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Nowadays the amount of data collected on individuals is massive. Making this data more available

to data scientists could be tremendously bene�cial in a wide range of �elds. Sharing data is not a

trivial matter as it may expose indivuals to maliciuous attacks. The concept of di�erential privacy

was �rst introduced in the seminal work by Cynthia Dwork (2006b). It o�ers solutions for tackling

this problem. Applying random noise to the shared statistics protects the individuals while allowing

data analysts to use the data to improve predictions.

Input perturbation technique is a simple version of privatizing data, which adds noise to whole

data. This thesis studies an output perturbation technique, where the calculations are done with

real data, but only su�cient statistics are released. With this method smaller amount of noise is

required making the analysis more accurate.

Yu-Xiang Wang (2018) improves the model by introducing an adaptive ADASSP algorithm to �x the

instability issues of the previously used Su�cient Statistics Perturbation (SSP) algorithm. In this

thesis we will verify the results shown by Yu-Xiang Wang (2018) and look in to the pre-processing

steps more carefully. Yu-Xiang Wang has used some unusual normalization methods especially

regarding the sensitivity bounds. We are able show that those had little e�ect on the results and

the ADASSP algorithm shows its superiority over SSP algorithm also when combined with more

common data standardization methods. A small adjustment for the noise levels is suggested for the

algorithm to guarantee privacy conditions set by classical Gaussian Mechanism.

We will combine di�erent pre-processing mechanisms with ADASSP algorithm and show a compa-

rative analysis between them. The results show that Robust private linear regression by Honkela et

al. (2018) makes signi�cant improvements in predictions with half of the data sets used for testing.

The combination of ADASSP algorithm with robust private linear regression often brings us closer

to non-private solutions.

Tiedekunta/Osasto � Fakultet/Sektion � Faculty Laitos � Institution � Department

Tekijä � Författare � Author

Työn nimi � Arbetets titel � Title

Oppiaine � Läroämne � Subject

Työn laji � Arbetets art � Level Aika � Datum � Month and year Sivumäärä � Sidoantal � Number of pages

Tiivistelmä � Referat � Abstract

Avainsanat � Nyckelord � Keywords

Säilytyspaikka � Förvaringsställe � Where deposited

Muita tietoja � Övriga uppgifter � Additional information

HELSINGIN YLIOPISTO � HELSINGFORS UNIVERSITET � UNIVERSITY OF HELSINKI



Contents

1 Introduction 3

2 Background 5

2.1 Linear regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.1 Simple linear regression . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Multiple linear regression . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Ridge regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Di�erential privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 l2-sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 (ε, δ)-di�erential privacy . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Composition theorems for (ε, δ)-di�erential privacy . . . . . . . . . 10
2.2.4 Gaussian mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Methods 16

3.1 Su�cient statisticis perturbation SSP . . . . . . . . . . . . . . . . . . . . . 16
3.2 Adaptive choice of λ and ADASSP algorithm . . . . . . . . . . . . . . . 17

3.2.1 Adaptive choice of λ . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.2 Fixing the noise levels . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Practicalities of di�erentially private OLS . . . . . . . . . . . . . . . . . . 19
3.3.1 Mapping data to unit sphere using row speci�c norms . . . . . . . . 20
3.3.2 Mapping data to unit sphere with maximum row norm . . . . . . . 21
3.3.3 Unstandardized regression coe�cients . . . . . . . . . . . . . . . . . 22

3.4 Robust private linear regression . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Evaluating results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Results and discussion 26

4.1 Algorithm alterations and unit sphere mapping . . . . . . . . . . . . . . . 27
4.1.1 Instability of the SSP algorithm . . . . . . . . . . . . . . . . . . . . 27
4.1.2 Fixing the noise levels for ADASSP algorithm . . . . . . . . . . . 28

1



4.1.3 Results for di�erent mapping strategies . . . . . . . . . . . . . . . . 30
4.2 Tracking the pre-processing steps . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.1 Adding the intercept column . . . . . . . . . . . . . . . . . . . . . . 33
4.2.2 Clipping the data before projection . . . . . . . . . . . . . . . . . . 33

5 Conclusions 39

References 40

2



Chapter 1

Introduction

The amount of data people produce every day is a colossal �gure and a good fraction of
this is sensitive data collected from individuals whom do not wish their data to be exposed.
Medical records would be something people feel especially sensitive about which is easy
to understand considering the damage caused if these were accessible by e.g. insurance
companies or potential employers. Yet at the same time that data would be extremely
valuable for scienti�c research. The question is how to make use of that data without
risking the privacy of the people.

Seminal work in di�erential privacy written by Dwork et al. (2006b) has provided
us answer for this problem. Applying random noise to large data sets creates a sort of
plausible deniability for people whom would otherwise consider that sharing their data
has a risk of exposing them to a malicious attacker. Di�erential privacy enables us to infer
statistics of the population using old statistical methods e.g. linear regression by Galton
(1886), while being uncertain if any speci�c individual had their records in the data set.

The paper by Dwork et al. (2006b) was the �rst publication about di�erential privacy.
It laid out the groundwork which is developed even further by various authors to both
increase accuracy in the models and to modulate to distinct situations di�erent data
requires. In this paper we will shed some light to di�erent methods using di�erentially
private linear regression with Gaussian mechanism by Dwork et al. (2014a) and our focus
will be on ADASSP algorithm introduced by Wang (2018). This is an upgraded version of
the Su�cient Statistics Perturbation algorithm (SSP). The adaptability of the algorithm
guarantees required level of privacy without the instability issues of the SSP algorithm.

Wang (2018) tested ADASSP and several other algorithms with 36 commonly used
data sets in the UCI Machine learning repository. We will give a hands on example of
the usage of this algorithm with four of those data sets and suggest a few improvements
regarding the pre-processing of the data. Our main focus in this paper is explaining the
ADASSP algorithm, how it is an improved version the normal SSP algorithm and how
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to use this algorithm in practice. We try to emphasize the challenges of often neglected
pre-processing steps, where the �tting decisions regarding normalization of the data can
remarkably improve the results. When we go through the theoretical background, we
notice that the algorithm seems to require slightly larger noise levels than the ones used
by Wang (2018) and we suggest a few changes to ensure that privacy bounds are intact.

The rest of the paper is divided into four chapters. In Chapter 2 we go through the
basic principles of di�erential privacy, linear regression and some mathematical theory
which will be needed later on. In Chapter 3 we analyze SSP and ADASSP algorithms and
the data normalization challenges we face when using these algorithms and di�erentially
private linear regression in general. Chapter 4 is reserved for visualizing the e�ects of
di�erent normalization and mapping steps on the error levels and how the small alterations
in SSP and ADASSP algorithms change the results. We will conclude our observations in
Chapter 5.
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Chapter 2

Background

Motivation for creating di�erentially private models is summarized well by Dwork et al.
(2006b): "�, the goal of a privacy-preserving statistical database is to enable the user to
learn properties of the population as a whole while protecting the privacy of the individual
contributors." Dwork et al. (2006a) have a background in computer science and therefore
the discussion is often circling data bases, trusted servers and answers for the queries.
We adopt much of the same framework, where we have three parties. We see the user
as the data analyst whom is interested in utilizing the population data for research. The
instance whom is in possession of the data, later described by Dwork et al. (2014a), a
trusted and trustworthy curator who holds the data of individuals in a database. And
at last we have the adversary trying exploit data of individuals. In this paper we use
only output perturbation Dwork et al. (2006b), where the correct answers are calculated
using the exact data available, but only the noisy versions are reported. Therefore we can
simplify the model slightly and let go of the talk about data bases and queries. We still
have exact data controlled by the curator, whom will share the perturbed statistics of the
data for data analysts. Curator needs to adjust noise levels so that we have a certain level
of privacy guarantee protecting the individuals against the malicious adversary.

To put di�erential privacy in to more exact terms, we wish to publish statistics in a
fashion where it is di�cult to say which of the two very similar data sets D,D′ were used
to calculate the results. Usually we are interested in de�ning a speci�c limit eε that is
the ratio between the probabilities of a randomized algorithmM giving the same result
when using these slightly di�erent data sets. Due to the history of di�erential privacy,
data sets D and D′ usually di�er only with one row. This one row often represents the
data of a single person whose contribution to the results we wanted to obscure. A model
introduced by Dwork et al. (2006a) where also the size of the data sets di�ers by one,
underlines the situation where an individual has the decision to share his or her data. In
another common de�nition the size of the data set is set before hand and only one row is
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replaced with another in the two neighboring data sets. This makes it easier to build the
theory in some cases where the size of the data set can make a big di�erence.

We will use a following notation in the paper. Non-capital letters refer to scalars
and bold letters are used for vectors, which are treated as column vectors. Matrices are
referred with capital letters where the columns represent di�erent attributes and the rows
are individual data points. In a general case for a data set D ∈ Rn×(d+1) we will use a
separate matrix X ∈ Rn×d for the d regressor values with n observed data points. The
last column of the data set D we separate as the vector y ∈ Rn and we try to predict
these values using the values of the matrix X. We use apostrophe to separate identical
neighboring data sets D and D′ which di�er only with a single row. The default norm will
be l2-norm for vectors and a spectral norm for matrices ‖.‖. We use a "hat" symbol on
top of the estimators. For an element-wise product also known as Hadamard product we
use � notation and for Hadamard inverse which is a point-wise inverse we write a matrix
B = A◦−1 if it applies that bi,j = a−1

i,j with all indices i and j.
Next we will go through the some de�nitions before we start using the di�erentially

private models for the UCI data sets.

2.1 Linear regression

Linear regression is one of the most well known statistical methods and there is a vast
amount of publications which improve and extend the work originally introduced by Gal-
ton (1886). We will not try to prove or show all the theory behind linear regression, but
the following sections should work as a reminder for the reader to better understand the
usage in context of di�erential privacy during the following chapters.

2.1.1 Simple linear regression

In simple linear regression model we estimate the relationship between the variable y and
the regressor x

y = β0 + β1x+ ε,

where the regression coe�cients β0 is the intercept term and the β1 is the slope. The
error term ε is expected to have zero mean and the variance is unknown. The mean of y
is seen to have a linear relationship with x and the error term is just uncorrelated noise.

We are interested in estimating the optimal �t for the regression coe�cients to mini-
mize the sum of squares
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arg min
β0β1

n∑
i=1

(
y − β0 − β1xi

)2
,

which will give the least-squares normal equations when partially di�erentiated with re-
spect β0 and β1. Let us use x̄ =

∑n
i=1 xi/n for the mean value. Now we can denote the

corrected sum of squares and cross products with S as

Sxx =
n∑
i=1

(xi − x̄)2

and

Sxy =
n∑
i=1

yi(xi − x̄).

The derivation of the normal equations is omitted, but the solutions are given for β̂0 and
β̂1 as

(2.1) β̂0 = ȳ − β̂1x̄

and

(2.2) β̂1 =
Sxy
Sxx

.

2.1.2 Multiple linear regression

Multiple linear regression model is a generalization of the simple linear regression to Rd.
The theory can be found from nearly all introduction books in to statistics e.g. Rao et al.
(1973) and Weisberg (2005). We expect the error term ε to be uncorrelated between the
observations. We have d regressors and d+ 1 regression coe�cients

y = β0 + β1x1 + β2x2 + · · ·+ βkxk + ε.

Usually the intercept term β0 is included in the vector β ∈ Rd+1. Then also the regressor
variables are expressed in a matrix X ∈ Rn×d+1 with the �rst column initiated with ones.
Then we can express the setup with

y = Xβ + ε,

where also the error term ε is n-dimensional vector.
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We want to minimize the residual sum of squares (RSS) in the model and β̂ is the least
squares estimate. Again we will omit the proof and only use the result for the ordinary
least squares (OLS) estimator

(2.3) β̂ = (XTX)−1XTy,

which can be found as long as there exists an inverse matrix (XTX)−1. Su�cient statistics
perturbation mechanism looked more closely in Section 3.1 will release a perturbed version
of these two parts of the OLS estimator. As our focus in paper by Wang (2018), we will
be using the same symbol θ̂ for the OLS estimator instead for easier comparison with the
work by Wang.

2.1.3 Ridge regression

Ridge regression, which is also known as Tikhonov regularization Kirsch (2011), Yan
(2009), is a well known method for solving ill-posed inverse problems. Regularization
parameter λ is added to the multiple linear regression model and we want to minimize
the loss function

L(β) = ‖y −Xβ‖+ λ‖β‖2.

This is called L2-regularization since we favor the values of β which have a small l2-norm.
In ADASSP algorithm an adaptive choice for ridge regression parameter λ will be used

to stabilize the least squares estimator when the XTX matrix has small eigen-values and
the chance for a nearly singular inverse matrix is high for the perturbed version of the
matrix. The algorithm outputs the ridge estimator

β̂R = (XTX + λI)−1XTy,

though perturbed versions of the su�cient statistics will be used for the calculation.

2.2 Di�erential privacy

Many of the following theoretical concepts are very similar to the ones shown by Dwork
et al. (2014a). However, we are focusing on optimization problems which take place in a
real vector space and our primary tool will be Ordinary Least Squares (OLS). Therefore
the histogram notation used by Dwork et al. (2014a) is not very �tting and we will make
some modi�cations to the expositions when necessary.

Our goal is to build up the theory for su�cient statistics perturbation mechanism to
understand the limitations we have to set for the data. This allows us to get a better
understanding regarding the choices we have to make especially in pre-processing phase,
but also when running the ADASSP algorithm.
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2.2.1 l2-sensitivity

Sensitivity will help us to bound the amount of change one data point can have for the
published results. If this amount of change has no maximum value also the noise needed
will have arbitrarily large variance.

We will use l2-sensitivity as Dwork et al. (2014a) to estimate the maximum e�ect of
an d-dimensional data point to the value of the function f : A → B. We are using the
add/remove notation for the neighboring data sets D,D′ and therefore also our domain
of the function f is of di�erent size for matricies X and X ′. We de�ne the function f as
follows.

De�nition 2.4. Given an arbitrary data set D ∈ Rn×(d+1) which includes a matrix
X ∈ Rn×d, the domain A of function f will be a following union:

A ⊆
(
R(n−1)×d ∪ Rn×d ∪ R(n+1)×d),

while the co-domain of f will be in all cases

B ⊆ Rd.

Thus we let neighboring matrix to be X ′ ∈ R(n−1)×d or X ′ ∈ R(n+1)×d.

Later on we will use A to refer the real vector space which is the domain of the
function f , where a small change in the size of the domain is allowed. Next we will de�ne
the l2-sensitivity of the function f .

De�nition 2.5. Let function f : A → B be as above, then the sensitivity ∆f of the
function f is

∆f = max
X,X′∈A

dist(X,X′)=1

‖f(X)− f(X ′)‖2,

where X and X ′ are neighboring data sets di�ering only in one row.

These neighboring data sets are identical excluding one additional row of data. This
row serves to represent a collection of data of an arbitrary individual whose privacy
protection was the motivation of Dwork et al. (2014a) by using di�erential privacy. For
this formula the notation dist(X,X ′) is for sets to express the edit distance that is the
number of di�ering rows between the sets. In this thesis the edit distance will always be
one as we examine only situations where we want to perturb the e�ect of any arbitrary
observation, which means that one of the sets has one extra row of data and all the rest
are identical.

Setting up some limits for the domain and the range is a necessity or sensitivity ∆f
can have arbitrarily large values. First we set radius r ∈ R of an origin centered sphere
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B ⊂ Rd so that for all the data points x ∈ Rd it applies that ‖x‖ ≤ r. The dimension
parameter d is the number of regressor parameters we have in the data. Now we will
have an upper bound for the norm of all the possible row vectors in data set X and its
neighboring data set X ′. We will show later how to enforce this limit in practice, but now
we can de�ne an upper bound on how much a single row in a data set can change the
output values of the function f .

2.2.2 (ε, δ)-di�erential privacy

It is helpful to imagine (ε, 0)-di�erential privacy as described by Dwork et al. (2014a),
where the released statistics are almost similar no matter which neighboring data sets
D,D′ are used. In contrast with (ε, δ)-di�erential privacy, where there is a marginal prob-
ability that some data sets D,D′ produce same statistics with very di�erent probabilities.
This relaxation in de�nition gives us higher utility. The de�nition we use is similar to the
one introduced by Dwork et al. (2006a):

De�nition 2.6. An algorithm M which maps (n × (d + 1)) matricies to a range B is
(ε, δ)-di�erentially private if for all neighboring matricies D,D′ ∈ A it applies:

P(M(D) ∈ S) ≤ eεP(M(D′) ∈ S) + δ,

for all subsets of S ⊂ B.

2.2.3 Composition theorems for (ε, δ)-di�erential privacy

Composition theorems shown and proven by Dwork et al. (2014a) help us to combine the
building blocks of di�erential privacy to facilitate the design of algorithms which work in
more complex situations. The general composition theorem also by Dwork et al. (2014a)
for (ε, δ)-di�erentially private algorithms is most relevant for our situation as we need to
split our privacy budget for di�erent parameters in the ADASSP algorithm.

Theorem 2.7. General composition theorem by Dwork et al. (2014a):
Let an algorithmM : D →M1(D) be an ε, δ-di�erential private algorithm and for k ≥ 2,
Mk : (D, s1, . . . , sk−1) → Mk(D, s1, . . . , sk−1) ∈ Ck be (ε, δ)- di�erential private, for all
(sk−1, . . . , s1) ∈

⊗k−1
j=1 Cj. Then for all neighboring D,D′ and all S ⊆

⊗k
j=1 Cj

P((M1, . . . ,Mk) ∈ S) ≤ ekεP′((M1, . . . ,Mk) ∈ S)) + kδ.
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2.2.4 Gaussian mechanism

Gaussian mechanism is a method made well known by Dwork et al. (2014b), which uses
the l2-sensitivity to adjust the amount of noise added for each indices of the parameter
to be perturbed. As the name suggests, the noise is taken from a normal distribution
N (0, σ2) ,where the the variance parameter is a function of some other parameters of the
model. In the beginning of Chapter 4 we will discuss the later work by Balle and Wang
(2018), where The Analytic Gaussian Mechanism is introduced. This o�ers solutions to
the bounds we need to set for the privacy parameter ε when using the (classical) Gaussian
mechanism. Our focus in this paper is on the classical Gaussian mechanism and we follow
the footsteps of Dwork et al. (2014a) and open up the proof below with small adjustments
to make it hopefully easier for the reader to follow.

Let f : A → B ⊂ Rd be an arbitrary function with a bounded l2-sensitivity ∆f and
let the neighboring data sets D,D′ ∈ A. The Gaussian mechanism adds independently
drawn random noise distributed as N (0, σ2) to each of the d output components of f(D).

De�nition 2.8. Let ε ∈ (0, 1) be arbitrary. For c2 > 2 ln(1.25/δ), the Gaussian Mecha-
nism with parameter σ ≥ c∆f/ε is (ε, δ)-di�erentially private.

Proof. We will be �rst looking a situation where the function f has a co-domain B ⊂ R.
Given the neighboring data sets D,D′, we will consider the ratio between probabilities
of a randomizing algorithm giving the same result M(D) ∈ S with both data sets. We
de�ne M(D) = f(D) + err, where the error term is normally distributed. We want to
�nd when the absolute value of the ratio between their density functions is bounded with
eε. Since they both share the same density function with di�erence only in the value of
the mean parameter µ, we can express this as:∣∣∣∣ ln e(−1/2σ2)x2

e(−1/2σ2)(x+∆f )2

∣∣∣∣ ≤ ε,

where we add the sensitivity parameter ∆f to the mean value of x. Subtracting the
sensitivity value, as we do not know which way the mean is shifted by the sensitivity, is
also covered due the symmetry of the situation. Now we can modify∣∣∣∣ ln e(−1/2σ2)x2

e(−1/2σ2)(x+∆f )2

∣∣∣∣ =
∣∣ ln e(1/2σ2)

(
(x+∆f )2−x2

)∣∣ =

∣∣∣∣ 1

2σ2
(2x∆f + ∆2

f )

∣∣∣∣
=

∆f

σ2

∣∣∣x+
∆f

2

∣∣∣ ≤ ε,
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where on the last row we assume ∆f > 0. This gives us
x ≤ σ2ε

∆f

− ∆f

2
, when x ≥ −∆f

2

x ≥ −σ
2ε

∆f

− ∆f

2
, when x < −∆f

2
.

Now we can focus to the upper equation to get a good enough ε dependent bound for the
values of x. To ensure privacy loss is bounded by ε with a probability at least 1 − δ, we
require

P[|x| ≥ σ2ε/∆f −∆f/2] < δ,

where the absolute value of x concludes the negative values of the x. Due the symmetry
of the situation we can halve the δ parameter and limit our scope to

P[x ≥ σ2ε/∆f −∆f/2] < δ/2.

Gaussian tail bound gives us an upper bound for the probability of getting a value of
x > t as:

P[x > t] ≤ σ

t
√

2π
e−t

2/2σ2

.

With the help of the tail bound we can guarantee (ε, δ)-di�erential privacy as long as

σ

t
√

2π
e−t

2/2σ2

<
δ

2

⇔ σ

t
e−t

2/2σ2

<

√
2πδ

2

⇔ t

σ
et

2/2σ2

>
2√
2πδ

⇔ ln
( t
σ

)
+ t2/2σ2 > ln

( 2√
2πδ

)
.

Now by replacing the t with the bound found earlier t = σ2ε/∆f −∆f/2, we get

ln
(σ2ε/∆f −∆f/2

σ

)
+

(σ2ε/∆f −∆f/2)2

2σ2
> ln

( 2√
2πδ

)
⇔ ln

(σ2ε/∆f −∆f/2

σ

)
+

(σ2ε/∆f −∆f/2)2

2σ2
> ln

( √2

δ
√
π

)
.(2.9)
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Next we need to express the standard deviation parameter σ with the help of the sensitivity
∆f and privacy budget ε. We introduce a new scalar c to scale up the noise we need to add
and express standard deviation as σ = c∆f/ε. It is clear from the previous equation that
the noise required is directly proportional to the sensitivity of the function and inversely
proportional to the privacy budget ε. Now we want to �nd a bound for c which realizes
the inequality in Equation 2.9 and we start by making sure that the �rst term will be
non-negative by expressing

ln
(σ2ε/∆f −∆f/2

σ

)
> 0

⇔ 1

σ

(σ2ε

∆f

− ∆f

2

)
> 1

⇔ ε

c∆f

((c∆f/ε)
2ε

∆f

− ∆f

2

)
> 1

⇔
(
c− ε

2c

)
> 1

⇔ c >
ε

2c
+ 1

⇒ c >
1

2
+ 1 =

3

2
,(2.10)

where the last row can be estimated when we know the bounds ε ∈ (0, 1) and c ≥ 1. The
upper bound we set for ε is something we will consider in Chapter 3. Now it su�ces to
show that the second part of Equation 2.9 holds the inequality with some value of c > 3/2.
Again we substitute parameter σ in inequality

(σ2ε/∆f −∆f/2)2

2σ2
> ln

( √2

δ
√
π

)
and we get

(σ2ε/∆f −∆f/2)2

2σ2
=

1

2σ2

(σ2ε

∆f

− ∆f

2

)2

=
ε2

2c2∆2
f

(c2∆2
fε

ε2∆f

− ∆f

2

)2

=
ε2

2c2∆2
f

(c4∆2
f

ε2
− 2

c2∆2
f

2ε
+

∆2
f

4

)
=

1

2

(
c2 − ε+

ε2

4c2

)
=

1

2

(
c2 − ε+

ε2

4c2

)
> ln

( √2

δ
√
π

)
.
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We notice that when ε ∈ (0, 1) the left side of the inequality has a positive derivative with
respect to c always when c > 3/2 and we get

1

2

(
c2 − ε+

ε2

4c2

)
>

1

2

(
c2 − 1 +

1

4(3/2)2

)
> ln

( √2

δ
√
π

)
.

Now we can get a lower bound for c which ensures the value of σ = c∆f/ε will be large
enough to hold the (ε, δ)-di�erential privacy. That is when

1

2
(c2 − 8/9) > ln

( √2

δ
√
π

)
⇔ (c2 − 8/9) > 2 ln

( √2

δ
√
π

)
⇔ c2 > ln(2/π) + ln e8/9 + 2 ln(1/δ).

We can present this with one real value scalar when we notice that (2/π)e8/9 < 1.55 <
1.252 and then it follows that

c2 > 2 ln(1.25/δ) > ln(1.55) + 2 ln(1/δ) > ln(2/π) + ln e8/9 + 2 ln(1/δ).

Now we have all the pieces we need to show that choosing a c2 > 2 log(1.25/δ) for the
standard deviation parameter σ = c∆f/ε, we can guarantee (ε, δ)-di�erential privacy.
We divide the R = R1 ∪ R2, where R1 = {f(D) + z : |z| < σ2ε/∆f − ∆f/2} and
R2 = {f(D) + z : |z| ≥ σ2ε/∆f − ∆f/2}. Now for an arbitrary S we can estimate the
probability

P
x∼N (0,σ2)

[f(D) + x ∈ S ] = P
x∼N (0,σ2)

[f(D) + x ∈ (S ∩R1)] + P
x∼N (0,σ2)

[f(D) + x ∈ (S ∩R2)]

≤ eε P
x∼N (0,σ2)

[f(D′) + x ∈ (S ∩R1)] + δ,

The high dimensional case follows conveniently due the spherically symmetric condi-
tion and is shown by Dwork et al. (2014a). Gaussian Mechanism can be also used for
covariance matricies in the form of Algorithm 1 as shown also by Dwork et al. (2014b).
We set the l2-sensitivity ∆f = 1 and now σ =

√
2 ln(1.25/δ)/ε.
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Algorithm 1 The Gaussian Mechanism: releasing the covariance matrix

Input: Matrix X ∈ Rn×d, and privacy parameters ε, δ > 0.
Let E ∈ Rd×d be a symmetric matrix where the upper triangle (including the diagonal)
is i.i.d. samples from N (0, σ2), and each lower triangle entry is copied from its upper
triangle counterpart.

Output: X̂TX ← XTX + E
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Chapter 3

Methods

In this chapter we will go through the methods Wang (2018) uses for the 36 di�erent UCI
data sets. His main results are two di�erent adaptive algorithms ADASSP and ADAOPS
which he compares to other popular di�erentially private algorithms. We will analyze
the ADASSP algorithm and consider the pre-processing methods Wang (2018) uses for
normalizing the data. We will not use all the 36 di�erent data sets for testing and limit
our scope to four of these data sets to keep the amount of work feasible. We chose these
four data sets so that their size and shape give a good representation of the di�erent data
used to test ADASSP algorithm earlier. We use the same notation for the data as Wang
(2018), where all the data sets are read in as a design matrix X ∈ Rn×d with a response
vector y ∈ Rn, where n is the number of data points and d is the number of explanatory
variables.

We o�er di�erent strategies for normalizing the data and for achieving bounded sen-
sitivity for the regressor and response variables. To improve predictions we suggest some
methods which have been often used in the pre-processing phase and in Chapter 4 we will
visualize the e�ects when applied to these four UCI data sets.

3.1 Su�cient statisticis perturbation SSP

The key idea of the su�cient statistics perturbation shown by Vu and Slavkovic (2009),
Wang (2018) is to add noise to the released statistic parameters which are required for
analyzing the data. In our case the parameters in question are XTX and XTy, which are
required to get the OLS estimator.

For the �rst parameter the noise added is in the shape of a symmetric matrix E1, where
the values of the upper triangular matrix have been taken from normal distribution N ∼
(0, σ2). Wang (2018) seems to suggest that value of σ2 = 4‖X‖4 log(4/δ)/ε2 guarantees
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(ε, δ)-di�erential privacy. In his notation the ‖X‖ is a smallest value for the radius of a
ball which contains the set X , which gives us the sensitivity ∆ = ‖X‖2 for XTX matrix.
It is not quite clear where the value σ2 comes from, but when we take a look at the actual
code1 which Wang presents for running the results, it seems like he has already divided
the privacy budget for the two parameters XTX and XTy. Unfortunately this implicates
that the value of σ2 Wang uses is smaller than the one shown in Algorithm 1 and it may
be insu�cient to ensure di�erential privacy. We will use the more conservative value for
σ2 parameter as in the article by Dwork et al. (2014a). There seems to be also a small
�aw in the code regarding symmetry of the error matrix E1, and Wang (2018) ends up
using a non symmetric error matrix for the XTX parameter in his results. In Chapter 4
we will check if this has any e�ect on the results and con�rm the instability issues of the
SSP algorithm.

3.2 Adaptive choice of λ and ADASSP algorithm

One of the main contribution of Wang (2018) was to introduce the adaptive Algorithm 2
for su�cient statistics perturbation. In this section we will brie�y explain the idea behind
the heuristics Wang (2018) has come up with and o�er a small �x for the noise levels
to match the (classical) Gaussian Mechanism bounds that guarantee (ε, δ)-di�erential
privacy.

Algorithm 2 ADASSP : Su�cient statistics perturbation with adaptive damping

Input: Data X,y. Privacy budget: ε, δ, Bounds: ‖X‖, ‖Y‖.
1: Calculate the minimum eigenvalue λmin(XTX).

2: Privately release λ̃min = max
{
λmin +

√
log(6/δ)

ε/3
‖X‖2Z − log(6/δ)

ε/3
‖X‖2, 0

}
, where Z ∼ N (0, 1).

3: Set λ = max{0,
√
d log(6/δ) log(2d2/ρ)‖X‖2

ε/3
− λ̃min}

4: Privately release X̂TX = XTX +

√
log(6/δ)‖X‖2

ε/3
Z for Z ∈ Rd×d is a symmetric matrix

and every element from upper triangular matrix is sampled from N (0, 1).

5: Privately release X̂y = Xy +

√
log(6/δ)‖X‖‖Y‖

ε/3
Z for Z ∼ N (0, Id).

Output: θ̃ = (X̂TX + λI)−1X̂y

1(https://github.com/yuxiangw/optimal_dp_linear_regression)
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3.2.1 Adaptive choice of λ

As pointed out also by Wang (2018), the SSP model is quite unstable and may fail arbi-
trarily bad. The solution he comes up with in algorithm ADASSP is introducing adaptive
choice for the ridge regression regularization parameter λ, which is chosen according to
the other parameters of data.

The purpose of using ridge regression and the λ parameter is to prevent the noise

matrix E1 from turning the perturbed matrix X̂TX = XTX +E1 in to a nearly singular
matrix. Wang (2018) approaches the issue in by choosing the value for λ in a way that
‖E1‖ ≤ (λmin(XTX) + λ)/2 is a high probability event. At the same time λ needs to
hold the upper bound Wang found for F (θ̂λ) − F (θ∗), where F (θ∗) and F (θ̂λ) are the
RSS estimates with the optimal choices of θ for least squares solution and ridge regression
objective. Wang comes up with an upper bound

F (θ̂λ)− F (θ∗) = O

(
d‖X‖2(‖Y‖2 + ‖X‖2‖θ∗‖2) log(6/δ) log(2d2/ρ)

(λ+ λmin)ε2

)
,

which behaves nicely even with λmin = 0 when λ has values bound by

λ = Θ

(√
d log(6/δ) log(2d2/ρ)

(‖X‖‖Y‖
‖θ∗‖

+ ‖X‖2
)
/ε

)
.(3.1)

Therefore Wang (2018) uses simple heuristic to bind the value to the bounds above by
suggesting

λ = max

{
0,

√
d log(6/δ) log(2d2/ρ)‖X‖2

ε/3
− λ∗min,

}
(3.2)

where λ∗min is a di�erentially private high probability lower bound of the λmin and is given
as

λ∗min = max

{
λmin +

√
log(6/δ)

ε/3
‖X‖2Z − log(6/δ)

ε/3
‖X‖2, 0

}
.

Therefore the Algorithm 2 o�ers large enough value for the parameter λ even when the
smallest eigenvalue λmin(XTX) is too small to guarantee robust regression estimate. Yet
it seems capable to hold the upper bound for the di�erence between RSS estimates for
the least squares solution θ∗ and the ridge regression objective θ̂λ.

3.2.2 Fixing the noise levels

In the ADASSP algorithm the privacy budget has been divided to three parameters
λmin, X

TX and XTy. Unfortunately Wang (2018) uses the Gaussian mechanism again
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with the same scalar value as mentioned in Section 3.1, which we have not been able to
verify su�cient. Therefore we modify the algorithm to see how much the results change
when the added noise has larger variance as in Algorithm 1 by Dwork et al. (2014b),
where σ =

√
2 ln(1.25/δ)/ε. We write the scalar 2 log

(
1.25/(δ/3)

)
as 2 log

(
3.75/δ

)
and

present the new version of the Algorithm 3.

Algorithm 3 Updated ADASSP : Fixed noise levels

Input: Data X,y. Privacy budget: ε, δ, Bounds: ‖X‖, ‖Y‖.
1: Calculate the minimum eigenvalue λmin(XTX).

2: Privately release λ̃min = max
{
λmin +

√
2 log(3.75/δ)

ε/3
‖X‖2Z − 2 log(3.75/δ)

ε/3
‖X‖2, 0

}
, where Z ∼ N (0, 1).

3: Set λ = max{0,
√
d2 log(3.75/δ) log(2d2/ρ)‖X‖2

ε/3
− λ̃min}

4: Privately release X̂TX = XTX +

√
2 log(3.75/δ)‖X‖2

ε/3
Z for Z ∈ Rd×d is a symmetric

matrix and every element from upper triangular matrix is sampled from N (0, 1).

5: Privately release X̂y = Xy +

√
2 log(3.75/δ)‖X‖‖Y‖

ε/3
Z for Z ∼ N (0, Id).

Output: θ̃ = (X̂TX + λI)−1X̂y

3.3 Practicalities of di�erentially private OLS

Pre-processing steps get often little attention as they are seen such standard procedures,
but we wish to shed some light on them and the options we have available. When working
with data sets it is common to standardize the data column wise to zero mean and unit
variance before solving the optimal value for the OLS estimator θ̂. With non-private
models we would have the same mean values and standard deviations (sd) of the column
vectors to use for training and test sets. Di�erential privacy complicates the situation
slightly as we usually need to share our privacy budget to all published parameters and
take in to account the constraint caused by sensitivity during normalization process to
achieve tight bound for the minimum and maximum values of the data.

The curator of the data set whom is about to share the necessary values for the θ̂
estimate is left with three options on how to proceed with the other statistics required
for normalizing the data. (1) Curator hopes that the data analyst using the released
values has large enough data set available to be able to calculate reasonable estimates for
the column mean and sd values without access to the training data. (2) The additional
statistics are released without perturbation if this is considered an acceptable risk. (3) Or
the perturbed version of the additional statistics are released and some privacy budget is
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spent on them. We will continue with the second strategy as we �nd it most �tting with
the decisions made by Wang (2018) and with the row speci�c norm mapping we discuss
next.

Wang (2018) does also normalize the data matrix X ∈ Rn×d column wise to zero
mean and unit variance, but he uses row norms for mapping the values to a unit sphere
as shown in Section 3.3.1. The values of the response vector y are divided with the ymax.
The mapping to unit sphere or some bounded subspace of Rd is a vital part of the pre-
processing which ensures that the sensitivity can be limited to a small enough constant.
The row norms of matrix X that Wang (2018) uses for mapping makes the model rather
peculiar and even more so when he does not divide the values of the response vector y with
the corresponding row norms of the matrix X. Row operations which take parameters
from the row values are likely to add correlated noise. We will brie�y look in to extending
the row operations of the data matrix X to the corresponding values of the response
vector y in Section 3.3.1 and examine the bene�ts and losses.

As an alternative approach from Wang, we use a maximum norm of the data points to
create a more robust mapping to a unit sphere. Our main focus will be with this model
and it is explained in more detail in Section 3.3.2. We also show the possibility of releasing
unstandardized regression coe�cients in the last section of this chapter.

3.3.1 Mapping data to unit sphere using row speci�c norms

As we mentioned above, Wang (2018) uses a row speci�c norm, where all the row vectors
xi for i ∈ [1, . . . , n] of matrix X ∈ Rn×d are divided with the row speci�c norm ‖xi‖.
This is a di�erent operation from a standard normalization phase done before, where all
the values of X have �rst their column means x̄j for j ∈ [1, . . . , d] subtracted and then
divided with column wise standard deviation values sdj. We use a vector notation for these
mean and standard deviation vectors in the following equations with symbolsmX for the
vector of means and sdX for the vector of standard deviations. The sensitivity bound
needs to apply to the response vector y also and the vector is divided with maximum
value ymax = maxi∈[1,...,n]‖yi‖ of the training set.

Let us consider a test set X∗ ∈ Rm×d for which we are trying to make the predictions
y∗ ∈ Rm by using our model. From the training data we take given the perturbed
θ̂ estimate, maximum value of the response variables ymax, a vector of column means
mX ∈ Rd and a vector of column standard deviations sdX ∈ Rd. Again we will express
the values of the test set X∗ with the help of row vectors x∗

i for i ∈ [1, . . . ,m] and it
applies that
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ŷ∗i /ymax =

(
(x∗

i −mX)� (sdX)◦−1

‖(x∗
i −mX)� (sdX)◦−1‖

)
θ̂,(3.3)

for all observations i ∈ [1, . . . ,m] in test set.
An intriguing question arises with this approach. What happens if we extend the

division with the row norm also for the response variable y∗i . In order to keep the sensitivity
bounded we need to de�ne a new maximum value from the training data

ymax2 = max
i∈[1,...,m]

yi/ymax

‖(xi −mX)� (sdX)◦−1‖
.

Now we get another model for estimating the response variables, where

ŷ∗i /ymax

‖(x∗
i −mX)� (sdx)

◦−1‖
/ymax2 =

(
(x∗

i −mX)� (sdx)
◦−1

‖(x∗
i −mX)� (sdx)

◦−1‖

)
θ̂(3.4)

for all i ∈ [1, . . . ,m]. We will brie�y look in to advantages of Equation 3.4 in Chapter
4. Even though the results seem promising with the row speci�c norms, we realize that
the model is quite di�erent form the standard OLS. Dividing the rows of matrix X with
di�erent row based scalars makes little sense in lower dimensions and even less so if it does
not a�ect the response variable. In any case, working with row speci�c norms could be
an interesting approach, but we feel that this model is o� the topic for us. Wang (2018)
did not use intercept columns either for the data sets which is also clear from the model
laid out above. Now we want to keep our focus in the adaptive version of di�erentially
private OLS and we opt to another option to keep our sensitivity bounded and our data
in the unit sphere.

3.3.2 Mapping data to unit sphere with maximum row norm

Let us use the same test setting as in previous section with matrix X∗ ∈ Rm×d. Sensitivity
needs to be bounded without disturbing the principles of our model. We achieve this by
mapping the data points of our matrix X∗

m×d
to unit sphere by dividing all the values

with additional parameter we need from the training set. The maximum row norm of the
training data xmax = maxi∈1,...n‖xi‖. This simpli�es the Equation 3.3 and we have now

ŷ∗i /ymax =

(
(x∗

i −mX)� (sdx)
◦−1

xmax

)
θ̂,(3.5)

for all observations i ∈ [1, . . . ,m] in test set. The weakness of this approach is that one
outlier may force the mapping of all the other data points in to a very small space. Even
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though we �nd this unfortunate, we consider it a reasonable price to pay for having a more
robust model. It may feel odd that many of the statistics are taken from the training set
without perturbing them �rst. This could be easily done by splitting the privacy budget
for these parameters also by using the composition Theorem 2.7. We want to keep the
comparison easy with the results by Wang (2018) and we will leave these as they are in
the experiments.

3.3.3 Unstandardized regression coe�cients

In the previous section one may have wondered why the normalizing parameters are not
included in to the perturbed versions of the su�cient statistics. Normalization steps,
subtracting mean and division with standard deviation, are an a�ne transformation and
therefore can be included in the θ̂ estimate. This is de�nitely an option worth exploring,
but we are not able to create a model where this decision could or at least should be
included by default. There is no need for the row operations on the matrix X now as we
use maximum norm mapping so we can use more simple notation below. We also include
the intercept parameter θ0 which was not part of the model used by Wang (2018). Now
for any row vector xi of X ∈ Rn×d we have

ŷi/ymax = θ0 +
d∑
j=1

(
θj(xi,j − x̄j)
xmax × sdj

)
,(3.6)

for all i ∈ [1, . . . , n] when xmax is the maximum row norm, ymax maximum value of vector
y and x̄j is the column mean of j:th column of matrix X.

If we want to release unstandardized regression coe�cients, we can edit the Equation
3.6 in to

ŷi =ymax

(
θ0 −

d∑
j=1

( θjx̄j
xmax × sdj

)
+

d∑
j=1

( θjxi,j
xmax × sdj

))
=ymaxθ0 −

d∑
j=1

( ymaxθjx̄j
xmax × sdj

)
+

d∑
j=1

( ymaxθjxi,j
xmax × sdj

)
.

Now unstandardized values for the θ parameters are

θ′j =
ymax

xmaxsdj
θj

θ′0 = ymaxθ0 −
d∑
j=1

θ′jx̄j
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and the model becomes

ŷi = θ′0 +
d∑
j=1

θ′jxi,j,(3.7)

for all j ∈ [1, . . . n]. In some cases this will be a good design for releasing the perturbed
su�cient statistics with normalizing parameters included in them. However, if those addi-
tional statistics need to be also perturbed before releasing, additional work will be needed
when estimating the privacy conditions. In the Equation 3.7 we are about to release the
values ymax, xmax, x̄j and sdj as part of the perturbed θ

′
j value without parameter speci�c

noise tailored for those additional parameters. This requires very subtle consideration on
the quality of these additional parameters and is a very data speci�c decision to make.

As an example we can use the data sets we have been working on in this paper.
The sensitivity bounds are very di�erent for the XTX and XTy parameters than for
the true means and standard deviation values of the data sets. The motivation for the
mapping phase was to bring the sensitivity to lower bounds. We require a data set
speci�c analysis to estimate if it makes sense to combine these parameters which have
very di�erent sensitivities. In some cases the mean values may be unnecessary for the
data analyst, and we end up increasing the noise in the su�cient statistics for nothing.

3.4 Robust private linear regression

Up until now we have only considered di�erent ways of projecting data to subset of Rd

in a way where the data outliers have set the density for pre-processed data. This is
particularly problematic with di�erential privacy, where we try to keep the sensitivity ∆f

quite small. It can result that almost all data points will be projected to extreme vicinity of
zero. In this section we explain the idea behind the model robust private linear regression
by Honkela et al. (2018), which o�ers a solution for the problem described above. In
brief robust private linear regression uses clipping on the raw data prior normalizing and
mapping phase to bring the outliers to tighter bounds ideally set in co-operation with
the experts of research �eld. By clipping the data in to smaller subset of Rd also the
required noise for data perturbation will be smaller. We have very little prior knowledge
of these four UCI data sets we have been working on and therefore variable selection and
discarding independent variables is not a realistic option for us. We have neither acquired
such understanding of any data set that we would feel comfortable in suggesting exact
tighter bounds. As we still wish to try combining the robust private linear regression

model with ADASSP algorithm, we will instead use a simple heuristic for clipping in
Section 4.2.2.
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Put in to a form of an equation, we need to add another step to pre-processing before
we normalize the data. We will use notation gc(X) to describe a function which will be
clipping the input matrix X column wise to percentiles with c σ sigma units. Now for a
training set matrix X ∈ Rn×d with a vector of column means mX ∈ Rd and column of
standard deviations sdX ∈ Rd we have a function

gc(X) = gc(Xi,j) =

{
min(Xi,j, mX j + c× sdX j)

∣∣∣∣i ∈ [1, . . . , n], j ∈ [1, . . . , d]

}
.(3.8)

Honkela et al. (2018) uses the clipping for both minimum and maximum values, but as
can be seen in Equation 3.8, we enforce clipping only on the higher end of the data. That
is a technical decision we made after noticing that only one of our data sets (elevators)
has negative regressor values, but the rest have plenty of values in the near vicinity of
zero.

The absolute strength in robust private linear regression when evaluated with respect
to other pre-processing methods we have seen so far is the simplicity. In the model with
our data curator and the data analyst, the curator can use clipping on the data without a
need to share any additional information about the process the data analyst. Predictions
will often improve for the data analyst as the su�cient statistics parameters are more
robust when less noise is needed for perturbation.

Just as a curiosity we try in Figure 4.8 the e�ect of sharing the clipping parameters
also for the data analyst. This is not nearly as lean model with high utility as the one
introduced by Honkela et al. (2018), but trying this now is a small cost as we have already
been working with models with challenging information sharing between the curator and
the data analyst. We can implement this addition with function gc to Equation 3.5 so for
the testing set matrix X∗ ∈ Rm×d and response vector y∗ ∈ Rm we have

ŷ∗i /ymax =

(
(gc(x

∗
i )−mX)� (stdx)

◦−1

xmax

)
θ̂,(3.9)

for all observations i [1, . . .m]. We will calculate new values for the column meansmX ∈
Rd, column standard deviations sdX ∈ Rd and xmax values after the clipping phase.

3.5 Evaluating results

Wang (2018) estimates the success of the algorithms under the Gaussian model

y = Xθ +N (0, σ2In),

by comparing the results of the di�erentially private estimates of ŷ to the non-private
solution y∗. The error terms calculated in the graphs are given by equation

err = (y − ŷ)2/n,
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where y = [y1, y2, . . . , yn] are the true values of the response variables in the given data
set. One might argue that using a coe�cient of determination R2 with a total sum of
squares in the denominator could be a more �tting choice for comparing results, but for
the sake of easier comparison with the results by Wang (2018) we will use the same error
function.
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Chapter 4

Results and discussion

Next we will use the algorithms with di�erent pre-processing stesps on four of the same
UCI data sets as in the paper by Wang (2018). The chosen data sets represent very
di�erent types of data both in the number of observations and in the number of regressor
variables. We want to underline the di�culties of implementing di�erential privacy in
small and moderately sized data sets and choose two out of four from the lower end of
the scale with observations, other one of them with only �ve regressor variables.

To verify the results by Wang (2018), we �rst translate the Matlab code shared in
Github to Python. As our purpose is to make it easier for people to use and understand
privatizing methods, we had to make some changes to the scale of some parameters to
create a more robust guideline. Especially important point is raised in Zhao et al. (2019)
"Reviewing and improving the Gaussian Mechanism", which focuses on magnitude of the
privacy budget parameter ε. It is also clear from the proof of De�nition 2.8 that ε should
not be given values larger than one when using Algorithm 1 by Dwork et al. (2014b).
According to article Zhao et al. (2019), in many scienti�c articles the algorithms have
been tested with larger values of ε, which in fact do not always guarantee ε, δ-di�erential
privacy. This is also the case for the article of our interest by Wang (2018), with the
values of epsilon used being as large as 10. Later work by Balle and Wang (2018) uses a
numerical method for calculating optimal values for the variance parameter in Gaussian
mechanism. Balle and Wang (2018) have named it Analytical Gaussian mechanism and
it solves issues with both high privacy regime, where ε → 0 and also low privacy regime
when ε > 1. Instead of estimating the probabilities with the help of Gaussian tail bounds,
they calculate the cumulative distribution function values for the normal distribution
numerically. However, the work by Wang (2018) follows classical Gaussian Mechanism
and we make small adjustments to the parameters so it will stay within the bounds set
by Algorithm 1.

As we are not able to use quite as high values for the privacy budget ε as 10, we can
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use higher values than one. When we split the privacy budget in ADASSP algorithm for
the three parameters XTX,XTy and λmin with the composition Theorem 2.7, we use the
Gaussian mechanism with privacy budget values ε/3 and δ/3. This enables us to use an
ε three times larger than the limit set by the Gaussian mechanism and for most of the
�gures we will be testing values of ε as high as three. The only exceptions we have with
the �rst �gures where we demonstrate the instability issues of the SSP algorithm, which
splits the privacy budget for only two parameters XTX,XTy, setting us an upper limit
ε = 2.

As our goal has been making an easily approachable example of using di�erential
privacy in the context of linear regression, we will next see the bene�ts of applying some
standard pre-processing methods for the data. It is also interesting to see if these methods
have strong di�erences in the error term between the two algorithms SSP and ADASSP.
As we wish to use adjusted version of the ADASSP Algorithm 3, we will �rst show that
this gives similar results with the original Algorithm 2. Even thought the results are not
as good with Algorithm 3, we can be more con�dent now that the privacy bounds are
met.

Another change we wish to make is tracking the pre-processing normalization steps and
the sensitivity bound mapping in order to give a more realistic estimates for the unseen
data. This will also weaken the results slightly compared to Wang's approach when we
use training set statistics to normalize test sets, instead of normalizing everything with
same parameters in the beginning. However, this should emphasize all the practicalities
one needs to remember when working with real data using di�erential privacy. It is also
more authentic way to test the estimation errors when the test set has not been given
pre-processed.

4.1 Algorithm alterations and unit sphere mapping

4.1.1 Instability of the SSP algorithm

First as a motivation we run the SSP algorithm on the four UCI regression data sets with
the same pre-processing with Wang (2018) in Figure 4.1. We also add a �xed version of the
algorithm where the noise added to XTX matrix is symmetric and the variance parameter
for the noise is changed to follow Algorithm 1. It is clear that the SSP algorithm can be

very unstable as a result of near singular inverse matrix X̂TX. Fixing the noise symmetric
for this matrix does little to change the matter and the error function seems to often get
arbitrarily large values. We have included in the Figure 4.1 a non-private version of the
ridge regression with λ = 1 and also the trivial solution θ =

−→
0 ∈ Rd in the same fashion

as Wang (2018) had in his results.
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Figure 4.1: Instability of the SSP algorithm visualized. It is clear that the SSP algorithm
by Wang (2018) (dashed blue line) and the one with symmetric noise matrix (dashed
orange line) have trouble to match the error levels of the trivial solution (red line).

4.1.2 Fixing the noise levels for ADASSP algorithm

In the following results we want to use the �xed version of the ADASSP Algorithm 3
where we made slight alterations to the variance parameter of the Gaussian mechanism
of Algorithm 2 introduced by Wang (2018). As we were not able to show that Wang's
scalars for the variance parameter σ2 were su�cient, we opt using the Algorithm 3 instead
to achieve the ε, δ- di�erential privacy. In the Figure 4.2 we show that both versions of
the ADASSP algorithm give very similar results even though the usage of higher noise
levels slightly increases the error level of the �xed Algorithm 3 as expected.

The over all behavior of both ADASSP algorithms are very similar and we feel con�-
dent using mostly the Algorithm 3 of ADASSP in the following �gures where we compare
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di�erent pre-processing methods. The same applies for the �xed SSP algorithm with sym-
metric noise matrix, when we feel that showing the results in comparison with ADASSP
is bene�cial. As we will next also change the pre-processing steps, direct comparison with
results by Wang (2018) becomes more di�cult. By now it should be clear that we get
converging results with Wang's using �xed version of the SSP and ADASSP algorithms
if we use the same pre-processing methods. Also ADASSP algorithm still shows remark-
able improvements compared to SSP algorithm, even when slightly larger noise levels for
perturbation are used for perturbation than in the paper by Wang (2018).

Figure 4.2: AdaSSP with di�erent noise levels for perturbation.
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4.1.3 Results for di�erent mapping strategies

In Section 3.3 we discussed the necessity to map the data points in to limited subspace
of Rd. When we bound the maximum norm between data points in the data, we are also
able achieve bounded sensitivity for the function f , which gives us the statistics of our
interests.

In Figure 4.3 we present the di�erences between using row speci�c norms and the
maximum norm for mapping data to unit sphere. We show the results for three di�erent
graphs for both mapping strategies. These are the trivial solution ( θ =

−→
0 ), non-

private solution (ridge regression with λ = 1) and the �xed ADASSP algorithm. The �rst
observation is that even the best mapping strategy for non-private solution depends on the
data set and it can not be concluded that one is always superior to another. For ADASSP
we use dashed blue line for the Equation 3.3 with row norm mapping and dashed red line
for the Equation 3.5 with maximum norm mapping. The row norm mapping seems to give
us improving results as the dimensionality of the regressor vectors grows. Considering that
the operation would be extremely odd for one dimensional data, where all the regressor
values would be forced to have value one, it is something we might expect to happen.
Also row speci�c norms tend to converge towards the same value for standardized data
as the number of dimensions grows for the regressor vectors. This suppresses the possible
disturbance row speci�c norm mapping can cause by a single dimension with several
outliers or extreme values.

The results of Figure 4.3 show that with these data sets we achieve low sensitivity
bounds with better results in prediction with row norm mapping strategy, but as we are
not quite certain of the robustness of the model, we choose to focus on the maximum norm
method. The maximum norm mapping is extremely sensitive to outliers in data even if
the values are problematic only in one dimension. We will show in the following �gures the
e�ects of di�erent pre-processing methods when combined with maximum norm mapping
strategy.

Before we continue to these maximum norm mapping results, we have Equation 3.4
to test using row speci�c norms. We compare the results between row norm mapping
as in Equation 3.3 to one with the mapping operation extended to e�ect also the values
of response variable y as in Equation 3.4. We di�erentiate these two in Figure 4.4 by
using post�x "_y_included" for graphs with the data pre-processed along Equation 3.4.
We use the same set of functions as in the previous example. The extension of the row
operation has clearly an e�ect, but the results are quite mixed. Again it is not even clear
if the extended row operation is always bene�cial for the non-private solution, since the
lower error level depends on data set. This will conclude our analysis with row speci�c
norms and rest of the paper we focus on data with maximum norm mapping used in
the pre-processing step. Continuing with the usage of row speci�c norms could be an
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interesting research topic, but that would require a di�erent theoretical approach.

Figure 4.3: Two di�erent methods used for mapping data to unit sphere. We use post�x
"_max" when data was mapped with maximum norm value and "_row" when mapping
was done with row speci�c norms.

4.2 Tracking the pre-processing steps

As we have now come to a conclusion with the versions of algorithms to use and the
mapping strategy to implement for bounded sensitivity, we are ready focus on the more
practical decisions. We also wish to be able to track down how the changes we make in
the pre-processing steps e�ect the results when user of the released statistics, to whom we

31



Figure 4.4: Shows di�erences between two di�erent mapping strategies using row based
norms. Post�x "_y_included" is used for graphs with data mapped using row norms also
for the response variable y as in Equation 3.4. The convergence of the ADASSP algorithm
towards the non-private solution is clearly visible with both mapping methods.

refer as data analyst, does not have access to the same pre-processed data as the curator,
a person whom the original data is trusted and who is in control of the perturbation as
in Dwork et al. (2014a). Therefore we change the timing of normalizing and mapping the
data to after cross validation step, as we are then able to mimic a situation where the
data analyst has di�erent data set to use than the trusted curator.

Wang (2018) normalized all the data including training and test sets together, which
mimics a situation where the curator of the data has access to same super pool of data
as the data analyst, but these are divided by some third party after some pre-processing
protocol. In short, this is a very unlikely scenario, but we can alter the setting a little
to make it more reasonable. In Figure 4.5 we compare the setting by Wang (2018)
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with a situation where the curator of the data shares from the training data also the
column means, column standard deviations, maximum norm of matrix X and maximum
norm value from vector y. Technically these statistics could be included in the regression
coe�cient in the case where the statistics can be shared without perturbation as described
in Section 3.3.3. If those additional statistics are given to the data analyst by the curator,
the results are almost identical. This might not be the case if the curator had chosen not
to share these additional statistics from the training data or if he or she had chosen to
share the privacy budget over these, which the curator had spent on XTX,XTy and λmin.
Especially when the additional statistics have not been shared, the data analyst with too
small sample of data could end up having very noisy versions of these necessary statistics
and the predictions could su�er greatly.

4.2.1 Adding the intercept column

As we read through the code of the project Wang (2018) has submitted to github1, it
became clear that intercept column was not used for any of the data sets we have analyzed.
Adding the intercept column is such a standard procedure of data pre-processing that is
most likely missing just by accident. The normalization of data combined with a mapping
to unit sphere inhibits the e�ect of a missing intercept column, but still the e�ect should
be clear for low dimensional data when we look back to theory in Section 2.1.1.

Again we will pre-process the data after cross-validation step and share the training
data parameters for the test set. We use the maximum norm mapping from Equation
3.5 to enforce sensitivity bounds. In Figure 4.6 we compare the prediction error between
data with and without an intercept column for all four data sets. It is clear from the
graphs that as the number of independent variables grows, the e�ect of intercept column
diminishes for the ADASSP algorithm as expected.

4.2.2 Clipping the data before projection

Robust private linear regression Honkela et al. (2018) projects the data in to smaller
subspace of Rd by clipping the data in to tighter bounds. In Figure 4.7 we use clipping
with four di�erent scalars for the σ parameter. We compare the results against data sets
without any clipping used prior normalization. Again we also include the trivial solution
as a reference. We use clipping as in Equation 3.8, where only upper bound for the data
is enforced before pre-processing. For half of the data sets bene�ts are clear as the epsilon
gets larger values. Optimum value for the scalar used in clipping seems to be between 1.3
and 1.6.

1(https://github.com/yuxiangw/optimal_dp_linear_regression)
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We also try clipping for the test set in Figure 4.8 with the training set clipping pa-
rameters. This model has much worse utility and the results were similar for smaller test
sets. For Buzz (twitter data set) something quite dramatic happened and the reasons
for very di�erent results between the two methods are yet to discover. We are not able
exclude the possibility for a simple error in the code as Figure 4.7 shows growing error
levels with larger values of ε. In any case no clear over all improvement was shown by
using this more complex model and we suggest using the robust private linear regression

as shown by Honkela et al. (2018).
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Figure 4.5: The e�ect of normalization and mapping done to all data before cross-
validation split (post�x "_before") compared with normalization and mapping done with
the help of training data statistics after cross-validation split (post�x "_after_cv")
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Figure 4.6: Comparison between data with and without intercept column when normal-
ization has been done for the test set with the training set statistics after cross-validation
split. Post�x "_intercept" is used when intercept is included.
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Figure 4.7: Comparison between data with and without clipping before pre-processing.
Post�x "_clip_x" is used for the model where clipping was applied to the training data
before normalization
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Figure 4.8: Comparison between data with and without clipping before pre-processing,
but also the test set is clipped with the bounds calculated from the training set. Post�x
"_clip_x" is again used for clipped data.
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Chapter 5

Conclusions

We have con�rmed that the ADASSP algorithm ful�lls the expectations Wang (2018)
has set for the algorithm in his paper and is superior to the classic but unstable su�-
cient statistics perturbation mechanism. The doubts we had regarding the insu�cient
noise levels for classical Gaussian Mechanism are cleared as the ADASSP is almost as
successful also when the scalars for the perturbation parameters are �xed. The unusual
pre-processing methods used by Wang (2018) were surprisingly e�ective in some cases,
but the theory of the model was vague. The normalizing decisions were not the reason for
the success of the ADASSP algorithm as was shown by using more common standardizing
methods in Chapter 4.

The pre-processing decisions were shown to be manifold even in the most simple cases
when used in di�erential privacy. The trusted curator of data set has several options to
choose from when releasing the perturbed statistics. None of the methods were able to
provide best results every time, but were dependent on the data set in use. As a guideline
for the curator we suggest trying robust private linear regression by Honkela et al. (2018)
alongside with ADASSP algorithm when releasing su�cient statistics. Even though we
had weak results by adding the intercept column for the four UCI data sets, we still
suggests using it unless shown to lower the estimation accuracy. As a future work for
the ADASSP algorithm we leave combining the Analytical Gaussian mechanism by Balle
and Wang (2018) with the ADASSP algorithm. It will increase the computational strain
when running the algorithm, but the results may improve due the smaller levels of noise
required for perturbation.
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