
Picture languages and locality

Simo Tukiainen

Department of Mathematics and Statistics
Faculty of Science

University of Helsinki

June 2020

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/328855776?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Faculty of Science Department of Mathematics and Statistics

Simo Tukiainen

Picture languages and locality

Mathematics

Master’s thesis / pro gradu June 2020 46 pages

Picture languages, logic, finite model theory, recognizable picture languages, EMSO, automata

Kumpula Campus Library

In this master’s thesis we study the generalization of word languages into multi-dimensional arrays

of letters i.e picture languages. Our main interest is the class of recognizable picture languages which

has many properties in common with the robust class of regular word languages. After surveying the

basic properties of picture languages, we present a logical characterization of recognizable picture

languages—a generalization of Büchi’s theorem of word languages into pictures, namely that the

class of recognizable picture languages is the one recognized by existential monadic second-order

logic. The proof presented is a recent one that makes the relation between tilings and logic clear in

the proof. By way of the proof we also study the locality of the model theory of picture structures

through logical locality obtained by normalization of EMSO on those structures. A continuing theme

in the work is also to compare automata and recognizability between word and picture languages. In

the fourth section we briefly look at topics related to computativity and computational complexity

of recognizable picture languages.

Tiedekunta/Osasto — Fakultet/Sektion — Faculty Laitos — Institution — Department

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Oppiaine — Läroämne — Subject

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — Övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

Contents

Acknowledgements 4

Introduction 5

1 Word languages 7
1.1 Basic definitions . 7
1.2 Finite automata . 7
1.3 Two-way finite automata . 11

2 Picture languages 13
2.1 Regular expressions . 14
2.2 Recognizable languages . 16
2.3 Domino tilings . 23
2.4 Automata on pictures . 24

3 Logical locality on picture languages 27
3.1 Elimination of quantifiers in bijective structures 29
3.2 Normalizing logic on pixel structures 31
3.3 Tiling pictures . 33

4 Computational aspects of recognizable languages 42
4.1 Membership problem . 42
4.2 Emptiness problem . 42
4.3 Simulation of computation . 42
4.4 Cellular automata . 43

5 Discussion 44

3

Acknowledgements
I am grateful to Professor Juha Kontinen for suggesting this interesting topic
and supervising the work with much patience. I am also indebted to Dr Antti
Kuusisto for reviewing the thesis on such a short notice.

I also thank my parents and Tomoko for always supporting me.

Simo Tukiainen
Helsinki, June 2020

4

Introduction
Regular languages are a very robust class of word languages, as testified by
their multiple conceptually different yet equivalent characterizations and their
powerful closure properties. In the present work, we look at a generalization of
word languages to multi-dimensional arrays that are commonly called pictures
and especially the class of recognizable picture languages, which in many
ways generalizes the class of regular languages of words. We also present a
generalization of Büchi’s theorem to picture languages and show that the
class of recognizable picture languages defined by tilings coincides with the
class of picture languages definable in existential monadic second-order logic.

Recall that the class of regular word languages can be equivalently char-
acterized as recognized

• by deterministic finite automata

• by non-deterministic finite automata

• by existential monadic second-order logic (Büchi’s theorem)

• by regular expressions (Kleene’s theorem)

• algebraically using equivalence relations (Myhill–Nerode’s theorem).

However, while pictures as multi-dimensional arrays are a rather obvious
generalization of word languages, it is not at all obvious how the class of
regular word languages or word automata should be generalized to pictures.
It turns out that straightforward attempts to generalize regular expressions or
finite automata result in a class of picture languages that is unsatisfactory in
many ways e.g one that is either too restricted or has poor closure properties.
However, in [GR92] was introduced the class of recognizable word languages
(REC), which has since received much interest and is generally thought of as
the best generalization of regular word languages into pictures.

One of the attractions of recognizable picture languages is—like with
regular word languages—its many different characterizations; REC can be
characterized by tiling systems, online tessellation automata and by logic,
to mention only few. In [GRST96] was introduced for picture languages the
equivalent of Büchi’s theorem of word languages—the result that the class of
recognizable picture languages is the same as the class of picture languages
definable in existential monadic second-order logic (EMSO). We dedicate
the third section to the study of this characterization by presenting a more
recent proof from [GO16], which—in addition to generalizing the proof to any
finite dimension instead of two—offers an alternative point of view by proving

5

the theorem through a syntactical normalization of EMSO on the class of
structures for pictures, which in turn gives the reader much information about
the logic of pictures and eventually makes the relation to characterization by
tilings obvious. In the fourth section we informally discuss some additional
properties of recognizable picture languages related to computativity and
computational complexity.

Throughout this paper, first-order logic is used with its usual semantics.
When talking about logic, concepts formula, sentence, atomic sentence and
term have their usual meanings. A literal is either an atomic sentence or
its negation—the former being called positive literal and the latter negative
literal. A clause is a disjunction of literals. By EMSO we mean the existential
monadic second-order logic with sentences of the form

∃U1 . . . ∃Un ψ

where U1, . . . Un are unary predicate symbols and ψ is a first-order sentence.
By EMSO(∀1) we mean the fragment of EMSO where each sentence is of the
form

∃U1 . . . Un∀xψ(x)
with ψ(x) a quantifier-free first-order formula with x as its only free variable.
Whenever we write a formula in form ψ(x1, . . . , xn), the assumption is that
all its free variables are among x1, . . . , xn.

We tend to begin our enumerations from 1, so given a positive integer n
we use [n] to denote the set {1, 2, . . . , n}.

6

1 Word languages
We will first review some basics of word languages. Most theorems in this sec-
tion will be stated without proofs—a comprehensive treatment of descriptive
complexity of word languages that covers every proof omitted in this section
can be found in [Ebb95].

1.1 Basic definitions
Definition 1.1. An alphabet is a non-empty, finite set of symbols that we
often call letters. Given an alphabet Σ, we write Σ? for the set of finite
sequences of its elements and call them words. We write λ for the empty
sequence and call it the empty word. We denote the length of word w as l(w).
A subset of Σ? is called a Σ-language or a language over Σ.

The basic boolean operations of union, intersection, complement on lan-
guages are defined as the corresponding set operations, the complement being
understood relative to Σ?. We also define some operations more particular to
words:

Definition 1.2. Given words w1 and w2, w1w2 is called the concatenation
of the words and is defined as the joined sequence. The concatenation of
languages L1 and L2 is written L1L2 and defined as

L1L2 = {w1w2 : w1 ∈ L1, w2 ∈ L2}.

Definition 1.3. Given language L the Kleene’s star operation is written L?
and is defined as

L? = {w1 . . . wn : n ∈ N, w1, . . . , wn ∈ L}

i.e as the concatenation of finitely many elements of L. Note that this always
includes the empty word.

1.2 Finite automata
Definition 1.4. Given an alphabet Σ, a non-deterministic finite automaton
(NFA) is defined by a tuple (Q, q0, δ, F), where

• Q is a finite set of states

• q0 is the initial state

• δ ⊆ Q× Σ×Q is the transition relation

7

• F ⊆ Q is the set of accepting states.

The automaton is deterministic (DFA) if δ is a partial function Q× Σ→ Q
i.e the relation associates at most one state with each pair of Q× Σ.

Definition 1.5. Given an automaton M = (Q, q0, δ, F), we define the evalu-
ation function

δ̃ : Q× Σ? → Pow(Q)
inductively as

δ̃(q, λ) = {q}
δ̃(q, wα) = {p|(r, α, p) ∈ δ for some r ∈ δ̃(q, w)}

The automaton accepts word w ∈ Σ? if δ̃(q0, w) ∩ F 6= ∅. A Σ-language L is
recognized by the automaton if L = {w ∈ Σ? |M accepts w}.

Note that if the automaton is deterministic, δ̃(q, w) is always either the
empty set or a singleton for any (q, w) ∈ Q×Σ?, and δ̃ can thus be considered
a partial function Q×Σ? → Q; hence the determinacy—there is only one way
the automaton can be evaluated for a given word. Note that whenever we wish
to consider our transition function or evaluation function of a deterministic
automaton a non-partial function, it is always possible to add one dummy
non-accepting state to cover all the missing transitions. Thus we may assume
them to be full functions for deterministic automata when it is convenient to
do so.

The idea of finite automata is simpler than how its formal definition may
seem at first: an automaton starts in the initial state and for each character
of the input word a new state is chosen among the possible states given by
the transition relation for the combination of the old state and the letter now
being considered. Once the whole input word has been thus processed, the run
is considered an accepting run if the last state reached—the state where the
automaton stopped—is of one the accepting states. For a non-deterministic
automaton, the word is accepted, if there exists an accepting run using any
of the possible state transitions; non-accepting runs will often also exist in
this case, but finding one accepting run is enough.

A valid run of the automaton implies a sequence of state transitions as
can be seen form the inductive definition of the evaluation function. For
accepting runs, the last state of the sequence is one of the accepting states.
This intuitive idea is easier to use in many proofs than the definition of the
evaluation function, so we formalize it in the following proposion and its
corollary.

8

Proposition 1.1. Given a non-deterministic automaton M = (Q, q0, δ, F),
states q, r ∈ Q and a word w = α1 . . . αn ∈ Σ?, the following are equivalent

• r ∈ δ̃(q, w)

• either w is the empty word and q = r or otherwise there exists a sequence
of transitions

((q, α1, r1), (r1, α2, r2), . . . , (rn−1, αn, rn)) ∈ δn

such that rn = r.
Proof. We will prove the claim by induction on the definition of the evaluation
function δ̃. If w = λ, the only claim that q = r follows directly from the fact
that we have δ̃(q, λ) = {r} as per definition of δ̃.

Assume then that the claim holds for w and let α ∈ Σ be given. Assume
first that r ∈ δ̃(q, wα). If w is the empty word, ((q, α, r)) is our sequence.
Otherwise there exists r′ ∈ such that (r′, α, r) ∈ δ and r ∈ δ̃(r′, w). Hence by
induction assumption there exists a sequence

((q, α1, r1), . . . , (rn−1, αn, rn))

with r′ = rn. Now the sequence

((q, α1, r1,), . . . , (rn−1, αn, rn), (rn, α, r))

is the sequence we wanted. The other direction is essentially the same.
Corollary 1.1. Given a non-deterministic automaton M = (Q, q0, δ, F), a
word w = α1 . . . αn ∈ Σ? is accepted by the automaton iff either w is the
empty word and q0 ∈ F or otherwise there exists a sequence of transitions

((q0, α1, r1), (r1, α2, r2), . . . , (rn−1, αn, rn)) ∈ δn

such that rn ∈ F .
Proof. Follows directly from the definition of the automata accepting a word
and the previous proposition.

Example 1.1. The automata in figure 1a accepts the {0, 1}-language of
words with odd length. It’s formal definition would be (Q, q0, δ, F) where
Q = {qe, qo}, q0 = qe, F = {qo} and

δ(qe, 0) = δ(qe, 1) = qo

δ(qo, 0) = δ(qo, 1) = qe.

The automaton starts in the “even” state, switches state between “even” and
“odd” for each input character and accepts the word if it ends up in the “odd”
state.

9

Figure 1: Examples of deterministic finite automata expressed as transition
diagrams

qe qo

0,1

0,1
(a) Words of odd length

q0

q1

q2

q3 q4

q5

0 .

1

0,1

.

0,1
1

01

0

(b) Numbers in binary decimal notation

Example 1.2. The automaton in figure 1b accepts the {0, 1, .}-language of
binary decimal numbers without unnecessary leading or trailing zeroes. The
initial state is q0 and accepting states are q1, q2 and q4. Note that while it
accepts 0, 0.0, 1.0 and 1.1, it rejects e.g 01, 1.10 and .0 as well as non-zero
integers with leading zeroes and any trailing zeroes. The intuitive meanings
of for example non-accepting states q3 and q5 would be “decimal separator
read, expecting to read one or zero” and “one or more trailing zeroes detected,
waiting to read one”, respectively.

The next theorem was proven in [RS59], where non-deterministic automata
were also first introduced.

Theorem 1.1. Given a language L over alphabet Σ, the following are equiv-
alent:

• L is recognized by a deterministic finite automaton

• L is recognized by a non-deterministic finite automaton.

As the deterministic and non-deterministic finite automata are equivalent
for word languages, we mostly refer to them simply as finite automata from
now on.

Reviewing further basic properties of finite automata, we have the following
propositions.

Proposition 1.2. The class defined by finite automata is closed under union,
intersection and complement.

10

Proposition 1.3. The class defined by finite automata is closed under con-
catenation and Kleene’s star.

The propositions essentially show that the class of languages definable by
finite automata is equivalent to the class regular languages, which is defined
by regular expressions.

Next we define the model theoretic structures for words of a given alphabet.
We will make no direct use of them in the present paper, but the definition
will be useful for comparing it with the corresponding structure for pictures
i.e pixel structures introduced in the third section.

Definition 1.6. Given an alphabet Σ and a word w = α1 . . . αn ∈ Σ? with
n a positive integer, the word model of w—denoted by M(w)—is defined as
the model ([n], <, (Qα)α∈Σ), where < is the natural ordering of [n] and for
α ∈ Σ and i ∈ n we have i ∈ Qα iff αi = α.

Given a Σ-language L such that λ /∈ L, we define word models of L as

M(L) = {M(w)|w ∈ L}.

A sentence ψ of a given logic is said to define language L if the models of the
sentence are M(L), up to isomorphism.

We have excluded the world model for the empty word due to problems
that arise in logic if empty models are allowed. As the recognizability of
the empty word is a trivial aspect of the theory of automata, we can simply
leave out languages that include the empty word. Alternatively we could had
defined the definability of a language modulo the inclusion of the empty word.

Büchi’s theorem, one the basic results of the theory of automata and
important for introducing logical and model theoretic perspective into study
of word languages was introduced in [Bü60].

Theorem 1.2. Given a language L over alphabet Σ, the following are equiv-
alent:

• L is recognized by a finite automaton

• L is defined by a sentence of EMSO.

1.3 Two-way finite automata
Two-way deterministic (non-deterministic) finite automaton, also called 2DFA
(2NFA), is a finite automaton with a head that can move in both directions
i.e it need not perform only one scan of the word and decide the final state.

11

For the reader familiar with Turing machines, it will be good to know that
it can equivalently be defined as a Turing machine that operates on a single
read-only input tape i.e the machine cannot modify the contents of the tape
but only change its own internal state.

On word languages, these characterizations collapse to simply that of
ordinary finite automata as shown by the following theorem, which was
proved in [RS59].

Theorem 1.3. Given language L, the following are equivalent:

• L is recognized by a DFA

• L is recognized by a 2DFA

• L is recognized by a 2NFA.

Two-way finite automata is interesting to us as its natural generalization
to pictures is the four-way finite automata, that can make moves in four
directions. Four-way automata will be introduced in section 2.4.

12

2 Picture languages
Many generalizations of ordinary word languages have been studied, for
example ω-languages, where words have infinite length, or tree languages,
where words have the structure of a tree. These constructs share many
important aspects of the theory of word languages such as the equivalence
between finite automata, non-deterministic finite automata and EMSO. In this
section we will introduce the theory of picture languages as a generalization
of word languages into two-dimensional pictures. Part of the theory is
presented without proofs and many aspects are considered only informally.
An overview of automata, regular expressions and logical characterizations of
two-dimensional picture languages can be found in [GR97].

Two-dimensional languages provide yet another natural generalization of
word languages and they are usually called pictures as a rectangular grid
of coloured pixels is the natural representation of a picture e.g in computer
science. It has, however, proven difficult to generalize regular expressions
and automata to pictures so that they would retain some of their robust
properties.

In the following, we assume Σ to be a finite alphabet.

Definition 2.1. A picture over Σ is a non-empty rectangular array of symbols
of Σ, formally any function p : [m]× [n]→ Σ for some positive integers m,n.
Given a picture p : [m]× [n]→ Σ we call the pair (m,n) its size and define
l1(p) = m and l2(p) = n which we also call its height and width respectively.

A subpicture is a continuous rectangular block within a picture i.e a
picture p is a subpicture of a picture q if for some positive integers i1, j1 with
l1(p) + i1 ≤ l1(q) and l2(p) + j1 ≤ l2(q) it holds for all i, j with i1 ≤ i ≤ l1(p)
and j1 ≤ j ≤ l2(p) that

p(i, j) = q(i1 + i, j1 + j)

Given positive integers h, k and a picture p with l1(p) ≥ h and l2(p) ≥ k,
we define the set of tiles having size (h, k), written as Th,k(p), as the set of all
subpictures of p with size (h, k).

A set of pictures over Σ is called a Σ-language and the language of all
pictures over Σ is denoted by Σ??.

For our tilings and automata we also need to be able to describe behaviour
at the edges of a picture, so we define a bordering for our pictures.

Definition 2.2. We write Σ] for alphabet Σ ∪ {]} where] is a new special
symbol called the border symbol that is not in Σ. Given a picture p with

13

Figure 2: Coordinate system for a picture p of size (m,n) = (l1(p), l2(p))

p(1, 1) . . . p(1, l2(p))

...

p(l1(p), 1)) . . . p(l1(p), l2(p))

Figure 3: A picture p over alphabet {0, 1} and its bordered version.

0 1 0
1 0 1
0 1 0

(a) picture p

]]]]]
] 0 1 0]
] 1 0 1]
] 0 1 0]
]]]]]

(b) Bordered picture p]

size (m,n), we write p] for its bordered picture of size (m+ 2, n+ 2) over Σ]

defined as:

p](i, j) =], when of i = 1, i = m+ 2, j = 1 or j = n+ 2
p](i, j) = p(i− 1, j − 1), otherwise.

Example 2.1. In figure 3 we have a picture p over a two-letter alphabet and
its bordered version p].

2.1 Regular expressions
We can define basic operations on pictures analogous to regular expressions
of word languages. We notice that generalization of string concatenation is
not trivial, because there are now at least two obvious ways to concatenate
pictures i.e horizontally and vertically, given that they have the same height
and width respectively. We begin by defining these basic concatenations.

Definition 2.3. Let p and q be pictures over Σ.
If the pictures have the same width i.e l2(p) = l2(q), we define their row
concatenation p	 q as the picture of size (l1(p) + l1(q), l2(p)) such that

(p	 q)(i, j) = p(i, j), when 1 ≤ j ≤ l1(p)
(p	 q)(i, j) = q(i− l1(p), j), otherwise.

14

Figure 4: Row and column concatenation operations on pictures p and q.

p(1, 1) . . . p(1, l2(p))

...

p(l1(p), 1)) . . . p(l1(p), l2(p))

q(1, 1) . . . q(1, l2(q))

...

q(l1(q), 1)) . . . q(l1(q), l2(q))

(a) Row concatenation p	 q

p(1, 1) . . . p(1, l2(p)) q(1, 1) . . . q(1, l2(q))

...

p(l1(p), 1)) . . . p(l1(p), l2(p)) q(l1(q), 1)) . . . q(l1(q), l2(q))

(b) Column concatenation p 	 q

Similarly, if the pictures have the same height i.e l1(p) = l1(q), we define their
column concatenation p 	 q as the picture of size (l1(p), l2(p) + l2(q)) such that

(p 	 q)(i, j) = p(i, j), when 1 ≤ j ≤ l2(p)
(p 	 q)(i, j) = q(i, j − l2(p)), otherwise.

Visualizations of row and column concatenations are shown in figures 4a
and 4b, respectively.

Next we extend the above concatenation operations to whole languages,
as well as define the other regular expression operations.

Definition 2.4. Given Σ-languages L1 and L2, we define

• their union and intersection as the corresponding set operations

• their row concatenation

L1 	 L2 = {p1 	 p2 : p1 ∈ L1, p2 ∈ L2, l2(p) = l2(q)}

15

• their column concatenation

L1 	 L2 = {p1 	 p2 : p1 ∈ L1, p2 ∈ L2, l1(p) = l1(q)}.

For a Σ language L, we define its complement Lc as Σ?? \ L

Finally we define operations corresponding to Kleene star operator for
pictures.

Definition 2.5. Given Σ-language, we iteratively define its

• column closure L? 	 = ⋃
i∈N Li where L0 = L and Li+1 = L 	 Li

• row closure L?	 = ⋃
i∈N Li where L0 = L and Li+1 = L	 Li.

One can now choose a set of above operations and study the class of
languages generated from 1×1 pictures using the selected operations. However,
none of the classes so formed seem to have as robust properties as the class of
regular word languages—either their lack expressive power in not recognizing
some simple pictures or they have poor closure properties. Furthermore,
one indeed needs to include many of the operations as basic ones unlike for
word languages; for example, the class of languages generated by unions and
closure operators only—as are regular word languages—is not closed under
intersection. For more detailed comparison between the classes of regular
picture languages and recognizable picture languages—that are introduced in
the next section—see [GR97] and [Mat07].

2.2 Recognizable languages
Recognizable two-dimensional languages were first defined in [GR92]. We
begin by defining local languages using a finite set of allowed tiles that are
allowed to occur in a picture. Computationally a local language can be
described as a memoryless walk over a given picture where each tile given by
a pixel’s neighbourhood is inspected to see whether it is allowed or not.

Definition 2.6. A picture language L over Σ is local if there exists a set ∆
of pictures over Σ with size (2, 2) such that

L = {p ∈ Σ?? : T2,2(p]) ⊆ ∆}

i.e L is exactly the set of pictures that include only tiles allowed by ∆.

16

Figure 5: One picture p with ones in diagonal and its tiles

]]]]]]
] 1 0 0 0]
] 0 1 0 0]
] 0 0 1 0]
] 0 0 0 1]
]]]]]]

(a) picture p]diag

]]
] 1

]]
1 0

]]
0 0

]]
0]

] 1
] 0

1 0
0 1

0 0
1 0

0 0
0 0

0]
0]

] 0
] 0

0 1
0 0

0]
1]

] 0
]]

0 0
]]

0 1
]]

1]
]]

(b) The tile set T2,2(p]diag)

Example 2.2. Figure 5 shows p]diag and its set of 2× 2 tiles T2,2(p]diag). The
picture pdiag is special in the way that the tile set of its bordered version can
be used to define the language Ldiag of square pictures over alphabet {0, 1}
with ones on diagonal i.e

Ldiag = {p ∈ {0, 1}?? : T2,2(p) ⊆ T2,2(p]diag).}

Note that pdiag is the smallest picture with this property. This shows that
the language Ldiag is local with T2,2(p]diag) as its set of allowed tiles.

Next we introduce projections that allow the use of extra symbols during
recognition. This seemingly simple addition to local languages makes it
very powerful—using the picture-walking analogy from above, it both allows
for bounded memory per pixel and an ability to guess, which introduces
non-determinacy.

Definition 2.7. A picture language L on Σ is recognizable if it is the projection
of a local language over some alphabet Σ′. In other words, there exists a local
language L′ over Σ′ and a function π : Σ′ → Σ such that

L = π(L′) = {π ◦ p : p ∈ L′}.

Example 2.3. Let Lsquare be the language of squares over the one letter
alphabet {0} i.e the language of pictures p with l1(p) = l2(p). It is easy to
see that Lsquare cannot be local: the tiling would have to allow at least tiles

T2,2

]]]]
] 0 0]
] 0 0]
]]]]

 =

]]
] 0 ,

]]
0 0 ,

] 0
] 0

]]
0]

0 0
0 0 ,

] 0
]] ,

0]
0]

0 0
]] ,

0]
]]

,

17

but this tiling already allows for any picture of {0}??. On the other hand, if
we define a projection π : {0, 1} → {0} as

π(0) = π(1) = 0,

we see that π(Ldiag) = Lsquare, where Ldiag is the language from example 2.2.
Now, Ldiag was shown previously to be local, so Lsquare is now found to be
recognizable as a projection of a local language.

This result makes sense: we need extra markings to track certain features
and drawing a line along the diagonal from corner to corner is an intuitively
appealing way to verify that a rectangular array-like shape is square.

In [GRST96] it was shown that recognizable languages are exactly those
definable in existential monadic second-order logic. In the third section we
present a proof generalized to any finite dimension of pictures, which also
proves this original theorem, which we present here without defining model
theoretic structure for pictures yet.

Theorem 2.1. Given a language L the following are equivalent:

• L is recognizable

• L is definable in EMSO.

It was shown in [GR96] that REC is closed under regular expression
operations save complementation.

Theorem 2.2. REC is closed under:

• projection

• row and column concatenation

• row and column closure

• union and intersection

• rotation.

Proof. See [GR97].

However, unlike in word languages, we do not have closure under comple-
mentation, as was first shown in [IT92].

Theorem 2.3. The class of recognizable languages is not closed under com-
plementation.

18

Proof. See [GR97] for a simpler proof than [IT92]. The combinatorial ar-
gument is much like commonly used counting arguments for regular word
languages: we introduce symmetry the keeping track of which would require
unbounded counting abilities and then show that any tiling system and a
projection that would recognize the language in question would also be forced
to accept something not belonging to it (cf. pumping lemmas for word
automata).

So the class of recognizable picture languages has some attracting proper-
ties, but how to justify that it is a generalization of regular word languages
in two dimensions when any of the commonly used definitions such as regular
expressions or automata are so different? One more test to perform is to
encode one-dimensional case in pictures somehow and show that the defi-
nitions yield the same result. To this end, we will first show that regular
word languages are recognizable when encoded as pictures—which is not
very remarkable—and afterwards show that word-like recognizable picture
languages are regular as word languages, which is more interesting.

We use the following convention of encoding words as pictures.

Definition 2.8. Given a word w, we define its corresponding picture pw of
size (1, l(w)) such that pw(1, i) = wi for 1 ≤ i ≤ l(w). We call a picture word-
like when it has size (1, n) for some positive integer n. A picture language is
word-like when it only contains word-like pictures.

In the next two proofs, we will make use of the following fact.

Remark 2.1. For word-like recognizable languages, we may without any loss
of generality assume that a 4× 4 tile set T over Σ′ has the following property:

for any a, b ∈ Σ′] it holds that]]
a b

∈ T iff a b
]] ∈ T . We can make this

assumption because any actual word-like picture will always include neither
or both, so if a tiling included only one of them, removing it would still result
in the same local language.

Due to this assumption, we can consider any given tiling for a word-like
language to consist of tiles simply of form a b or pairs (a, b) for a, b ∈ Σ′].
We also use this as a shorthand when defining a tiling for a word-like language
and understand the necessary squares to be defined.

The next two propositions will establish a one-to-one correspondence
between the class of word languages accepted by a non-deterministic finite
automata and the class of recognizable picture languages. As we have not
defined empty pictures, we simply ignore any automata that accept the empty

19

word; recall that an automaton accepts the empty word iff the initial state is
included among the accepting states—this means that the question whether
a given automaton accepts the empty word is not very interesting.

Proposition 2.1. Given a regular word-language Lw over Σ such that λ /∈ Lw,
the language Lp defined as

Lp = {pw : w ∈ L}

is recognizable.

Proof. Let (Q, q0, δ, F) be a non-deterministic finite automaton recognizing
the language. The idea of the proof is that we define a local language that
accepts all valid runs of the automaton and then project the letters read
during that run it to get rid of the states encoded in the language. The
alphabet of the local language will consist of the valid transitions in the
transition relation i.e each letter will know its previous and new state after
the given letter has been read, and the tiling for the local language will ensure
the consistency of the transitions between states. After this it only remains
to check that the state we begun in was q0 and the state we end in was one
of the states in F ; in the tiling this is done using the border symbol.

So recall that δ is a ternary relation between the source state, the letter
read and the target state i.e δ ⊆ Q × Σ × Q. Define alphabet Σ′ = δ. We
then define our set of tiles T as the smallest set such that

• ((q′, α, q), (r, α, r′)) ∈ T for any q′, r′ ∈ Q and (q, α, r) ∈ δ. This
validates whether the current state was arrived in using a valid transition.
Note that only one edge of each tile is considered—it is enough to verify
that the tiles are “compatible” (think dominoes).

• (], (q0, α, q)) ∈ T for any α ∈ Σ and q ∈ Q such that (q0, α, q) ∈ δ. This
encodes the states that are reachable from the initial state which we
can consider to be happening on the border.

• ((q, α, r),]) ∈ T for any q ∈ Q, α ∈ Σ and qf ∈ F such that (q, α, r) ∈ δ.
The tiles at right border verify that the run was an accepting run i.e it
ends in an accepting state.

Let L′ be the local language defined by the tiling T and define language L as
the projection of L′ using projection π : L′ → L defined as

π((r, α, p)) = α.

20

To show that L = Lp, it is, by corollary 1.1 above, enough to show given
a non-empty word w = α1 . . . αn we have pw ∈ L iff there exists a sequence

((q0, α1, r1), . . . , (rn−1, αn, rn)) ∈ δn

such that rn ∈ F . But given that this is essentially our definition of T above,
it is equivalent to that for a picture p it holds that T2,2(p) ⊆ T . Note that
our border tiles on both ends ensure that exactly in this case we also have
p(1, 1) = π((q0, α1, q)) for some q ∈ Q and p(1, n) = π((q, αn, r)) for some
q ∈ Q and r ∈ F .

Proposition 2.2. Given a word-like recognizable language Lp over Σ, the
word language Lw = {w ∈ Σ? : pw ∈ Lp} is recognized by a non-deterministic
finite automaton.

Proof. Let L′p be the local language and π : Σ′ → Σ the projection defining
the recognizable language Lp. Let T be the set of allowed tiles of the local
language L′p.

Define the set of states Q and the set of final states F as

Q = T ∪ {q0}
F = T × (T ∩ (Σ′ × {]})),

where q0 is a new state to be used as the initial state, and let the transition
relation δ ⊆ Q× Σ′ ×Q be defined as the smallest relation such that

• ((a, b), π(b), (b, c)) ∈ δ for (a, b), (b, c) ∈ T . This is used to recognize all
possible tile-moves given a letter π(b) of the projected alphabet. When
the NFA performs this move, it means the letter read was a projection
of a letter connecting two tiles, which ensures consistent tiling.

• (q0, π(a), (], a) ∈ δ for any (], a) ∈ T . This recognizes valid initial letters
in the tiling as the possible transitions from our initial state.

Define now non-deterministic finite automaton as M = (Q, q0, δ, F). The idea
of this automaton is that each non-initial state represents an allowed tile
(a, b) ∈ T with the idea that the last letter read was π(b). The use of the
tilings as states ensures that our tiling stays consistent between steps of the
NFA even though we are reading the projected alphabet.

By corollary 1.1 above and our definition of δ, the following are equivalent
given a word w = α1 . . . αn.

• The automaton M accepts word w.

21

• There exists a sequence

((q0, π(α1), (], a1)), . . . , ((an−2, aa−1), π(αn), (an−1, an))) ∈ δn

such that (an−1, an) ∈ F i.e (an,]) ∈ T . Since π(α1 . . . αn) = w,
pw ∈ Lp.

Figure 6: Language Leven is the language of word-like pictures with even
width.

0 0 0 0 0 0
0 0 0 0 0 0

(a) some pictures of Leven

] 0 1]] 0 1 0 1]

] 0 1 0 1 0 1]

(b) corresponding bordered pre-images of L′even

] 0 0 1 1 0 1]

(c) The tile set Teven given as 1× 2-tiles

Figure 7: The automaton constructed to recognize Leven.

q0 (], 0) (1, 0)

(0, 1)

(1,])0 0

0 0

0

0

Example 2.4. As an example of the above, we examine the recognizable
(but not local) language Leven of word-like pictures over one letter alphabet
{0} defined as

Leven = {p ∈ {0}?? : l1(p) = 1, l2(p) is non-zero and even}.

Examples of pictures of Leven can be seen in figure 6a. We see that Leven
is recognizable by projecting the local language L′even—examples of which
are shown in figure 6b—which in turn is local based on tiling Teven shown in

22

figure 6c. The tiling is given as 1× 2-tiles for simplicity, see remark 2.1 for
the justification and their interpretation to 2× 2-tiles.

In figure 7 is shown the NFA as constructed in the proof of proposition 2.2
that accepts the corresponding word language of even words. Of course, a
much simpler and deterministic automaton would do for this specific language.

2.3 Domino tilings
[LS97] introduced domino tilings that are also called hv-local, where hv stands
for horizontal-vertical. In the definition above tilings were defined as squares,
but using hv-local tilings we define allowed tiles as a set of 1x2 and 2x1 tiles.
This has a computational interpretation—verifying hv-local tiling can be
done separately for both horizontal and vertical directions whereas verifying
a square tiling requires examining at least two rows during each horizontal
scan if scans are performed row-wise.

Definition 2.9. A picture language L over Σ is hv-local if there exists a set
∆ of pictures over Σ with size (1, 2) or (2, 1) such that for each p ∈ L it holds
that T1,2(p) ∪ T2,1(p) ⊆ ∆.

Note that the orientation of the dominoes allows us to keep track of
direction in this definition. As an equivalent definition we could give distinct
sets of two-symbol dominoes for each dimension as we will do in the third
section.

The following two propositions show that hv-local languages are a proper
subclass of recognizable languages.

Proposition 2.3. A hv-local language L is also a local language.

Proof. See [GR97].

Proposition 2.4. There exists a language L that is local but not hv-local.

Proof. See example in [GR97].

It turns out, however, that projections are quite powerful enough to make
do with these tiles as the following theorem from [LS97] shows:

Theorem 2.4. Given a language L the following are equivalent:

• L is recognizable

• L is a projection of a hv-local language.

23

Proof. For a simple proof see [GR97]. Note that one direction is easy since
hv-local language is a proper subclass of local languages, but for the other
direction one needs to use the power of projections.

The above theorem justifies our use of domino tilings as the definition of
recognizability in the third section.

2.4 Automata on pictures
In this section we will consider generalizations of automata from word lan-
guages into picture languages, and we will see that the recognizability by a
tiling system introduced in the previous section actually corresponds to one
of them—non-deterministic online tessellation automata. We will consider
most of the automata only informally and without proofs. A comprehensive
survey is to be found in [GR97] and [KS11].

The challenge when generalizing one-dimensional automata to pictures is
to decide how to scan the picture: in word languages this is trivial because
there is just one way to walk through all the letters, and this is the reason
why many generalizations with differing closure properties and expressive
power become the same when restricted to one-dimensional case.

The automata on pictures can be divided, based on how the picture is
scanned, to picture-walking automata, that literally walks the picture letter
by letter, and to cellular automata like automata, that calculates state for
all positions simultaneously. Both approaches result in same automata when
restricted to one-dimensional case, but while the former tend to be too weak
in the two-dimensional case, the latter, on the other hand, tend to become
too powerful.

Four-way automata

Four-way automata introduced by [BH67] is possibly the most straightforward
generalization of finite automata into pictures: the automaton has a state
and can move in four directions instead of only ahead—it directly generalizes
2DFA and 2NFA from word languages.

While both deterministic four-way automata (4DFA) and non-deterministic
four-way automata (4NFA) are closed under unions and intersections, and
4DFA additionally under complementation, they lack some closure properties
such as closure under column and row concatenation operations. Whether
4NFA is closed under complementation is an open problem. Four-way au-
tomata belong to the larger family of picture-walking automata, and they are
interesting in their own right. A recent survey on picture-walking automata
can be found in [KS11].

24

Considering our above characterization of recognizable languages using
hv-local tilings and our proof of proposition 2.2, one might think that we
could construct a similar four-way automaton to first walk all rows and then
all columns of a picture in the same fashion to see whether the projected tiling
was allowed. The same technique, however, does not work in two-dimensional
case: in our proof of the proposition 2.2, we examined not simply one tile
at a time but two, to maintain consistency in our guesses for projected tiles.
This works fine when there is only one direction to go and one needs only
one tile worth of extra memory, but if we were to verify rows in this fashion
first, we would not be able to remember our guessed tiles later when later
verifying columns without using additional cell-specific memory. This is the
reason why the definitions collapse when there is essentially one dimension
only. The next theorem also shows that there is no hope of finding another
way to do this by any clever means.

Theorem 2.5. The class of languages accepted by 4NFA is properly included
in REC.

Proof. See [GR97].

On the other hand if we do have cell-specific memory, we can indeed do it,
like the online tessellation automata introduced next shows us.

Online tessellation automata

Online tessellation automata was introduced by [IN77] and it also comes
in both deterministic (DOTA) and non-deterministic (OTA) variants, and
again—unlike automata for word languages—they are not equivalent.

The idea is simple: instead of walking through the picture cell-by-cell, the
bordered picture of size (m,n) will be diagonally scanned so that at time t the
state of every cell (i, j) such that (i− 1) + (j − 1) = t− 1 will be determined
by the transition relation given the states already calculated for preceeding
cells (i− 1, j) and (i, j − 1). The state of the cell at bottom-right corner of
the picture determined at time t = max(m,n) decides whether the run was
an accepting one or not. Otherwise the definition is much like that of a usual
word automaton.

Definition 2.10 (Online tessellation automata). Given an alphabet Σ, a
non-deterministic two-dimensional online tessellation automaton (OTA) is
defined by a tuple (Q, q0, F, δ) where

• Q is a finite set of states

25

Figure 8: Diagonal scan by an online tessellation automaton

]]]]]

] (1, 1) (0, 2) . . .]

] (2, 0) . . . (i − 1, j)]

] . . . (i, j − 1) (i, j)]

]]]]]

• q0 is the initial state (for border)

• F is the set of accepting states

• δ ⊆ Q×Q× Σ×Q is the transition relation.
The automaton is deterministic (DOTA) if δ is a function Q×Q× Σ→ Q.

It was shown in [IN77] that the deterministic version is strictly less
powerful.
Theorem 2.6. Languages recognized by DOTA are a strict subset of those
recognized by OTA.

Non-deterministic online tessellation automata turn out to be equivalent
to the recognizable languages (characterized by tiling systems) introduced in
the previous section as shown in [IT92].
Theorem 2.7. The following are equivalent:

• L is recognized by an OTA

• L is recognizable.
The proof of above theorem is not much different from our proof above

that recognizable word-like picture languages correspond to regular word
languages—if anything, it is simpler. The diagonal scan is well-suited to
verify a square tiling and non-determinism now provides the projection. Note
that the non-determinism present here is more potent than is possible for
non-deterministic word automata or non-deterministic four-way automata—
the difference intuitively being that an OTA can guess all cells at once and
then verify the tiling, whereas 4NFA can only guess one cell at a time and
cannot remember its past guesses for more than a bounded number of cells.

26

3 Logical locality on picture languages
In [GRST96] it was shown that the class of two-dimensional recognizable
picture languages coincides with the class of languages defined by EMSO.
The paper finds an interesting characterization of first-order logic on pictures
using tilings and then introduces projections of recognizable languages which
correspond to predicate quantification of EMSO. The classical tools of finite
model theory such as back-and-forth games and partial isomorphisms are
used in the proof. In [GO16] the characterization was improved by extending
the result to any dimension and by way of a different proof presenting an
alternative perspective that uses syntactical normalization of logic to a sublogic
with strong locality properties among those structures. It is this latter proof
we present here. Except when otherwise mentioned, all the proofs in this
section are based on [GO16].

In this section we will also redefine pictures and tilings for any dimension
but as squares i.e having the same side length for all dimensions. The reason
is to simplify the notation. It can be seen that the proofs in this section do not
actually depend on the fact that the pictures are squares as each dimension
is always handled rather independently, so the results could be generalized to
pictures of any shape. Our use of domino tilings in the definition here instead
of square tilings is justified by the theorem 2.4 above.

It will be seen that a recurring theme in the proofs is the ability to
define unary predicates inductively both only in one dimension and also
on all elements of a picture using lexicographic ordering, which is easily
expressible in pixel structures even without quantifying any extra predicate
symbols. We will proceed by first showing that EMSO on pixel structures is
in fact equivalent to syntactically much more limited forms of EMSO, first to
EMSO(∀1) which allows only one universal quantifier in the first-order part
and then to a further normalized form the syntax of which resembles tilings,
which in turn makes it easy to show that REC and EMSO define the same
picture languages. Throughout the proofs in this section, it will be useful to
keep in mind that in EMSO unary predicates in the signature correspond to
the alphabet and quantified unary predicates to the guessed symbols, which
in REC are represented by the projection.

Definition 3.1 (in this section only). A d-dimensional picture is any function
p : [n]d → Σ. Given a picture p we write dom(p) for [n]d and call it the domain
of the picture. Elements of dom(p) are called points or pixels of p.

Definition 3.2 (in this section only). Given alphabet Σ, we write Σ] for
alphabet Σ ∪ {]} where] is a new special symbol called the border symbol

27

that is not in Σ. Given a d-picture p : [n]d → Σ, we write p] : [n+ 2]d → Σ
for the bordered picture of p (over Σ]) defined as:

p](a1, . . . , ad) =], when any of a1, . . . , ad is 1 or n+ 2
p](a1, . . . , ad) = p(a1 − 1, . . . , ad − 1), otherwise.

Next, we define the pixel structures for examining model theoretic and
logical properties of pictures.
Definition 3.3. Given a picture p : [n]d → Σ, we define pixeld(p) as structure(

[n]d, (Qs)s∈Σ, (succi)i∈[d], (mini)i∈[d], (maxi)i∈[d]

)
where

• succi is the cyclic successor function in the ith component:

succi(a1, . . . , ad) = (a1, . . . , ai + 1, . . . , an)

when ai < n and

succi(a1, . . . , ad) = (a1, . . . , 1, . . . , an)

when ai = n.

• mini, maxi and Qs are the unary predicates

mini = {a ∈ [n]d : ai = 1}

maxi = {a ∈ [n]d : ai = n}
Qs = {a ∈ [n]d : p(a) = s}

The use of successor functions instead of relations is important here for
examining locality: if we use ordering relation instead, every pixel is directly
connected to every other pixel. The logical characterization itself would still
be the same. Also note that the cyclicity of the successor functions is only
needed to make them proper permutations of the domain which simplifies the
proofs. The following remark will be evident from the normal form introduced
in the proposition 3.4 later.
Remark 3.1. Any formula of EMSO can be written so that its interpretation
on pixel structures is the same regardless of how the pixels “on the edges”
(having any coordinate of n) are interpreted.

This is due to the fact that in the normalized form presented in proposi-
tion 3.4, only terms of form x and succi(x) occur and the latter form only ever
occurs under the premise that ¬maxi(x) holds for x. Thus the interpretation
of succi(x) in the model at pixel x such that maxi(x) cannot change the
interpretation of the sentence.

28

3.1 Elimination of quantifiers in bijective structures
We will first introduce a quantifier elimination result adapted from [DG07]
that we will then use to normalize our logic on pixel structures.

Definition 3.4. We call signature σ = (U1, . . . , Uk, f1, . . . , fd, f
−1
1 , . . . , f−1

d)
monadic if each Ui is a unary predicate and fi and f−1

i are unary function
symbols. A structure with a monadic signature is called bijective if the
interpretation of each fi is a permutation of the structure’s domain and the
interpretations of f−1

i and fi for each i are bijective inverses of each other.

We define ∃≥k as shorthand

∃≥kxφ(x) = ∃x1 . . . ∃xk

 ∧
1≤i<j≤k

¬xi = xj
∧

1≤i≤k
φ(xi)

 .
We assume the transformation to be performed so that all used variables are
new and in the following when e.g renaming variables, all necessary renamings
are done in the obvious way.

Definition 3.5. A cardinality formula is a first-order formula of the form
∃≥kxφ(x) where k is a positive integer and φ(x) is a quantifier-free formula
with x as its only free variable.

So intuitively a cardinality formula is a sentence that asserts there to be
at least k elements in the structure with a specified local property, locality
here meaning anything expressible without quantifiers.

Proposition 3.1. Given a signature σ = (U1, . . . , Uk, f1, . . . , fd, f
−1
1 , . . . , f−1

d),
every first-order formula is equivalent to a boolean combination of atomic
formulae and cardinality formulae on bijective structures.

Proof. We will prove the proposition by induction on the construction of
first-order formulae. Note that as our target is a boolean combination, the
only construct with anything to prove will be existential quantification.

Assume then that φ(y, x̄) is a boolean combination of atomic and cardi-
nality formulae. We need to show that ∃y φ(y, x̄) can be transformed into the
required form. We will first simplify our case further by noting the following:

1. We can assume φ(x̄) to be in a disjunctive normal form—considering
existing cardinality formulae atomic for the purposes of this transfor-
mation.

2. Existential quantification commutes with disjunction, so we may deal
with disjuncts separately and assume φ(x̄) to be a conjunction of (pos-
sibly negated) atomic formulae and cardinality formulae.

29

3. Conjuncts that do not have y as a free variable can be dealt with by
simply removing the quantifier. Especially this includes any (possibly
negated) cardinality formulae as they have no free variables by definition.
Thus we can assume φ(x̄) to be a conjunction of literals. Furthermore,
as each literal not using identity can only involve one variable due to
our monadic vocabulary, we can assume all non-identity literals have
only y as their free variable.

4. Due to our bijectivity assumption, each term is invertible and we may
assume each identity atomic formula to be written in form y = τ(xi)
where τ(xi) is a term and xi ∈ x̄.

5. If any conjunct is of form y = τ(xi), we are done, as we can replace y
with τ(xi) in the conjunction and remove the quantification as it no
longer involves variable y. So we may assume every atomic formula
using identity is a negative literal.

Given the above considerations, we may assume that φ(x̄) is of form

ψ(y) ∧ y 6= τ1(x1) ∧ · · · ∧ y 6= τk(xk),

where ψ(y) is a conjunction of literals that make no use of identity atoms
and xi ∈ x̄ for 1 ≤ i ≤ k. Note that we do not require each xi to be different
variables, we just want to simplify the notation.

It is good to pause and observe that the following holds trivially:

∃k+1y ψ(y)⇒ ∃y (ψ(y) ∧ y 6= τ1(x1) ∧ · · · ∧ y 6= τk(xk)).

The problem for the converse is that some of the terms τ1(x1), . . . τk(xk) might
get the same interpretation or might fail to satisfy ψ(τi(xi)), in which case
we could satisfy the original formula with less than k + 1 entities.

Given a structure S, let P ⊆ [k] be the indices of terms the interpretation
of belongs to ψ(S) i.e ψ(τi(xi)) holds for i ∈ P and ¬ψ(τi(xi)) holds for
i ∈ [k] \ P . Let Q ⊆ P be the set of indices such that for any i ∈ P there is
j ∈ Q such that τi(xi) = τj(xj) holds in the structure, and let h = |Q|. Now
h is an upper bound for number of different interpretations for terms τi(xi)
that satisfy ψ(τi(xi)), and if h is maximal, we will have

∃h+1y ψ(y)⇔ ∃y (ψ(y) ∧ y 6= τ1(x1) ∧ · · · ∧ y 6= τk(xk))

in the structure.

30

Luckily, we can encode the above conditions easily syntactically, and then
we can simply try all possible combinations.

φ′(x̄) =
k∨

h=0

∨
P⊆[k]

Q⊆P,|Q|=h

∧
j∈Q

ψ(τj(xj))∧∧
i∈P

∧
j∈Q

τi(xi) = τj(xj)∧∧
j∈[k]\P

¬ψ(τj(xj))∧

∃h+1y ψ(y)

Now in any structure S it holds that

φ′(x̄)⇔ ∃y (ψ(y) ∧ y 6= τ1(x1) ∧ · · · ∧ y 6= τk(xk))

Corollary 3.1. Given a signature σ as above, every first-order sentence
is equivalent to a boolean combination of cardinality formulae on bijective
structures.

Proof. Result follows from above proposition immediately: the obtained
formula will have the same free variables and will thus be an equivalent
sentence. Note that an atomic formula can only occur inside a cardinality
formula as otherwise it would introduce a free variable.

This result has a computational interpretation: any first-order property of
a bijective structure can now be evaluated by taking a boolean combination of
properties that in turn can be checked by going through elements of the model
and evaluating a local property for each and only doing bounded counting
during the scan (namely up to the cardinality of the cardinality formulae
used). In other words this means that for a fixed formula the expressed
property is checked in linear time and constant space.

3.2 Normalizing logic on pixel structures
We will now use the elimination of quantifiers from the previous section to
show that anything expressible in EMSO on pixel structures can be expressed
by a sentence using only a single universal first-order quantification. We first
apply the result from the previous section to pixel structures:

Corollary 3.2. On pixel structures, each first-order sentence is equivalent to
a boolean combination of cardinality formulae.

31

Proof. If we extend our pixel structures with corresponding predi function for
each succi and i ∈ [d], corollary 3.1 from the previous section clearly applies
as the structures become bijective with this signature. If we can now show
that each predi can be expressed using only succi given that the sentence
is a boolean combination of cardinality formulae, we can eliminate the new
symbols and thus establish the result for our original signature.

But certainly a cardinality formula ∃≥kxφ(x) is equivalent to ∃≥kxφ(succi(x))
for any i ∈ [d], as each succi is bijective. Furthermore, all the successor and
predecessor functions commute with each other so we can simply use above
observation, substitute succi(x) for x for every predi mentioned in the for-
mula and then eliminate the corresponding pairs of them using commutativity.
Thus all predi functions have been eliminated and we are left with a boolean
combination of cardinality formulae in the original signature.

Of course, the above result applies to any class of bijective structures
where the interpretations of the functions always commute with each other.
Next we use the inductive power of pixel structures and bounded counting
ability of EMSO to eliminate the cardinality formulae.
Proposition 3.2. EMSO ⊆ EMSO(∀1) on pixel structures.
Proof. Let ∃Ūφ be a sentence of EMSO. By the previous corollary, we can
assume the first-order part φ to be a boolean combination of cardinality
formulae. It will be enough to show that any cardinality formula of form
∃≥kxψ(x) or ¬∃≥kxψ(x) can be expressed as a sentence of EMSO(∀1) as
we can assume the boolean combination of cardinality formulae to be in
disjunctive normal form and EMSO(∀1) is closed under conjunction and
disjunction.

The idea is to use mini, maxi and succi functions to iterate the structure
in lexicographic order and to use k new relation symbols (Uj)1≤j≤k to perform
bounded counting up to k: the intended meaning of Uj(x) being that there
are at least j pixels satisfying ψ in the structure up to x in the lexicographic
order.

Let us temporary expand our signature with minlex, maxlex and succlex
interpreted as lexicographic order on [n]d given a pixel structure with domain
[n]. Given a quantifier-free formulae ψ(x), define ψ′(x) as conjunction of the
following formulae

minlex(x)→
(ψ(x)↔ U1(x)) ∧

∧
1<i≤k

¬Ui(x)

¬maxlex(x)→
∧

1≤i≤k

Ui(x) ∨
ψ(succlex(x)) ∧

∧
1≤j<i

Uj(x)
↔ Ui(succlex(x))

 .
32

Now given any pixel structure, there is always a unique interpretation for
U1, . . . , Uk satisfying ∀xψ′(x). Furthermore, this makes ∃≥kxψ(x) equivalent
to

∃U1 . . . Uk∀x [ψ′(x) ∧maxlex(x)→ Uk(x)]
and ¬∃≥kxψ(x) to

∃U1 . . . Uk∀x [ψ′(x) ∧maxlex(x)→ ¬Uk(x)]

Now it only remains to get rid of minlex, maxlex and succlex that are not
part of our our vocabulary. This must be done while observing the requirement
for the final formula.

Note first, that succlex(x) = succi . . . succd(x) for smallest i ∈ [d] such
that maxj(x) holds for all j > i. Suppose φ(succlex(x)) is a formula involving
succlex(x) term. We may rewrite it equivalently as

∧
i∈[d]

¬maxi(x) ∧
∧

i<j≤d
maxj(x)

→ ψ(succi . . . succd(x))
 .

To rewrite ψ(maxlex(x)) and ψ(minlex(x)) we simply write∧
i∈[d]

maxi(x)→ ψ(x)

and ∧
i∈[d]

mini(x)→ ψ(x),

respectively.

Reduction of EMSO to EMSO(∀1) is already quite a strong normal form
when locality is considered: it essentially states that a bunch of properties (ex-
istential monadic second-order quantification) holds uniformly in the structure
(universal first-order quantification) where each property is determined for
each pixel by a bounded local neighbourhood (only successor functions used
to refer to other elements). Indeed, in the above proof more was seen: cardi-
nality statements of EMSO were converted into a sort of a “scan” through the
structure. In the next section, we will use similar ideas and reduce EMSO(∀1)
even further.

3.3 Tiling pictures
As seen in section 2 above, tilings are an interesting way to look at picture
languages due to their inherent locality properties. In this section, we will

33

use tilings to define the class of recognizable d-dimensional picture languages
RECd and show that it in fact coincides with EMSO(∀1).

We will begin by introducing two normalizations of EMSO(∀1). The first
is to observe that identity statements are not required to talk about pixel
structures. This makes sense intuitively—as we are only quantifying pixels
using one universal quantifier and we can only use terms that include successor
functions that are permutations, any identity atomic formulae would in fact
evaluate the same for all pixels and simply express a statement about the size
of the picture.

Proposition 3.3. On pixel structures, a sentence of EMSO(∀1) is equivalent
to an EMSO(∀1) sentence that contains no identity atoms i.e atomic formulae
of form τ1(x) = τ2(x).

Proof. Let ∃Ū∀xψ(x) be a sentence of EMSO(∀1). Note that ψ is quantifier-
free. Also assume ψ to be in negative normal form meaning that negation
symbols occur only in front of atomic formulae.

Consider first what equalities mean on pixel structures. An atomic formula
succki (x) = x is true in the pixel structure of a picture p with domain [n] iff k
is a multiple of n. Also note that due to the nature of successor functions in
our square pictures, τ1(x) = τ2(x) holds for one pixel iff it holds for all pixels.
Given an identity statement for c > 0 and τ1 and τ2 such that they do not
contain succi, it holds on pixel structures that

succci(τ1(x)) = τ2(x)↔ (succci(x) = x ∧ τ1(x) = τ2(x)) .

This follows from two facts: that due to the nature of successor functions
any identity statement either holds for all pixels or none, and that distinct
successor functions are independent. Thus we may assume without loss of
generality that each identity atomic formula is of form succci(x) = x for some
i ∈ [d] and c > 0.

Let succci(x) = x then be an atomic identity formula of ψ(x). The idea is
simple: we use bounded counting as we did in the last section—only simpler—
to count successors from a mini pixel to maxi pixel. succci(x) = x holds iff we
count exactly c successors between the pixels. For each k ∈ [c] we introduce
a new symbol C=k

i and let

δci (x) =
(
mini(x)↔ C=1

i

)
∧

∧
j∈[c−1]

(
C=j
i (x)↔ C=j+1

i (succi(x))
)
.

Note that when the above holds in a pixel structure, C=c
i holds of the pixel

having maxi exactly when k is a multiple of n since we begin counting at
mini and let it cycle to min if needed.

34

Now ∃Ū∀xψ(x) is equivalent to

∃Ū∃j∈[c]C
=j
i ∀x (δci (x) ∧ ψ′(x)) ,

where ψ′(x) has been obtained by substituting every positive literal succci(x)
with

maxi(x)→ C=c
i (x).

and every negative literal ¬ succci(x) with

maxi(x)→ ¬C=k
i (x).

We can now repeat this replacement until no more identity statements
remain in the sentence.

Next we use similar techniques to remove term nesting, normalize “di-
rection” of successors and make the overall form more inductive, removing
cyclicity. Note that this logical form is essentially an inductive verification of
a guessed (cf. projection) hv-local tiling (see section 2.3) for each dimension
separately.

Proposition 3.4. On pixel structures, a sentence of EMSO(∀1) is equivalent
to a sentence of form

∃Ū∀x
∧
i∈[d]

mini(x)→ mi(x)∧
maxi(x)→Mi(x)∧
¬maxi(x)→ ψi(x)

 ,
where mi, Mi and ψi are quantifier-free formulae such that atomic formulae
of

• mi(x) and Mi(x) are of form Q(x)

• ψi(x) are of form Q(x) or Q(succi(x)),

with each Q ∈ {(Qs)s∈Σ, Ū}.

Proof. Let now ∃Ū∀xψ(x) be a sentence of EMSO(∀1). In the light of
previous proposition, we may assume that ψ(x) contains no identity atomic
formulae.

For a unary predicate symbol Q, define for each term τ a new relation sym-
bol UQ,τ(x) and then by induction on construction of terms the corresponding
formulae ψQ,τ(x) as follows:

ψQ,x = UQ,x ↔ Q(x)

35

ψQ,succi(τ(x)) =
(
UQ,succi(τ(x)) ↔ UQ,τ(x)(succi(x))

)
∧ ψQ,τ(x).

The idea here is to remove nesting in terms by guessing a predicate that
knows how the term will be evaluated for the predicate we are interested in.

Let ψ′(x) be the formula resulting from simultaneously replacing each
atomic formula Q(τ(x)) of ψ(x) with UQ,τ(x)(x). Now certainly ∃Ū∀xψ(x) is
equivalent to

∃Ū∃(UQ,τ(x))
Q(τ(x))∈ψ

∀x

ψ′(x) ∧
∧

Q(τ(x))∈ψ
ψQ,τ(x)

 ,
where Q(τ(x)) ∈ ψ means that Q(τ(x)) is an atomic formula of ψ.

We introduce some terminology to help complete the proof. By a clause
we mean a disjunction of literals. Note that a clause C1 ∨ · · · ∨ Cn may be
also be written equivalently as ¬C1 → (C2 ∨ · · · ∨ Cn). A clause is

• pure if it only contains atoms of the form Q(x) where Q is not minj nor
maxj for any j ∈ [d].

• i-cyclic if it only contains atoms of the form Q(x) or Q(succi(x)) where
Q is not minj nor maxj for any j ∈ [d].

• i-local if it is of a form ¬maxi(x) → C(x) where C(x) is an i -cyclic
clause.

• i-min if if it is of the form mini(x)→ C(x) where C(x) is a pure clause.

• i-max if if it is of the form maxi(x)→ C(x) where C(x) is a pure clause.

Note that the claim of the proposition is now equivalent to showing that

ψ′(x) ∧
∧

Q(τ(x))∈ψ
ψQ,τ(x)

is equivalent to a conjunction of clauses such that each clause is either pure,
i-min, i-max or i-local for some i ∈ [d]. Pure clauses are not allowed in the
requirement, but note that a pure clause C(x) of the conjunctive normal form
is equivalent to

∧
i∈[d]

mini(x)→ C(x)∧
maxi(x)→ C(x)∧
¬mini(x)→ C(x)

 .
Put ψ′(x) in conjunctive normal form. Note that each clause of ψ′(x) is

pure, because it only makes use of term x along with relation symbols Qτ(x)
for any relation symbol Q and term τ(x) mentioned in ψ.

36

So we are left to deal with conjuncts of form ψQ,τ(x) for each Q(τ(x))
mentioned in the original formula ψ. We will handle ψQ,x and ψQ,succi(τ ′(x))
separately.

For ψQ,x we have tree cases:
• If Q is not mini nor maxi for any i ∈ [d], ψQ,x is pure and can be

handled as above.

• If Q = mini for i ∈ [d], the definition of ψQ,x becomes
UQ,x(x)↔ mini(x)

which is equivalent to
(mini(x)→ Umini,x(x)) ∧ (¬mini(x)→ ¬Umini,x(x)) .

The first conjunct here is i-min already. The second conjunct can be
replaced with i-local clause

¬maxi(x)→ ¬Umini,x(succi(x)),
which is equivalent due to our universal quantification.

• If Q = maxi, ψmaxi,x is equivalent to
(maxi(x)→ Umaxi,x(x)) ∧ (¬maxi(x)→ ¬Umaxi,x(x)) .

Here already the first conjunct is i-max and the second one i-local so
there is nothing more to do.

Let a term τ(x) then be given. Formula ψQ,succi(τ(x)) is defined inductively
as a conjunction so we can assume ψQ,τ(x) handled already (ψQ,x was handled
above) and deal with the new conjunct introduced in the inductive step:

UQ,succi(τ(x))(x)↔ UQ,τ(x)(succi(x)).
The i-local part is easily recognized, but we need to get rid of cyclicity on
the maxi(x) pixel, when succi(x) refers to mini pixel. This, however, is
easily handled by another new unary relation symbol Umini

Q,τ(x) that remembers
UQ,τ(x)(x) for mini(x). Thus assuming quantification of the new relation
symbol, we can replace ψQ,succi(τ(x)) with equivalent

mini(x)→
(
Umini

Q,τ(x)(x)↔ UQ,τ(x)(x)
)
∧

¬maxi(x)→
(
Umini

Q,τ(x)(x)↔ Umini

Q,τ(x)(succi(x))
)
∧

¬maxi(x)→
(
UQ,succi(τ(x))(x)↔ UQ,τ(x)(succi(x))

)
∧

maxi(x)→
(
UQ,succi(τ(x))(x)↔ Umini

Q,τ(x)(x)
)

made up of i-max and i-local clauses.

37

We now define a tiling system to classify pictures. We will make use of
the bordering defined in the previous section. We first define notion of tilings
and local picture languages.

Definition 3.6.

1. Given a d-picture p and j ∈ [d], pixels (a1, . . . , ad) and (b1, . . . , bd) are
said to be j-adjacent if |aj − bj| = 1 and ak = bk for any k ∈ [d] with
k 6= j.

2. A tile for a d-language Σ is a pair in (Σ])2.

3. A picture p : [d]d → Σ is j-tiled by a set of tiles ∆ ⊆ (Σ])2 if for any
two j-adjacent a, b ∈ dom(p]) it holds that (p](a), p](b)) ∈ ∆.

4. A d-picture p is tiled by (∆1, . . . ,∆d), if p is j-tiled by ∆j for each
j ∈ [d].

5. We write L(∆1, . . . ,∆d) for the set of d-pictures tiled by (∆1, . . . ,∆d).

6. A d-language L on Σ is (∆1, . . . ,∆d)-tiled if L = L(∆1, . . . ,∆d).

7. A d-language L is local if it is (∆1, . . . ,∆d)-tiled by some sets of tiles
(∆1, . . . ,∆d).

Even though local picture languages is a rather weak notion, it becomes
powerful once we add ability to use extra markings during recognition. This
will be seen to correspond to the existential quantification of unary predicates
in EMSO.

Definition 3.7. A d-language L on Σ is recognizable if it is the projection of
a local d-language over alphabet Σ′. In other words, there exists a function
π : Σ′ → Σ and a local d-language L′ such that

L = π(L′) = {π ◦ p : p ∈ L′}.

Note that π ◦ p is a d-picture over Σ.
The class of recognizable d-languages over Σ is denoted by RECd(Σ) or

simply RECd when the alphabet used is understood.

Theorem 3.1. For any d > 0 and a d-language L on Σ: L ∈ RECd iff
pixeld(L) ∈ EMSO(∀1).

38

Proof. Assume first, that L is a recognizable d-language over alphabet Σ. Let
∆1, . . . ,∆d be sets of tiles over an alphabet Σ′ and π : Σ′ → Σ be such that
L = π(L(∆1, . . . ,∆d)). We may assume that alphabets Σ and Σ′ are distinct.

First we validate the underlying local language. Define formula Ψ∆1,...,∆d

as

Ψ∆1,...,∆d
=
∧
i∈[d]

mini(x)→
∨

(],s)∈∆i

Qs(x)∧

¬maxi(x)→
∨

(s,s′)∈∆i

(Qs(x) ∧Qs′(succi(x)))∧

maxi(x)→
∨

(s,])∈∆i

Qs(x)∧

.

Note that for a d-picture over Σ′ it holds that

pixeld(p′) |= Ψ∆1,...,∆d
iff p′ ∈ L(∆1, . . . ,∆d).

Now we only need to quantify symbols (Qs)s∈Σ′ and express that they respect
projection π, and we can recognize L. That is, let ΨL be the EMSO(∀1)-
sentence

(∃Qs)s∈Σ′∀x : Ψ∆1,...,∆d
∧
∧
s∈Σ

Qs(x)→
 ⊕
s′∈π−1(s)

Qs′(x) ∧
∧

s′∈Σ′\π−1(s)
¬Qs′(x)

 ,
where ⊕ means exclusive disjunction. The sentence expresses that pixel
labelled Qs must be labelled by exactly one of its inverse elements in π and
by no other labels. We now have

p ∈ L iff pixeld(p) |= ΨL.

Assume then, that pixel(L) is definable in EMSO(∀1). By proposition 3.4
we may assume it to be defined by a sentence

ΨL = ∃Ū∀x
∧
i∈[d]

mini(x)→ mi(x)∧
maxi(x)→Mi(x)∧
¬maxi(x)→ ψi(x)

 ,
where mi, Mi and ψi are as in proposition 3.4.

Let Ū = U1, . . . , Uk. Put each mi, Mi and ψi in complete disjunctive
normal form i.e disjunctive normal form so that every clause in mi, Mi and ψi
mentions every atomic sentence of form Qs(x) and Uj(x) for every j ∈ [k], and
ψi further every atomic sentence of form Qs(succ(x)) or Uj(succi(x))—this is
done by simply splitting each disjunct for every atomic formula not mentioned

39

in it until they become explicit. Also note that exactly one of (Qs(x))s∈Σ and
one of (Qs(succi(x)))s∈Σ appears as a positive literal in each clause of mi, Mi

and ψi. A clause having multiple positive occurrences of either could not be
satisfied by any pixel structure. We will use this fact next.

Define new alphabet Σ′ = Σ×P([k]) i.e attaching a subset of [k] for each
symbol of the original alphabet. We will use the symbols of Σ′ to encode
which of the unary predicates Uj hold for a given pixel. For each i ∈ [d] let
∆i ⊆ (Σ′])2 be the union of the following sets:

• ((s,K), (s,K ′)) ∈ (Σ′)2 such that ψi has a clause having exactly Qs(x),
Qs′(succ(x)), (Uk(x))k∈K and (Uk(succi(x)))k∈K as positive literals,

• (], (s,K)) ∈ (Σ′])2 such that mi has a clause having exactly Qs(x) and
(Uk(x))k∈K as positive literals,

• ((s,K),]) ∈ (Σ′])2 such that Mi has a clause having exactly Qs(x) and
(Uk(x))k∈K as positive literals.

In other words, for each i ∈ [d] we have

ψi =
∨

((s,K),(s,K′))∈(Σ′)2

Qs(x) ∧Qs′(succ(x))∧∧
j∈K

Uj(x) ∧
∧
j∈K′

Uj(succi(x))∧
∧

j∈[k]\K
Uj(x) ∧

∧
j∈[k]\K′

Uj(succi(x))

 ,

mi =
∨

(],(s,K))∈(Σ′])2

Qs(x) ∧
∧
j∈K

Uj(x) ∧
∧

j∈[k]\K
Uj(x)

 , and

Mi =
∨

((s,K),])∈(Σ′])2

Qs(x) ∧
∧
j∈K

Uj(x) ∧
∧

j∈[k]\K
Uj(x)

 .
Finally, define projection π : Σ′ → Σ as π((s,K)) = s. The projection
was defined by the formula and the tiling defined above expresses the same
properties of the guessed predicates as does the formula, so we have

L = π(L(∆1, . . . ,∆d))

and L is seen to be recognizable as a projection of a local language.

We will collect the results of this section in the following corollary:

Corollary 3.3. Given a d-language L, the following are equivalent:

40

• pixeld(L) is definable in EMSO

• pixeld(L) is definable in EMSO(∀1)

• L ∈ RECd.

41

4 Computational aspects of recognizable lan-
guages

Evaluating and otherwise examining word automata has many applications in
computer science and real world programming because of the low complexity
of such tasks—for pictures, it turns out the complexity is anything but usable.
Below we will give examples of how the situation regarding computational
aspects changes when moving from one dimensional words to pictures of even
two dimensions.

4.1 Membership problem
Given a description of a word automaton and a word, it is trivial to check
whether the automaton accepts the word or not. Given a description (in
at least two-dimensions) of a tiling system and a picture, however, it is an
NP-complete problem (see [Sch98]) to check whether the tiling system accepts
the picture. In fact, there even exists a tiling system such that it is an
NP-complete problem to ask whether a given picture is accepted by this fixed
tiling system.

4.2 Emptiness problem
The emptiness problem for tiling systems is undecidable (see [GR92]). It is
possible to encode a computation of a given Turing machine as a tiling system
in two dimensions so that the input is placed on the first row and the further
rows represent steps of the calculation. The language, then, includes pictures
for which the computation halts before the last row is reached. However, the
halting problem for Turing machines is known to be undecidable and it is
now equal to asking whether the described picture language is empty.

4.3 Simulation of computation
In [Bor08] it is shown that the stopping calculations of of a non-deterministic
Turing machine of complexity NPTIME(nd) is recognizable language of 2d-
dimensional pictures. Another form of evidence of the computation complexity
of tiling systems is also shown by the fact that a (d+ 1)-dimensional tiling
system can simulate the calculation of a d-dimensional linear time non-
deterministic cellular automaton, which again is a very powerful class of
computations (see [GO16]).

42

4.4 Cellular automata
Those familiar with cellular automata will have noticed that the online tessel-
lation automata introduced in section 2.4 is subfamily of cellular automata
with the property that the scan is performed diagonally and a once determined
(non-quiescent) value is never changed again, making the computation end
after a linear number of steps. Another interesting fact related to recognizabil-
ity is that the computation diagram of a d-dimensional cellular automaton is
a recognizable (d+ 1)-dimensional picture, the required additional dimension
being, of course, time.

The theory of picture languages has much more to do with cellular au-
tomata. Besides our logical characterization of REC studied here, in [GO16]
the authors present another similar result which characterizes the linear run-
ning time of a d-dimensional non-deterministic cellular automata to a sublogic
of existential second-order logic which allows d+ 1 universal quantifiers and
predicate arity of d+ 1.

43

5 Discussion
While we have seen that the class of recognizable picture languages has many
interesting characterizations that generalize those of word languages, it can
also be seen that they are rather powerful ones when dimension is above one,
and the computational complexity as examined in the previous section is much
different than that of regular word languages. While these characterizations
rose as a desire to find a characterization that unites logical, automata-based
and tiling-based characterizations like in word languages, it may be that it
is rather by the simplicity of one-dimensional case that so many classes of
languages collapse into one and the same for word languages even though the
computational model is simple.

Due to above, lately research has also shifted towards more limited ver-
sions of picture automata, tilings and logics in an attempt to find more
computationally robust classes of picture languages that still would resemble
regular word languages in some nice way. As far as the author knows, no
comprehensive survey of these exist yet. One problem that seems common to
these approaches is that the definitions tend to become much more difficult
to understand: one attraction of regular word languages is that its charac-
terizations based on regular expressions and automata so easy to state that
undergraduate students can readily work with them.

As further work, creating a survey of the recent developments in recognizing
pictures would surely be an interesting and fruitful journey. Also pictures,
other concepts introduced here and even cellular automata generalize naturally
for graphs. Indeed, before recognizable picture languages were defined, a
corresponding tiling system for graphs was introduced by [Tho91], who also
proved its equivalency with EMSO. Other closely related work also exists.
For example [Kuu13] has studied messaging in distributed computing via
message passing automata that is similar to cellular automata but operates
on a directed graph and also introduces information hiding that limits the
state information available to the neighbours or message receivers. Looking
for more recent results among both generalized and specialized cases such as
these to find transferable theorems not yet interpreted in one of them could
also be a useful to further research.

44

References
[BH67] M. Blum and C. Hewitt. Automata on a 2-dimensional tape. In 8th

Annual Symposium on Switching and Automata Theory (SWAT
1967), pages 155–160, Oct 1967.

[Bor08] Bernd Borchert. Formal language characterizations of P, NP, and
PSPACE. Journal of Automata, Languages and Combinatorics,
13(3–4):161–183, 2008.

[Bü60] J. Richard Büchi. Weak second-order arithmetic and finite au-
tomata. Mathematical Logic Quarterly, 6(1-6):66–92, 1960.

[DG07] Arnaud Durand and Etienne Grandjean. First-order queries on
structures of bounded degree are computable with constant delay.
ACM Trans. Comput. Logic, 8(4), August 2007.

[Ebb95] Heinz-Dieter Ebbinghaus. Finite model theory. Perspectives in
mathematical logic. Springer, Berlin, 1995.

[GO16] Etienne Grandjean and Frédéric Olive. A logical approach to
locality in pictures languages. Journal of Computer and System
Sciences, 82(6):959–1006, 2016.

[GR92] Dora Giammarresi and Antonio Restivo. Recognizable picture lan-
guages. International Journal of Pattern Recognition and Artificial
Intelligence, 06(02n03):241–256, 1992.

[GR96] D. Giammarresi and A. Restivo. Two-dimensional finite state
recognizability. Fundamenta Informaticae, 25(3-4):399–422, 1996.
cited By 31.

[GR97] Dora Giammarresi and Antonio Restivo. Two-dimensional lan-
guages. In Grzegorz Rozenberg and Arto Salomaa, editors, Hand-
book of Formal Languages: Volume 3 Beyond Words, pages 215–267.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1997.

[GRST96] Dora Giammarresi, Antonio Restivo, Sebastian Seibert, and Wolf-
gang Thomas. Monadic second-order logic over rectangular pic-
tures and recognizability by tiling systems. Information and
Computation, 125(1):32–45, 1996.

[IN77] Katsushi Inoue and Akira Nakamura. Some properties of two-
dimensional on-line tessellation acceptors. Information Sciences,
13(2):95–121, 1977.

45

[IT92] K Inoue and I Takanami. A characterization of recognizable picture
languages. Lecture Notes in Computer Science, 654:133–143, 1992.

[KS11] Jarkko Kari and Ville Salo. A survey on picture-walking au-
tomata. In Werner Kuich and George Rahonis, editors, Algebraic
Foundations in Computer Science: Essays Dedicated to Symeon
Bozapalidis on the Occasion of His Retirement, pages 183–213,
Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[Kuu13] Antti Kuusisto. Modal Logic and Distributed Message Passing Au-
tomata. In Simona Ronchi Della Rocca, editor, Computer Science
Logic 2013 (CSL 2013), volume 23 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 452–468, Dagstuhl, Germany,
2013. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[LS97] Michel Latteux and David Simplot. Recognizable picture languages
and domino tiling. Theoretical Computer Science, 178(1):275 –
283, 1997.

[Mat07] Oliver Matz. Recognizable vs. regular picture languages. In
Computing and Informatics / Computers and Artificial Intelligence
- CAI, volume 4728, pages 112–121, 01 2007.

[RS59] Michael Rabin and Dana Scott. Finite automata and their decision
problems. IBM Journal of Research and Development, 3:114–125,
04 1959.

[Sch98] N. Schweikardt. The monadic quantifier alternation hierarchy over
grids and pictures. Computer Science Logic, 1414:441–460, 1998.

[Tho91] Wolfgang Thomas. On logics, tilings, and automata. In
Javier Leach Albert, Burkhard Monien, and Mario Rodŕıguez
Artalejo, editors, Automata, Languages and Programming, pages
441–454, Berlin, Heidelberg, 1991. Springer Berlin Heidelberg.

46

	Acknowledgements
	Introduction
	Word languages
	Basic definitions
	Finite automata
	Two-way finite automata

	Picture languages
	Regular expressions
	Recognizable languages
	Domino tilings
	Automata on pictures

	Logical locality on picture languages
	Elimination of quantifiers in bijective structures
	Normalizing logic on pixel structures
	Tiling pictures

	Computational aspects of recognizable languages
	Membership problem
	Emptiness problem
	Simulation of computation
	Cellular automata

	Discussion

