1	To what extent are bryophytes efficient dispersers?
2	
3	Alain Vanderpoorten1*, Jairo Patiño2,3, Aurélie Désamoré4, Benjamin Laenen4, Piotr
4	Gorski5, Beata Papp6, Jan Kucera7, Helena Korpelainen8, Olivier Hardy9
5	
6	1. Institute of Botany, University of Liège, B22 Sart Tilman, 4000 Liège, Belgium
7	2. Departamento de Botánica, Ecología y Fisiología Vegetal. Facultad de Ciencias.
8	Apartado 456, CP 38200, Universidad de La Laguna. La Laguna, Tenerife, Islas
9	Canarias, Spain
10	3. Island Ecology and Evolution Research Group, Instituto de Productos Naturales y
11	Agrobiología (IPNA-CSIC), La Laguna, Tenerife, Canary Islands, 38206, Spain
12	4. Stockholm University, Department of ecology, environment and Plant Sciences,
13	SciLifeLab Stockholm, Tomtebodav. 23 a, 171 21 Solna, Stockholm, Sweden
14	5.
15	6.
16 17 18 19	 Department of Agricultural Sciences, Viikki Plant Science Centre, P.O. Box 27, FI-00014 University of Helsinki, Finland Evolutionary Biology and Ecology, Université Libre de Bruxelles, 1050 Brussels,
20	Belgium
21	
22	*Corresponding author. Email: a.vanderpoorten@uliege.be
23	
24	Abstract
25	

26	•	Bryophytes are typically seen as extremely efficient dispersers. Experimental evidence
27		suggests that efficient short- and long-distance dispersal coupled with random
28		colonization leads to an inverse isolation effect. Under the latter, a higher genetic
29		diversity of colonizing propagules is expected with increasing isolation, counteracting
30		differentiation beyond the range of short-distance dispersal.
31	•	This expectation is tested from a review of evidence on spatial genetic structure and
32		analyses of isolation-by-distance (IBD) at different scales.
33	•	A decay of the IBD signal, characterized by non-significant slopes between kinship
34		coefficients and distance, was observed in 2/3 of the investigated datasets beyond 100m.
35		A second slope shift was observed at distances larger than 100km, with a proportion of
36		significant slopes in $>50\%$ of the datasets.
37	•	The decay of the IBD signal beyond 100m, which reflects the rapid decrease of spore
38		densities with increasing distance from the source, is consistent with the inverse isolation
39		hypothesis. Persistence of a significant IBD signal at medium ranges in 1/3 of the cases
40		suggests, however, that the inverse isolation effect is not a rule in bryophyte spore
41		dispersal. Furthermore, the higher proportion of significant isolation-by-distance patterns
42		observed at scales over 100km likely marks the limits of regional dispersal, beyond
43		which an increasingly smaller proportion of spores travel.
44	•	We discuss the differences between experimental and genetic estimates of spore dispersal
45		and conclude that geographic distance remains a significant proxy of spore colonization
46		rates, with major consequences for our understanding of actual migration capacities in
47		bryophytes, and hence, our capacity to model range shifts in a changing world.
48		

49 Introduction

50

51 Dispersal is a central evolutionary process. Obtaining unbiased estimates of the distribution of 52 dispersal distances in natural unbounded populations has, however, long been a challenging issue 53 (Koenig, Van Vuren, & Hooge, 1996). Dispersal can be assessed in two ways. Direct techniques 54 implement descriptions of dispersal kernels from local measurements derived, for instance, from 55 trapping experiments, and then extrapolate the potential for dispersal broadly beyond the scale of 56 measurements, in both time and space. Indirect techniques are based on inferences from spatial 57 genetic structure (e.g. Vekemans & Hardy, 2004). It has been suggested that indirect techniques 58 tend to return much higher estimates of migration rates than direct techniques because the latter 59 operate on spatially limited areas and ignore the contribution of long-distance dispersal (Koenig 60 et al., 1996, but see Thompson & Goodman, 1997). Large differences of migration rates are 61 therefore to be expected between direct and indirect techniques in organisms with long-distance 62 dispersal (LDD) capacities, and, in particular, wind-dispersed species. Bryophytes, which primarily disperse by tiny spores of ca 10-20 µm, are typically seen as extremely efficient 63 64 dispersers with strikingly large, disjunct distribution ranges (see Patiño & Vanderpoorten, 2018 65 for review). In a recent study, Barbé, Fenton, and Bergeron (2016) found, based on comparisons between 66

67 extant and propagule rain communities in residual forest patches, that several species from the 68 propagule rain did not originate from the closest extant community and that there was little 69 similarity between the extant and propagule rain communities, suggesting that regional dispersal 67 events are important. These observations are in line with spore-trapping experiments, wherein 69 spore densities quickly decrease with distance from the source, but wherein, with increasing isolation, a higher proportion of spores originates from sources farther away than the nearest sources (Sundberg, 2005). In fact, Lönnell, Hylander, Jonsson, and Sundberg (2012) confirmed that the tail of the kernel, beyond 500m-1 km, is distance-independent. Such a 'fat-tailed' dispersal kernel could partly explain the wide distribution of many bryophyte species, the lack of an obvious distance effect on species richness on islands, the relatively low level of (allopatric) speciation in bryophytes as compared to seed plants, and the weak relationship between latitude and diversity (Sundberg, 2005; Sundberg, Hansson, & Rydin, 2006).

79 In such conditions of efficient short- and long-distance dispersal, an inverse isolation effect is 80 predicted to develop (Sundberg, 2005; Barbé et al. 2016). An inverse isolation effect involves a 81 higher genetic diversity of colonizing propagules with increasing isolation, thus counteracting 82 differentiation. Consequently, no isolation-by-distance (IBD) is expected beyond a distance 83 corresponding to short-distance dispersal events owing to the well-mixed and diverse propagule 84 pool, except perhaps at very large scales, at which other factors, including geographic barriers 85 and historical factors, might operate (Szövényi et al., 2012). Simulating the genetic consequences of efficient short- and long-distance dispersal on the decay of the kinship-distance curve, Hardy 86 87 & Vekemans (1999) confirmed that, as the proportion of random long-distance dispersal m increases from 10^{-4} to 0.1, the IBD signal erodes progressively and becomes limited to the 88 89 shortest distance ranges.

Such predictions have important ecological consequences because they suggest that spore
dispersal cannot be described by a distance-dependent kernel, thereby challenging the application
of integrative methods that have been increasingly developed to predict, from ecological niche
models associated with explicit dispersal kernels employed to model species movements in a
changing environment, future species distributions (Zurrell et al. 2016; Fordham et al. 2018).

In the present study, we performed a meta-analysis of the spatial genetic structure in bryophytes
to test the hypothesis that efficient LDD erodes the impact of genetic drift, resulting in the
absence of any IBD pattern beyond the nearest vicinity of the source.

98

99 Material and methods

100

101 We performed a literature review with Scopus, using 'isolation by distance' or 'spatial genetic 102 structure' and 'bryophytes'. We obtained 16 studies informing on the spatial genetic structure for 103 28 species. From these studies, we managed to collect 38 datasets for 14 species, to which we 104 added an expanded dataset for another 12 species from Désamoré et al. (2016). We employed 105 Spagedi 1.5d (Hardy & Vekemans, 2002) to regress pairwise kinship coefficients Fij (Loiselle, 106 Sork, Nason & Graham 1995) between individuals, or pairwise Fst when several individuals 107 were sampled per locality, and the logarithm of pairwise geographic distances. The regression 108 slopes were computed across the entire geographic range of the study on the one hand, and then 109 for distance intervals between the successive distance limits: 0, 0.1, 1, 10, 100, 1000, and >1000 110 km (i.e. considering only pairs of individuals or populations separated by a distance <0.1 km, or 111 between 0.1 and 1 km, or between 1 and 10 km, etc...). The significance of the slopes was tested 112 by 1000 random permutations of individuals, or populations in the case of Fst, among localities 113 across the entire geographic range (Mantel test). Within each distance interval, the significance 114 of the slope was assessed by a Jack-knife test, wherein the slope was recalculated after 115 successively pruning one locus from the data at a time to estimate the standard error of the slope. 116 To assess the decay of the IBD signal at increasing distance intervals, we computed, for each

117 distance interval, the proportion of significant slopes, and used a t-test assuming unequal

118 variances for comparing these proportions between adjacent distance classes.

119

120 **Results and Discussion**

121

122 Kinship coefficients significantly decreased with increasing logarithm of geographical distance 123 between individuals in 35 out of the 42 datasets (Table S1). Non-significant tests were always 124 associated with datasets lacking comparisons at the local (<1 km) scale, at which a significant 125 structure was expected, except in the case of Orthotrichum speciosum (line 5 in Table S1), which 126 Snäll et al. (2004) interpreted as a lack of statistical power of the Mantel test as compared to 127 Generalized Additive Models. In fact, similar tendencies were observed with Fst, with 12 out of 128 20 significant tests (Table S2), but contrasting results were sometimes observed when the same 129 data were analysed with Fst and Fij (contrast e.g. the results for dataset 31 in Table S1 and 17 in 130 Table S2 and dataset 33 in Table S1 and 18 in Table S2). The two tests may hence have different 131 statistical power, but it was not possible to determine under which circumstance one test 132 performed better than the other. Nevertheless, it appears that, when isolation-by-distance tests 133 are performed over a range including the local scale, a significant genetic structure emerges, in 134 agreement with the observed higher spore densities within the close vicinity of the source 135 (Sundberg 2005). 136 The decrease of genetic similarity with increasing distance was not uniform over the whole range 137 of distances, as reflected by steep regression slopes at short distance ($\bar{b}_{<0.1}$ =-0.07±0.06)

138 shallower slopes at medium distances ($\bar{b}_{0.1-1}=0.05\pm0.13$, $\bar{b}_{1-10}=-0.07\pm0.15$, $\bar{b}_{10-100}=-0.07\pm0.15$, $\bar{b}_{10-100}=-0.05\pm0.15$, $\bar{b}_{10-100}=-0.0$

139 0.02±0.09, and a second shift of slope at large distance ($\bar{b}_{100-1000}$ =-0.06±0.04, $\bar{b}_{>1000}$ =-

140 0.07±0.06) (Table S1). A visual example of the differences of the slopes at different distance 141 ranges is provided in the liverwort *Crossocalyx hellerianus*, with a striking decrease of kinship 142 coefficients within the first 1km, then a flat relationship between Fij and distance until 1000km, 143 and a second slope shift beyond 1000km (Fig. 1). The decay of the IBD signal is best illustrated 144 by changes in the proportion of significant tests at increasing distance classes, with 91% of 145 significant tests at a range of <0.1 km, followed by a subsequent significant decrease in the 146 proportion of significant tests of 0, 33 and 31% at 0.1-1, 1-10 and 10-100km, respectively. At 147 distances larger than 100km, the proportion of significant tests reached again >50% (Fig. 2). 148 These results suggest that an inverse isolation effect, according to which the IBD signal is eroded 149 with distance from the source due to random LDD, can be observed beyond the limit of short-150 distance dispersal reflecting the high spore densities within the first hundreds of meters from the 151 source. Such a pattern is reminiscent of what is sometimes observed in angiosperms displaying 152 steep IBD slopes at short distances, reflecting short-distance dispersal patterns of seeds, and 153 shallow to non-significant slopes at larger distances, reflecting long-distance dispersal of pollen 154 (Heuertz et al. 2003). The higher proportion of significant IBD patterns again observed at larger 155 scales over 100 km likely marks the limits of regional dispersal, beyond which an increasingly 156 smaller proportion of spores travel. Similar patterns were reported in ferns. In Adiantum 157 reniforme, significant IBD slopes at a scale of 0.8-21km became non-significant when the two 158 most distant populations were excluded (Kang et al. 2008). In Asplenium, Hunt et al. (2009) 159 similarly interpreted the sharp slope shift observed beyond 50km in terms of random and rare 160 LDD events at middle- and long-distance ranges. Such rare events across large distances of more 161 than 100km are in particular thought to generate significant IBD patterns following the 162 recolonization of northern areas that were glaciated 19,000 years BP from southern refugia

163 (Wang & Guan 2011, Bystriakova et al. 2014, Imai et al. 2016), although at such scales, the
164 observed signal for IBD may be confounded with other factors, and in particular, geographic
165 barriers.

166 While our results are thus consistent with the expectations of the inverse isolation hypothesis, 167 according to which LDD erodes the signal of IBD at regional scales, they do not support the idea 168 of a complete absence of genetic structure beyond the limits of SDD, as about 1/3 of the 169 investigated datasets yield a significant IBD signal at regional scales (10-100 km from the 170 source) and as an increasing proportion of tests reveals a significant spatial genetic structure 171 beyond that scale. It therefore appears that, as opposed to Koenig et al. (1996), direct techniques 172 based on spore-trapping experiments return higher estimates of migration capacities than indirect 173 techniques based on spatial genetic structures. In fact, although Barbé et al. (2016) found species 174 with a broad range of life-strategies in the spore cloud flora, the latter would, at first sight, 175 include only the best dispersers, and it would be interesting to know which species are never 176 represented in the spore cloud. Furthermore, spore-trapping experiments measure a rate of spore 177 deposition, whereas analyses of spatial genetic structures reflect actual colonization rates. Even 178 when fully developed gametophytes following spore germination were observed (Lönnel et al., 179 2012), the spore traps consist of patches of introduced bare ground that is compatible with the 180 habitat preference of the target species, whereas spores landing in the wild face both 181 environmental filtering and competition. Barbé et al. (2016) also grew airborne spores under 182 laboratory conditions, so that the resulting flora may not necessarily match the set of species that 183 would actually be able to establish on the ground. Munoz et al. (2013) similarly observed a 184 mismatch between I, the effective number of immigrants competing with the offspring of a local 185 community to replace a dead local individual in Hubbell's (2001) theory, and migration rates

estimates from experimental kernels. Munoz et al. (2013) suggested that such a mismatch
resulted from the integrative nature of *I* that, as do indirect estimates of migration derived from
spatial genetic structure analyses, represent an integrative index of migration limitation including
habitat filtering.

190 Finally, while the long-distance dispersal capacities of bryophyte spore are evident in light of 191 both phylogeographic (see Patiño & Vanderpoorten, 2018 for review) and experimental evidence 192 (Sundberg, 2005, 2013; Lönnel et al., 2012, 2014; Barbé et al., 2016), a significant spatial 193 genetic structure can emerge if actual colonization events take place during discrete windows of 194 opportunities. In mosses, spore release is controlled by the hygroscopic movements of the 195 peristome, which consists of a single our double layer of teeth at the mouth of the capsule. 196 Peristome movements are essential to regulate the dispersal of spores and play an active role in 197 closing and opening the mouth of the capsule depending on variation in air humidity and 198 vibrations caused by wind turbulence (Johansson, Lönnell, Sundberg, & Hylander., 2014; 199 Lönnell et al., 2015; Johansson, Lönnell, Rannik, Sundberg, & Hylander, 2016). Hygrochastic 200 peristomes open-up upon increasing relative humidity, when high chances of rain hamper the 201 chances of long-distance dispersal by wind, favoring short-distance dispersal as a safe-site 202 strategy in species from patchy and dynamic habitats (Medina & Estebanéz, 2014; Zanatta et al., 203 2018), in line with the dispersal limitations evidenced by the analysis of genetic structures. 204 Xerochastic peristomes, in turn, open-up upon decreasing air humidity, which Johansson et al. 205 (2016) interpreted as an adaptive mechanism favoring the release of spores in the morning, when 206 the heating from the sun creates upward air movements. Moreover, wind turbulence is expected 207 to peak during episodes of storms, potentially transporting masses of spores from a specific 208 source area to a specific sink area during short period of time, resulting in a significant spatial

209 genetic structure. For example, phylogeographic evidence suggests that migrations between 210 western Europe and the North East Atlantic islands are strongly asymmetric, from the islands to 211 the continent, possibly taking advantage of discrete waves of storms crossing the Atlantic 212 eastwards, whereas the trade winds are in the opposite direction (Patiño et al., 2015). 213 Although we do not challenge the idea that bryophyte spore clouds efficiently travel across long, 214 trans-oceanic distances (Sundberg, 2013), contributing to the striking range disjunctions typical 215 of bryophyte species, the genetic data available to date are globally not compatible with the idea 216 that intense long-distance migration events erase any signal of IBD in the data. We therefore 217 conclude that geographic distance remains a significant proxy of spore colonization rates, with 218 major consequences for our understanding of actual migration capacities in this group, and 219 hence, our capacity to model range shifts in a changing world (Garcia, Klein, & Jordano, 2017). 220 Further information on the contribution of short-and long-distance dispersal, the timing of 221 dispersal events, and the importance of geographic barriers, would be necessary for better 222 understanding spore dispersal patterns and assess the ability of spore-producing plants to 223 efficiently track areas of suitable climate. In this context, we suggest that spatially explicit 224 coalescent models (Dellicour, Kastally, Hardy & Patrick Mardulyn, 2014) represent a very 225 promising tool to inform future predictions of range shifts from historical simulations.

226

Author contributions: AV, JP and OH designed the framework of the study. AD, BL, BP, HK,
JK, and PG contributed data. AV and OH performed the statistical analyses. All the authors
contributed to the writing of the manuscript.

230

231 **References**

233	Barbé, M., Fenton, N. J., & Bergeron, Y. (2016) So close and yet so far away: long-distance
234	dispersal events govern bryophyte metacommunity reassembly. Journal of Ecology, 104, 1707-
235	1719.
236	
237	Bystriakova, N., Ansell, S.W., Russell, S.J., Grundmann, M., Vogel, J.C., & Schneider, H.
238	(2014) Present, past and future of the European rock fern Asplenium fontanum: combining
239	distribution modelling and population genetics to study the effect of climate change on
240	geographic range and genetic diversity. Annals of Botany, 113, 453–465.
241	
242	Cronberg, N. (2002) Colonization dynamics of the clonal moss Hylocomium splendens on
243	islands in a Baltic land uplift area: reproduction, genet distribution and genetic variation. Journal
244	of Ecology, 90, 925–935.
245	
246	Dellicour, S., Kastally, C., Hardy, O.J., & Mardulyn, P. (2014). Comparing phylogeographic
247	hypotheses by simulating DNA sequences under a spatially explicit model of coalescence,
248	Molecular Biology and Evolution, 31, 3359–3372.
249	
250	Désamoré, A., Patiño, J., Mardulyn, P., Laenen, B., McDaniel, S.F., Zanatta, F. &
251	Vanderpoorten, A. (2016) High migration rates shape the postglacial history of amphi-Atlantic
252	bryophytes. Molecular Ecology 25: 5568-5584.
253	

254	Fordham, D.A., Bertelsmeier, C., Brook, B.W., Early, R., Neto, D., Brown, S.C., (), Araújo,
255	M.B. (2018) How complex should models be? Comparing correlative and mechanistic range
256	dynamics models. Global Change Biology, 24, 1357–1370.
257	
258	Garcia, C, Klein, E.K., & Jordano, P. (2017) Dispersal processes driving plant movement:
259	challenges for understanding and predicting range shifts in a changing world. Journal of
260	Ecology, 105, 1–5.
261	
262	Grundmann, M., Ansell, S.W., Russell, S.J., Koch, M.A., & Vogel, J.C. (2007) Genetic structure
263	of the widespread and common Mediterranean bryophyte Pleurochaete squarrosa (Brid.) Lindb.
264	(Pottiaceae) — evidence from nuclear and plastidic DNA sequence variation and allozymes.
265	Molecular Ecology, 16, 709–722.
266	
267	Hardy, O.J. & Vekemans, X. (1999) Isolation by distance in a continuous population:
268	reconciliation between spatial autocorrelation analysis and population genetics models.
269	Heredity,83, 145-154.
270	
271	Hardy, O.J. & Vekemans, X. (2002) SPAGeDi: a versatile computer program to analyze spatial
272	genetic structure at the individual or population levels. Molecular Ecology Notes, 2, 618-620.
273	
274	Heuertz, M., Vekemans, X., Hausman, J.F., Palada, M. & Hardy, O.J. (2003) Estimating seed vs.
275	pollen dispersal from spatial genetic structure in the common ash. Molecular Ecology, 12, 2483-
276	2495.

- Holá, E., Košnar, J., & Kučera, J. (2015) Comparison of genetic structure of epixylic liverwort *Crossocalyx Hellerianus* between central european and fennoscandian populations. PloS ONE,
 10, e0133134.
- 281
- Hubbell, S.P. (2001) The Unified Neutral Theory of Biodiversity and Biogeography. Princetonand Oxford: Princeton University Press.
- 284
- Hunt, H.V., Ansell, S.W., Russell, S.J., Schneider, H., & Vogel, J.C. (2009) Genetic diversity
- and phylogeography in two diploid ferns, *Asplenium fontanum* subsp. *fontanum* and *A*.
- *petrarchae* subsp. *bivalens*, in the western Mediterranean. Molecular Ecology, 18, 4940–4954.
- 289 Hutsemékers, V., Hardy, O., Mardulyn, P., Shaw, A., & Vanderpoorten, A. (2010)
- 290 Macroecological patterns of genetic structure and diversity in the aquatic moss *Platyhypnidium*
- *riparioides*. New Phytologist, 185, 852–864.
- 292
- 293 Hutsemékers, V., Hardy, O. J., & Vanderpoorten, A. (2013) Does water facilitate gene flow in
- spore-producing plants? Insights from the fine-scale genetic structure of the aquatic moss
- 295 Rhynchostegium riparioides (Brachytheciaceae). Aquatic Botany, 108, 1–6.
- 296
- Imai, R., Tsuda, Y., Matsumoto, S., Ebihara, A., & Watano, Y. (2016) The relationship between
- 298 mating system and genetic diversity in diploid sexual populations of *Cyrtomium falcatum* in
- 299 Japan. PLoS ONE, 11, e0163683.

301	Johansson, V., Lönnell, N., Sundberg, S., & Hylander, K. (2014) Release thresholds for moss
302	spores: the importance of turbulence and sporophyte length. Journal of Ecology, 102, 721–729.
303	
304	Johansson, V., Lönnell, N., Rannik, Ü., Sundberg, S., & Hylander, K. (2016) Air humidity
305	thresholds trigger active moss spore release to extend dispersal in space and time. Functional
306	Ecology, 30, 1196–1204.
307	
308	Kang, M., Huang, H., Jiang, M., & Lowe, A.J. (2008). Understanding population structure and
309	historical demography in a conservation context: population genetics of an endangered fern.
310	Diversity and Distributions, 14, 799–807.
311	
312	Koenig, W.D., Van Vuren, D., & Hooge, P.N. (1996) Detectability, philopatry, and the
313	distribution of dispersal distances in vertebrates. Trends in Ecology and Evolution, 11, 514–517.
314	
315	Korpelainen, H., von Cräutlein, M., Laaka-Lindberg, S., & Huttunen, S. (2011) Fine-scale spatial
316	genetic structure of a liverwort (Barbilophozia attenuata) within a network of ant trails.
317	Evolutionary Ecology, 25, 45–57.
318	
319	Korpelainen, H., Forsman, H., Virtanen, V., Pietiläinen, M., & Kostamo, K. (2012) Genetic
320	composition of bryophyte populations occupying habitats differing in the level of human
321	disturbance. International Journal of Plant Sciences, 173, 1015–1022.
322	

323	Korpelainen, H., von Cräutlein, M., Kostamo, K., & Virtanen, V. (2013) Spatial genetic structure
324	of aquatic bryophytes in a connected lake system. Plant Biology, 15, 514–521.
325	
326	Kyrkjeeide, M. O., Hassel, K., Flatberg, K.I., Shaw, A. J., Brochmann, C., & Stenøien, H.K.
327	(2016) Long-distance dispersal and barriers shape genetic structure of peatmosses (Sphagnum)
328	across the Northern Hemisphere. Journal of Biogeography, 43, 1215–1226.
329	
330	Loiselle, B. A, Sork, V. L., Nason, J. & Graham, C (1995) Spatial genetic structure of a tropical
331	understory shrub, Psychotria officinalis (Rubiaceae). American Journal of Botany 82:1420-
332	1425.
333	
334	Lönnell, N., Hylander, K., Jonsson, B. G., & Sundberg, S. (2012) The fate of the missing spores
335	- Patterns of realized dispersal beyond the closest vicinity of a sporulating moss. PLOS ONE,
336	7, e41987.
337	
338	Lönnell, N., Jonsson, B.G., & Hylander, K. (2014) Production of diaspores at the landscape level
339	regulates local colonization: an experiment with a sporedispersed moss. Ecography, 37, 591-598.
340	
341	Lönnell, N., Norros, V., Sundberg, S., Rannik, U., Johansson, V., Ovaskainen, O., & Hylander,
342	K. (2015) Testing a mechanistic dispersal model against a dispersal experiment with a wind \Box
343	dispersed moss. Oikos, 124, 1232-1240.
344	

345	Medina, N.G., & Estébanez, B. (2014) Does spore ultrastructure mirror different dispersal
346	strategies in mosses? A study of seven iberian Orthotrichum species. PLOS ONE, 9, e112867.
347	
348	Mikulaskova, E., Hajek, M., Veleba, A., Johnson, M.G., Hajek, T., & Shaw, A.J. (2014) Local
349	adaptations in bryophytes revisited: the genetic structure of the calcium-tolerant peatmoss
350	Sphagnum warnstorfii along geographic and pH gradients. Ecology & Evolution, 5, 229-242.
351	
352	Munoz, F., Beeravolu, C.R., Pelissier, R., & Couteron, P. (2013) Do spatially-implicit estimates
353	of neutral migration comply with seed dispersal data in tropical forests? PLoS ONE, 8, e72497.
354	
355	Patiño, J., & Vanderpoorten, A. (2018) Bryophyte biogeography. Critical Reviews in Plant
356	Sciences, in press.
357	
358	Patiño, J., Medina, R., Vanderpoorten, A., González-Mancebo, J.M., Werner, O., Devos, N.,
359	Ros, R.M. (2013) Origin and fate of the single-island endemic moss Orthotrichum handiense.
360	Journal of Biogeography, 40, 857–868.
361	
362	Patiño, J., Carine, M.A., Mardulyn, P., Devos, N., Mateo, R.G., González-Mancebo, J.M.,
363	Vanderpoorten, A. 2015b. Approximate Bayesian Computation reveals the crucial role of
364	oceanic islands for the assembly of continental biodiversity. Systematic Biology, 64, 579-589.
365	

366	Pisa, S., Werner, O., Vanderpoorten, A., Magdy, M., & Ros, R.M. (2013) Elevational patterns of
367	genetic variation in the cosmopolitan moss Bryum argenteum (Bryaceae). American Journal of
368	Botany, 100, 2000–2008.

370 Pisa, S., Vanderpoorten, A., Patiño, J., Werner, O., González-Mancebo, J.M., & Ros, R. M.

371 (2015) How to define nativeness in vagile organisms: lessons from the cosmopolitan moss

- *Bryum argenteum* on the island of Tenerife (Canary Islands). Plant Biology, 17, 1057–1065.
 373
- 374 Shaw, A.J., Golinski, G.K., Clark, E.G., Shaw B., Stenøien, H.K., & Flatberg, K.I. (2014)
- 375 Intercontinental genetic structure in the amphi-Pacific peatmoss Sphagnum miyabeanum

376 (Bryophyta: Sphagnaceae). Biological Journal of the Linnean Society, 111, 17–37.

377

378 Snäll, T., Fogelqvist, J., Ribeiro, P. J., & Lascoux, M. (2004) Spatial genetic structure in two

379 congeneric epiphytes with different dispersal strategies analysed by three different methods.

380 Molecular Ecology, 13, 2109–2119.

381

382 Spagnuolo, V., Muscariello, L., Terracciano S., & Giordano, S. (2007) Molecular biodiversity in

383 the moss *Leptodon smithii* (Neckeraceae) in relation to habitat disturbance and fragmentation.

Journal of Plant Research, 120, 595–604.

385

Sundberg, S. (2005) Larger capsules enhance short-range spore dispersal in *Sphagnum*, but what
happens further away? Oikos, 108, 115–124.

389	Sundberg, S. (2013) Spore rain in relation to regional sources and beyond. Ecography, 36, 364-
390	373.

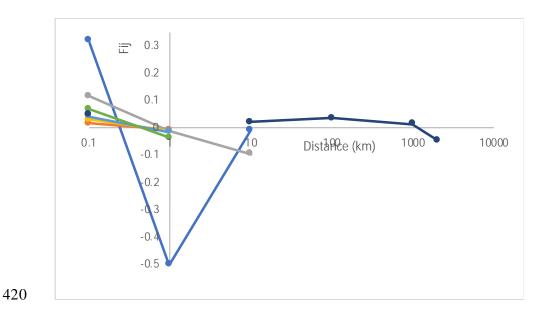
392	Sundberg, S.	, Hansson, J.,	& Rydin	, H. (2006)	Colonization of	f Sphagnum on	land uplift islands

- in the Baltic Sea: time, area, distance and life history. Journal of Biogeography, 33, 1479–1491.
- 395 Szövényi, P., Sundberg, S., & Shaw, A.J. (2012) Long-distance dispersal and genetic structure of

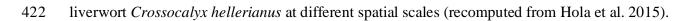
396 natural populations: an assessment of the inverse isolation hypothesis in peat mosses. Molecular

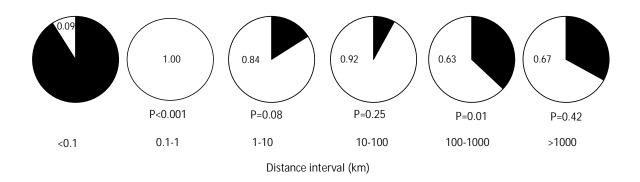
397 Ecology, 21, 5461–5472.

398


399 Thompson, P.M., & Goodman, S. (1997) Direct and indirect estimates of dispersal distances.

400 Trends in Ecology and Evolution, 12, 195–196.


- 401
- Vekemans, X., & Hardy, O.J. (2004). New insights from fine-scale spatial genetic structure
 analyses in plant populations. Molecular Ecology, 13, 921–935.


- 405 Wang, Z.J., & Guan, K.Y. (2011). Genetic structure and phylogeography of a relict tree fern,
- 406 Sphaeropteris brunoniana (Cyatheaceae) from China and Laos inferred from cpDNA sequence
- 407 variations: Implications for conservation. Journal of Systematics and Evolution, 49, 72–79:
- 408
- 409 Zanatta, F.A, Vanderpoorten, A.A, Hedenäs, L.B, Johansson, V.C, Patiño, J.D, E, Lönnell, N.F,
- 410 Hylander, K.G. (2018). Under which humidity conditions are moss spore released? A

- 411 comparison between species with perfect and specialized peristomes. Ecology & Evolution, 8,
 412 11484–11491.
- 413
- 414 Zurrell, D., Thuiller, W., Pagel, J., Cabral, J.S., Münkemüller, T., Gravel, D., (...), Zimmermann,
- 415 N.E. (2016) Benchmarking novel approaches for modelling species range dynamics. Global
- 416 Change Biology, 22, 2651–2664.
- 417
- 418

421 Figure 1. Average Fij values per geographic distance intervals in different populations of the

425 Figure 2. Proportion of significant (in black) slopes of Fij and geographic distance for different

426 distance classes in a meta-analysis of spatial genetic structures in bryophytes (see Table S1). The

427 p-values correspond to t-tests between comparisons of adjacent distance classes.

428

Table S1. Slope (± **S.D.**) and p-value of Mantel tests between Fij and log-distance in bryophytes. Shaded boxes represent the geographic range. 1-6 represent results from the literature and 7-42 were recomputed from data published in the references listed below. P-values are given for the entire range only and the significance of the slope per distance class is based on the jackknife across loci. Significant slopes are highlighted in bold. For unilocus data, the slope value is provided for information but these data are not used in the computation of significant tests.

		Slope b of F_{ij} on $ln(d_{ij})$ within specific distance ranges							
N	Full range	0 - 0.1 km	0.1 – 1 km	1 – 10 km	10 – 100 km	100 – 1000 km	>1000 km		
1.	-0.019 P<0.001								
2	-0.047 P<0.01								
3	-0.058 P<0.001								
4	-0.016 P<0.001								
5	NA P>0.05								
6	-0.013 P=0.02								
7	-0.065±0.0062, P<0.001	-0.065±0.006							
8	-0.136±0.014 P<0.001	-0.088±0.006							
9	-0.239±0.015 P<0.001	-0.239±0.015							
10	-0.056±0.01 P<0.001	-0.102±0.012							
11	050±0.023 P=0.003	050±0.023							
12	- 0.013±0.006 P<0.001	-0.013±0.006							
13	-0.012±0.002 P<0.001	-0.015±0.004	0.017±0.013						
14	- 0.015±0.0027 P<0.001	-0.015±0.005	-0.019±0.02						
15	-0.013±0.003 P<0.001	-0.021±0.004	0.005±0.007						
16	-0.065±0.0062, P<0.001	-0.046±0.006	0.010±0.009						
17	-0.043±0.006 P=0.032	-0.118±0.04	-0.046±0.046						
18	- 0.010±0.005 P=0.004		0.34±0.31	0.10±0.026	-0.018±0.016	-0.044±0.019			
19	0.019 P=0.83		0.032	0.043	0.058	-0.062			
20	-0.014±0.003			-0.062±0.033	-0.079±0.045				

	P=0.08				
21	-0.010±0.004 P=0.012	-0.017±0.044	-0.004±0.007	-0.086±0.084	
22	-0.004±0.021 P=0.412	-0.09±0.08	0.007±0.015		
23	-0.025±0.006 P=0.023	-0.233±0.081	-0.14±0.56		
24	-0.053±0.008 p<0.001	-0.045±0.078	-0.069±0.026	-0.098±0.026	
25	- 0.128 p<0.001	-0.119	-0.080	-0.129	-0.074
26	-0.035±0.0078 p<0.001	-0.035±0.31	-0.308±0.316	-0.023±0.007	-0.031±0.019
27	-0.114±0.018 p<0.001	-0.009±0.032	-0.050±0.067	-0.060±0.012	-0.105±0.01
28	-0.09±0.02 p<0.001	0.049±0.072	0.063±0.025	-0.072±0.047	-0.084±0.032
29	-0.071±0.012 p<0.001	-0.171±0.006	0.158±0.078	-0.058±0.046	-0.066±0.004
30	0.002±0.002 P=0.75		0.002±0.002		
31	0.003±0.011 P=0.605		0.023±0.003		
32	-0.005±0.003 P=0.16		-0.005±0.003		
33	- 0.015±0.006, P=0.006		0.034±0.018	0.001±0.073	-0.036±0.32
34	-0.033 P=0.006		-0.056	-0.06	-0.015
35	-0.089 P<0.001		-0.105	-0.053	-0.279
36	-0.072±0.013 P <0.001		0.055±0.040	-0.0005±0.038	-0.021±0.026
37	-0.050 p<0.001			-0.077	-0.038
38	-0.094 p<0.001		-0.003	-0.043	-0.063
39	-0.047±0.016 p<0.001		-0.045±0.123	-0.068±0.027	-0.007±0.020
40	-0.033±0.007 p<0.001		0.043±0.06	-0.005±0.003	-0.025±0.007
41	-0.139±0.045 p<0.001		-0.083±0.027	-0.114±0.007	-0.117±0.070
42	-0.096±0.041 p<0.001		0.111±0.0097	-0.114±0.044	-0.091±0.039

436 1 Rhynchostegium riparioides (Hutsemékers et al. 2013). 2. Calliergon megalophyllum (Korpelainen et al.

439 pop. Y. (Hola et al. 2015). 8. Id., pop. G. 9. Id., pop. M. 10. Id., pop. N. 11. Id., pop. P. 12. Barbilophozia

^{437 2013). 3.} Fontinalis antipyretica (Korpelainen et al. 2013). 4. F. hypnoides (Korpelainen et al. 2013). 5.

⁴³⁸ Orthotrichum speciosum (Snäll et al. 2004). 6. O. obtusifolium (Snäll et al. 2004). 7. Crossocalyx hellerianus,

- 440 *attenuata* (Korpelainen et al. 2011). 13. *Crossocalyx hellerianus*, pop. S (Hola et al. 2015). 14. Id., pop. V. 15.
- Id., Pop. K (Hola et al. 2015). 16. Id., pop. Z. 17. Orthotrichum handiense (Patino et al. 2013).). 18 Sphagnum
- 442 *subnitens* (Mikulaskova et al. 2015). 19. *Bryum argenteum* (Pisa et al. 2013). 20. *Pleurozium schreberi*
- 443 (Korpelainen et al. 2012). 21. Rhynchostegium riparioides (Hutsemékers et al. 2010). 22. Plagiochila
- 444 asplenioides (Korpelainen et al. 2012). 23. Rhytidiadelphus squarrosus (Korpelainen et al. 2012). 24. R.
- 445 riparioides (Hutsemékers et al. 2011). 25. Metzgeria furcata (Désamoré et al. 2016). 26. Orthotrichum affine
- (Désamoré et al. 2016). 27. O. lyellii (Désamoré et al. 2016). 28. Timmia austriaca (Désamoré et al. 2016). 29.
- 447 *T. bavarica* (Désamoré et al. 2016). 30. *Sphagnum fallax* (Szövényi et al. 2012). 31. *S. fimbriatum* (Szövényi et
- al. 2012). 32. S. palustre (Szövényi et al. 2012). 33. Crossocalyx hellerianus, Poland+Finland (Hola et al.
- 449 2015). 34. Pleurochaete squarrosa ITS (Grundmann et al. 2007). 35. Pleurochaete squarrosa cpDNA
- (Grundmann et al. 2007). 36. Amphidium mougeotii (Désamoré et al. 2016). 37. Calypogeia fissa (Désamoré et
- 451 al. 2016). 38. *Diplophyllum albicans* (Désamoré et al. 2016). 39. *Plagiothecium denticulatum* (Désamoré et al.
- 452 2016). 40. *P. undulatum* (Désamoré et al. 2016). 41. *Plagiomnium undulatum* (Désamoré et al. 2016). 42.
- 453 *Scorpiurium circinatum* (Désamoré et al. 2016).
- 454

- Table S2. Slope (± s.D.) and p-value of Mantel tests between Fst and log-distance in bryophytes. Shaded boxes
- represent the geographic range. 1-9 represent results from the literature and 10-20 were recomputed from data
- 457 published in the references listed below
- 458

	Full range	<10 km	10-100km	100-1000km	>1000km
1	NA P=0.30				
2	NA P=0.06				
3	1.08 P<0.01				
4	0.07 P=0.13				
5	1.39 P<0.01				
6	2.51 P<0.01				
7	0.86 P<0.01				
8	0.16 P=0.02				
9	NA P<0.001				
10	0.012±0.015 P=0.30	0.09±0.04	-0.234±0.169		
11	-0.031±0.028 P=0.41	0.070±0.111	-0.016±0.035		
12	0.048±0.022 P<0.001	0.208±0.05	0.57±0.31		
13	0.026±0.017 P=0.028	-0.001±0.007	-0.003±0.013	0.113±0.17	
14	0.052±0.014 P<0.001	-0.264±0.167	0.007±0.026	0.103±0.039	
15	-0.003±0.004 P=0.37		0.002±0.002		
16	-0.020±0.022 P=0.11		-0.020±0.022		
17	0.022±0.006 P=0.006		0.022±0.006		
18	0.003±0.007 P=0.35		0.188±0.02	-0.017±0.08	-0.595±0.316

19	0.051 P=0.002	0.064	0.029	0.108
20	0.081 P=0.002	0.096	-0.032	0.17

- 459 1 Hylocomium splendens (Cronberg 2002). 2. Leptodon smithii (Spagnuolo et al. 2007). 3. Sphagnum
- 460 angustifolium (Kyrkjeeide et al. 2016). 4 S. austinii (Kyrkjeeide et al. 2016). 5 S. fuscum (Kyrkjeeide et al.
- 461 2016). 6 S. quinquefarium (Kyrkjeeide et al. 2016). 7 S. rubiginosum (Kyrkjeeide et al. 2016). 8 S. wulfianum
- 462 (Kyrkjeeide et al. 2016). 9. S. miyabeanum (Shaw et al. 2014). 10 Pleurozium schreberi (Korpelainen et al.
- 463 2012); 11 Plagiochila asplenioides (Korpelainen et al. 2012). 12 Rhytidiadelphus squarrosus (Korpelainen et al.
- 464 2012). 13 *Rhynchostegium riparioides* (Hutsemékers et al. 2010). 14 *R. riparioides* (Hutsemékers et al. 2011).
- 15 Sphagnum fallax (Szövényi et al. 2012). 16 S. fimbriatum (Szövényi et al. 2012). 17 S. palustre (Szövényi et
- al. 2012). 18 Crossocalyx hellerianus Poland+Finland (Hola et al. 2015). 19 Pleurochaete squarrosa, ITS
- 467 (Grundmann et al. 2007). 20 *P. squarrosa*, cpDNA (Grundmann et al. 2007).