservices architecture in our system,
since it makes it so much easier to have all of the services configured and
running together with one command.” (I2)

Another motivation that was expressed by all members, was the desire to have a
shared baseline and a consistent environment across the team:

“I think that the point was that we would all have the same development
environment and baseline, and that we would get rid of situations where
something worked on someone’s machine but not on someone else’s . . . so
if something did not work, we could all work on the problem and then
know exactly what needs to be done to get it working for everyone.” (I3)

The team’s project manager also brought up the point, that from his perspective it
is important that the team’s workflow fits the needs of the team, and that this type
of process improvement is exactly the kind of thing that the team should be doing.

4.2.3 Key Features

When asked to describe the CDE in their own terms, all members mentioned similar
key features. One common thing that was mentioned, was that it contains all of the
different parts of the system needed to run it:

“It contains all of the language runtimes and external dependencies and
services. It contains whatever services it’s attached to . . . if you use an
external logging service like Sentry, then you can easily pull an image
for Sentry from Docker Hub and add it to the system.” (I4)

In addition to consistency across developers’ environments, the fact that the devel-
opment environment mimics production was also brought up:

“One really big thing is that our development environment closely
matches our production environment . . . that way we can be sure that we
are using the same versions of our system’s dependencies everywhere.”
(I2)

One thing that was brought up was the isolation that the CDE offers, both across
services and also from the host running the service containers:

26

“It isolates my development environment from my development ma-
chine’s settings . . . the fact that it was isolated meant that all my de-
velopment Python environments worked, even when the Python setup
that was running on my own machine was completely broken.” (I3)

The last key feature was that the configuration of different parts of the system was
shared and also explicitly defined:

“It clears up our dependencies and configuration, you can go and see what
the different parts need, so that it’s not all on your computer but that
every container has its own configurations and dependencies defined.”
(I4)

4.2.4 The Experienced Benefits

Interviewees brought up benefits they had experienced at various points throughout
the interview. One benefit that emerged was automatic updates to the development
environment, that did not require any additional work from the developers:

“It hasn’t really required anything from me personally . . . I’ve just pulled
the latest version and then everything has just worked.” (I2)

Some of the developers emphasized that the CDE helped with managing the ad-
ditional complexity of dealing with microservices. Especially provisioning new ser-
vices, and starting up as well as tearing down the environment:

“. . . in a microservices environment it makes so many everyday tasks like
starting up the entire system much easier, and especially adding new
databases is just so simple. . . ” (I2)

The team also brought up the importance of configuration management, which was
viewed from a few different angles. One benefit they saw was that the explicit
definition of how the system is configured in a single file brings additional clarity to
how things work in the system. Additionally, the composability and configurability
of the environment was considered important:

“It helps with setting up new services, their communication, and it makes
it so much easier to understand where the different parts of the system
belong. It’s even easy to add multiple databases to the system. You just
add a few lines of code to a file and you have a new database up and
running.” (I4)

One of the developers saw that the value came from the consistency it created across
the environments of developers:

27

“It just gets rid of any conflict and discrepancies between environments.
Since we have the containerized environment we know that everything
is actually configured the exact same way.” (I3)

Consistency between development and production was also emphasized by another
developer, who saw it as important based on his experiences from previous projects
and workplaces:

“Our customer had a different version of Java running on their server
than what we had, and it lead to the entire application not working
in production. That was actually because of a minor update to Java
and not a major one. There is definitely a benefit in having the same
environment everywhere.” (I4)

Another benefit that was experienced by developers was the knowledge related to
Docker that they had acquired in the process. The interviewees felt that the adoption
of the CDE had not only required them to learn more about Docker, but that using
it actively during development had also taught them more about it:

“. . . it has expanded my understanding of how Docker and Docker Com-
pose work on a very detailed level. The things that I have been able to
get out of them after using them, has been a really positive thing.” (I2)

Two interviewees stated that they were surprised that Docker could be used in such
a way, and they were also surprised to see that the concept works in practice:

“I’m really surprised that the thing works to begin with. I had no idea
that you could use Docker this way. . . ” (I3)

One developer expressed that being forced to learn more about Docker was positive
because it made the team acquire skills that were useful for deployment and dealing
with the production environment:

“The fact that you have to use Docker more often and touch the more
difficult configurations is a positive thing in the grand scheme of things,
since we use Docker in production and it just benefits our team if every-
one knows how to use those production tools better.” (I2)

The same developer also expressed that deploying new services to production was
slightly easier, because adding the service to the CDE was done in a similar way as
it would be done in production later on:

“Adding any new services is easier, because you have to think about how
it is configured and how it actually runs in production, and they work the
same way in terms of what environment variables need to be configured
and so forth.” (I2)

28

The case team had also leveraged the features of the containerized development
environment in their implementation of end to end testing. The team ran their
browser-based user acceptance tests against a slightly tweaked version of the con-
tainerized development environment, and the same mechanism of setting up and
running the tests was used both locally and on the continuous integration server.
One of the interviewees also saw potential in using containers as a means of running
a large amount of tests efficiently in parallel:

“I’ve seen tests in the past that had to use the same shared database.
If instead you had this kind of Docker environment then you could spin
up multiple instances of the same service and run different tests against
them. You could basically do parallel testing and it wouldn’t matter
how slow the individual tests suites are because you could run multiple
suites at the same time.” (I4)

4.2.5 The Experienced Challenges

Most interviewees had experienced the same set of challenges in the adoption and use
of the containerized development environment. One of these challenges was that the
CDE introduced changes to the team’s previous workflow. An interviewee mentioned
that developers now have to remember to run commands inside of containers and
that running tests currently relies on containers:

“Sometimes I try to run npm install on my own machine and wonder why
it doesn’t work. It takes like half an hour to remember that the npm
install command needs to be run inside of the container . . . and another
thing is that you need to have the containers of the application running
in order to run tests.” (I3)

The changes to the workflow are something that caused the project manager to
opt-out of using the CDE at the beginning:

“. . .my previous development environment just worked and my debug-
ging workflow was optimized for it. It just worked and I didn’t want to
fix what was not broken.” (I1)

All interviewees brought up the difficulty and challenge of getting development tools
like IDE’s and linters working out of the box. It appears that it is possible to get
them working, but that it is not straightforward:

“One drawback is that debugging tools for Node require some kind of
extra configuration in the development environment to get them working.
All of the instructions that exist for those tools assume that you are
running the Node runtime on your local machine, but in our system it’s
inside of the container.” (I4)

29

The difficulty in configuring tools like linters, that were a part of the team’s regular
workflow, presented a challenge in the implementation of the containerized develop-
ment environment:

“I don’t remember what the issue was, but getting npm and the linters
configured correctly was a huge obstacle and nothing was working for a
quite some time.” (I2)

The project manager of the team made the observation that it was quite common
to assign new tasks for fixing the CLI, and that it took a while to get it to the
point where it was working properly. The difficulties in the implementation of
the containerized development environment was seen as presenting an additional
challenge of eating up development resources from the team:

“Getting to the point where it was working ate up a lot of our time and
resources. Since we don’t have any strict demands on how many features
we have to deliver this was acceptable in our context. I do find myself
worrying about the balance between creating value for the customer and
improving our own workflow, and that was something I kept thinking
about.” (I1)

4.2.6 What its Adoption Required

There was some discussion in the interviews about the things that were required
from the team in order for the CDE to become a reality, and more general discussion
about what it would take from another team to adopt it. The manager of the team
observed that it required a certain skill-set and a vision from the team:

“It required that the team had the vision and necessary skills to make
the decision that this would be an improvement over what we have now.”
(I1)

The ability of the team to self-organize and the management style of the team were
seen as fundamental in enabling the team to pursue the change. Also the team’s
commitment to continuous improvement was hinted at by the project manager:

“You have organized yourselves and it has required me to be wise enough
not to deny it . . . this is exactly the kind of thing the team should have
been doing. The old best practice was to have a good README, and
this replaces that.” (I1)

The developers of the team also saw the importance of having the kind of manage-
ment and resources that supported and permitted the move towards the CDE:

30

“Every developer in our team has a lot of opportunity to affect how we
work as a team and the tools that we use for development. The fact
that we have resources for this kind of experimentation is what makes it
possible.” (I2)

One of the team members saw that it was important for the team to have the
necessary tenacity and grit to work through the challenges that they faced in the
beginning:

“It required the mental fortitude and grit to tackle the issues one by one
in order to get to the point where everything worked. It would have been
easy to scrap the idea and return back to the old way of working . . . Our
team needed to have individuals who were willing to go the distance and
be patient enough to fix the issues. I think that really required a vision
of what it would provide for us if we did get it working.” (I2)

All members of the team felt that taking the CDE into use requires all of the members
of the team to have knowledge of Docker and invest resources into learning it. One
of the developers described the situation like an investment:

“Managing dependencies is easier with Docker but it requires you to know
how to use it . . . it does require you to know about it and actually want
to use it.” (I4)

While learning Docker was seen as a requirement, most interviewees mentioned that
in everyday use there are only a few commands you have to remember. The need
for deeper knowledge arises when you want to change the configuration or add new
services:

“I would claim that anyone could use it if you just said ‘write this com-
mand before you start developing’. I don’t think that it requires any real
knowledge of Docker unless you are setting up new services.” (I3)

4.2.7 Views and Experiences of Onboarding

The manager of the team viewed the CDE as having major implications for onboard-
ing new developers into the project. During the interview he expressed his vision
for how the onboarding process and first day at work would go for a developer:

“My definition of done is that when a new developer joins the team
he tells the CLI to install the environment and then goes to get a cup
of coffee. When he comes back from the coffee break, the development
environment is setup and he then tells the CLI to run tests locally. Before
lunch, the new recruit pushes his first commit to version control and
when he comes back from lunch, the new version has been tested on the
CI server and it has been automatically deployed to production.” (I1)

31

One of the interviewed developers had joined the project after the adoption of the
CDE and was able to share his experience of the onboarding process, as well as
difficulties he has experienced with project onboarding in the past:

“In previous jobs I have had to be spend a day or two in configuring the
environment . . . we actually had a list of the versions of different libraries
that were compatible with the application and you had to manually find
and install the correct version.” (I4)

When describing his experience in the current project, he mentioned that setting
up the environment was much easier than at previous jobs, and that it was really
helpful that he had a course immediately available for learning Docker:

“Setting up the development environment was painless, especially since
Docker takes care of all of the networking and configuration. We also
have many services and I didn’t even have to start those separately, one
command got them all up and running . . . It was also a huge help that
there was this new Docker course at the university that I could just take
immediately. That was enough for me to learn what I needed to get
started.” (I4)

4.2.8 Suitability for Projects and Teams

The interviewees were asked in different ways to evaluate the suitability of the CDE
to different projects. Two interviewees mentioned that if configuring the system
becomes a major pain point, then the CDE can help in that situation. Having three
to four services was mentioned by many as a critical point:

“If there’s many services or lots of complicated configuration that’s done
in many different places, then this is a good way of structuring that
configuration into one place . . . I think the critical number is when you
three or more services, at that point it’s worth it.” (I2)

One of the developers mentioned that some particular languages are more difficult
to configure than others, and could potentially benefit from the CDE:

“If you have many team members and use languages that can get tan-
gled up with your system configuration easily, like Python, then I would
recommend it.” (I3)

Many of the interviewees also pointed out that it might not be suitable if the project
is short-lived, or if it is more important to dedicate resources to other things:

“In another project I was working on we only had three months to get
the application ready, and we would definitely not have wanted to spend
a few weeks on trying to get the containerized development environment
set up and working.” (I2)

32

It was also pointed out that the CDE is mostly geared towards web services, and
that it does not really offer any benefits for developing native mobile or desktop
GUI applications.

4.3 Summary and Comparison of Results

We will close with a short summary and comparison of the key concepts and findings
found in the review of gray literature and the case study. This summary is presented
in Table 8 and the findings will be discussed in more detail in the next section. Some
of the smaller findings in the results are not included in the final discussion in order
to maintain the focus on the most prevalent findings.

The concepts formed in the literature review and the topics from the case study
were formed independently. The summary presented in Table 8 does not attempt
to find an exhaustive mapping between the two, but rather seeks to find the most
relevant topics that were discussed, and then present what the case study and the
literature review revealed about the topic. The relevant topics did not need to be
present in both portions of the study in order to be included in this final comparison
and discussion.

33

Table 8: Summary and comparison of the key findings from the literature review
and case study. The general concepts listed in the first column are different from
the concepts in the literature review.
Topic of Discussion Review of Gray Literature Case Study
Simple Setup Having a one-click setup was one of the

most mentioned motivations that was also
experienced as a benefit in practice.

The need for a simple setup was driven by
the increase of services and external depen-
dencies in the case project.

Consistency Consistency across development machines
and between production and development
was a common motivation that was also ex-
perienced in practice.

The team expressed the desire and bene-
fit of having a shared baseline development
environment that resembled the production
environment.

Pain Points Pain points experienced by developers with
consistency issues and setting up environ-
ments were a commonly expressed driver
for achieving consistency and a simple
setup.

The increase in complexity of the case
project lead to pain points in its setup that
created the desire for an automated envi-
ronment setup process.

Onboarding Improved developer onboarding was a com-
mon motivation for a simple setup, but no
experiences of developers being onboarded
with a project using CDE were found.

The project manager saw implications for
developer onboarding and one developer
had experienced an improved onboarding
experience when joining the project.

Isolation Isolation between environments was re-
ported to have the benefit of being able
to easily switch between different projects
and to reset the environment if something
broke.

Services using Python were experienced
as having troublesome environments that
were easier to manage when they were iso-
lated in their own containers.

Infrastructure
Package Manage-
ment

Commonly expressed benefit of using the
Docker platform as a package manager for
specifying, installing, and configuring in-
frastructure and services like databases.

Adding new services and infrastructure to
the project could be done with just a few
lines of code and distributed team-wide.
This made it easier to add services and fa-
cilitated the move towards microservices.

Shared Configura-
tion & Tooling

Reported benefit of having all configura-
tion specified in a single file that was shared
team-wide in version control. Some sources
reported additional built-in tooling in the
CDE that facilitated a specific workflow.

Experienced benefit of shared configuration
and a document that defines the structure
of the system. Additional use of ready-
made images for browser-based develop-
ment tools, e.g. for database management.

Performance Issues One major challenge with CDE’s was the
decreased performance of the SUD running
on the development machines, particular
on non-Linux platforms. This had a nega-
tive reported impact on developer produc-
tivity.

Not mentioned in the case study.

Construction One major challenge was the difficulty of
constructing the CDE. The successful con-
struction was reported to require more than
just basic knowledge of containers, and the
environment itself.

The technical difficulty of constructing the
CDE was a struggle for the case team, and
there was an additional reported motiva-
tional challenge to not give up on the CDE
during its construction.

Resources & Sup-
port

Not mentioned in the literature review. Case team mentioned that CDE implemen-
tation used up a lot of development re-
sources from the team. Support and con-
sent from the management was seen as im-
portant.

Tools & Workflow Reported challenge of not being able to use
certain development tools due to the execu-
tion environment existing inside of a con-
tainer and not the host machine.

Issues with certain development tools not
working without additional configuration.
Additional challenge of having to change
existing familiar workflows of developers.

End to End Testing Not mentioned in the literature review. The case team experienced the benefit of
using the CDE for setting up a production-
like version of the SUD that end to end
tests could be run against. Suggested po-
tential of being able to have multiple in-
stances of the SUD for running end to end
tests in parallel.

34

5 Discussion

In this paper we sought to find benefits and challenges developers claim to experience
with using containerized development environments and what the stated reasons
behind taking them into use are. We will briefly describe our findings for each of the
three research questions before presenting a more detailed discussion of the twelve
key findings of this study.

In our first research question we asked what reasons developers state as being the
motivation behind moving to a containerized development environment. The most
common reasons we identified in our review of gray literature were (1) wanting to
provide a consistent development environment for all developers, (2) wanting to
achieve a simple “one-click” setup process for creating a new development environ-
ment that would be easy to dispose of and reset, (3) to increase developer happiness
and productivity by automating environment setup and by mitigating the effects of
the “works on my machine” -syndrome, (4) to obtain built-in dependency manage-
ment and automate the task of installing and configuring dependencies, and (5) to
help developer onboarding through the simplified “one-click” setup.

The main driver we identified in the case study for adopting a containerized devel-
opment environment was the case team’s need to deal with the increased complexity
and difficulties that followed as the number of services in the system under devel-
opment began to increase. The interviewees stated that obtaining an automated
“one-click” setup process and creating a consistent shared baseline for the develop-
ment environment were the two most sought-after features.

In our second research question we asked what benefits developers claimed to have
experienced with containerized development environments in practice. Many of the
concepts that were mentioned as reasons for adopting a containerized development
environment such as the simple “one-click” setup, increased consistency, disposable
environments, built-in dependency and configuration management, and improved
developer happiness and productivity were all claimed to have been experienced in
practice in multiple sources. Only one source expressed a claim about improved
onboarding in practice and three sources emphasized positive experiences with us-
ing containers specifically for running the external services, e.g. databases, of the
application in development environments.

The members of the case team claimed to have experienced benefits similar to those
that were identified in the review of gray literature, such as increased consistency
across development environments, the automated “one-click” setup, built-in depen-
dency and configuration management, and having a production-like environment
in development. The members of the case team also made claims about benefits
that were not present in the literature review. The interviewees claimed that using
the CDE had improved the team’s skills and knowledge of Docker and that the
“one-click” setup made it possible to easily create instances of the system under
development that automated tests could be run against.

In our third research question we asked what challenges developers claimed to

35

have experienced with containerized development environments. The most common
claims about challenges that were identified in our review of gray literature were the
difficulty in constructing the containerized development environment, the decreased
performance of running the SUD inside of containers, and the amount of knowledge
and skills required to successfully implement and use the containerized development
environment. Three sources claimed that CDE’s running on non-Linux development
machines suffered from particularly poor performance, and two sources claimed that
the compounding of minor issues they had experienced with using CDE’s resulted
in a greatly deteriorated development experience.

The case team made similar claims of having experienced challenges in construct-
ing the containerized development environment. Many of the interviewed members
pointed out that it took a major commitment from the team to fix all of the is-
sues that came up during implementation. Members of the case team also claimed
to have experienced challenges with getting command-line based development tools
that were a part of the team’s regular workflow to work with the containerized
development environment.

After comparing the results obtained from the review of gray literature to the results
of the case study, we were able to identify 12 key findings. The following sections
contain more detailed discussion on these key observations made from the results
of this study, as well as a comparison of the findings and methodology of our study
to existing literature. This section will conclude with discussion about threats to
validity and the limitations of this study.

5.1 Simple Setup and Consistency

Cross-environment compatibility as well as the desire for a simple setup process
for the development environment were among the most mentioned motivations for
adopting a Containerized Development Environment (CDE) in the literature review.
These motivations and desires appeared to be met successfully according to the
claims that developers made about their experiences, indicating that CDE’s may
provide a real-life solution to these problems.

Similar sentiments were echoed in the case study. The desire for a simple setup came
about as the number of services in the System Under Development (SUD) started
to increase. Many interviewees also mentioned that the CDE had mitigated discrep-
ancies between developers’ machines in practice, and that it helped to establish a
shared baseline for the development environment.

Both the literature review and case study also reported a similar benefit and moti-
vation of having a development environment that closely resembled the production
environment. Interviewees in the case study mentioned that this provided increased
confidence in deploying new changes to production. It is worth noting that this
does not constitute hard evidence of compatibility related issues being mitigated in
the deployment process, but it is unlikely that this confidence would be evident if
complications in deployments had worsened.

36

There appears to be a commonly shared desire to mitigate compatibility issues and
automate the setup of development environments. This desire is independent of the
underlying technology and it is conceivable that other solutions besides CDE’s may
emerge over time. Nevertheless, CDE’s in their current form offer a functioning
solution to meet these particular needs of developers.

5.2 Underlying Developer Pain Points

One of the primary motivations for a simple setup process and cross-environment
compatibility that was mentioned in the literature, was developer happiness and
productivity. Many sources contained powerful language that was used to express
pain points that developers had experienced in setting up environments, installing
dependencies and dealing with the ”works on my machine” syndrome.

This implies that installing dependencies and maintaining consistent environments
are real problems that are experienced passionately by developers. This observa-
tion is independent from CDE’s and points to a broader issue with real impact on
developer experience.

The results of the case study support this observation, as the difficulty of maintain-
ing and setting up a complex environment was the primary initial motivation for
creating the CLI tool which lead to the creation of the containerized development
environment. Interviewees had also brought up past experiences of dealing with
compatibility issues in previous projects, further indicating the existence of these
underlying pain points.

The interviewed developers’ language was not as strongly worded as in the literature,
but most interviewees used different emotive expressions to indicate experienced
pain and difficulty with environment setup. The case study also brought up that
starting and managing multiple services is experienced to be difficult. In addition
to simplifying the setup, the CDE would also appear to help developers manage the
environment during development.

The identified developer pain points seem real and warrant further investigation. An
improved understanding of the impact and pervasiveness of these problems could
help us evaluate the value that solutions like containerized development environ-
ments provide to software development teams and other stakeholders.

5.3 Developer Onboarding

Many sources in the literature review expressed the idea of a simple setup process
being beneficial for the onboarding of new developers to projects. However, only
one source expressed an experienced benefit in facilitating onboarding with the help
of containerized development environments. The manager who was interviewed for
case study expressed a similar interest, particularly for facilitating a workflow and
onboarding process that would enable new developers joining the project to be

37

productive from day one.

The case study covered the experience of one developer being onboarded to the
case project with the containerized development environment. When compared to
previous projects, the CDE was reported to have successfully offered a faster and
more painless experience of setting up the environment. The interviewee pointed
out, that having a Docker course available when he joined the project helped with
the use of the containerized development environment.

The lack of evidence supporting this hypothesized benefit coupled with the value of
its potential realization, indicates an open and interesting area for future research.
Particularly, based on the case study it would appear that providing the necessary
learning materials and training is an important factor in onboarding to projects
using a containerized development environment. However, the same could be true of
software projects in general, and is not inherently tied to containerized development
environments.

5.4 Disposable Environments and Project Switching

Some sources in the literature review viewed the simple setup concept from a dif-
ferent angle, viewing CDE’s as easily disposable environments. Developers that
worked on multiple projects appreciated the ability to easily switch between project
environments that were independent from one another.

In addition the ability to easily dispose of and setup a new clean development envi-
ronment was valuable in situations where the environment ends up in a corrupted
state. Both of the mentioned factors appear to be beneficial for teams and devel-
opers who frequently switch between projects or experience the need to reset their
development environments.

Similar thoughts were expressed in the case study from the viewpoint of isolating dif-
ferent environments. One of the interviewed developers brought up his experienced
difficulty with managing multiple Python environments on his machine, and that
isolating these development environments inside of containers was valuable. An-
other interviewee brought up the difficulty of having different versions of the same
database running locally, and that isolating these external services into containers
enables working on multiple projects with different version requirements of the same
dependencies.

It would appear that project-level isolation is a feature provided by containerized
development environments, but the benefit it provides is only experienced in specific
contexts. For teams working on a single project on dedicated single-purpose devel-
opment machines, project switching is something that might never occur, and the
isolation provided by a containerized development environment would not provide
any major benefit. To contrast this, developers who need to switch between devel-
oping different systems with complicated dependencies, containerized development
environments could provide a crucial benefit.

38

5.5 Infrastructure Package Management and Microservices

An interesting and novel benefit that emerged in both the literature review and case
study, was the use of CDE’s and the Docker container platform for infrastructure
package management. Most programming languages have dependency management
tools that can be used for specifying and installing required libraries and dependen-
cies to a project. The adoption of a containerized development environment enables
something similar at the level of infrastructure and services, making it possible to
provision databases, message brokers and other services with just a few lines of code
and distribute them team-wide.

This significantly lowers the barrier of taking new technologies and services into use
in projects, as was observed and reported by the developers interviewed in the case
study. Sources in the literature review also pointed out that this enables the testing
and profiling of different versions of services and configurations. This aspect of con-
tainerized development environments is something that especially service oriented
projects and teams could benefit from greatly, and the case study provides some
preliminary evidence of this.

Interviewees of the case team mentioned that retrieving the latest version of the
containerized development environment from version control and running a single
command was enough to setup and run new services and external dependencies that
had been added to the system by other developers. The simplicity of specifying new
services with a few lines of code was highlighted by many developers as a notable
positive feature. All of these things provide evidence of this lowered barrier for
adding new services.

The interviewees also explicitly linked the capabilities provided by this feature to
the project’s shift towards a microservices oriented architecture. The relationship
between the two appears to be symbiotic — originally it was the increase in services
that lead to the CDE, but later on the team’s developers viewed the CDE as enabling
and facilitating the continual move towards distributed services.

One interviewee pointed out that when new services were added to the system, their
configuration in the containerized development environment required the team to
consider how the different microservices and their dependencies would be composed
and deployed to production. This further demonstrates the compatibility between
the containerized development environment and systems using a microservices ar-
chitecture. Interviewees often mentioned that at the point where a system has three
to four services, they would consider the CDE as being necessary.

The value of something resembling an infrastructure package management tool for
external dependencies appears to be highly ranked by developers. While the use of
containers for defining the language runtimes of the SUD appears to divide opin-
ions, we found no criticism towards running external dependencies like databases
as containers. Choosing to containerize only external dependencies appears to be
a safe alternative for getting some of the benefits of CDE’s while avoiding many of
their common pitfalls.

39

5.6 Shared Configuration and Tooling

Another experienced benefit brought up in both the literature review and the case
study, was the ability to implement configuration and tooling that could be shared
team-wide. Interviewees in the case study expressed that the explicit configuration
of how ports and environment variables are configured in the system, also helps to
understand the structure of the system under development and how the different
components of the system are connected.

The case team had also added services like browser-based database management
tools to the containerized development environment that were then distributed
across the team. This illustrates that in addition to the dependencies of the SUD
itself, containerized development environments can also contain additional tooling
and configuration for development purposes.

One of the sources in the literature review mentioned a configuration that automated
the execution of unit tests every time changes were made to the source code. The
ability to distribute this kind of configuration makes it easier for teams to craft
shared development environments that facilitate and enforce desired workflows.

5.7 Cross-Environment Performance Issues

One of the biggest challenges experienced with the adoption of CDE’s that was
expressed in the literature review was decreased performance of the system under
development running on the developers’ machines, which had a negative effect on
developer happiness and productivity. There appears to be a trade-off between
performance and consistency that has to be addressed and considered when adopting
a containerized development environment.

Another challenge brought up in the literature review is the variation in performance
of CDE’s across different platforms and operating systems. While CDE’s success-
fully enable cross-environment consistency, they do not ensure cross-environment
performance due to poor performance on non-Linux platforms.

These issues with performance were not brought up in the case study. Possible
explanations for this could be that the development machines used by the case
team just happened to be well-suited for running the containerized development
environment, or that the SUD itself happened to be lightweight.

Quite a few sources in the literature review also mentioned performance issues
with volumes when sharing source code between the host and container, which is
commonly used in the implementation of containerized development environments.
While performance issues related to volumes were not mentioned in the case study,
interviewees did bring up the general difficulty of dealing with Docker volumes in
implementation.

The severity of the performance issues experienced by a development team using a
containerized development environment will depend on various factors. It would be

40

wise for any team contemplating switching over to a CDE, to test its performance
on their development machines before making the switch. The Docker platform is
still evolving and it is possible that these performance issues will improve over time,
but currently they are one of the major drawbacks of using a CDE and the trade-off
has to be carefully evaluated.

5.8 Non-Trivial Construction

One of the biggest challenges that was mentioned by developers in both the litera-
ture review and the case study was the difficulty in constructing the containerized
development environment. As mentioned by the interviewees of the case team, get-
ting the development environment working and fixing all of the related issues took
considerable time and effort. The fact that the team had attempted to construct
a containerized development environment early on in the project and abandoned it
supports the existence and size of this challenge.

Containers are a technology that can be used as a tool in constructing development
environments but it is not their primary purpose and, for this reason, there is no
single way of constructing them. As noted by all interviewees in the case study and
various sources in the literature review, the construction requires skills and knowl-
edge of the tools used. While the construction itself was experienced as challenging,
many interviewees mentioned that the environment is not difficult to operate in daily
usage.

The necessity for team-wide knowledge of Docker could prove to be beneficial in
DevOps-oriented teams that already use containers for deployment — the introduc-
tion of containers into the development environment would force all developers to
familiarize themselves with the technology. The case study offers some evidence of
this, as most interviewees mentioned that the adoption of the containerized develop-
ment environment had increased their knowledge of the technology. One interviewee
also expressed this opinion explicitly, stating that it benefits the team at large when
every developer has better knowledge of the tools used in production.

While the flexibility of the tool makes initial construction more challenging, it also al-
lows for the freedom for developers to craft containerized development environments
according to their specific needs and tastes. An example of this would be the pre-
viously mentioned environment that enforced a TDD workflow, or the development
tools added by the case team. One of the sources also stated that through experience
their team had given up on fully containerized development environments, instead
opting to use containers only for databases and other required services.

The difficulty in construction does not appear to be purely technical. Some of the
interviewees from the case team pointed out that the construction required grit
and tenacity from the team, and an underlying commitment to fix all of the issues
related to the containerized development environment. This seems to hint that there
is also a motivational challenge related to constructing containerized development
environments, and that their successful adoption requires a significant commitment

41

from the team.

These challenges in construction are something that teams contemplating switching
to a CDE have to keep in mind. If the team does not see great value in its adoption,
or if it is unable or unwilling to expend the time and resources to research and
develop the CDE, then it may not be a viable option.

5.9 Resources and Support from Management

The difficulty in implementation introduces another challenge that is related to
the resources it consumes. The case team that was interviewed used a significant
amount of its time to implement the containerized development environment and
to fix all of the issues related to it. Interviewees pointed out that in the context
of the case project this was possible, since there was no significant pressure to
deliver new features to customers. If the context of the team and project was more
competitive with strict deadlines, this investment in resources could have proven
to be a challenge. As one of the interviewees pointed out, in short-lived projects
resources could be better spent elsewhere.

The interviewees also brought up that the implementation of the CDE required the
kind of team and management that would push for and allow its implementation.
The case team was self-organizing and the team’s manager did not stand in the
way of the team’s move towards the containerized development environment, which
would appear to be a critical precondition. If the team was operating within the
context of an organization where this kind of decision required managerial approval,
it is possible that the project would not have moved forward.

5.10 Local Development Tools and Changes in Workflow

Both the literature review and case study brought up experienced challenges related
to using locally installed development tools with the containerized development en-
vironment. Interviewees suspected that most of the tools that exist are designed
to be used with applications that are running directly on the local host machine.
The fact that the system under development is running inside of containers adds a
level of isolation between the host and the application’s components, which requires
additional configuration to get the tools working correctly.

This challenge is also closely related to other changes that happen to the develop-
ment workflow when a containerized development environment is taken into use.
Many development tasks that are done from the command line, like running tests,
now have to be executed inside of containers and this change requires developers to
change the way of working they are accustomed to. As evidence of this, the manager
of the case team initially opted out from the CDE for this very reason, as he was
used to his previous workflow and did not want to fix what wasn’t broken. Another
interviewee mentioned that his use of certain debugging tools had lessened after the

42

adoption of the containerized development environment, providing further evidence
of this change in workflow.

While in theory using the containerized development environment could be optional
for developers working on the same project, based on the case study we were under
the impression that team-wide usage was implicitly enforced. The fact that the
team built its end-to-end testing around the containerized development environment,
further established its default position in the project.

5.11 End to End Testing

The case study brought up the benefit of using the containerized development en-
vironment as a way of setting up the system for end to end testing. This use of the
containerized development environment did not come up in the literature review,
but was frequently mentioned by different interviewees in the case study.

The case team leveraged the simple setup of the containerized development envi-
ronment as a means of creating a production-like replica of the entire system that
end to end tests could be run against. This is not exclusive to containerized de-
velopment environments, and has more to do with container-based deployment and
orchestration tools in general. The case team’s use of the CDE for end to end testing
still illustrates the potential of using containers and orchestration tools for testing
purposes.

One interviewee also hypothesized that the repeatable automated setup of the sys-
tem could be used for creating multiple instances of the system, that could then
be tested in parallel. This feature in particular could enable running large suites of
tests in a much shorter amount of time. This use of containers in testing appears to
be a novel and interesting research topic of its own.

5.12 Use of Gray Literature

The choice of using gray literature as source material plays a significant role in
this study. It has been suggested that systematic literature reviews in software
engineering may fail to capture the current state of the field as they typically exclude
forms of gray literature (Garousi et al. 2016). One set of guidelines for including
gray literature and conducting multivocal literature reviews in software engineering
is presented by Garousi et al. (2019). We will briefly compare the structure of our
study to this set of guidelines.

The review of gray literature in this paper was conducted using the standard sys-
tematic literature review protocol as a template which follows the first guideline
presented by Garousi et al. The second guideline states that existing reviews on
the topic should be identified first and the need for the review should be clearly
motivated. Before conducting our review we searched for existing scientific litera-
ture on containerized development environments and were unable to find any papers

43

discussing the topic. The burgeoning interest towards CDE’s expressed by practi-
tioners in gray literature made us feel that there was a gap in the existing scientific
literature for introducing the topic. The third guideline states that the decision
to include gray literature should be made systematically, and while there was no
systematic process behind us making the decision, our reasons for including gray
literature in our review match many of the listed reasons suggested for this selection
process by Garousi et al.

The fourth guideline states that the research questions should be defined so they
address the goal of the review and match the needs of the target audience. One fail-
ure of this paper was to clearly communicate the existing gap in scientific literature
and that the underlying goal of this paper was to introduce this recent phenomenon.
However, the research questions were carefully formulated to achieve this goal by
finding answers to why practitioners in the field were pursuing containerized de-
velopment environments and what kinds of benefits and challenges they claimed to
have experienced. The fifth guideline suggests to adopt various research question
types which our study does not follow, as all of our research questions fall under the
exploratory category.

The sixth and seventh guidelines state that one should identify the relevant types and
sources of gray literature early on, and that general search engines and specialized
websites are ways of searching for gray literature. Our study follows these guidelines
as we identified a group of websites that contained the largest amount of quality
discussion on the topic of containerized development environments. We used general
web search engines to then target these websites specifically and crafted our search
string so that it returned the key sources we had identified early on in the study. Our
study also follows the eighth guideline that provides three different stopping criteria
for gray literature searches. In our study we decided to define our stopping criteria
by setting a boundary on the amount of effort that would be spent on reviewing
the literature. In practice this meant that only the top 20 search results for each of
the three chosen websites were checked against our inclusion and exclusion criteria.
The ninth guideline states that quality assessment criteria should be mixed in with
the inclusion and exclusion criteria. In our study the only requirement we specified
for included literature was that the sources ought to contain recent and relevant
information for the research questions.

Guideline 10 states there should be coordinated integration of source selection for
both the gray and formal literature. No formal literature was included in the review
of our study which means this guideline was not followed. Guideline 11 states
that different types of criteria should be applied and adapted for the study quality
assessment of gray literature. We did not perform any formal quality assessment for
the sources of gray literature in our study.

Guideline 12 states that during data extraction explicit traceability information
should be maintained between the extracted data and the primary source. In our
data extraction form the explicit link between quotes and their sources was captured
and this link was maintained all the way through the data synthesis phase as well.

44

Guideline 13 states that a data synthesis method suitable for the source of literature
should be selected. In our case, we considered qualitative coding to be particularly
suitable for synthesizing the self-reported claims of developers captured in the data
extraction phase.

Guideline 14 states that the writing style should match the target audience. Our
study adheres to this guideline as the methodology behind our study is transparent
and has been clearly documented, the key findings of our study have been high-
lighted, and potential directions for future work have also been identified.

Our review and use of gray literature follows a vast majority of the guidelines pre-
sented by Garousi et al. (2019). The two major deviations from these guidelines
were (1) solely relying on gray literature due to the lack of existing scientific litera-
ture and (2) not using exhaustive quality assessment of the included sources of gray
literature.

5.13 Threats to Validity and Limitations

The literature review relies exclusively on self-reported postings acquired from online
forums and interviews, although forum discussions generally contained more debate
providing some variety within the single category. The fact that the data was sourced
exclusively from online forums may have biased the sample, since it is possible that
only a particular segment of developers discuss topics actively online. As a result,
any dominant traits or opinions held by this segment would be heavily featured
and over-represented in the results of the literature review. In this way a highly
enthusiastic and optimistic segment of developers could create an overly optimistic
view of the trend and vice versa. It is also possible that this segment represents
some bubble that holds certain beliefs and opinions as undisputed fact. If this were
the case it could inhibit certain issues from appearing in the data.

Another threat to validity is that the concept of a containerized development en-
vironment is loose in definition and refers to a variety of different kinds of imple-
mentations. This means that differences in experience may have resulted due to a
difference in implementation. In this early stage of an emerging trend where there
is no canonical model for the concept this is an unfortunate but unavoidable reality.

All extracted citations in the literature review came from developers working on
different projects and teams. Their self-reported experiences may represent a fringe
opinion that paints an overly positive or negative picture of the actual experience.
For this reason we tried to gather a large sampling of opinions from different projects,
hoping to average out and mitigate the impact of fringe opinions.

While the case study offers multiple accounts from different developers working on
the same project, the gathered interview data is still solely self-reported. Thus,
any conclusions about actual measurable effects that the containerized development
environment had on things like productivity, cannot be made.

We also hold an acknowledged personal bias in favor of containerized development

45

environments, which may have skewed various areas of the study. However, active
measures were taken to counteract this acknowledged personal bias. Examples of this
include having the interview questions reviewed by a senior researcher, and including
an explicit research question that covers the negative experiences of developers.

The fact that the interviews were conducted by a member of the case team may
have had an impact on the quality of the collected interview data. It is possible that
due to social, political, or other reasons of this nature, the interviewees may have
been selective about the stories and opinions they shared during the interview. As
an example, developers may have chosen not to share their negative experiences in
order to avoid conflict or they may have attempted to answer the questions in a way
that would please the interviewer.

It is likely that the structure of the study influenced the results of the case study.
The literature review was conducted before the case study by design. Knowledge of
the concepts from the literature review may have lead to an unconscious attempt to
find the same patterns and concepts when analyzing the interview transcripts, and
have caused us to overlook concepts that were missing in the literature review.

With these limitations and threats to validity in mind, it is worth noting that active
measures were taken in various parts of the study’s design in an attempt to pursue
as neutral a review as possible of containerized development environments from the
perspective of individual developers. Much time and effort went into considering
what our choice of gray literature and interview transcripts could be considered
compelling evidence of, which is reflected in the scope of our research questions and
the title of this thesis. The large collection of self-reported claims that were analyzed
in this study reflect the real experiences and feelings of developers who have used
containerized development environments in their own work. The fact that we were
able to identify a variety of concepts and captured an even mix of both positive and
negative experiences leads us to believe that we have managed to make meaningful
observations and findings on this topic from the chosen perspective.

46

6 Conclusions

In this thesis, we investigated the motivations and experiences of developers who
have adopted containerized development environments in their projects. The study
was carried out as a combination of a systematically conducted review of gray litera-
ture and a qualitative single-case study. Due to the recent nature of the trend as well
as the suitability to answer the research questions, the material for the literature
review was purposefully sourced from blog posts and forum messages submitted to
websites frequently used for discussing the topic. The case team and project were
purposefully selected due to the practical relevance of the case, as well as convenient
access to the team’s members. The data for the case study was collected through
semi-structured theme interviews that were transcribed, analyzed, and then com-
pared against the results of the literature review.

The results of this thesis indicate a common motivation to mitigate cross-platform
consistency issues and to provide a simple automated setup for development envi-
ronments in order to boost developer happiness and productivity, paving the way
for efficient developer onboarding. The results of both the literature review and case
study confirm the experienced benefits of cross-platform consistency and simple en-
vironment setup. Little evidence of experienced benefits with developer onboarding
was found in the reviewed literature, but the experience of a single developer in the
case study appears to indicate a positive and efficient onboarding experience, with
the added requirement of providing the necessary learning materials for Docker and
containers. The overall lack of evidence points towards a potential avenue for future
research.

The results of both the literature review and case study also indicate a novel use
of the Docker container platform as an infrastructure package manager, making it
possible to provision databases, message brokers, and other services to projects with
just a few lines of code and distribute them team-wide. This appears to successfully
lower the barrier of introducing new services and dependencies to the project and
has implications that appear to be exciting for developers working on service ori-
ented projects. The case study indicates a particular suitability of the containerized
development environment for teams migrating towards a microservices architecture
largely due to the combination of shared configuration management and this feature.

The results of the literature review indicate an apparent trade-off between cross-
platform consistency and performance — the decreased performance with container-
ized development environments is one of two major challenges experienced by de-
velopers. Performance on non-Linux operating systems in particular suffers due to
the technical nature of containers. However, this decrease in performance was not
evident in the case study, as the developers of the case team worked exclusively on
Linux workstations.

The results of the literature review and case study also indicate that the implemen-
tation of containerized development environments itself is a challenge and requires
knowledge of containers and related technologies in order to be executed successfully.

47

The technologies themselves, however, are flexible and allow skilled developers to
customize containerized development environments to match their particular needs.
Introducing containers to the development environment can also be beneficial for
companies seeking to foster a DevOps culture by acquainting developers with con-
tainers in their daily practice — this is supported by the findings of the case study.

The case study also reveals a motivational challenge related to implementation. The
successful adoption of a containerized development environment requires a signifi-
cant commitment from the team to overcome the difficulties faced during implemen-
tation. The interviewees also pointed out that due to its difficult and time-consuming
nature, the implementation of a containerized development can be a drain on the
development resources of the team. The case study also implies that certain precon-
ditions are required from the team’s management and the team’s structure in order
to facilitate the implementation of the containerized development environment.

The case team that was studied also exhibited a novel use of leveraging containers
and related technologies in the implementation of end to end tests for complex
systems. The case team used the containerized development environment as a way
of setting up a production-like system that tests were run against. Members of
the team also hypothesized that orchestration tools could potentially be used for
running multiple large test suites in parallel, significantly cutting down on test
execution time. This use of containers in testing appears promising and points to
another area for future research.

Containerized development environments offer many highly desirable benefits but
they come at a cost. The findings of this thesis indicate that future research into
CDE’s is warranted and there are many interesting avenues for research available.
The motivations, benefits, and challenges found in this thesis could serve as a starting
point for future investigation in other case studies. In addition, researching the
effects that CDE’s have on the onboarding of new developers appears to be of great
interest for both developers and managers, and is another potential topic for future
research.

On a more general level, this study indicates that the underlying issues that con-
tainerized development environments attempt to solve are of real impact and im-
portance to developers. There is an evident desire and need for technologies that
will help developers battle the ”works on my machine” syndrome, to provision in-
frastructure and services effortlessly, to automate environment setup, and to deal
with distributed configuration management at the level of the entire system under
development. We believe that each of these issues warrants further investigation
and that there is room for new tools and solutions to help solve these issues.

REFERENCES 48

References

Anderson, C. (2015). Docker. IEEE Software, 32 (3), 102–105.
Continuous Integration. (2006). Retrieved April 25, 2019, from https://martinfowler.

com/articles/continuousIntegration.html
Davis, J. & Daniels, R. (2016). Effective DevOps: Building a culture of collaboration,

affinity, and tooling at scale. O’Reilly Media, Inc.
Duvall, P. M., Matyas, S., & Glover, A. (2007). Continuous integration: Improving

software quality and reducing risk. Pearson Education.
Erfani Joorabchi, M., Mirzaaghaei, M., & Mesbah, A. (2014). Works for me! char-

acterizing non-reproducible bug reports. In Proceedings of the 11th working
conference on mining software repositories (pp. 62–71). MSR 2014. Hyder-
abad, India: ACM. doi:10.1145/2597073.2597098

Fink, J. (2014). Docker: A software as a service, operating system-level virtualization
framework. Code4Lib Journal, 25, 29.

Garousi, V., Felderer, M., & Mäntylä, M. V. (2016). The need for multivocal lit-
erature reviews in software engineering: Complementing systematic literature
reviews with grey literature. In Proceedings of the 20th international conference
on evaluation and assessment in software engineering (p. 26). ACM.

Garousi, V., Felderer, M., & Mäntylä, M. V. (2019). Guidelines for including grey
literature and conducting multivocal literature reviews in software engineering.
Information and Software Technology, 106, 101–121.

Humble, J. & Farley, D. (2010). Continuous delivery: Reliable software releases
through build, test, and deployment automation (adobe reader). Pearson Edu-
cation.

Jabbari, R., bin Ali, N., Petersen, K., & Tanveer, B. (2016). What is DevOps?: A sys-
tematic mapping study on definitions and practices. In Proceedings of the sci-
entific workshop proceedings of XP2016 (12:1–12:11). event-place: Edinburgh,
Scotland, UK. New York, NY, USA: ACM. doi:10.1145/2962695.2962707

James Shore: Continuous Integration is an Attitude, Not a Tool. (2005). Retrieved
April 25, 2019, from http://jamesshore.com/Blog/Continuous-Integration-is-
an-Attitude.html

Jaramillo, D., Nguyen, D. V., & Smart, R. (2016). Leveraging microservices archi-
tecture by using docker technology. In SoutheastCon 2016 (pp. 1–5). South-
eastCon 2016. doi:10.1109/SECON.2016.7506647

Khan, A. (2017). Key characteristics of a container orchestration platform to enable
a modern application. IEEE Cloud Computing, 4 (5), 42–48. doi:10.1109/MCC.
2017.4250933

Manage data in Docker. (2019). Retrieved April 25, 2019, from https://docs.docker.
com/storage/

Merkel, D. (2014). Docker: Lightweight linux containers for consistent development
and deployment. Linux Journal, 2014 (239).

Meyer, M. (2014). Continuous integration and its tools. IEEE software, 31 (3), 14–
16.

REFERENCES 49

Overview of Docker Compose. (2019). Retrieved April 25, 2019, from https://docs.
docker.com/compose/overview/

Rajkumar, M., Pole, A. K., Adige, V. S., & Mahanta, P. (2016). DevOps culture
and its impact on cloud delivery and software development. In 2016 inter-
national conference on advances in computing, communication, automation
(spring) (pp. 1–6). 2016 international conference on advances in computing,
communication, automation (spring). doi:10.1109/ICACCA.2016.7578902

Rogers, R. O. (2004). Scaling continuous integration. In International conference on
extreme programming and agile processes in software engineering (pp. 68–76).
Springer.

Spinellis, D. (2012). Virtualize me. IEEE software, 29 (5), 91–93.
Webster, J. & Watson, R. T. (2002). Analyzing the past to prepare for the future:

Writing a literature review. MIS quarterly, xiii–xxiii.
What is a Container? (2019). Retrieved April 25, 2019, from https://docker.com/

resources/what-container

