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Chapter 1

Introduction

In the theory of partial di�erential equations, one of the most important equations is the
heat equation, which describes the evolution of the heat distribution in a medium. The
study of the heat equation can be traced back to Joseph Fourier, who published his semi-
nal work on heat �ow in [3]. In this work, he derived solutions for the equation in simple
domains by applying the eponymous Fourier series, which still prove to be useful in di�er-
ent areas of mathematics. Since then, methods for studying the equation have advanced,
and the interest has shifted from �nding particular solutions to existence and uniqueness
of solutions. From the mathematical point of view, an interesting generalization is to add
a nonlinear term of polynomial type to the heat equation, making it into a semilinear
partial di�erential equation. In the 1960s Hiroshi Fujita studied this generalization in his
papers [4] and [5], and showed that the existence and non-existence of solutions depend
critically on the exponent of the polynomial perturbation. The understanding of the semi-
linear heat equation has naturally grown ever since, and for the purposes of this thesis,
we mention the paper [10] by Jari Taskinen, since we will apply similar techniques. In his
paper he proves among more general cases, that for exponents p ≥ 4 with a su�ciently
small initial condition, there exists a unique solution to the one-dimensional semilinear
heat equation.

In Chapter 2 we expose the basics of functional analysis. We start o� by de�ning
Banach spaces and provide some examples of them. Then, we state the very useful Banach
�xed point theorem, which guarantees the existence and uniqueness of a solution to certain
types of integral equations. Next, we consider linear maps between normed spaces, with
a focus on linear isomorphisms, which are linear maps preserving completeness. The
isomorphisms prove to be very useful, when we consider weighted spaces. This is due to
the fact that for certain types of weights, we can identify the multiplication by weight
with a linear isomorphism.
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In Chapter 3 we consider the Fourier transform

F(f)(ξ) =

∫
Rd
f(x)e−iξ·xdx,

which is a highly useful tool for studying linear partial di�erential equations. We expose
its basic mapping properties, such as, interaction with derivatives and convolution. Then,
we consider useful spaces in Fourier analysis, like the Schwartz space S(Rd) of rapidly
decreasing functions, which is an example of a space that is preserved under the Fourier
transform.

Chapter 4 is on the regular, inhomogeneous heat equation

∂tu(x, t)−∆u(x, t) = f(x, t).

A common method for deriving the solution to heat equation is formally applying the
Fourier transform to it. This way we obtain a �rst order, linear ordinary di�erential
equation, for which there is a known solution. The derived solution will actually serve
as a motivator for how to approach the semilinear case. Also, in the end we will solve
explicitly a slight generalization of the heat equation.

In Chapter 5 we prove the main result of this thesis: existence and uniqueness of a
generalized solution for the semilinear heat equation. The methods we use in the proof
are quite elementary in the sense that we do not need heavy mathematical machinery.
We reformulate the generalized semilinear heat equation using the operator:

G(u)(x, t) =
1√
4πt

∫
R
e−

(x−y)2
4t f(y)dy +

∫ t

0

1√
t− s

∫
R
e−

(x−y)2
4(t−s) |u(y, s)|pdyds,

and show that it satis�es the conditions of the Banach �xed point theorem in a suitable
Banach space of continuous functions, endowed with the sup-norm:

‖f‖w = sup
x∈R

sup
t∈R0

+

√
t+ 1

(
1 +

|x|√
t+ 1

)m
|f(x, t)|.

We also include an appendix, in which we discuss di�erentiability properties of the
generalized solution. It is possible to apply methods used in the proof of the generalized
case to prove continuous di�erentiability. We provide some ideas on how one should
approach the time di�erentiability of the solution by estimating the di�erence quotient of
the integral operator.
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Chapter 2

Normed spaces

Since this thesis is about the existence and uniqueness of a solution for a partial di�erential
equation, it is natural to consider properties of normed spaces, namely complete normed
spaces.

Basic normed space theory

We begin by recalling some basic theory of normed spaces, and then give some concrete
and useful examples of them. We start from the de�nition of a normed space, and then
move onto de�ning the necessary topological concepts.

De�nition 2.1. If E is a vector space and ‖·‖ is a norm on E, then we call the pair
(E, ‖·‖) a normed space.

For future reference, we usually use a short-hand notation for (E, ‖·‖) = E. This is
due to the fact that sometimes the norm is arbitrary (especially in theorems about normed
spaces) and also because in concrete examples the norm is known.

De�nition 2.2. A sequence (xn) in a normed space E is called a Cauchy sequence, if for
all ε > 0 there exists a natural number n0 such that ‖xn − xm‖ < ε for all n,m ≥ n0.

De�nition 2.3. A normed space E is called complete, if every Cauchy sequence in E
converges to an element in E. We usually call complete normed spaces Banach spaces.

Let us now present some examples of Banach spaces, the most basic one being the
space of real numbers endowed with the usual Euclidean norm. Then, we have the usual
spaces of continuous functions endowed with the supremum norm, which can be divided
into two cases: one with compact domain (where compactness of X implies boundedness),
and the general non-compact domain case, where the boundedness of the functions has
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to be assumed. We will not be giving any proofs, since they are not the main interest,
but they can be found in any basic functional analysis book. For Finnish references, the
proofs are found in the lecture notes of Real analysis [7] and Functional analysis [1].

Example 2.4. If K is a compact metric space, we denote

(C(K,R), ‖·‖∞) = {f : K → R : ‖f‖∞ <∞}.

Example 2.5. If X is a metric space, we denote

Cb := (Cb(X,R), ‖·‖∞) = {f : X → R bounded and continuous : ‖f‖∞ <∞}.

If we take X = Rd, there are many important subspaces of continuous functions. In the
study of partial di�erential equations, we are particularly interested in functions with
di�erentiability properties. Let us begin by de�ning the multi-index α = (α1, α2, ..., αd),
α ∈ Nd, where N = {0, 1, 2, 3...}. For our purposes, it encodes how many times and in
which direction a transformation is applied. With this in mind, let us de�ne the αth
derivative of a function f : Rd → R:

(2.6) ∂αx f(x) = ∂α1
x1
∂α2
x2
...∂αdxd f(x),

where ∂αixi , i = 1, 2, 3, .., d means di�erentiating αi times with respect to variable xi. If
αi = 0, it means we do not di�erentiate the function with respect to xi, and if αi = 1
we denote ∂αixi = ∂xi . We may now de�ne the space of k times continuously di�erentiable
functions:

Ck(Rd) := Ck(Rd,R) = {f ∈ C(Rd,R) : ∂αx f ∈ C(Rd,R) ∀α ∈ Nd such that |α| ≤ k},

where |α| =
∑d

i=1 αi.
Now we may de�ne the space of in�nitely many times di�erentiable functions, which

is also called the space of smooth functions:

C∞(Rd) := C∞(Rd,R) = {f ∈ C(Rd,R) : ∂αx f ∈ C(Rd,R) ∀α ∈ Nd}.

Note that neither of the vector spaces Ck(Rd) and C∞(Rd) can be endowed with the
sup-norm, since Rd is not compact and we do not assume boundedness of functions in
these spaces. In order for us to introduce an important subspace of Cb(Rd) with nice
di�erentiability properties, we need to de�ne the closed support of a function f : X → R:

spt(f) = {x ∈ X : f(x) 6= 0}.

We say that f is compactly supported, if spt(f) is compact. Now we may de�ne the space
of smooth functions with compact support:

C∞0 (Rd) = {f ∈ C∞(Rd) : spt(f) is compact}.
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Using simple arguments one can show that C∞0 (Rd) is a linear subspace of Cb(Rd).
We turn to Lp-spaces, which are harder to describe precisely. For simplicity, we con-

sider the case where the functions are de�ned on the d-dimensional Euclidean space or any
good enough subspace X of it. The space Lp consists of equivalence classes of measurable
functions and it can be endowed with the following norm to obtain a complete normed
space,

‖f‖p =

(∫
X

|f(x)|pdx
) 1

p

,

where 1 ≤ p < ∞ and X ⊆ Rd. One can also de�ne the space Lp for p = ∞: the space
consists of essentially bounded functions, and it is endowed with the essential sup-norm.
Another special case is p = 2, where the norm is induced by the following inner product:

(f, g)L2(X) =

∫
X

f(x)g(x)dx,

which makes L2(X) into a complete inner product space, also called a Hilbert space.
These exhibit a lot of useful properties, which Banach spaces do not necessarily have, but
these considerations are not important for our purposes.

Next, we introduce a very powerful theorem called Banach �xed point theorem. First,
we de�ne the Lipschitz-maps

De�nition 2.7. Let E and F be normed spaces. We say that the mapping (not nec-
essarily linear) f : E → F is M -Lipschitz, if there exists a constant M ≥ 0 such that
‖f(x)− f(y)‖F ≤M ‖x− y‖E for all x, y ∈ E. And if M < 1, then f is called a contrac-
tion.

Theorem 2.8 (Banach �xed point theorem). Let X be a closed, non-empty subset of
complete normed space E, and T : X → X be a contraction. Then, T has a unique �xed
point a ∈ X. In addition, if x ∈ X, then the sequence (T k(x))∞k=1 converges to a. Here,
the �xed point a means an element of X such that T (a) = a. Moreover, T k is the kth

iterate of T : T 2 = T ◦ T , T 3 = T ◦ T ◦ T , T k = T ◦ T...T ◦ T︸ ︷︷ ︸
k times

.

Proof. Let us �rst prove that the �xed point is unique. Let a, b ∈ X be distinct �xed
points of T : X → X. Since we assumed T to be a contraction, we obtain:

‖a− b‖ = ‖T (a)− T (b)‖ ≤ q ‖a− b‖ ,

where q < 1. This gives us a = b, which is a contradiction. Thus, if T has a �xed point,
it has to be unique.
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Next, we prove that there exists a �xed point and that the sequence (T (x), T 2(x), .., T k(x), ..)
converges to a. Let x0 ∈ X. We form a sequence (xn)∞n=0, where xn+1 = Txn ∀n ∈ N. We
�rst show, that (xn)∞n=0 is a Cauchy sequence. For all n ∈ N we have

‖xn − xn+1‖ = ‖T (xn−1)− T (xn)‖ ≤ q ‖xn−1 − xn‖ .

By using a simple induction we obtain:

‖xn − xn+1‖ ≤ qn ‖x0 − x1‖ .

Let 1 ≤ n < k. Using the formula for the geometric sum, we obtain:

‖xn − xk‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − xn+2‖+ ...+ ‖xk−1 − xk‖
≤ (qn + qn+1 + ...+ qk−1) ‖x0 − x1‖

≤ qn ‖x0 − x1‖
1− q

.

Using q < 1 we know that qn → 0 as n → ∞. This gives us that the sequence (xn)∞n=0

is Cauchy. We recall from course Topology I [11], that a closed subset X ⊂ E is a
complete metric space. Thus, the sequence (xn)∞n=0 converges towards some a ∈ X. Since
T is continuous, we have that T (xn) → T (a). On the other hand, T (xn) = xn+1, so
T (xn)→ a. This gives us that T (a) = a.

It is known that the di�erential operator d
dx

is not continuous in any reasonable normed
space. Even though this seems bad in view of the applications of the �xed point theorem,
there is a way of reformulating particular di�erential equations as integral operator equa-
tions. This helps us immensely, since integral operators tend to be Lipschitz-continuous,
so what is left to prove is the contractivity and that it maps the set E into itself.

Linear isomorphisms and weighted spaces

In Functional analysis it is important to study mappings which preserve the completeness
property of a normed space. For this we need to recall a couple of de�nitions and results
of basic functional analysis. A good place to begin is to consider linear maps. We recall
that if X and Y are vector spaces, then T : X → Y is a linear mapping if it satis�es the
equation T (ax + by) = aT (x) + bT (y) for all x, y ∈ X. Since we are working in Banach
spaces, we can also speak of continuity, and it turns out that continuity and boundedness
are equivalent for linear maps. For future reference, we use the terms linear map, linear
operator and linear transformation to describe the same thing.

Theorem 2.9. Let E and F be Banach spaces and T : E → F linear. Then, the following
are equivalent:
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(1) T is continuous

(2) There exists a constant C > 0 such that ‖Tx‖F ≤ C ‖x‖E .

There are many canonical examples of bounded linear maps, but for our purposes a
particularly interesting example is the usual integral operator with a nice enough kernel
function K(x, y).

Example 2.10. Let us de�ne the linear integral operator T : C([0, 1],R)→ C([0, 1],R),

T (f)(x) =

∫ 1

0

K(x, y)f(y)dy, K(x, y) ∈ C([0, 1]2,R)

The linearity is obvious and the boundedness proof is quite elementary, it is based on the
fact that the kernel is a continuous function in a compact space (and thus has a uniform
upper bound M ≥ 0). So we get that

‖T (f)‖∞ ≤
∫ 1

0

‖K(x, y)‖∞ ‖f‖∞ dx ≤M(1− 0) ‖f‖∞ = M ‖f‖∞ .

A canonical example of a discontinuous linear map is the di�erential operator men-
tioned earlier. The discontinuity is due to the following fact: einx ∈ C([0, 1],C) with
‖einx‖∞ = 1, but the norm of the derivative clearly is not bounded:∥∥∥∥deinxdx

∥∥∥∥
∞

=
∥∥neinx∥∥∞ = n.

Let us denote the space of continuous linear maps from E to F by L(E,F ). This is a
normed space, if we endow it with the so called operator norm, and even a Banach space
if F is Banach. The operator norm is de�ned as follows

‖T‖ = sup
‖x‖E≤1

‖Tx‖F .

We note that, the in�mum of constants C > 0 in Theorem 2.9 equals the operator norm.
An important property of the space L(E,F ) is the so called submultiplicity of com-

position of continuous linear maps. The following theorem will give further explanation
on this:

Theorem 2.11. Let E, F and G be normed spaces and T ∈ L(E,F ) and S ∈ L(F,G) be
bounded linear operators. Then, the composition of functions ST = S ◦ T ∈ L(E,G) and

(2.12) ‖ST‖ ≤ ‖S‖ ‖T‖ .
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Proof. By basic linear algebra, a composition of two linear maps is linear. If x ∈ E and
‖x‖E ≤ 1, then

‖STx‖G = ‖S(Tx)‖G ≤ ‖S‖ ‖Tx‖F ≤ ‖S‖ ‖T‖ .

Thus, ST ∈ L(E,G) and ‖ST‖ ≤ ‖S‖ ‖T‖.

Even though completeness is not a topological property per sé, it turns out to be useful
for us to consider the necessary condition for a linear map to be a homeomorphism between
two normed spaces. We already know that boundedness is equivalent to continuity, but
now we state the following theorem, which says that boundedness from below implies the
continuity of the inverse map.

Theorem 2.13. Let E,F be normed spaces and T : E → F be a linear bijection. Then,
T−1 is linear and

(2.14) T−1 is continuous⇔ There exists α > 0 such that ‖Tx‖F ≥ α ‖x‖E , ∀x ∈ E.

Proof. Let x, y ∈ F and λ, µ ∈ R. Then, we have the following:

T (λT−1x+ µT−1y) = λTT−1x+ µTT−1y = λx+ µy = T (T−1(λx+ µy))

Since T is a bijection, it follows that T−1 is linear:

λT−1x+ µT−1y = T−1(λx+ µy).

Then, we prove that (2.14) holds.
"⇒" Since T−1x0 = 0⇔ x0 = 0, we may assume that E and F are non-trivial normed

spaces. This means that E,F 6= {0}. Thus, there exists a non-zero x0 ∈ F , so that

0 <
‖T−1x0‖E
‖x0‖F

≤
∥∥T−1

∥∥ .
Thus, we obtain that 0 < ‖T−1‖ <∞, which gives us that 1

‖T−1‖ <∞.
If x ∈ E is arbitrary, then

‖x‖E =
∥∥T−1Tx

∥∥
E
≤
∥∥T−1

∥∥ ‖Tx‖F .
Now, we obtain ∥∥T−1

∥∥−1 ‖x‖E ≤ ‖Tx‖F , x ∈ E.

By choosing α = ‖T−1‖−1
we conclude the proof of this direction.
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"⇐" Assume that ‖Tx‖F ≥ α ‖x‖E for all x ∈ E. If y ∈ F is arbitrary, we choose
x = T−1y. Then, Tx = y and by assumption:∥∥T−1y

∥∥
E

= ‖x‖E ≤
1

α
‖Tx‖F =

1

α
‖y‖F ,

which holds for all y ∈ F . Thus, we have ‖T−1‖ ≤ 1
α
< ∞. By Theorem 2.9, T−1 is a

continuous linear map.

We obtain the following theorem as a corollary:

Theorem 2.15. Let E,F be normed spaces and T : E → F be a linear bijection. Then,
T is a homeomorphism if and only if there exist constants α, β > 0 such that

(2.16) α ‖x‖E ≤ ‖Tx‖F ≤ β ‖x‖E , ∀x ∈ E.

We take the conditions (2.16) of the Theorem 2.15 to de�ne linear isomorphisms.

De�nition 2.17. If T ∈ L(E,F ) satis�es the inequalities (2.16) of Theorem 2.15, then
we say that T is a linear isomorphism and that E and F are linearly isomorphic.

Theorem 2.18. Let E and F be normed spaces and T ∈ L(E,F ) be a linear isomorphism.
Then, we have that E is complete if and only if F is complete.

Proof. Due to symmetry it su�ces to prove the claim in only one direction. Let (xn) be
a Cauchy sequence in F , then we have∥∥T−1xn − T−1xm

∥∥ =
∥∥T−1(xn − xm)

∥∥ ≤ ∥∥T−1
∥∥ ‖xn − xm‖

so (T−1xk) is also Cauchy in E. Since E is complete, there exists y ∈ E such that
T−1xk → y, and

‖xk − Ty‖ =
∥∥T (T−1xk − y)

∥∥ ≤ ‖T‖∥∥T−1xk − y
∥∥→ 0.

Thus, F is complete.

Now that we have essentially characterized mappings preserving the completeness of
normed spaces, we may move onto one of the central subjects of this thesis, weighted
normed spaces. These can be de�ned quite generally, but we are only interested in sub-
spaces of C(X,R). This space is an algebra, because for elements f, g ∈ C(X,R) we have
a well-de�ned multiplication (fg)(x) = f(x)g(x) ∈ C(X,R). The same holds if we replace
C(X,R) with Cb(X,R), which is a Banach space. These considerations give us a natural
candidate for what we call a weight, and what we mean by weighted space.
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De�nition 2.19. Let w be an element of the vector space C(X,R). Then, we de�ne the
weighted space associated with the weight w as follows

Cw = (Cw(X,R), ‖·‖w) =: {u ∈ C(X,R) : ‖wu‖∞ <∞}.

The de�nition gives us a large collection of functions in C(X,R), and we proceed to
specify the most useful weights for us. We �rst need to demand that for w ∈ C(X,R) there
exists a �xed δ > 0 such that |w(x)| ≥ δ for all x ∈ X. This gives us that w−1 ∈ Cb(X,R),
where w−1(x) = 1

w(x)
for all x ∈ X. Thus, we get the following result, that if the weight

is "invertible", then the corresponding weighted space is complete.

Theorem 2.20. Let w be an element belonging to the space C(X,R). If there exists a
�xed δ > 0 such that |w(x)| ≥ δ for all x ∈ X, then the corresponding weighted space
Cw = (Cw(X,R), ‖·‖w) is complete.

Proof. Let u ∈ Cw and de�ne a linear mapping Tw−1 : Cb → Cw as follows: Tw−1u = w−1u.
It is clearly linear, and we have that

(2.21) ‖Tw−1u‖w =
∥∥ww−1u

∥∥
∞ = ‖u‖∞ .

This means that Tw−1 is an isometry, but more importantly, it satis�es the conditions of
being a linear isomorphism with constants α = β = 1. Thus, by Theorem 2.18, we have
that Cw is also complete.
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Chapter 3

Fourier transform

In this chapter we will review the basic properties concerning the Fourier transform,
which is of huge importance in the theory of linear, constant coe�cient partial di�erential
equations. It provides a lot of insight about how the solutions of these equations should
look like. The proofs will be mostly omitted, since Fourier analysis is not the main focus
of this thesis and they are easily found in any basic literature, for example [9].

We begin by de�ning the Fourier transform F for integrable functions.

De�nition 3.1. Suppose that f : Rd → C is in L1(Rd). We de�ne

(3.2) F(f)(ξ) =

∫
Rd
f(x)e−iξ·xdx, ξ, x ∈ Rd.

The above expression is clearly well-de�ned, and ‖F(f)‖∞ ≤ ‖f‖1. The Fourier transform
can have useful properties in other spaces too, more on this later.

There are other ways of de�ning the Fourier transform, for example we could replace
the exponent −iξ ·x with −i2πξ ·x. The de�nitions give equivalent results, but depending
on the context, the normalizing constants may be better. We will see that the inversion
formula for our exponent has an unpleasant normalizing constant, which the other de�-
nition does not have. But the reason we choose (3.2) as our de�nition is, that the Fourier
transform of derivatives have a nicer form than for the exponent −i2πξ · x.

Elementary properties of the Fourier transform

Let us begin by considering elementary properties of the Fourier transform and associated
concepts. We �rst consider whether one can recover the function which has been Fourier
transformed. Turns out there is an explicit inversion formula, which is akin to the regular
Fourier transform. Let us state the inversion theorem:
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Theorem 3.3 (Fourier inversion theorem). If f ∈ L1(Rd) and Ff ∈ L1(Rd), then we
have a well-de�ned inverse Fourier transform and it can be calculated as follows

(3.4) F−1(f)(x) =
1

(2π)d

∫
Rd
F(f)(ξ)eiξ·xdξ, ξ, x ∈ Rd.

Now that we have the inversion formula, we next consider operations, which have nice
properties under the Fourier transform. First one of these is the convolution, which is
very useful in partial di�erential equations and analysis in general. For example it is
used to prove that the subspace C∞0 (Rd) is dense in all Lp(Rd) space. This means that if
f ∈ Lp(Rd), it can be approximated by a function g ∈ C∞0 (Rd) (in the Lp-norm). A proof
for this result is found in [7].

De�nition 3.5. Suppose that f and g belong to L1(Rd). We de�ne the convolution as
follows:

(3.6) (f ∗ g)(x) =

∫
Rd
f(x− y)g(y)dy =

∫
Rd
f(y)g(x− y)dy, x ∈ Rd.

The reason for introducing the convolution is the following theorem, which relates the
Fourier transform of the convolution to the product of Fourier transforms:

Theorem 3.7 (Convolution theorem). Suppose f, g ∈ L1(Rd). Then,

(1) (f ∗ g) ∈ L1(Rd) with ‖f ∗ g‖1 ≤ ‖f‖1 ‖g‖1

(2) The Fourier transform of f ∗ g satis�es the following equation:

(3.8) F(f ∗ g)(ξ) = F(f)(ξ)F(g)(ξ), ξ ∈ Rd.

Proof. Let us begin by proving statement (1). If f, g ∈ L1(Rd), then

‖f ∗ g‖1 =

∫
Rd

∣∣∣∣∫
Rd
f(x− y)g(y)dy

∣∣∣∣ dx
≤
∫
Rd

∫
Rd
|f(x− y)g(y)|dydx

=

∫
Rd

∫
Rd
|f(x− y)g(y)|dxdy(3.9)

=

∫
Rd
|g(y)|

∫
Rd
|f(x− y)|dxdy

=

∫
Rd
|g(y)| ‖f‖1 dy(3.10)

= ‖f‖1 ‖g‖1 ,
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where in the equality (3.9) we applied Fubini's theorem and in the inequality (3.10) we
used that integral over the whole space Rd is translation invariant.

Now, we prove the equation (3.8). To this end, let us calculate the Fourier Transform
F of the function (f ∗ g) ∈ L1(Rd):

F(f ∗ g)(ξ) =

∫
Rd

∫
Rd
f(x− y)g(y)dy e−iξ·xdx

=

∫
Rd

∫
Rd
f(x− y)g(y)e−iξ·yeiξ·ye−iξ·xdydx

=

∫
Rd

∫
Rd
f(x− y)g(y)e−iξ·ye−iξ·(x−y)dxdy(3.11)

=

∫
Rd
g(y)e−iξ·y

∫
Rd
f(x− y)e−iξ·(x−y)dxdy

=

∫
Rd
g(y)e−iξ·yF(f)(ξ)dy(3.12)

= F(f)(ξ)F(g)(ξ),

where we applied Fubini once again in (3.11), and in (3.12) we used that integral over the
whole space Rd is translation invariant.

As a corollary of Convolution theorem 3.7 and Fourier inversion theorem 3.3 we obtain
the following:

Corollary 3.13. Suppose f, g ∈ L1(Rd) and in addition that F(f)F(g) ∈ L1(Rd). Then,
we have the following identity

F−1(F(f)F(g))(x) = (f ∗ g)(x), x ∈ Rd.

Another useful property of the Fourier transform is how it maps partial derivatives of
a function. Let us begin by recalling that a monomial is de�ned analogously to the αth
derivative (2.6):

xα = xα1
1 x

α2
2 ...x

αd
d , x ∈ Rd, α ∈ Nd.

This will be useful in the next theorem which connects the Fourier transform of a derivative
of a function to multiplying transformed function by a monomial.

Theorem 3.14. Let f ∈ C∞0 (Rd) and α be a multi-index. Then, we have the following
relationship:

(3.15) F(∂αx f(x))(ξ) = (iξ)αF(f)(ξ), ξ, x ∈ Rd.

14



It is possible to relax the conditions of the function f and its di�erentiability, to obtain
similar results, for example, in Sobolev spaces. The book [2] is excellent for learning about
these spaces.

In view of the above theorems we can deduce that with suitable integrability and
di�erentiability conditions, the �rst theorem can be inverted. This means that multiplying
by a monomial in x-space corresponds to di�erentiation in ξ-space.

Theorem 3.16. Let |xα||f(x)| be an element in L1(Rd). Then, we have for the αth
derivative of the Fourier transform ∂αξ F(f) ∈ C(Rd) and

(3.17) ∂αξ F(f)(ξ) = F((−ix)αf(x)), ξ, x ∈ Rd.

Let us illustrate the usefulness of the material covered so far. We consider the following
second order, linear di�erential equation in R for the unknown function u : R→ R:

(3.18) −∂2
xu(x) + u(x) = f(x), x ∈ R,

where f ∈ C∞0 (R) is a known function. If we assume that (3.18) has a solution, then we
may apply the Fourier transform on both sides to obtain the following:

F(f)(ξ) = F(−∂2
xu)(ξ) + F(u)(ξ)

*
= ξ2F(u)(ξ) + F(u)(ξ)

= (1 + ξ2)F(u)(ξ),

where ξ, x ∈ R. In the equality (*) we applied Theorem 3.14. Since 1 + ξ2 > 0, we may
divide both sides with it and obtain

(3.19) F(u)(ξ) =
F(f)(ξ)

1 + ξ2
.

Using Corollary 3.13 and the black box knowledge that F(Ce−|·|)(ξ) = 1
1+ξ2

, we get a

solution for (3.18):

(3.20) u(x) =

∫
R
Ce−|y|f(x− y)dy.

Here C is some constant depending on the de�nition of Fourier transform. The solution
above might not be in an explicit form, but it still demonstrates how one can construct a
solution to a linear, inhomogeneous, constant coe�cient di�erential equation. An inter-
esting thing to note is that both e−t and et solve the homogeneous version of (3.18), and
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in the above integral representation there is the function e−|x|. This is not a coincidence,
since e−|x| is the so called fundamental solution of the di�erential operator −∂2

x + I.
It is also wise to note that the method above does not work as such in all cases: it

may for example happen that after applying the Fourier transform we obtain

p(ξ)F(u)(ξ) = F(f)(ξ),

where p is a polynomial with zeroes in R. Questions regarding problems like this, what
it means precisely to be a fundamental solution, are answered by distribution theory.

Useful spaces in Fourier analysis

Next, we consider spaces which are useful in Fourier analysis. We are especially interested
in the mapping properties of Fourier transform: if the function f has some properties,
what properties does the transformed function Ff have? Especially, are some essential
properties preserved? Or even better, do we have spaces which are completely preserved
under the Fourier transform? It is natural to start the considerations with Lp spaces. We
already established that if f ∈ L1(Rd), then Ff ∈ L∞(Rd) with the estimate ‖F(f)‖∞ ≤
‖f‖1. Considering purely the basic theory of partial di�erential equations, cases p 6= 2
are not that essential. Thus, we focus on L2, which is particularly useful, because it is a
Hilbert space. What exactly are the Fourier mapping properties of L2(Rd)? The essential
feature is that Fourier transform is a so called unitary operator L2 → L2. This is the
same as being a continuous linear bijection, but with the added caveat that the norm is
preserved. What we mean by this is:

Theorem 3.21. Let f be an element in L2(Rd). Then, the Fourier transform Ff is also
in L2(Rd). Furthermore, the Fourier transform is a continuous linear bijection L2(Rd)→
L2(Rd), which is even a unitary operator:

(3.22) ‖f‖L2(Rd) = ‖Ff‖L2(Rd) .

What about spaces with di�erentiability and compact support properties? One can
ask whether or not it is true that Ff ∈ C∞0 (R) for f ∈ C∞0 (R). It turns out that the only
function satisfying the aforementioned property is f ≡ 0.

Even though the compactly supported case is a dead end, there is a nice class of
functions called the Schwartz functions, whose derivatives are rapidly decreasing. We
denote and de�ne the space as follows:

De�nition 3.23. S(Rd) =: {f ∈ C∞(Rd) : sup
N∈N

sup
α∈Nd

sup
x∈Rd
|(1 + x)2N∂αx f(x)| <∞}.
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We �rst observe that if f ∈ S(Rd), then f ∈ Lp(Rd) for all 1 ≤ p < ∞, and also, if
f ∈ C∞0 (Rd), then it is in S(Rd). The canonical example of a function in S(Rd) is the
Gaussian function φ(x) = e−x

2
, which turns out to be useful in the study of the solution

for heat equation. This, in part, is due to the fact that the Gaussian is an eigenfunction
of the Fourier transform:

Lemma 3.24. Let a > 0 and φ(x) = e−a|x|
2
. Then,

(3.25) F(f)(ξ) =
(π
a

) d
2
e
−|ξ|2
4a , ξ ∈ Rd.

It turns out that the Fourier transform is a linear isomorphism F : S(Rd) → S(Rd).
Here the topology of the space is more delicate than just a normed space: it is given by
a countable family of seminorms ‖·‖n, and more speci�cally by a metric:

(3.26) d(f, g) =
∑
n∈N

2−n
‖f − g‖n

1 + ‖f − g‖n
,

where f, g ∈ S(Rd). We skip the detailed description of the seminorms (as they appear
in the De�nition 3.23.) The continuity of the Fourier transform in S(Rd) is analogous to
the case in L2(Rd):

Theorem 3.27. If f ∈ S(Rd) then the Fourier transform Ff also belongs to S(Rd).
Furthermore the Fourier transform is a continuous linear bijection S(Rd)→ S(Rd).
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Chapter 4

The solution of the classical heat

equation

In this chapter we will discuss the solution to the heat equation. This will serve both as
an introduction to the equation and as a motivation to the reformulation of the semilinear
heat equation. Let ∆ =

∑n
i=1 ∂

2
xi
be the usual Laplace operator in Rd and let ∂t be the

partial derivative with respect to variable t, which is often called the time variable. From
now on, we denote R+ = (0,∞) and R0

+ = [0,∞).
The (inhomogeneous) heat equation reads as:

∂tu(x, t)−∆u(x, t) = f(x, t), x ∈ Rd, t ∈ R+.

We say that the heat equation is homogeneous, if f ≡ 0 in Rd×R+. The following is the
associated initial value problem (IVP), also known as the Cauchy problem for the heat
equation:

(4.1)

{
∂tu(x, t)−∆u(x, t) = f(x, t), (x, t) ∈ Rd × R+

u(x, 0) = g(x), x ∈ Rd,

where the function u : (Rd ×R0
+)→ R is an unknown function, g ∈ C∞0 (Rd) and f(·, t) ∈

C∞0 (Rd), for every t ∈ R+, are known functions. The function spaces where f and g
belong can be relaxed. Let us start by some heuristics, to get a sense of what the solution
to the initial value problem might look like. To keep things simple, let us assume that
both f and g are as above, and thus in their respective Schwartz spaces. Now we may
apply the Fourier transform with respect to the space variable x on both sides, and obtain
the following:{

∂tF(u)(ξ, t) + |ξ|2F(u)(ξ, t) = F(f)(ξ, t), (ξ, t) ∈ Rd × R+

F(u)(ξ, 0) = F(g)(ξ), ξ ∈ Rd,
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where, similarly to methods for obtaining a solution for the equation (3.18), we used
Theorem 3.14.

We have essentially reduced the seemingly di�cult partial di�erential equation to the
Cauchy problem of a �rst order linear di�erential equation, for which there is a known
solution:

Fu(ξ, t) =(Fg)(ξ)e−
∫ t
0 |ξ|

2dr +

∫ t

0

e−
∫ t
s |ξ|

2dr(Ff)(ξ, s)ds

=(Fg)(ξ)e−t|ξ|
2

+

∫ t

0

e−(t−s)|ξ|2(Ff)(ξ, s)ds

=

(
1

4πt

) d
2

F
(
g ∗ e−

|x|2
4t

)
(ξ) +

∫ t

0

(
1

4π(t− s)

) d
2

F
(
f ∗ e−

|x|2
4(t−s)

)
(ξ, s)ds.

Now using Corollary 3.13 and Lemma 3.24 we get:

(4.2) u(x, t) =

(
1

4πt

) d
2
∫
Rd
e−
|x−y|2

4t g(y)dy +

∫ t

0

(
1

4π(t− s)

) d
2
∫
Rd
e−
|x−y|2
4(t−s) f(y, s)dyds.

The term
(

1
4πt

) d
2 e−

|x|2
4t is called the (d-dimensional) heat kernel, and is usually denoted as

Φ(x, t). It has multiple useful properties, and we shall consider them brie�y. Obviously
Φ(·, t) ∈ S(Rd) for all t ∈ R+. It is a solution to the homogeneous heat equation, and
moreover, if the reader is comfortable with the notion of Dirac delta δx, then Φ solves the
following initial value problem:

(4.3)

{
∂tΦ(x, t)−∆Φ(x, t) = 0, (x, t) ∈ Rd × R+

Φ(x, 0) = δx, x ∈ Rd

Let us show that for times t ∈ R+, the heat kernel Φ solves the homogeneous heat
equation. We begin by calculating the derivative with respect to t:

∂tΦ(x, t) = ∂t

[(
1

4πt

) d
2

]
e−
|x|2
4t +

(
1

4πt

) d
2

∂t

(
e−
|x|2
4t

)

=

(
− d

2t

)(
1

4πt

) d
2

e−
|x|2
4t +

(
1

4πt

) d
2 |x|2

4t2
e−
|x|2
4t

=

[(
1

4πt

) d
2 |x|2

4t2
− d

2t

(
1

4πt

) d
2

]
e−
|x|2
4t ,
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Let us then calculate the second partial derivative with respect to space variable xi.
First,

∂xiΦ(x, t) =

(
1

4πt

) d
2 (
−xi

2t

)
e−
|x|2
4t ,

and then the second derivative,

∂2
xi

Φ(x, t) = ∂xi

[(
1

4πt

) d
2 (
−xi

2t

)
e−
|x|2
4t

]

=

(
1

4πt

) d
2
(
− 1

2t

)
e−
|x|2
4t +

(
1

4πt

) d
2
(
x2
i

4t2

)
e−
|x|2
4t

=

[(
1

4πt

) d
2 x2

i

4t2
− 1

2t

(
1

4πt

) d
2

]
e−
|x|2
4t .

Now, we obtain the Laplacian of the heat kernel by summing the second derivatives from
1 to d:

∆Φ(x, t) =
d∑
i=1

∂2
xi

Φ(x, t) =

[(
1

4πt

) d
2 |x|2

4t2
− d

2t

(
1

4πt

) d
2

]
e−
|x|2
4t .

By noticing that this is the same as ∂tΦ(x, t) we get that ∆Φ(x, t)− ∂tΦ(x, t) = 0.

To assign some meaning to (4.3), the heat kernel is a so called fundamental solution
to the Cauchy problem (4.1). As the equation (4.2) suggests, the solution is comprised of
convolution integrals, and it is very similar to what we had for the solution (3.20) of the
equation (3.18). The last thing, and very much not the least, is the following property:∫

Rd
Φ(z, t)dz =

∫
Rd

Φ(x− y, t)dy = 1,

where x ∈ Rd and t > 0. This property is crucial for proving that (4.2) is a solution
to the original Cauchy problem. We will not prove this, but we will discuss it a bit, do
a formal calculation to justify it being a solution and provide some references. There
are some technical di�culties concerning this problem, namely that using basic analysis
and measure theory, we can only prove that (4.2) is a solution if we assume that the
inhomogeneous term f(x, t) is in addition to being su�ciently di�erentiable (atleast twice)
we need f(·, t) to be compactly supported in Rd for all t > 0. A proof for this can be
found in [2].
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If we want to relax the assumptions of the inhomogeneous term by assuming f(·, t) ∈
Cb(Rd), ∀t > 0, we need a considerably more powerful semigroup theory, which in turn
requires an in-depth understanding of theory of unbounded operators. For further reading
of these types of considerations, [8] is a good place to start.

Let us now provide the formal calculation mentioned before. Functions f and g are
assumed to be the same as in the beginning of this chapter, but let us assume for further
simplicity that d = 1. First, we calculate derivative of (4.2) with respect to t:

∂tu(x, t) =

∫
R
∂tΦ(x− y, t)g(y)dy

+

∫ t

0

∫
R
∂tΦ(x− y, t− s)f(y, s)dyds+

∫
Rd

Φ(x− y, t− t)f(y, t)dy

=

∫
R
∂tΦ(x− y, t)g(y)dy

+

∫ t

0

∫
R
∂tΦ(x− y, t− s)f(y, s)dyds+

∫
Rd
δ(x− y)f(y, t)dy

=

∫
R
∂tΦ(x− y, t)g(y)dy

+

∫ t

0

∫
R
∂tΦ(x− y, t− s)f(y, s)dyds+ f(x, t).

Now, the second derivative with respect to x:

∂2
xu(x, t) =

∫
R
∂2
xΦ(x− y, t)g(y)dy +

∫ t

0

∫
Rd
∂2
xΦ(x− y, t− s)f(y, s)dyds.

Now using the fact that Φ solves the initial value problem (4.3) we get that:

∂tu(x, t)− ∂2
xu(x, t) = f(x, t), x ∈ R, t ∈ R+.

Let us end this chapter by considering a (linear) generalization of the heat equation,
the solution of which can be obtained from the previous equation (4.2) by adding an
exponential factor. The problem reads as:{

∂tu(x, t)−∆u(x, t) + cu(x, t) = f(x, t), (x, t) ∈ Rd × R+

u(x, 0) = g(x), x ∈ Rd,

where c ∈ R. There is a concrete way of obtaining a solution to the Cauchy problem
above. Consider the following equation:

(4.4)

{
∂tv(x, t)−∆v(x, t) = ectf(x, t), (x, t) ∈ Rd × R+

v(x, 0) = g(x), x ∈ Rd,
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We remark that this is a special case of (4.1). Thus, a modi�ed version of the formula
(4.2) is a solution to (4.4). Now if v solves this, then u(x, t) = e−ctv(x, t) will solve the
generalized version. Let us calculate:

∂tu(x, t)−∆u(x, t) + cu(x, t) = ∂t(v(x, t)e−ct)−∆(v(x, t)e−ct) + cu(x, t)

= e−ct∂tv(x, t)− cv(x, t)e−ct − e−ct∆v(x, t) + cu(x, t)

= f(x, t)− cu(x, t) + cu(x, t)

= f(x, t).

Also, setting t = 0 we see that the initial values match.
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Chapter 5

Existence and uniqueness of the

generalized solution to the semilinear

heat equation

In this section we prove the main result of this thesis: existence and uniqueness of the
generalized solution for the semilinear heat equation. Let us begin by stating the classical
problem:

(5.1)

{
∂tu(x, t)− ∂2

xu(x, t) = |u(x, t)|p, (x, t) ∈ R× R+

u(x, 0) = f(x), x ∈ R

where u : (R×R0
+)→ R is unknown and the known f : R→ R is at least continuous and

integrable. A classical solution u of (5.1) must be two times continuously di�erentiable
with respect to x ∈ R, continuously di�erentiable with respect to t ∈ R+ and continuous
for all t ∈ R0

+. By recalling the formula (4.2) we de�ne the generalized formulation of
(5.1), by replacing the inhomogeneous term by |u|p, as the following integral equation:

(5.2) u(x, t) =
1√
4πt

∫
R
e−

(x−y)2
4t f(y)dy +

∫ t

0

1√
t− s

∫
R
e−

(x−y)2
4(t−s) |u(y, s)|pdyds.

One can show that a classical solution u of (5.1) also solves (5.2) by using calculations
similar to the end of Chapter 4.

The proof for the existence and uniqueness of the generalized solution relies heavily on
the completeness of a certain weighted space of continuous functions. The corresponding
weight is de�ned as follows:

w(x, t) =
√
t+ 1

(
1 +

|x|√
t+ 1

)m
,
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where x ∈ R, t ∈ R0
+ and we choose m = 3. It is quite easy to see, that w(x, t) ≥ 1

∀(x, t) ∈ (R × R0
+). Thus, we have by Theorem 2.20 that the corresponding weighted

space

(5.3) Cw = Cw(R× R0
+) = {f ∈ C(R× R0

+) : ‖wg‖∞ = sup
x∈R

sup
t∈R0

+

|w(x, t)g(x, t)| <∞}

is complete. Moreover, by basic metric topology, every closed ball in Cw with radius δ > 0

Bδ = {u ∈ Cw : ‖u‖w ≤ δ}

is also complete.
Now we may formulate the main theorem:

Theorem 5.4. Let f : R→ R be a continuous function such that

|f(x)| ≤ δ

K(1 + |x|)m+2
,

where m = 3 and K is su�ciently large. If p ≥ 4, then (5.2) has a unique solution in Bδ.
The δ > 0 will be chosen to be small enough in the course of the proof.

Since the proof of Theorem 5.4 is quite technical, it is useful to prepare the forth-
coming calculations. Some of them are quite trivial, but they are used repeatedly through-
out the proof.

Let us begin by considering the heat kernel or Gaussian: there exists a constant C > 0
such that

(5.5) e−z
2 ≤ C(1 + |z|)−m, z ∈ R

This is due to the fact that the Gaussian belongs to S(R). Also recall the following
formula for the integral of Gaussian:∫

R
e−ax

2

dx =

√
π

a
, a > 0.

If |x− y| ≥ |x|
2
and r > 0, then

(5.6) e−
r(x−y)2

4t ≤ e−
rx2

16(t+1) , x, y ∈ R, t ∈ R+.

If |x− y| ≤ |x|
2
, then

(5.7) (1 + |y|)−m−2 ≤
(

1 +
|y|√
t+ 1

)−m
≤ 2m

(
1 +

|x|√
t+ 1

)−m
.

24



The �rst inequality of course holds on the whole real line. The proof for the second
inequality is based on the fact that if |x− y| ≤ |x|

2
, then by triangle inequality |y| ≥ |x|

2
.

We also need some estimates for time integrals. If p ≥ 4, then

(5.8)

∫ t
2

0

1

(s+ 1)
p−1
2

ds ≤ 2

√
t

t+ 1

and

(5.9)

∫ t

t
2

1

(s+ 1)
p
2

ds ≤ t

2

1

( t
2

+ 1)
p
2

≤ C√
t+ 1

.

Now we start the existence and uniqueness proof. The basic idea is that instead of
"solving" the integral equation, we de�ne the following mapping G:

(5.10) G(u)(x, t) =
1√
4πt

∫
R
e−

(x−y)2
4t f(y)dy +

∫ t

0

1√
t− s

∫
R
e−

(x−y)2
4(t−s) |u(y, s)|pdyds,

and prove that it has a �xed point G(u) = u. The goal is to �nd a su�ciently small
ball Bδ in our weighted space, which G maps to itself. After this, we have to prove that
G : Bδ → Bδ is a contraction, and thus we may apply the Banach �xed point theorem
2.8. This is achieved by splitting the integrals into di�erent domains. Namely, we split
R into sets {|x − y| ≥ |x|

2
} and {|x − y| ≤ |x|

2
} and the time interval [0, t] into [0, t

2
] and

[ t
2
, t]. Also, since the heat kernel is not too well-behaved for small times t, we split the

time into cases where t ≤ 1 and t > 1. Keeping all of the above in mind, let us begin the
calculations.

We begin the proof of Theorem 5.4 by estimating the �rst integral of (5.10) for times
t ≤ 1, and also we split R in the aforementioned way. Let us begin by looking at the
integral over the set {|x− y| ≥ |x|

2
}.
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1√
4πt

∫
|x−y|≥ |x|

2

e−
(x−y)2

4t |f(y)|dy

=
1√
4πt

∫
|x−y|≥ |x|

2

e−
1
2

(x−y)2
4t e−

1
2

(x−y)2
4t |f(y)|dy

*
≤ 1√

4πt
e−

x2

32(t+1)

∫
|x−y|≥ |x|

2

e−
(x−y)2

8t |f(y)|dy

**
≤ C1

(
1 +

|x|√
t+ 1

)−m
1√
4πt

∫
R
e
−(x−y)2

8t |f(y)|dy

≤ C1

(
1 +

|x|√
t+ 1

)−m
1√
4πt

∫
R
e−

(x−y)2
8t

δ

K(1 + |y|)m+2
dy

≤ C1

(
1 +

|x|√
t+ 1

)−m
δ

K

1√
4πt

√
8πt

≤
√

2C1

K
δ

(
1 +

|x|√
t+ 1

)−m
.

In the inequalities (*) and (**) we used (5.6) and (5.5), respectively. Next, we consider

the integral over the domain {|x− y| ≤ |x|
2
}:

1√
4πt

∫
|x−y|≤ |x|

2

e−
(x−y)2

4t |f(y)|dy

≤ 1√
4πt

∫
|x−y|≤ |x|

2

e−
(x−y)2

4t
δ

K
(1 + |y|)−m−2dy

1.
≤ δ

K

1√
4πt

∫
|x−y|≤ |x|

2

e−
(x−y)2

4t (1 + |y|)−22m
(

1 +
|x|√
t+ 1

)−m
dy

≤ 2m
δ

K

(
1 +

|x|√
t+ 1

)−m
1√
4πt

∫
R
e−

(x−y)2
4t (1 + |y|)−2dy

≤ 2m
δ

K

(
1 +

|x|√
t+ 1

)−m
1√
4πt

√
4πt

= 2m
δ

K

(
1 +

|x|√
t+ 1

)−m
.
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In the inequality (1.) above, we used (5.7). Now we have for times t ≤ 1 the following
estimate:

1√
4πt

∫
R
e−

(x−y)2
4t |f(y)|dy

≤
(

1 +
|x|√
t+ 1

)−m
δ

(
2m

K
+

√
2C1

K

)

≤
(

1 +
|x|√
t+ 1

)−m
C ′δ

K
.

The last inequality is just absorbing the constants.
Let us now estimate the same integral for times t > 1. First,

1√
4πt

∫
|x−y|≤ |x|

2

e−
(x−y)2

4t |f(y)|dy

≤ 1√
4πt

∫
|x−y|≤ |x|

2

e−
(x−y)2

4t
δ

K
(1 + |y|)−m−2dy

≤ 1√
4πt

δ

K
2m
(

1 +
|x|√
t+ 1

)−m ∫
R
(1 + |y|)−2dy

≤ 2m+1 δ

K

(
1 +

|x|√
t+ 1

)−m
1√
4πt

(5.11)

and second,

1√
4πt

∫
|x−y|≥ |x|

2

e−
(x−y)2

4t |f(y)|dy

≤ 1√
4πt

∫
|x−y|≥ |x|

2

e−
x2

16(t+1) |f(y)|dy

≤ 1√
4πt

δ

K
C2

(
1 +

|x|√
t+ 1

)−m ∫
R

(1 + |y|)−m−2dy

=
C2√
4πt

δ

K

(
1 +

|x|√
t+ 1

)−m
2

m+ 1
.

(5.12)
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Thus, we obtain the following �nal estimate for the �rst integral for times t > 1:

1√
4πt

∫
R
e−

(x−y)2
4t |f(y)|dy

≤
(

2

m+ 1
+ 2m+1

)
1√
4πt

δ

K

(
1 +

|x|√
t+ 1

)−m
≤ Cm√

4πt

δ

K

(
1 +

|x|√
t+ 1

)−m
.(5.13)

Next, we estimate the second integral:

(5.14)

∫ t

0

1√
4π(t− s)

∫
R
e−

(x−y)2
4(t−s) |u(y, s)|pdyds.

We begin from the inner integral, and split it up in the same way as in the �rst integral.
Let us look at the set {|x− y| ≥ |x|

2
}. First, we note that since u ∈ Bδ we have that

(5.15) |u(y, s)|p ≤ δp
(

1 +
|y|√
s+ 1

)−pm
1

(s+ 1)
p
2

,

which we will use in every upcoming estimate of the inner integral. After the following
calculation, we will not show explicitly that we used (5.15).∫

|x−y|≥ |x|
2

e−
(x−y)2
4(t−s) |u(y, s)|pdy

≤
∫
|x−y|≥ |x|

2

e−
(x−y)2
4(t−s) δp

(
1 +

|y|√
s+ 1

)−pm
1

(s+ 1)
p
2

dy

≤ δpC

(
1 +

|x|√
t+ 1

)−m ∫
R
(1 + |ỹ|)−pm 1

(s+ 1)
(p−1)

2

dỹ

= δpC

(
1 +

|x|√
t+ 1

)−m
1

(s+ 1)
(p−1)

2

2

pm− 1
.(5.16)

In the inequality above, we used (5.5) and made a change of variables ỹ = y√
s+1

. Also,
the last line is not singular since pm ≥ 12 > 1. Let us also calculate another estimate for
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the same integral:∫
|x−y|≥ |x|

2

e−
(x−y)2
4(t−s) δp

(
1 +

|y|√
s+ 1

)−pm
1

(s+ 1)
p
2

dy

≤ δpe−
x2

32(t+1)

∫
|x−y|≥ |x|

2

e−
(x−y)2
8(t−s)

1

(s+ 1)
p
2

dy

≤ δpC1

(
1 +

|x|√
t+ 1

)−m ∫
|x−y|≥ |x|

2

e−
(x−y)2
8(t−s)

1

(s+ 1)
p
2

dy

≤ C1δ
p

(
1 +

|x|√
t+ 1

)−m√8π(t− s)
(s+ 1)

p
2

.(5.17)

We may move to the case where {|x− y| ≤ |x|
2
}. It is good to keep (5.7) in mind while

working in this integration domain:∫
|x−y|≤ |x|

2

e−
(x−y)2
4(t−s) δp

(
1 +

|y|√
s+ 1

)−pm
1

(s+ 1)
p
2

dy

≤
∫
|x−y|≤ |x|

2

e−
(x−y)2
4(t−s) δp

(
1 +

|y|√
s+ 1

)−(p−1)m

2m
(

1 +
|x|√
t+ 1

)−m
1

(s+ 1)
p
2

dy

≤ δp
(

1 +
|x|√
t+ 1

)−m ∫
R
(1 + |ỹ|)−(p−1)m 2m

(s+ 1)
(p−1)

2

dỹ

= δp
(

1 +
|x|√
t+ 1

)−m
2m+1

(p− 1)m− 1

1

(s+ 1)
(p−1)

2

.(5.18)

Similarly to (5.16), we have no singularity, since (p− 1)m ≥ 9 > 1.
The following estimate is quite straight-forward, and to avoid constant repetition of

calculations, we just state it:

∫
|x−y|≤ |x|

2

e−
(x−y)2
4(t−s) δp

(
1 +

|y|√
s+ 1

)−pm
1

(s+ 1)
p
2

dy ≤ 2mδp
(

1 +
|x|√
t+ 1

)−m√4π(t− s)
(s+ 1)

p
2

.

(5.19)

We have the necessary estimates for the inner integral, so we can proceed to the time
integral. We �rst consider times [0, t

2
]. In this case, we use the two integral estimates
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(5.16) and (5.18) to establish the following∫ t
2

0

1√
4π(t− s)

∫
R
e−

(x−y)2
4(t−s) |u(y, s)|pdyds

≤ δp
(

1 +
|x|√
t+ 1

)−m(
2m+1

(p− 1)m− 1

)∫ t
2

0

1√
4π(t− s)

1

(s+ 1)
p−1
2

ds

+ δp
(

1 +
|x|√
t+ 1

)−m(
2

pm− 1

)∫ t
2

0

1√
4π(t− s)

1

(s+ 1)
(p−1)

2

ds

≤ δp
(

1 +
|x|√
t+ 1

)−m(
2m+1

(p− 1)m− 1
+

2

pm− 1

)∫ t
2

0

1√
4πt
2

1

(s+ 1)
(p−1)

2

ds

≤ 3δp
(

1 +
|x|√
t+ 1

)−m√
2

4πt
2

√
t

t+ 1

≤ 3δp√
t+ 1

(
1 +

|x|√
t+ 1

)−m
.

Here, the third inequality follows from (5.8), and we also used the fact that(
2m+1

(p− 1)m− 1
+

2

pm− 1

)
≤ 3.

Now we calculate the estimates for [ t
2
, t] using (5.17) and (5.19):∫ t

t
2

1√
4π(t− s)

∫
R
e−

(x−y)2
4(t−s) |u(y, s)|pdyds

≤
∫ t

t
2

1√
4π(t− s)

2mδp
(

1 +
|x|√
t+ 1

)−m√4π(t− s)
(s+ 1)

p
2

ds

+

∫ t

t
2

C1√
4π(t− s)

δp
(

1 +
|x|√
t+ 1

)−m√8π(t− s)
(s+ 1)

p
2

ds

≤ C4δ
p

(
1 +

|x|√
t+ 1

)−m
1√
t+ 1

.

The last inequality is the usual absorbing of constants combined with the estimate (5.9).
Now, combining the estimates for the second integral, we obtain:

(5.20)

∫ t

0

1√
t− s

∫
R
e−

(x−y)2
4(t−s) |u(y, s)|pdyds ≤ (3 + C4)δp

(
1 +

|x|√
t+ 1

)−m
1√
t+ 1

.
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Thus, giving us a concrete upper bound for G(u)(x, t) when t ≤ 1:

|G(u)(x, t)| ≤ C ′δ

K

(
1 +

|x|√
t+ 1

)−m
+ (3 + C4)δp

(
1 +

|x|√
t+ 1

)−m
1√
t+ 1

.

Multiplying the equation by the weight w(x, t) =
√
t+ 1

(
1 + |x|√

t+1

)m
, we get

(5.21) w(x, t)|G(u)(x, t)| ≤ C ′δ

K

√
t+ 1 + (3 + C4)δp ≤ C ′′′

K
δ + (3 + C4)δp,

where the last inequality is just absorbing
√
t+ 1 ≤

√
2 into the constant.

The form above is promising, and leads us to solve the following inequality, which will
be needed to guarantee that G(u) is a map Bδ → Bδ, where δ > 0:

C ′′′

K
δ + (3 + C4)δp ≤ δ ⇔ δ

(
C ′′′ −K

K
+ (3 + C4)δp−1

)
≤ 0.

So if δ > 0, then we need that
(
c′′′−K
K

+ (3 + C4)δp−1
)
≤ 0, which requires:

(5.22) δ ≤
(

K − C ′′′

K(3 + C4)

) 1
p−1

.

The right-hand side above can be made positive by choosing a large enough K > 0.
Let us now do calculations for t > 1:

|G(u)(x, t)| ≤ 1√
4πt

Cm
K

(
1 +

|x|√
t+ 1

)−m
δ + (3 + C4)δp

(
1 +

|x|√
t+ 1

)−m
1√
t+ 1

Multiplying again by the weight yields

w(x, t)|G(u)(x, t)| ≤
√
t+ 1√
4πt

Cm
K
δ + (3 + C4)δp

≤ C ′m
K
δ + (3 + C4)δp.(5.23)

The second inequality is just absorbing the constant and using the fact that
√
t+1√
4πt

is
uniformly bounded when t > 1. Now proceeding as in the case t ≤ 1, we need to ensure
that

C ′m
K
δ + (3 + C4)δp ≤ δ.
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And similarly to above, we see that this holds, if

(5.24) δ ≤
(

K − C ′m
K(3 + C4)

) 1
p−1

.

We choose K such that in addition to (5.22), also the right-hand side of (5.24) is
positive. Then, we choose

(5.25) δ ≤ min

((
K − C ′′′

K(3 + C4)

) 1
p−1

,

(
K − C ′m
K(3 + C4)

) 1
p−1

)
,

and take supremum with respect to x and t in (5.21) and (5.23) to obtain ‖G(u)‖w ≤ δ.
Thus, we have that there exists a δ > 0 such that G : Bδ → Bδ.

All that remains is to prove that G is a contraction. For this, we prove the following
lemma:

Lemma 5.26. If u, v ∈ Bδ and p ≥ 4, then we have the following estimate:

(5.27) |u(y, s)|u(y, s)|p−1 − v(y, s)|v(y, s)|p−1| ≤ ‖u− v‖∞ pδ
p−1

(
1 +

|y|√
s+ 1

)−(p−1)m

.

Proof. The claim is trivial if either u or v is zero. Also if u = ±v the claim is trivial.
Now working in the non-trivial cases, consider the fact that the function f(x) = x|x|p−1

is increasing and continuously di�erentiable, with derivative f ′(x) = p|x|p−1. Without loss
of generality, we may assume that u > v. We get for some ξ(y, s) ∈ (v(y, s), u(y.s))

f(u(y, s))− f(v(y, s)) = f ′(ξ(y, s))(u(y, s)− v(y, s))

⇔ |f(u(y, s))− f(v(y, s))| = |u(y, s)− v(y, s)|p|ξ(y, s)|p−1.

This implies:

(5.28) |f(u(y, s))− f(v(y, s))| ≤ ‖u− v‖∞ δ
p−1

(
1 +

|y|√
s+ 1

)−(p−1)m

.

Note that the estimate (5.27) holds also when we replace u|u|p−1 by |u|p.
The proof for the contractivity uses the same methods as the proof that G : Bδ → Bδ:

|G(u)(x, t)−G(v)(x, t)|

≤
∫ t

0

1√
4π(t− s)

∫
R
e−

(x−y)2
4(t−s) ||u(y, s)|p − |v(y, s)|p| dyds

≤ pδp−1 ‖u− v‖∞
∫ t

0

1√
4π(t− s)

∫
R
e−

(x−y)2
4(t−s)

(
1 +

|y|√
s+ 1

)−(p−1)m
1

(s+ 1)
p−1
2

dyds,
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in the above calculations we used the modi�ed version of the estimate (5.27) (replacing
u|u|p−1 by |u|p).

So, in similar fashion as for the previous proof, we split up R into sets {|x− y| ≤ |x|
2
}

and {|x− y| ≥ |x|
2
}. Let us begin with the set {|x− y| ≤ |x|

2
}:∫

|x−y|≤ |x|
2

e−
(x−y)2
4(t−s)

(
1 +

|y|√
s+ 1

)−(p−1)m
1

(s+ 1)
p−1
2

dy

≤ 2m
(

1 +
|x|√
t+ 1

)−(p−1)m ∫
R
e−

(x−y)2
4(t−s)

1

(s+ 1)
p−1
2

dy

≤ 2m
(

1 +
|x|√
t+ 1

)−m√4π(t− s)
(s+ 1)

p−1
2

.

Then, for {|x− y| ≥ |x|
2
}∫

|x−y|≥ |x|
2

e−
(x−y)2
4(t−s)

(
1 +

|y|√
s+ 1

)−(p−1)m
1

(s+ 1)
p−1
2

dy

≤
∫
|x−y|≥ |x|

2

e−
(x−y)2
8(t−s) e−

(x−y)2
8(t−s)

1

(s+ 1)
p−1
2

dy

≤ C1

(
1 +

|x|√
t+ 1

)−m√8π(t− s)
(s+ 1)

p−1
2

.

Now combining the above calculations we get the following estimate:∫ t

0

∫
R
e−

(x−y)2
4(t−s)

(
1 +

|y|√
s+ 1

)−(p−1)m
1

(s+ 1)
p−1
2

dyds

≤ 2m
(

1 +
|x|√
t+ 1

)−m ∫ t

0

√
(4π(t− s)√
(4π(t− s)

1

(s+ 1)
p−1
2

ds

+ C1

(
1 +

|x|√
t+ 1

)−m ∫ t

0

√
8π(t− s)√
4π(t− s)

1

(s+ 1)
p−1
2

ds

= C ′1

(
1 +

|x|√
t+ 1

)−m
1√
t+ 1

.

The last line is just an absorption of constants.
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Combining everything we obtain the following explicit inequality:

|G(u)(x, t)−G(v)(x, t)| ≤ C ′1

(
1 +

|x|√
t+ 1

)−m
1√
t+ 1

pδp−1 ‖u− v‖∞

≤ C ′1

(
1 +

|x|√
t+ 1

)−m
1√
t+ 1

pδp−1 ‖u− v‖w ,

where the last inequality follows from the fact that ‖g‖∞ ≤ ‖g‖w , ∀g ∈ Cw. Now
multiplying by the weight w(x, t) and taking the supremum with respect to x ∈ R and
t ∈ R0

+ on both sides yields

‖G(u)−G(v)‖w ≤ pδp−1C ′1 ‖u− v‖w ,

where δ > 0 can be chosen in such a way that it satis�es (5.25) and pδp−1C ′1 < 1. Thus,
G : Bδ → Bδ is a contraction. So, by Banach �xed point theorem 2.8, there exists a
unique u ∈ Bδ such that G(u) = u. This proves Theorem 5.4.

It might not come as a surprise, but this proof can be easily generalized to Rd. This

is due to the fact that the d-dimensional heat kernel Φ(x, t) = ( 1
4πt

)
d
2 e−

|x−y|2
4t can be

decomposed into a product of d one-dimensional heat kernels. Also the weight w(x, t) =
√
t+ 1

(
1 + |x|√

t+1

)−m
is easily generalized to Rd × R+. The reason we did not do the

proof in Rd is that it is essentially the same as in R but with added technical di�culty,
which does not necessarily add any further insights. It is good to note that based on our
estimates we may replace the nonlinear term |u|p by u|u|p−1, and the proof for Theorem
5.4 would still work.
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Appendix A

Discussion on di�erentiability of the

generalized solution

The proof that a generalized solution is a classical solution is a bit trickier, but very similar
to the proof of 5.4. It might be that the semigroup methods mentioned in Chapter 4 could
work here, since u belongs to Cb(R× R0

+).
In this appendix we will discuss the case of di�erentiability with respect to t. For this,

we consider a slightly modi�ed version of the original weighted space Cw(R × R0
+). To

this end, let ε > 0 and τ > ε be �xed, and we denote Iτ = (τ − ε, τ + ε). We de�ne the
following space:

Cτ
w(R× Iτ ) ={g ∈ Cw(R× R0

+) : ∂tg exists, is continuous on the

interval t ∈ Īτ and ‖g‖τ = sup
x∈R

sup
t∈Īτ

w(x, t)|∂tg(x, t)| <∞},

where Īτ is the closure of Iτ . We endow the space Cτ
w with the norm

(A.1) ‖g‖w,τ = ‖wg‖∞ + ‖g‖τ ,

so that it becomes a Banach space, by well known arguments.
We denote by Bδ′ a closed ball in Cτ

w(R × Iτ ) centered at 0 and radius δ′ > 0. As
in the proof for Theorem 5.4, the goal is to prove that there exists such a δ′ > 0 that
G : Bδ′ → Bδ′ is a contraction. If this holds, then it is not hard to see that by choosing
δ′ > 0 to be small enough, the di�erentiable solution will coincide with the generalized
solution in the Theorem 5.4. We will provide some ideas on how to approach this. It
is su�cient to only consider the derivative term ‖g‖τ of the norm, since the proof of 5.4
covers the term ‖wg‖∞. Let t ∈ Iτ , u ∈ Bδ′ and h > 0 be such that t+ h ∈ Iτ , and let us
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calculate the di�erence quotient of G(u)(x, t) (see (5.10)) with respect to t:

G(u)(x, t+ h)−G(u)(x, t)

h

=

∫
R

(Φ(x− y, t+ h)− Φ(x− y, t))
h

f(y)dy

+
1

h

∫ t+h

0

∫
R

Φ(x− y, t+ h− s)|u(y, s)|pdyds

− 1

h

∫ t

0

∫
R

Φ(x− y, t− s)|u(y, s)|pdyds

= I1 + I2 + I3.

The case I1 is the simplest, if we consider purely the di�erentiability, since the heat
kernel φ(·, t) ∈ S(R) for every t ∈ R+:∫

R

(Φ(x− y, t+ h)− Φ(x− y, t))
h

f(y)dy

=

∫
R
∂t(Φ(x− y, t+ ν1h)f(y)dy

=

∫
R

Φ(x− y, t+ ν1h)

(
(x− y)2

4(t+ ν1h)2
− 1

2(t+ ν1h)

)
f(y)dy,

≤
∫
R

Φ(x− y, t+ ν1h)
(x− y)2

4(t+ ν1h)2

δ

K
(1 + |y|)−m−2dy

+

∫
R

Φ(x− y, t+ ν1h)
1

2(t+ ν1h)

δ

K
(1 + |y|)−m−2dy

= I ′ + I ′′

where |ν1| ≤ 1, and for future reference, for all j = 1, ..., n |νj| ≤ 1 is a constant related
to applying the mean value theorem. We should also justify that we can bound I ′ and I ′′

su�ciently. Let us start from noticing that

(A.2)
1

2(t+ ν1h)
≤ Cε,τ ,

where Cε,τ is a uniform constant depending on τ and ε. Thus, I ′′ can be estimated in a
similar fashion as the calculations (5.11), (5.12) and (5.13) (the �rst integral with times
t > 1). For I ′ we use (A.2) too, and in addition to this, we should split the integral

domain R into sets B1 = {R(x, y, t) = (x−y)2

4(t+ν1h)
≤ 1} and B2 = {R(x, y, t) > 1}. In the
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integration domain B1 we simply estimate R(x, y, t) ≤ 1, and estimate similarly as in the
case I ′′. In the domain B2 we use the fact that R(x, y, t)Φ(x − y, t + ν1h) is uniformly
bounded, and proceed with the estimates as usual. We may now move onto working with
I2:

1

h

∫ t+h

0

∫
R

Φ(x− y, t+ h− s)|u(y, s)|pdyds

=
1

h

∫ t

−h

∫
R

Φ(x− y, t− s)|u(y, s+ h)|pdyds

=
1

h

∫ 0

−h

∫
R

Φ(x− y, t− s)|u(y, s+ h)|pdyds

+
1

h

∫ t

0

∫
R

Φ(x− y, t− s)|u(y, s+ h)|pdyds.

We used a simple change of variables to move the h inside the function u. Now, combining
I2 and I3, we obtain:

I2 + I3

=
1

h

∫ 0

−h

∫
R

Φ(x− y, t− s)|u(y, s+ h)|pdyds

+

∫ t

0

∫
R

Φ(x− y, t− s)
(
|u(y, s+ h)|p − |u(y, s)|p

h

)
dyds(A.3)

=
1

h

∫ 0

−h

∫
R

Φ(x− y, t− s)|u(y, s+ h)|pdyds

+

∫ t−ε2

0

∫
R

Φ(x− y, t− s)
(
|u(y, s+ h)|p − |u(y, s)|p

h

)
dyds

+

∫ t

t−ε2

∫
R

Φ(x− y, t− s)
(
|u(y, s+ h)|p − |u(y, s)|p

h

)
dyds(A.4)

=
1

h

∫ 0

−h

∫
R

Φ(x− y, t− s)|u(y, s+ h)|pdyds

+

∫ t−ε2

0

∫
R

Φ(x− y, t− s)
(
|u(y, s+ h)|p − |u(y, s)|p

h

)
dyds

+

∫ t

t−ε2

∫
R

Φ(x− y, t− s)
(
p|u(y, s+ ν2h)|p−1∂su(y, s+ ν2h)

)
dyds

= J1 + J2 + J3.
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To explain the calculations above, we moved the di�erence quotient into the function
u ∈ Bδ′ . Then, we split up the integral domain of (A.3) into [0, t− ε2] and [t− ε2, t], where
ε2 > 0 is �xed and chosen in such a way that t+ h− ε2 ∈ Iτ . Thus, we may apply mean
value theorem to the di�erence quotient in (A.4).

Let us now consider, how we should go about estimating J1, J2 and J3 separately.
First we note, that J1 is very similar to (5.14), but the integral with respect to s has
length h. This means, that we may apply similar estimates and the length of the interval
will cancel out the term h−1. The case of J3 is similar to J1, since it is still close enough
to (5.14) to have similar estimates. This is due to the fact that we assumed the time
derivative of u to also belong to a similar weighted space. In addition to all this, we may
choose ε2 to be very small, which will be helpful too.

Lastly, we consider J2, which is the trickiest of the three integrals. We begin by
noticing that the heat kernel Φ(x − y, t− s) is not singular in the set R × [0, t− ε2] and
u is not assumed to be di�erentiable in the domain. Thus, we should apply change of
variables once again so that we have a di�erence quotient of the heat kernel inside the
integral. Then, we do some splitting up of the integrals to obtain the following expression
for J2:

J2 =

∫ t−ε2

h

∫
R
∂tΦ(x− y, t− s+ ν3h)|u(y, s)|pdyds

+

∫ t−ε2+h

t−ε2

∫
R

Φ(x− y, t+ h− s)
(
|u(y, s)|p

h

)
dyds

−
∫ h

0

∫
R

Φ(x− y, t− s)
(
|u(y, s)|p

h

)
dyds

= I4 + I5 + I6.

First, we see that both I5 and I6 are similar to J1 in that their integrals with respect to
s has a length of h, thus canceling the term h−1. Also, their integrands can be estimated
in a similar manner. As for the integral I4, we use similar methods as in the estimates for
integral I1 combined with the usual estimates of (5.14).
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