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 Val66Met moderated significantly the association regarding frontal fast spindles 

 Sleep spindles may not associate with learning equally across individuals 

 

 

Abstract 

A common single nucleotide polymorphism (SNP) of the brain-derived neurotrophic factor 

(BDNF) gene, Val66Met, has been reported to impair BDNF secretion and memory function. 

However, few studies have investigated the interaction of BDNF genotype and sleep characteristics, 

such as sleep spindles, that promote long-term potentiation during sleep. In this study we compared 

overnight visual memory between the carriers of BDNF Met and non-carriers (Val homozygotes), 

and examined how sleep spindle density associated with memory performance. 

The sample constituted of 151 adolescents (mean age 16.9 years; 69% Val homozygotes, 

31% Met carriers). The learning task contained high and low arousal pictures from Interactive 

Affective Picture System. The learning task and all-night polysomnography were conducted at the 

homes of the adolescents. Slow (10–13 Hz) and fast (13–16 Hz) spindles were detected with 

automated algorithm. 

Neither post-sleep recognition accuracy nor spindle density differed between Val 

homozygotes and Met carriers. While frontal slow and fast spindle densities associated with better 

recognition accuracy in the entire sample, examining the allelic groups separately indicated 

paralleling associations in Val homozygotes only. Interaction analyses revealed a significant 

genotype-moderated difference in the associations between frontal fast sleep spindles and high 

arousal pictures. 
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In sum, sleep spindles promote or indicate visual learning in Val homozygote adolescents 

but not in Met carriers. The result suggests that the role of sleep spindles in visual recognition 

memory is not equal across individuals but moderated by a common gene variant.  

 

Keywords: LTP, plasticity, sleep spindle, Val66Met, visual memory  
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1. Introduction 

Brain-derived neurotrophic factor (BDNF) is a growth hormone mediating neuronal survival 

and differentiation [1, 2]. BDNF also promotes synaptic plasticity [3] such as hippocampal long-

term potentiation (LTP) [1, 2, 4-7], important in memory and learning [8]. Regarding memory 

function specifically, a single nucleotide polymorphism (SNP) of the human BDNF gene is rs6265, 

or Val66Met, has drawn interest. This methionine (Met) substitution for valine (Val) at codon 66 

has been observed to alter intracellular packaging of pro-BDNF, its axonal transport while also 

reducing the activity-dependent dendritic secretion of BDNF [9, 10]. Evidence in rodents suggests 

that Val66Met polymorphism impairs hippocampal synaptic plasticity [11]. However, human 

studies examining memory function between Met carriers and non-carriers (Val homozygotes) have 

provided contrasting observations of hippocampal activation [12-14] and memory performance [15-

19], leaving the impact of Val66Met polymorphism on human memory performance unestablished 

[20]. 

Sleep is a powerful memory enhancer [21-23]. Given that BDNF facilitates late-phase LTP 

(i.e. memory lasting longer than 1-2 hours) [24, 25], studies involving BDNF variants in post-

encoding sleep deserve focus. In some studies differences in memory performance emerged only 

after night’s sleep, even when reporting equal short-delay recall between the genotypes [26, 27]. In 

overnight studies the memory performance of Val homozygotes has been reported equal [15] or 

better [19, 26, 27] compared to Met carriers. A study associating sleep characteristics with 

overnight learning found that the improved face picture recognition of Val homozygotes related to 

the increase of slow oscillation (SO) power between baseline and test night, suggesting a more 

profound impact of pre-sleep learning on sleep power dynamics [26]. Sleep spindles, bursts of 

thalamocortical sigma-band oscillations (~10–16 Hz) mostly seen in stage 2 (N2) sleep [28], did not 

affect the learning outcome in the study. However, sleep was only analyzed in the first quartile of 
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the first non-rapid eye movement sleep (NREM) episode  [26], hardly entirely representing the role 

of spindles in overnight learning. 

Comprehensive evidence links sleep spindles with enhanced memory performance [29-37]. 

Yet, there is a lack of studies investigating sleep spindles together with BDNF, despite existing 

basis to assume interaction in memory function. Sleep spindles are involved in memory replay 

during sleep [21, 38-42] and considered a mechanism of LTP [43]. Triggered by N-Methyl-D-

aspartate receptor (NMDAR) activation, strong Ca2+ influx during sleep spindles activates 

postsynaptic signaling cascades underlying LTP [44]. BDNF, on the other hand, promotes NMDAR 

function [45, 46]. In addition, recognizing the role of sleep spindles on hippocampal memory 

formation and neocortical information transfer [47-49], observations of Val66Met-related 

alterations in the hippocampal activation [12, 50], connectivity [13, 51, 52] and synchronization 

with neocortical processing [50] gain interest. 

To illuminate the effect of individual genotype on memory functioning, we investigated how 

Val homozygotes and Met carriers differ in visual overnight learning outcome, and how sleep 

spindles moderate the associations in a community-based sample of 151 late adolescents in a natural 

overnight in-home setting. We hypothesize that Val homozygotes would display better overnight 

picture recognition performance and positive association between recognition performance and 

spindle density during N2 and N3 sleep.  
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2. Experimental Procedure 

2.1. Participants 

The participants comprised an urban community-based cohort composed of 1049 healthy 

singletons born between March and November 1998 in Helsinki, Finland [53]. Detailed descriptions 

of the cohort and follow-up participation are found elsewhere [54, 55]. In the current study, the 

adolescents who lived within a 30 kilometer radius of Helsinki and whom had participated in the 

previous follow-up and given consent for further contact, were recruited by phone and were offered 

a monetary compensation (50 €) for their effort. In total 196 adolescents participated of which 173 

had been genotyped at an earlier follow-up. 22 participants had to be excluded from the sleep 

spindle analyses due to poor impedance levels or other measurement problems, and visual memory 

task data was missing from three participants due to technical problems. The final analytical sample 

consisted of 151 Caucasian adolescents (56 % girls; mean age 16.9 y, SD=0.1, range 16.6–17.2). 

We did not exclude any participants, as there were no current neurodevelopmental disorders 

reported. Two cases reported having had learning difficulties during elementary school. 

The Ethics Committee of the Children's Hospital in Helsinki University Central Hospital 

approved the study protocol (177/13/03/03/2014). Informed written consent was obtained from the 

participants. All parts of the study were conducted in accordance with the Declaration of Helsinki. 

2.2. Experiment flow 

The in-home assessment started between 6–7 p.m. with a short questionnaire about possible 

factors affecting testing, e.g. handedness, native language and possible sensory or motor handicaps. 

After that a trained research nurse administered a cognitive assessment and the encoding phase of 

the recognition accuracy task. The polysomnography (PSG) device was then attached, and the 

subjects were instructed to follow their own sleep schedule. The next morning the research nurse 

detached the PSG wiring and administered the recognition phase of the recognition accuracy task. 



Jo
ur

na
l P

re
-p

ro
of

2.3. Picture Recognition Task 

The stimuli consisted of two sets of 100 pictures from  the International Affective Picture 

System [56]. The sets were differentiated by their arousal (calm–exciting dimension) ratings: the 

mean normative arousal of the high and low arousal picture sets were 5.68 (5.00–7.35) and 3.47 

(2.28–3.99), respectively (statistically significant difference, p<.001). The mean valence ratings 

were parallelized between the sets (mean valence of high and low arousal pictures were 5.75 and 

5.84, respectively; p = .63). In the learning phase the participants were instructed to memorize 100 

target pictures (50 low and 50 high arousal), viewed on a 14” laptop screen. The following morning, 

in the recognition phase, the 100 target pictures were mixed with 100 unseen sham pictures and 

displayed to the participants in random order. If they recognized the picture, the participants were 

instructed to press a key (space bar) while the picture was visible. In both learning and recognition 

phases the pictures lasted for 1000 ms on the screen, followed by blank black screen, lasting 1500 

ms. The research nurse monitored that participants focused on the task. Recognition accuracy scores 

(d’, separately for high and low arousal) were calculated as the difference between the hit rate 

(standardized proportion of correctly recognized target pictures of all target pictures) and the false 

alarm rate (standardized proportion of incorrectly recognized sham pictures of all sham pictures) to 

correct for response bias. Due to false alarm rates of 0, we applied loglinear approach [57]. 

2.4. PSG protocol and spindle detection 

All recordings were done using SOMNOscreen plus (SOMNOmedics GmbH, Germany). A 

trained research nurse attached gold cup electrodes at 6 electroencephalography (EEG) locations 

(frontal (F) hemispheres: F3, F4; central (C) hemispheres: C3, C4; occipital (O) hemispheres: O1, 

O2) and two for the mastoids (A1, A2) accordingly. The electro-oculogram (EOG) and the 

electromyogram (EMG) were measured by using disposable adhesive electrodes (Ambu Neuroline 

715, Ambu A/S, Denmark), two locations for EOG and three locations for EMG. In addition, an 



Jo
ur

na
l P

re
-p

ro
of

online reference Cz and a ground electrode in the middle of forehead were used. The sampling rate 

was 256 Hz (the hardware filters for SOMNOscreen plus are 0.2-35 Hz). 

PSG data were scored manually using the DOMINO program (v2.7; SOMNOmedics 

GmbH, Germany) in 30-sec epochs into N1, N2, N3 and REM according to AASM guidelines (The 

AASM Manual for the Scoring of Sleep and Associated Events). Percentages of each stage were 

calculated based on total sleep time. All signals were digitally offline filtered with pass band of 0.5-

35 Hz (Hamming windowed sinc zero-phase FIR filter, cut-off (-6dB) 0.25 Hz and 39.3 Hz 

respectively) and re-referenced to the average signal of A1 and A2 electrodes. 

The manually scored PSG signals were converted to EDF format in DOMINO software and 

then further analyzed by using functions of EEGlab 14.1.2b (Delorme and Makeig 2004) running on 

Matlab R2018a (The Mathworks Inc., USA). All signals were digitally offline filtered with pass 

band of 0.5–35 Hz (Hamming windowed sinc zero-phase FIR filter, cut-off (-6dB) 0.25 Hz and 39.3 

Hz respectively) and re-referenced to the average signal of A1 and A2 electrodes. Electrodes 

located at F3, F4, C3, C4 were included in the analysis. Only epochs with with electrode-scalp and 

both mastoids impedance equal or lower than 10 kΩ were included in the analyses.  

Spindles were computationally extracted separately in N2 and N3 sleep with a method based 

on an automated detection algorithm  described by Ferrarelli [58]. The spindle analysis was 

conducted in valid N2 and N3 epochs in two different frequency bands (slow: 10–13 Hz, and fast: 

13–16 Hz) in order to differentiate between slow and fast spindles, which are likely to serve 

different functions in overnight learning [49, 59, 60]. Before applying the spindle thresholding 

method, the pre-processed EEG data were further filtered using the above-mentioned frequency 

bands separately, using high-order filter (13,200) to minimize overlap between the frequency bands 

[61]. The threshold values for finding spindle peak amplitude in each channel were defined by the 

mean of the channel amplitude (µV) multiplied with 5 (higher) including all valid epochs 

(impedance in the target channel and both mastoids ≤ 10 kΩ). The higher threshold (5) was iterated 
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by visual inspection of EEG data to provide best detection of spindle events. The spindle’s 

amplitude was required to stay over the mean channel amplitude multiplied by 2 (lower) for 250 ms 

in both directions from the peak maximum, resulting in minimum spindle duration of 0.5 seconds 

[62]. Thus, we used channel-wise threshold definitions, taking into account that signals may vary 

across the channels. The maximum cut-off for spindle length was set 3.0 seconds [28] and 

maximum peak amplitude was set to 200 µV. Also, between spindles the signal amplitude was 

required to stay under the lower threshold for 78.1 ms which is approximately the duration of one 

period of sine at 13 Hz, in order to prevent false alarms. Spindle-like bursts detected during arousals 

were excluded. Fast and slow spindle densities (number of spindles per minute) in each EEG 

locations were used as measures of spindle activity. Spindle densities were calculated only if the 

amount of valid minutes in N2 or N3 equaled or exceeded 10. 

2.5. Genotyping 

DNA was extracted from blood (22%) and saliva samples (78%) collected at the 2009–2011 

follow-up. Genotyping was performed with the Illumina OmniExpress Exome 1.2 bead chip at the 

Tartu University, Estonia, in September 2014 according to the standard protocols. We assessed the 

frequencies of GG (Val/Val), GA (Val/Met) and AA (Met/Met) genotypes. For data analysis 

Val/Met and Met/Met were grouped as Met carriers. 

2.6. Statistics 

All statistical analyses were done using IBM SPSS Statistics version 25.0 (IBM Corp. 

Released 2016. IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY: IBM Corp.). 

Significance was set at p<0.05. Baseline differences between the genotype groups were analyzed 

using one-way analysis of variance (ANOVA). 
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Mixed ANOVAs were used in assessing recognition accuracy and the interaction of arousal 

level and genotype, with arousal level (low, high) as within-subjects factor and genotype (Val 

homozygotes, Met carriers) as between-subjects factor. 

To examine the effect of sleep spindles on learning we first averaged the densities of frontal 

(F3, F4) and central (C3, C4) slow and fast spindles, resulting in four variables: central slow 

density, central fast density, frontal slow density and frontal fast density. Linear regression analysis 

was used to test the significance of each spindle variable (independent) on learning task score 

(dependent) for the whole sample and separately for the allelic groups. To test if the associations 

between each spindle variable and recognition task score differed between the genotypes, General 

Linear Model (GLM) two-way ANOVA was used to compare the regression slopes with an 

interaction term of ‘spindle density variable x genotype’. 

The analyses were run with two models including different covariates. As covariates in 

Model 1 we used only sex. In model 2 we used added full-scale intelligence quotient (FSIQ), total 

sleep time (TST) and the time awake between the encoding and recognition phase of the memory 

task (before and after night’s sleep). To control for the impact of general cognitive ability on 

learning performance, we assessed intellectual ability with a shortened version of the Wechsler 

Adult Intelligence Scale III (WAIS-III) [63]. The assessment included five WAIS-III subtests in the 

following order: Vocabulary, Block Design, Similarities, Matrix Reasoning and Digit Span. Full-

Scale IQ (FSIQ) was calculated by averaging the Z scores of the subtests. TST was included in the 

covariates to control for differences in sleep duration, which may affect overnight learning 

performance [64]. As we chose not to directly affect the bedtime or awakening of the participants, 

the time the participants spent awake between the encoding phase and sleep onset and between 

awakening and recognition phase were used as a single covariate. Timing of the encoding and 

recollection phases  in overnight learning paradigms may affect results [65]. 
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3. Results 

3.1. Genotyping 

rs6265 showed genotyping success rate ≥95%, minor allele frequency of 0.16, and was in 

Hardy–Weinberg equilibrium (p-value > 0.05). In the analytic sample, there were 103 (68 %), 42 

(27 %), and 6 (4 %) of GG (Val/Val), GA (Val/Met), AA (Met/Met) genotypes. For analyses, 

Val/Met and Met/Met groups were combined (31 % in any Met carrier group). Possible differences 

in sample characteristics variables between Val/Met and Met/Met groups were examined with one-

way ANOVA, but no significant differences were detected (p values > .08, data not shown). 

3.2. Sample Characteristics 

 

3.3. Recognition accuracy 

A two x two mixed ANOVA analyzed the influence of BDNF genotype group and image 

arousal on overnight recognition performance. We run analyses separately for Model 1 and Model 

2. With recognition performance (d’) as the dependent variable (Fig. 1), the analyses showed no 

significant main effects of picture arousal (Model 1: F1, 148 = 0.101, p = 0.751, ηp² = 0.001; Model 2: 

F1, 145 = 0.240, p = 0.625, ηp² = 0.002) nor of the BDNF genotype (F1, 148 = 1.820, p = 0.179, ηp² = 

0.012; Model 2: F1, 145 = 0.903, p = 0.344, ηp² = 0.006). The interaction of genotype and arousal was 

not significant (F1, 148 = 0.014, p = 0.906, ηp² < 0.001; Model 2: F1, 145 = 0.029, p = 0.865, ηp² < 

0.001). 

3.4. Sleep Spindles in Post-Sleep Recognition Accuracy 

To assess how N2 slow and fast spindle densities associated with post-sleep recognition 

accuracy in high and low arousal pictures, the whole sample underwent regression analyses. In all 

subjects we observed recognition accuracy for high arousal (high d’) pictures to associate with N2 

frontal slow spindles when controlling for sex only (Model 1: B = 0.092, t = 2.205, p = .029. Also, 
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high d’ associated significantly with frontal fast spindles in both models in the entire sample (Model 

1: B = 0.079, t = 2.258, p = .025; Model 2: B = 0.091, t = 2.386, p = .018). In addition, recognition 

performance of low arousal pictures (low d’) related significantly with frontal slow spindles (Model 

1: B = 0.124, t = 2.626, p = .010); Model 2: B = 0.097, t = 2.106, p = .037). No associations were 

found regarding N3 spindles (see Supplementary Material 2). 

Examining the allelic groups separately revealed significant associations in the Val 

homozygote group. Better recognition of high arousal pictures associated with frontal slow spindle 

density (Model 1: B = 0.114, t = 2.569, p = .012; Model 2: B = 0.098, t = 2.193, p = .031) and 

frontal fast spindle density (Model 1: B = 0.122, t = 2.977, p = .004; Model 2: B = 0.124, t = 3.080, 

p = .003). Regarding low arousal pictures, analogous relationships were found between low d’ and 

frontal slow spindle density (Model 1: B = 0.147, t = 2.695, p = .008; Model 2: B = 0.114, t = 

2.160, p = .033) and frontal fast spindle density (Model 2: B = 0.104, t = 2.155, p = .034). No 

associations were found regarding N3 spindles (see Supplementary Material 2). 

To examine if the relationship between N2 sleep spindle density and recognition accuracy 

differed according to genotype, we ran two-way ANOVA interaction tests with the interaction term 

‘genotype x spindle density’ (Table 2). After controlling for the covariate(s) and main effects, the 

interaction of N2 frontal fast spindles and genotype showed significance in high d’ (Model 1: F1,146 

= 3.891, p = 0.050, ηp² = 0.026; Model 2: F1, 143 = 4.662, p = 0.033, ηp² = 0.032), indicating 

divergence in the associations between the genotypes. No differences were found regarding N3 

spindles (see Supplementary Material 2). 
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Residual plots for the extracted coefficients of determination (R2) in Fig. 2 illustrate the 

genotype-moderated associations between frontal fast spindle density and high d’ separately for Val 

homozygotes and Met carriers. In the Val/Val group frontal fast spindle density explains 8.9 % of 

the variability of high d’ scores and 0.1 % in Met carriers. 

 

 

4. Discussion 

Our study found that carriers of common BDNF alleles (Val/Val, ie. Val homozygotes vs. 

Val/Met and Met/Met, ie. Met carriers) showed no diverging performance in overnight learning of 

pictures of low and high arousal in a large adolescent sample. Val homozygotes represented 69 % 

and Met carriers 31 % of the cohort, corresponding to allelic distribution in European populations 

[67, 68]. In the entire sample frontal spindle density associated with better post-sleep picture 

recognition, and when examining the allelic groups separately, this pattern recurred in Val 

homozygotes only. The genotype-moderated difference between spindle-recognition-relationship 

was significant regarding frontal fast spindle density and high arousal picture recognition.  

The null finding in the difference in visual recognition performance between the genotypes 

contradicts an earlier overnight study reporting improved performance in Val homozygotes [26]. 

However, it aligns with another study’s findings where the overall recall performance was similar 

between Val homozygotes and Met carriers [15]. Interestingly, the authors found that emotionally 

high picture valence (positive and negative) improved the performance in Met carriers compared to 
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neutral pictures. Similar impact was not detected regarding picture arousal (calm–exciting) in our 

study. According to neuroimaging studies, image valence, but not arousal, correlates with amygdala 

activity [69, 70]. Amygdala activity during encoding associates with enhanced memory 

consolidation [71], and Met carriers have been reported to show higher amygdala activity towards 

emotional stimuli than Val homozygotes [72, 73]. Based on our results, it appears that the 

perception and processing of arousal does not separate BDNF polymorphisms to the extent of 

valence. However, we could not divide recognition performance into ‘recollection’ and ‘familiarity’ 

responses [74, 75] as a  recent study (not involving post-encoding sleep), showing that only 

‘familiarity’ response accuracy differed between Val homozygotes and Met carriers [76]. 

In our study, we also focused on the associations between sleep spindles and recognition 

accuracy. In the entire sample, frontal slow and fast spindle density in N2 sleep associated with 

better post-sleep recognition of pictures. Considering that numerous reports associate (also) central 

spindle density with declarative learning [29, 34, 77, 78] the topographical dichotomy urges further 

scrutiny. Previously frontal spindle activity has been linked with the learning of word-pairs [29, 79, 

80], with associating faces and names [30, 81, 82] and with contextual memory [83]. One study 

found both frontal and central spindle power to correlate with better neutral picture memory [84]. 

Considering that recognition memory is deemed to depend upon prefrontal cortex [85-89], medial 

temporal lobe structures and interconnecting white matter projections [76, 90], our results 

contribute to relatively scarcely studied matter. 

Arguably slow and fast spindles serve diverging functions in learning. Especially fast 

spindles are implicated with offline memory consolidation as they associate with greater encoding-

related hippocampal activation [82] and higher hippocampal-neocortical functional connectivity 

[91]. Fast spindles coincide with slow oscillations and hippocampal sharp wave ripples, 

consequently promoting memory transfer between hippocampus and neocortex [49, 92] Moreover, 

Mander et al. [82] found frontal fast spindles to restore next-day learning capacity. Slow spindles, 
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on the other hand, have been proposed to follow fast spindles and be involved in cortico-cortical 

information processing within prefrontal cortex [60], although rather limited evidence associates 

slow spindles with better learning in adults [33]. Notably, sleep spindles of varying frequency 

ranges [93-95] have been attributed with pre-sleep memory performance, a measure not examinable 

in our study. Such ‘learning aptitude’ does not equal, but overlaps with [96, 97], the construct of 

general cognitive ability. Introducing full-scale intelligence quotient – a contested correlate with 

sleep spindle characteristics [98] – as a covariate did not dispel the associations between recognition 

accuracy and slow or fast frontal spindle density in our data. This implies a learning component 

beyond general cognitive ability regarding frontal spindles. However, the exact contribution of each 

spindle type on the learning performance would require further investigation of e.g. inter-spindle 

dynamics and synchronization with other sleep oscillations. 

Not all studies report associations between spindles and declarative learning (for example, 

see [99]). Given that sleep spindles reflect synchronized activity of inter-individually variable 

neuroanatomical structures [100], few studies have considered the influence of subject-specific 

factors beyond age and sex on the obtained results. Hence, we examined the interaction between 

Val66Met polymorphism and sleep spindles on overnight memory performance. Analyses run 

separately for Val homozygotes and Met carriers revealed that each of the significant association in 

the entire sample involved a strong, paralleling association confined to Val homozygotes only, 

whereas spindle density in recognition accuracy showed no significance in Met carrier group. The 

associations were significantly divergent regarding frontal fast spindles in high arousal picture 

recognition. The result proposes that frontal fast sleep spindles promote or indicate visual 

recognition memory formation differently between Val homozygotes and Met carriers. 

Neural underpinnings behind the observed difference between Val homozygotes and Met 

carriers remain a matter of speculation. Volumetric analyses indicate Val homozygosity to associate 

with larger prefrontal [101-103] and hippocampal [9, 50, 101, 104, 105] gray matter volume in 
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comparison to Met carriers. Based on altered activation patterns and higher error rate in verbal 

learning task, Schofield et al. [50] suggested Met-allele-associated dysregulated activation of 

hippocampus and its prefrontal projections. Concordantly, functional connectivity between 

hippocampal and neocortical areas is reportedly higher in Val homozygotes than in Met carriers 

[13, 51, 52], which proposedly [106] derives from more efficient pruning of silent axons, a process 

modulated by BDNF [107, 108]. Indeed, whereas white matter (WM) integrity underlies the 

propagation [100, 109] and memory benefit [110] of sleep spindles, the relation between WM 

characteristics and cognition may be affected by Val66Met polymorphism, and appears discernible 

in Val homozygotes only [111, 112]. Acknowledging the methodological distance, this evidence 

encourages us to suggest that the addressed genotypic differences in fronto-hippocampal network 

and in connectivity dynamics contribute to the frontal emphasis in spindle-learning-relation in Val 

homozygotes in our sample. Furthermore, it is well-established that specifically fast spindles 

promote memory consolidation via inter-oscillation synchronization [113, 114], orchestrated by 

prefrontal cortex [92]. Higher connectivity enhances synchrony [115-117] and BDNF is involved in 

stabilizing even complex patterns of potential fluctuations [118]. While this theoretically parallels 

the accentuated genotypic moderation regarding fast spindles in our data, further studies 

investigating the exact impact of Val66Met polymorphism on phase-amplitude coupling 

characteristics are warranted. 

Some issues should be underscored here. Met carriers fared equally with Val homozygotes 

in recognition accuracy in our study, although no other correlate with learning aside spindles was 

identified. Val66Met polymorphism affects the dynamics between sleep and learning in a complex 

manner, affecting also next-day cognition [119, 120], which necessitates more research with 

varying settings. In addition, our sample consisted of closely-aged adolescents, with ongoing neural 

reorganization of brain [121], increasing thalamocortical functional connectivity [122] and altering 

spindle characteristics [78, 123]. The narrow age-range may highlight subtle inter-group differences 
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in neural activity and cognitive functioning. Hence, these results can only be cautiously generalized 

to other age groups. 

4.1. Strengths and Limitations 

A key strength of our study was the large, community-based longitudinal sample with a high 

age coherence. This study adds to the increasing research literature on adolescents’ spindles. 

Uniquely, our study is the first to assess how BDNF gene moderates the association between sleep 

spindles and overnight picture recognition. 

There are also major shortcomings requiring attention. Firstly, the study setting enables only 

correlative scrutiny of the associations. That is, the singular morning picture recognition without a 

pre-sleep measurement makes the overnight change in recognition accuracy unexaminable. This 

undermines the deductibility of causal role of sleep spindles in learning. Further obscuring 

causation, having only one night with PSG recording prevented us from examining how learning 

affected sleep spindle characteristics, as well as from considering previous night’s impact on 

learning [82, 119, 120]. Also, due to the lack of a waking control group we could not properly 

assess how, or whether, sleep affected the recognition accuracy scores. Within these limitations it is 

not inferable if the associations between frontal spindles and recognition accuracy derives from 

offline consolidation or from general learning capability. Controlling for FSIQ diminishes the effect 

of intelligence on learning performance, but hardly equals immediate learning ability. Secondly, 

’recollection’ and ‘familiarity’ responses, evidently representing divergent neural processes [124], 

were undifferentiated. Thus, we were unable to investigate these subtypes separately although their 

relevance regarding Val66Met polymorphism has recently been reported [76]. Thirdly, while we 

parallelized the mean valence ratings of the applied picture sets, the variance in valence was rather 

high, possibly introducing unassessed impact on recognition performance [15]. Finally, due to less 
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Met carriers than Val homozygotes, the analyses run separately on the groups are not fully 

comparable due to difference in statistical power. This calls for balanced groups in further studies. 

4.2. Conclusions 

The relation between sleep microstructure and memory formation may not be equal across 

all individuals. This study is the first to show that sleep spindle density associates with better visual 

post-sleep recognition accuracy only in Val homozygotes. In Met carriers, sleep spindles did not 

associate with learning. We suggest that the results reflect genotype-moderated functional 

differences in fronto-hippocampal network. The exact nature of the divergence requires further 

studies.  
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Table 1 presents the age, pubertal development, FSIQ, sleep measures and spindle densities. 

No differences in the variables emerged between the genotype groups (Val homozygotes and Met 

carriers). Furthermore, spindle duration, amplitude and frequency showed no significant differences 

between the genotypes in N2 and N3 spindles. (all p values ≥ .11; see Supplementary Material 1). 

Table 1. Sample Characteristics.       

  Val homozygotes Met carriers  

  Mean Range SD Mean Range SD p 

Age 16.9 16.6–17.2 0.1 16.9 16.7–17.2 0.1 .53 

Pubertal development 3.2 2.4–3.8 0.4 3.3 2.2–3.8 0.4 .79 

FSIQ 0.0 -1.4–1.5 0.6 -0.1 -2.5–0.9 0.7 .24 

Sleep variables        

 Total Sleep Time (hh:mm) 7:41 3:10–9:52 1:02 7:29 3:49–10:46 1:22 .33 

 N1 % 10.4 3.0–27.0 4.4 9.8 2.7–18.0 4.3 .47 

 N2 % 38.3 23.2–51.2 6.0 37.9 20.5–50.6 6.3 .76 

 N3 % 25.0 12.4–39.6 5.7 26.0 15.7–39.6 6.3 .36 

 REM % 19.7 4.4–30.9 5.1 18.7 4.3–28.4 4.9 .25 

 Sleep efficiency (%) 93.4 70.7–98.4 4.8 93.1 60.8–98.9 6.9 .34 

N2 Spindle density (n/min)        

 Central slow 3.4 2.3–4.6 0.6 3.6 2.2–4.6 0.7 .23 

 Frontal slow 4.4 1.6–6.3 0.8 4.5 2.9–6.2 0.7 .39 

 Central fast 3.6 1.8–6.2 0.9 3.5 2.1–5.7 0.9 .65 

 Frontal fast 2.9 0.9–5.7 0.9 3.0 1.6–4.8 0.8 .79 

N3 spindle density (n/min)        

 Central slow 2.4 0.6–3.8 0.6 2.5 1.1–3.2 0.8 .20 

 Frontal slow 3.3 1.0–5.5 0.9 3.3 1.5–6.3 1.0 .85 

 Central fast 3.6 1.5–5.9 0.9 3.5 1.7–5.1 0.8 .87 

 Frontal fast 2.5 1.0–5.6 0.8 2.5 1.3–5.1 0.9 .86 

Pubertal development estimated using the Pubertal Development Scale (PDS) [66]. FSIQ = Full-Scale Intelligence 

Quotient. REM = Rapid Eye Movement sleep; N1-N3 = stages of non-REM sleep. 
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Table 2. Regression and interaction analyses between picture learning scores and N2 spindle densities. 

 

Spindle 

density All VH MZ 

Genotype 

x spindle All VH MZ 

Genotype 

x spindle 

High d’ B (SE) B (SE) B (SE) F B (SE) B (SE) B (SE) F 

Central slow 0.02 (.06) 0.07 (.07) -0.04 (.11) 0.55 0.01 (.06) 0.05 (.07) -0.04 (.11) 0.33 

Frontal slow 0.09* (.04) 0.11* (.04) 0.07 (.10) 3.3 0.08 (.04) 0.10* (.05) 0.03 (.10) 1.03 

Central fast 0.08 (.04) 0.07 (.05) 0.11 (.10) 1.83 0.07 (.04) 0.06 (.05) 0.11 (.10) 0.31 

Frontal fast 0.09* (.04) 0.12** (.04) 0.01 (.09) 3.89* 0.09* (.04) 0.12** (.04) 0.02 (.09) 4.66* 

Low d’ B B B F B B B F 

Central slow 0.06 (.07) 0.11 (.09) 0.00 (.11) 0.54 0.05 (.07) 0.06 (.08) 0.00 (.11) 0.23 

Frontal slow 0.10** (.05) 0.15** (.06) 0.07 (.10) 0.72 0.10* (.05) 0.11* (.05) 0.03 (.10) 1.02 

Central fast 0.07 (.05) 0.06 (.06) 0.07 (.10) 0.01 0.05 (.05) 0.05 (.05) 0.07 (.10) 0.00 

Frontal fast 0.06 (.05) 0.10 (.05) -0.07 (.09) 2.31 0.06 (.04) 0.10* (.05) -0.05 (.09) 3.23 

B = Regression analysis coefficient B for spindle density variables in the entire sample (All) and separately for Val 

homozygotes (VH) and Met Carriers (MC). SE = Standard Error. F = F-value of the interaction term ‘genotype x 

spindle’. High d’ = recognition accuracy as d’ for high arousal pictures. Low d’ = recognition accuracy as d’ for low 

arousal pictures. Model 1 covariates: sex. Model 2 covariates: sex. FSIQ, total time awake and sleep duration. 

* = p < .05, ** = p < .01. 

 

 


