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University of Oulu, Finland

Dr. Olaf Amm, Finnish Meteorological institute, Helsinki, Finland

Dr. Kirsti Kauristie, Finnish Meteorological institute, Helsinki, Finland

Pre-examiners

Prof. Aku Seppänen, University of Eastern Finland

Dr. M Mainul Hoque, Institute for Solar-Terrestrial Physics,
Neustrelitz, Germany

Opponent

Prof. Matthew Angling, Spire Global Ltd UK

Custos

Prof. Samuli Siltanen, University of Helsinki, Finland

Contact information

Department of Mathematics and Statistics
P.O. Box 64 (Gustav Hällströmin katu 2)
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Abstract 

Ionosphere is the partly ionised layer of Earth's atmosphere caused by solar radiation and particle precipitation. The 
ionisation can start from 60 km and extend up to 1000 km altitude. Often the interest in ionosphere is in the quantity 
and distribution of the free electrons. The electron density is related to the ionospheric refractive index and thus 
sufficiently high densities affect the electromagnetic waves propagating in the ionised medium. This is the reason 
for HF radio signals being able to reflect from the ionosphere allowing broadcast over the horizon, but also an error 
source in satellite positioning systems. 

The ionospheric electron density can be studied e.g. with specific radars and satellite in situ measurements. These 
instruments can provide very precise observations, however, typically only in the vicinity of the instrument. To make 
observations in regional and global scales, due to the volume of the domain and price of the aforementioned in-
struments, indirect satellite measurements and imaging methods are required. 

Mathematically ionospheric imaging suffers from two main complications. First, due to very sparse and limited 
measurement geometry between satellites and receivers, it is an ill-posed inverse problem. The  measurements do 
not have enough information to reconstruct the electron density and thus additional information is required in some 
form. Second, to obtain sufficient resolution, the resulting numerical model can become computationally infeasible. 

In this thesis, the Bayesian statistical background for the ionospheric imaging is presented. The Bayesian approach 
provides a natural way to account for different sources of information with corresponding uncertainties and to up-
date the estimated ionospheric state as new information becomes available. Most importantly, the Gaussian Markov 
Random Field (GMRF) priors are introduced for the application of ionospheric imaging. The GMRF approach makes 
the Bayesian approach computationally feasible by sparse prior precision matrices. 

The Bayesian method is indeed practicable and many of the widely used methods in ionospheric imaging revert 
back to the Bayesian approach. Unfortunately, the approach cannot escape the inherent lack of information 
provided by the measurement set-up, and similarly to other approaches, it is highly dependent on the additional 
subjective information required to solve the problem. It is here shown that the use of GMRF provides a genuine im-
provement for the task as this subjective information can be understood and described probabilistically in a mean-
ingful and physically interpretative way while keeping the computational costs low. 
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Tiivistelmä 

Ionosfääri on noin 60–1000 kilometrin korkeudella sijaitseva ilmakehän kerros, jossa kaasuatomien ja -molekyy-
lien elektroneja on päässyt irtoamaan auringon säteilyn ja auringosta peräisin olevien nopeiden hiukkasten vaiku-
tuksesta. Näin syntyneillä ioneilla ja vapailla elektroneilla on sähkö- ja magneettikenttien kanssa vuorovaikuttava 
sähkövaraus. Ionosfäärillä on siksi merkittävä rooli radioliikenteessä. Se voi mahdollistaa horisontin yli tapahtuvat 
pitkät radiolähetykset heijastamalla lähetetyn sähkömagneettisen signaalin takaisin maata kohti. Toisaalta ionos-
fääri vaikuttaa myös sen läpäiseviin korkeampitaajuuksisiin signaaleihin. Esimerkiksi satelliittipaikannuksessa 
ionosfäärin vaikutus on parhaassakin tapauksessa otettava huomioon, mutta huonoimmassa se voi estää pai-
kannuksen täysin. Näkyvin ja tunnetuin ionosfääriin liittyvä ilmiö lienee revontulet.  

Yksi keskeisistä suureista ionosfäärin tutkimuksessa on vapaiden elektronien määrä kuutiometrin tilavuudessa. 
Käytännössä elektronitiheyden mittaaminen on mahdollista mm. tutkilla, kuten Norjan, Suomen ja Ruotsin alueilla 
sijaitsevalla EISCAT-tutkajärjestelmällä, sekä raketti- tai satelliittimittauksilla. Mittaukset voivat olla hyvinkin tark-
koja, mutta tietoa saadaan ainoastaan tutkakeilan suunnassa tai mittalaitteen läheisyydestä. Näillä menetelmillä 
ionosfäärin tutkiminen laajemmalla alueella on siten vaikeaa ja kallista. 

Olemassa olevat paikannussatelliitit ja vastaanotinverkot mahdollistavat ionosfäärin elektronitiheyden mittaami-
sen alueellisessa, ja jopa globaalissa mittakaavassa, ensisijaisen käyttötarkoituksensa sivutuotteena. Satelliitti-
mittausten ajallinen ja paikallinen kattavuus on hyvä, ja kaiken aikaa kasvava, mutta esimerkiksi tarkkoihin tutka-
mittauksiin verrattuna yksittäisten mittausten tuottama informaatio on huomattavasti vähäisempää. 

Tässä väitöstyössä kehitettiin tietokoneohjelmisto ionosfäärin elektronitiheyden kolmiulotteiseen kuvantamiseen. 
Menetelmä perustuu matemaattisten käänteisongelmien teoriaan ja muistuttaa lääketieteessä käytettyjä viipale-
kuvausmenetelmiä. Satelliittimittausten puutteellisesta informaatiosta johtuen työssä on keskitytty etenkin siihen, 
miten ratkaisun löytymistä voidaan auttaa tilastollisesti esitetyllä fysikaalisella ennakkotiedolla.  

Erityisesti työssä sovellettiin gaussisiin Markovin satunnaiskenttiin perustuvaa uutta korrelaatiopriori-menetelmää. 
Menetelmä vähentää merkittävästi tietokonelaskennassa käytettävän muistin tarvetta, mikä lyhentää laskenta-
aikaa ja mahdollistaa korkeamman kuvantamisresoluution. 
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Chapter 1

Introduction

The ionosphere is a shell of ionisation surrounding the Earth. The ionisation is controlled
by solar radiation, particle precipitation, and interactions with the electrically neutral
atmosphere. For ionospheric imaging the key plasma parameter is the electron density
i.e. the number of free electrons divided by unit volume, often given in scaled units of
10

11

m3 . The atmospheric electron density is typically horizontally stratified and depends
on factors including latitude, season, local time and solar activity. Figure 1.1 presents
four vertical incoherent scatter radar measurement profiles of typical daytime ionospheric
electron density over Tromsø, Norway. Generally, the electron density maximum takes
place around an altitude of 300 km at the so-called F region. Below, around an altitude of
100 km is the E region. In local daytime the E region can be seen as a small enhancement
of electron density below the much higher density in the F region. However, at high
latitudes during auroral particle precipitation events, especially the E region can have
very rapid changes with peak electron densities exceeding that of the F region. The D
region takes place at altitudes between 60 and 90 km. The conditions in the D region are
strongly coupled with neutral atmospheric processes and the region often has relatively
small electron density. The ionosphere extends to around an altitude of 1000 km where it
transforms into a plasmasphere with substantially lower electron content. The ionospheric
electron density is also often described as total electron content (TEC) i.e. the integrated
electron density between two locations. Vertical TEC (VTEC) is the TEC integrated along

a vertical column. TEC and VTEC are usually given in TEC units
⇣
1 TECU = 10

16

m2

⌘
.

Ionospheric electron density can be observed e.g. with incoherent scatter radars, ionoson-
des, satellite in situ measurements and remote measurements of the global navigation
satellite system (GNSS) and low Earth orbit (LEO) satellite beacons. A two-dimensional
simplification of di↵erent ionospheric electron density measurements is given in Figure 1.2.

In ionospheric imaging the aim is to reconstruct the two- or three-dimensional electron
density from available measurements. The ground-based measurements of GNSS satellite
beacon signals is typically the most important data component. The use of the terms

17



imaging, tomography and data assimilation is somewhat mixed in the ionospheric literature.
The term imaging is usually used as a general term to cover the di↵erent reconstruction
methods. In an optimal case of tomography, the unknown would be reconstructed mostly
from the available measurements. When operating regionally, especially in two-dimensional
cases, the situation in ionospheric imaging is similar to conventional tomographic problems
such as medical X-ray tomography, and thus many of the same techniques have been used.
On the other hand, in Global three- and four-dimensional situations, the measurements can
be extremely sparse and even relatively large areas can be left without any measurements.
In these situations some strict background models are required and combined optimally
with the available observations. A more illustrative and the most commonly used term in
this case is data assimilation. Data assimilation and its nomenclature originates mostly
from the field of numerical weather prediction.

Even in the best situation, due to limitations in the measurement geometry, the iono-
spheric imaging problem can be considered a limited angle tomography problem with sparse
measurements. This rules out the the generally widely used tomographic algorithms that
are based on backprojection. Mathematically the tomographic imaging of ionosphere is
an ill-posed inverse problem. In practice this means that the measurements do not con-
tain enough information of the unknown electron densities to give a unique and realistic
solution.

Most of the early approaches to ionospheric imaging were based on iterative reconstruc-
tion techniques that were developed independently within the fields of image processing
and linear algebra. The starting point is an initial guess about the unknown, which is
then modified iteratively to correspond with the measurements. The downside is that with
incomplete data the result is very dependent on the initial value.

Another approach is provided by so-called classical regularisation methods. With clas-
sical regularisation the original problem is modified to as a similar well-posed problem as
possible. The problem here is that the interpretation of classical regularisation methods
is mostly mathematical: the reason for numerical instability is examined and adjusted. In
severely ill-posed problems, as in ionospheric imaging, it can be di�cult to interpret the
regularisation physically. On the other hand, there can be a lot of physical information
available that is di�cult to represent accurately with these methods.

In the division used here, the last family of ionospheric imaging methods is provided by
the Bayesian approach. In the Bayesian approach, a prior distribution is used to control
the set of possible solutions. The prior distribution can often be understood as a prob-
abilistic description of the uncertainty related to the physical quantity of interest. Even
though the information in prior distribution and hence the whole approach can be consid-
ered subjective, there often exists indisputable physical information that can be used in
the construction of the prior. Also, as in ill-posed problems some additional information
is required in any case, it is beneficial to know how the information limits the possible so-
lutions. Most of the data assimilation methods used in ionospheric imaging are Bayesian,
where physical background models are used in the determination of the prior distribution.
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The problems with the Bayesian approach are mostly computational. The numerical
computations with proper probability distributions require operations with covariance ma-
trices. Especially in the three-dimensional case the covariance matrices can become exces-
sively large for computation. Hence, one way of seeing the di↵erences within the Bayesian
approaches is how the formation and computation of covariance matrices is handled.

In this work Gaussian Markov random field (GMRF) priors are introduced for Bayesian
ionospheric imaging. GMRF is a Gaussian random field, but instead of mean and covari-
ance, it is more conveniently defined with its mean and inverse covariance i.e the precision
matrix. Following Roininen et al. (2011, 2013), with a suitable parametrisation, the pre-
cision matrix of a GMRF can give close approximations for known covariance functions
and due to Markov property, the precision matrices are sparse matrices. This reduces the
computational costs significantly, making the direct inversion possible for relatively large
three-dimensional cases. The use of GMRF then allows the usage of proper prior distribu-
tions with physical interpretation, while keeping the computational burden similar to the
classical regularisation methods.

The structure of this dissertation summary is the following. Chapter 2 introduces the
mathematical background of tomography and the commonly used backprojection methods.
In Chapter 3, the measurement model, the resulting linear inverse problem, the classical
regularisation method solutions and the iterative solution techniques are presented. The
Bayesian approach, and most importantly, the GMRF priors are introduced in Chapter
4. In the original publications, the modelling of the temporal dynamics is discussed only
shortly in Publication IV. The generalisation of the method for the spatiotemporal sit-
uation is somewhat straightforward, but in a broader context so central that the most
used recursive filtering algorithms are presented in Chapter 5. The di↵erent ionospheric
measurements are then exhibited in Chapter 6. In Chapter 7, a review on the usage and
development of the aforementioned imaging methods within the ionospheric research, as
well as a description of the numerical method developed within this work is given. Finally,
discussion and conclusions are provided in Chapter 8.
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Figure 1.1: Four measurement profiles from European incoherent scatter scientific associa-
tion’s very-high frequency incoherent scatter radar in Tromsø, Norway. The profiles depict
the typical vertical structure of daytime ionosphere, with the F-region maximum just below
300 km and the local E-region maximum around 100 km. Local time (UTC + 1 h).
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Figure 1.2: Two-dimensional simplification of measurements used in ionospheric imaging.
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Chapter 2

Tomography

Tomography refers to cross-sectional imaging of an object from measurements provided by
some penetrating waves. Tomographic methods are used in various fields from medicine
to geophysics. Good overviews on tomography are provided by Kak and Slaney (1988);
Natterer and Wübbeling (2001); Hsieh (2009).

Arguably the simplest and most common type of tomographic set-up is the parallel
beam tomography. As the name suggests, several beams are transmitted in parallel on a
two-dimensional plane. The beams propagate through the domain and are measured on
the opposite side on a plane receiver. In X-ray tomography the measurement would be the
attenuation of an X-ray signal during its pass. The set-up of transmitter and receiver planes
is then circled around the object, to provide measurements from all directions. Besides the
parallel beam tomography, there are various di↵erent scanning geometries, the fan beam
and cone beam scans being probably the best known alternatives of regular scans.

2.1 Radon transform

Mathematically the situation in parallel beam tomography can be written by describing
an unknown image as a function f :  ! R on a physical domain  2 R2. A measurement
along a signal path of an angle perpendicular to ✓ and distance s from the origin can then
be written generally as a Radon transform

Rf(✓, s) =

Z

L(✓,s)

f(z)dz =

Z 1

�1

Z 1

�1
f(z1, z2)�(z1 cos ✓ + z2 sin ✓ � s)dz1dz2, (2.1)

where z = (z1, z2) 2  and � is a delta function defining the signal path L(✓, s) as a line
in the image domain. With a fixed ✓

P✓(s) := Rf(✓, s), (2.2)

where P✓(s) is the projection corresponding to parallel beam measurements made in a
direction perpendicular to ✓.
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2.2 Filtered backprojection algorithm (FBP)

The main task in tomography is to reconstruct the unknown image f(z1, z2) from the mea-
sured projections P✓. The most straightforward approach is to backproject each measure-
ment over the image domain along the corresponding signal path. When all backprojections
are summed, the internal structures will accumulate in the reconstruction. However, the
simple backprojection typically produces blurred results. Intuitively the blurring e↵ect can
be understood if one assumes a local minimum point with a value of zero. If the Radon
transform is non-zero for any of the intersecting lines, in practice the reconstructed value
of that point will always be greater than zero.

The blurring can be avoided with the filtered backprojection (FBP) algorithm. The
FBP is based on the Fourier slice theorem, which states that when a two-dimensional
image is projected to a plane with an angle ✓, the one-dimensional Fourier transform of
that projection corresponds to a radial slice of the two-dimensional Fourier transform of
the same angle ✓. Hence, the two-dimensional frequency domain of the unknown image
can be built slice by slice with the Fourier transformed tomographic projections.

The use of inverse Fourier transform requires an interpolation to a rectangular grid in
the frequency domain, or preferably, a change of variables between polar and rectangular
coordinates. The change of variables introduces a Jacobian that can be interpreted as
a high-pass filter. This is the filter part of FBP and in the frequency domain it is a
multiplication operation. The filtering highlights edges and reduces the blurring in the
final image.

Especially in most medical applications, where the conditions are well controlled and
extensive measurements can be performed, the FBP is the first choice algorithm for its ac-
curacy and relative ease of implementation (Kak and Slaney, 1988). However, the problems
with FBP arise especially in the situations where the information provided by the mea-
surements is limited and the Radon transform (2.1) is known only partially with respect to
parameter ✓ or s or both. Including regularising additional information is di�cult, hence
the approach is severely a↵ected by the incompleteness of data. It is also assumed in FPB
that the measurements are precise and thus the measurement errors cannot be modelled
explicitly.

2.3 Incomplete data

A common type of incompleteness in tomographic data is referred to as a limited angle
tomography. As the name suggests, in limited angle tomography the ✓ angles are available
only from a subset of the optimal sphere/half sphere. Examples of such cases are e.g.
dental imaging (Hyvönen et al., 2010) and most geophysical tomographic problems such
as borehole tomography (Justice et al., 1989).

Another type of incompleteness is the sparseness of the data. Sparse tomography can
sometimes refer to sparseness of available measurement angles and hence overlap with the
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definition of limited angle tomography above. However, it can also express the availability
of di↵erent possible s and hence the resolution of each projection. The source points s of
measurement paths can also be limited in range. With q 2 R+ as a limiting constant, the
situation |s| > q is called an exterior problem and |s| < q an interior problem (Natterer
and Wübbeling, 2001).

The aforementioned limitations can be caused e.g. by inherent physical obstructions
and inconveniences or medical or economical incentives. As a typical example, in medical
tomography the patients exposition to harmful X-rays needs to be kept down, hence the
radiation dose is reduced by using sparser angular resolution for measurement directions.

Another limiting factor can be the dynamics of the system. Even if the scanning geom-
etry could provide su�cient accuracy with respect to measurement angles and amount and
distribution of measurement paths, the unknown object can experience temporal changes
in a shorter time scale than it takes to perform all the measurements (Hahn, 2015).

In satellite tomography, the angles in satellite-to-ground measurements are naturally
limited (Figure 1.2). Additionally, for instance Brekke (1997) reports multifold change in
electron density within 20 s, whereas GNSS data is typically integrated at least for some
minutes for su�cient spatial coverage. Hence, ionospheric tomography can be considered
a sparse limited angle tomography problem with relatively high temporal dynamics.

2.4 Discrete model

In practice the measurements (2.1) are made from a finite number of points and angles.
Here R projections are assumed from a half sphere as

✓ =
⇣
0,
⇡

R
, 2
⇡

R
, . . . , (R� 1)

⇡

R

⌘T
= (✓1, . . . , ✓R)

T
2 RR.

For each angle ✓, the P✓(s) in Equation (2.2) is projected on S points

s =

✓✓
1�

S + 1

2

◆
�s, . . . ,

✓
S �

S � 1

2

◆
�s

◆T

= (s1, . . . , sS) 2 RS ,

where �s is the lateral o↵set between two adjacent projection points.
Altogether, this discretisation will provide measurements

m = (P✓1(s1), . . . , P✓1(sS), . . . , P✓R
(sS))

T = (m1, . . . ,mj , . . . ,mM )T 2 RM ,

where M = RS. Similarly, the corresponding lines L are denoted as

L = (L(✓1, s1), . . . , L(✓1, sS), . . . , L(✓R, sS))
T = (L1, . . . , Lj , . . . , LM )T ⇢ RM ,

For notational clarity, the one-index representation of the right-hand side will be used for
all above measurement variables in the sequel.
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For numerical modelling, also the unknown function needs to be discretised and under-
stood as an array of unknown values. Typically the function is evaluated on a cartesian
grid on the domain  . As the unknown function is typically an image, it is easier to un-
derstand and visualise as a matrix, but for the algebraic and notational convenience it is
collapsed to a vector and reindexed to one-index represenation

f := f(z) = (f(z1,1), . . . , f(zn,1), . . . , f(zn,n))
T
2 RN ,

where an n⇥n = N discretisation is made at points z = (z1,1, . . . , zn,1, . . . , zn,n)T 2 RN⇥2.
Each measurement mj can then be modelled as an integral in Equation (2.1) and

approximated as a Riemann sum

mj =

Z

Lj

f(z)dz ⇡

NX

i=1

ajifi, (2.3)

where aji 2 R gives the intersection length between the path Lj and pixel i. In matrix
form the measurements can then be written as

m ⇡ Af , (2.4)

where A 2 RM⇥N is a theory matrix, where row j is a vector aj = (aj1, . . . , aji, . . . ajN ) 2
RN .

Generally, the extension to three-dimensional tomography is often carried out by re-
ducing the problem to several two-dimensional problems and reconstructed layer by layer.
An alternative approach is to move the two-dimensional scan along the axis of symme-
try during the scan. This will result in a three-dimensional helical scan. In cone beam
tomography the setup is similar to fan beam, but whereas the fan beam is considered two-
dimensional and the corresponding measurement one-dimensional, here the transmitted
signal is a three-dimensional cone, received on a plane as a two-dimensional measurement.
The Radon transform (2.1) and its inverse apply directly to parallel beam geometry, but
alternative formulations for di↵erent scans are available and provided e.g. by Natterer and
Wübbeling (2001). In ionospheric tomography, in a case where one satellite overflight
is measured over a chain of receivers, the problem can be modelled as two-dimensional
tomography. As the satellites have di↵erent orbits, in a general case where all possible
measurements from several satellites are utilised, the measurements take place irregularly
in a volume and the problem needs to be modelled in three dimensions.

Three-dimensional discrete model

In a three-dimensional case where the tomographic analysis is carried out directly in  2

R3, the dimension of the unknown increases to

f := f(z) = (f(z1,1,1), . . . , f(zn,1,1), . . . , f(zn,n,1), . . . , f(zn,n,n))
T
2 RN ,
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where now
z = (z1,1,1, . . . , zn,1,1, . . . , zn,n,1, . . . , zn,n,n)

T
2 RN⇥3 (2.5)

and n⇥n⇥n = N . The Equations (2.3) and (2.4) remain the same with the corresponding
change in dimensions.

As each measurement is here assumed an integral over a line, one measurement inter-
sects only with a small portion of voxels. It is then notable that as the index i in the
discrete models run through all unknown voxels, most of the intersection lengths ai are
typically zero and thus the matrix A is a so-called sparse matrix (see Section 4.3).
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Chapter 3

Inverse problem

This section presents the general measurement model used in ionospheric imaging. As will
be shown later in Chapter 6, most of the measurements used in the ionosphere imaging are
fairly straightforward to linearise. Hence, here the focus is on the linear case. Particular
attention is paid to the mathematical interpretation of issues caused by incomplete data
and the means to overcome them. The main references for this chapter are Kaipio and
Somersalo (2005), Calvetti and Somersalo (2007), Mueller and Siltanen (2012).

3.1 General model

A general forward model with measurement error is here given as

m = A(f, "), (3.1)

where f : Rd
! R, A is a possibly nonlinear observation operator applied to function f

and m 2 RM the corresponding measurement vector. All physical measurements su↵er
from some degree of measurement errors. The error can be related to instrumentation,
measurement conditions, or natural variability in the measured phenomena etc. Here a
general measurement error " is included in the model.

3.2 Linear model

If the observation operator is linear and the measurement error additive, the model can be
written as

m = Af + ", (3.2)

where f : Rd
! R, A is a linear observation operator applied to function f and the measure-

ment error vector " 2 RM is now additive. Here a zero-mean Gaussian measurement error
" ⇠ N (0,⌃") is assumed. The measurement error and the function f are also assumed
statistically independent "?f .
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3.2.1 Discretisation

For numerical computations, a discrete model is required. Here a model

m = Af + ", (3.3)

is assumed, where similarly to Equation (2.4), the vector f 2 RN is a discrete approxi-
mation of f on lattice z 2 RN⇥d and A 2 RM⇥N a linear transformation matrix that is a
discrete approximation of A.

The discrete numerical model is always inaccurate compared to real-world measure-
ments and can induce errors. For discussion on modelling errors see Kaipio and Somersalo
(2007).

3.3 Ill-posed problem

Modelling of physical phenomena often results in mathematical problems where the un-
known quantities of interest are measured indirectly. The actual measured property is not
the primary interest, but physically and mathematically related to it. In the model equa-
tions of the previous section, the interest is not in the measurement m, but in the unknown
f . The task is, given the measurements and the measurement model, solve the unknown
f , or, in presence of a noise model, estimate f . The task is generally known as an inverse
problem. To understand the origins of the di�culties and inaccuracies that arise with the
inverse problems, the concept of a well-posed problem is first recalled.

Following Hadamard, a well-posed problem satisfies the following properties:

1. The solution exists.

2. The solution is unique.

3. The solution changes continuously with respect to the data.

If one or several of these properties is violated, the problem is referred to as ill-posed.
In the linear situation given in Equation (3.3), the first condition is fulfilled if and only if
m 2 Range(A). It can be violated by the approximative nature of matrix A and the noise
model. The second condition is fulfilled if and only if Ker(A) = {0}, which depends on the
geometry of the measurements. To see how and when the third condition is violated the
singular value decomposition (SVD) becomes an essential tool.

SVD of matrix A can be written as

A = UDVT, (3.4)

where U 2 RM⇥M and V 2 RN⇥N are orthogonal matrices and

D 2 RM⇥N = diag(d1, . . . , dmin(M,N)) (3.5)
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is a non-negative diagonal matrix, where d1 � d2 � · · · � dmin(M,N) are singular values.
Generally D is not a square matrix and even if N = M it can be singular or near singular.
This can be concluded from the condition number

Cond(A) =
d1

dmin(M,N)

. (3.6)

For the third condition of Hadamard, it is required that the condition number of A is not
excessively large (Kaipio and Somersalo, 2005). A matrix with a large condition number
is called ill-conditioned.

In exact equations of linear algebra one would be concerned with only the first and
the second of Hadamard’s conditions. The concept of ill-conditioning rises with real world
measurements or computational approaches that are contaminated with errors. An ill-
conditioned problem is sensitive to errors as even small measurements errors can get am-
plified to have unrealistically large e↵ects on the numerical solution.

To obtain a unique and stable solution for an inverse problem, some manouvres are
required to overcome the ill-posedness. In the following sections, first the classical direct
regularisation methods are presented, then the most commonly used iterative reconstruc-
tion techniques are described, before going to the Bayesian approach for inverse problems.

3.4 Classical regularisation methods

Approaches to solving the ill-posed problem are often referred to as regularisation methods,
stabilisation or prior information. Usually, the procedure can be seen as not solving the
original ill-posed problem, but a very similar one that is well-posed.

In the following, the most commonly used regularisation approaches are presented.
SVD (3.4) is used here to display the ill-conditioning e↵ect, as well as to demonstrate how
the di↵erences between the methods can be reduced to selection of a suitable diagonal
matrix to replace the nonexistent inverse of the singular value matrix D (3.5).

3.4.1 Least squares solution (LS)

For an overdetermined linear inverse problem of the form given in Equation (3.3), often
the first attempt to obtain a solution is made with the least squares (LS) method

fLS = arg min
f2RN

km�Afk2 = A†m (3.7)

where
A† =

�
ATA

��1
AT = VD†UT (3.8)

and
D† =

�
DTD

��1
DT = diag(1/d1, . . . , 1/dN ) 2 RN⇥M . (3.9)
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In many occasions, in linear inverse problems, the matrix A can have so strong linear
dependencies that, despite M > N , the problem is e↵ectively underdetermined and ill-
conditioned. Often this can be observed from rapidly decreasing singular values. The
least squares method is unable to provide a reasonable solution for severely ill-conditioned
problems.

3.4.2 Minimum norm solution (MN)

For an underdetermined system the least squares method fails as it cannot select a unique
value satisfying the minimisation criteria of Equation (3.7). As the name suggest, the
solution with minimum norm (MN) is selected from the subspace of all existing least
squares solutions as

fMN = arg min
f2fLS

kfk = A+m (3.10)

where A+ = VD+UT and

D+ = diag(1/d1, . . . , 1/dp, 0, . . . , 0) 2 RN⇥M (3.11)

and p = max{i | 1  i  M,di > 0}. However, di↵erences of magnitude between the
non-zero singular values can also make the MN solutions numerically unstable.

3.4.3 Truncated singular value decomposition (TSVD)

The truncated singular value decomposition (TSVD) solution can be obtained as a MN
solution for a system where all the singular values of A that are less than a selected
threshold ↵ are set to zero.

fTSVD = arg minkfk
f2f

LS+↵

= A+

↵m (3.12)

where
f
LS

+
↵
= arg min

f2RN

km�A+

↵fk
2, A+

↵ = VD+

↵U
T (3.13)

and

D+

↵ = diag(1/d1, . . . , 1/dp↵ , 0, . . . , 0) 2 RN⇥M (3.14)

with p↵ = max{i | 1  i  min(N,M), di > ↵}.
With LS and MN methods a unique solution can be found, but the solutions can

remain ill-conditioned. TSVD stabilises the problem by replacing the (min(N,M) � p↵)
smallest singular values with zeros. Consequently the method ignores the corresponding
singular vectors and typically simplifies the structure of the solution. However, there is no
unambiguous criterion for selecting an optimal ↵.
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3.4.4 Tikhonov regularisation

Tikhonov regularisation is also known as Phillips or Tikhonov-Phillips regularisation and
Ridge regression (Tikhonov and Arsenin, 1977; Phillips, 1962; Hoerl and Kennard, 1970).
The method concerns both the residuals and the L2 norm of the solution. The Tikhonov
regularised solution is the minimiser

fT = arg min
f2RN

{km�Afk2 + ↵kfk2} = A†
↵m, (3.15)

where
A†

↵ =
�
ATA+ ↵I

��1
AT = VD†

↵U
T, (3.16)

D†
↵ = diag

 
d1

d2
1
+ ↵

, . . . ,
dmin(M,N)

d2
min(M,N)

+ ↵

!
2 RN⇥M . (3.17)

Here ↵ is a regularisation parameter that controls the balance between the residuals and
the norm of the solution.

From the diagonal matrix D†
↵ it is somewhat intuitive to see how Tikhonov regularisa-

tion reverts to situations of LS and MN and how ↵ controls the ill-conditioning. Similarly
to TSVD, Tikhonov regularisation can provide solutions to ill-conditioned situations where
LS and MN methods fail.

The optimal selection of regularisation parameter ↵ is again an ambiguous task, how-
ever, di↵erent selection criteria are available such as Morozov’s discrepancy principle and
the L-curve method (Kaipio and Somersalo, 2005; Mueller and Siltanen, 2012).

3.4.5 Generalised Tikhonov regularisation

The Tikhonov regularised solution can be generalised to situation where additional con-
straints are set for the solution

fT = arg min
f2RN

{kAf �mk
2 + ↵kL(f � f̄)k2}

=
�
ATA+ ↵LTL

��1 �
ATm+ ↵LTLf̄

� (3.18)

In Equation (3.18) the norm at the right-hand side restricts the solution close to vector
f̄ 2 RN . Often a di↵erence matrix is selected as L 2 RNL⇥N to require smoothness for the
solution.

The generalised Tikhonov regularisation can also be seen as a solution for a system
where the following linear constraints are added to the original equation (3.3). The so-
called stacked form is given as


m

p
↵LTf̄

�
=


A

p
↵L

�
fT. (3.19)
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3.5 Iterative solutions for linear system

The most widely used iterative algorithms in tomograpy are the algebraic reconstruction
technique and the EM algorithm. In ionospheric imaging the algebraic reconstruction tech-
nique and its derivatives have been used much more frequently and are therefore presented
in this chapter. For the EM algorithm see e.g. Natterer and Wübbeling (2001).

Despite the fact that in the field of image reconstruction and tomography, the fol-
lowing iterative techniques have been developed specifically to handle incomplete error
contaminated data, they still are general solvers for exact linear systems. Hence, given the
error-contaminated measurements m and the matrix A in Equation (3.3), these methods
actually solve a system

m = Af". (3.20)

However, to simplify the notations, the subindex " has been omitted in the remainder of
this chapter.

As will be stated in the sections below, the iterative techniques also provide some
regularisation for the problem. In practise, the measurements predicted with iterative so-
lutions will never equal the actual measurements with errors, and thus a stopping criterion
is needed for the iteration. With incomplete data the methods are then referred to as
truncated iterative methods (Kaipio and Somersalo, 2005), as the selection of the stopping
criterion can be seen as a part of the regularisation scheme.

In the following, the notion of iteration refers to the update of f (k) to obtain a new
improved approfimation f (k+1). One iteration can consists of other repetitive operations.
All approaches require an initial starting value for the unknown, f (0). With incomplete
data the solution can be highly dependent on the initial value.

3.5.1 Kaczmarz method

The Kaczmarz method (Kaczmarz, 1937) is a general method for iterative approximative
solutions for a system of linear equations, such as Equation 3.20. Besides the original
article, an intuitive illustrated description of the method is provided in Kak and Slaney
(1988). Another mathematically rigorous treatment is provided by Kaipio and Somersalo
(2005).

The intuition of the convergence in the approach is that each measurement i.e. single
rows

mj = aTj f , 1  j  M

define a hyperplane of dimension RN�1. The algorithm starts with an initial guess f (0).
The next iteration f (k+1) is obtained by projecting the current solution f (k) on the corre-
sponding hyperplane. The projection for the (k + 1)th iteration can be written as

f (k+1) = f (k) + aj(a
T

j aj)
�1(aTj f

(k)
�mj). (3.21)
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Often a relaxation parameter 0 < � < 2 is included to control the size of the correction
performed at each iteration

f (k+1) = f (k) + �aj(a
T

j aj)
�1(aTj f

(k)
�mj). (3.22)

For the first M iterations j = k, but often more iterations are required for convergence and
the procedure is looped over all measurement equations several times, hence 1  k  M ,
where  2 N and j = k(mod M) + 1.

Another way to understand this algorithm is to see it as similar to backprojection.
In Equations (3.21) and (3.22) the di↵erence between the actual measurement mj and
the simulation of the same measurement from the current iteration aT

j
f (k) is taken. A

backprojection of the di↵erence is then added to corresponding pixels along the ray path.
If a unique solution exists for the linear system, the iterative solution of the Kaczmarz

method will converge to it (Tanabe, 1971). In an overdetermined situation M > N ,
if measurement noise is present, the linear system does not have a unique solution as
the hyperplanes will not have a unique intersection and the solution will not converge
to one point, but will drift between the intersections (Kak and Slaney, 1988). In an
underdetermined system N > M , where there is again no unique solution available, the
algorithm will endogenously provide regularisation as it will converge to the point f̂ of
possible solutions that minimises kf̂ � f (0)

k i.e. the distance between that point and the
given initial value (Tanabe, 1971; Kak and Slaney, 1988).

The Kaczmarz method is primarily an algorithm for solving a linear system, however it
is straightforward to include some regularising prior information in it. As said above, the
initial value for the unknown already provides one regularisation scheme. In many appli-
cations the unknown cannot physically have negative values, if the projection nevertheless
produces negative values, the values can be detected and set to zero within the algorithm.

3.5.2 Algebraic reconstruction technique (ART)

The algebraic reconstruction technique (ART) was presented in the field of image recon-
struction (Gordon et al., 1970). The method is the Kaczmarz method, however some
specific features are sometimes included in it.

In the original article Gordon et al. (1970), as well as Kak and Slaney (1988), the
weights aij are not intersection lengths, but they are simply given a value 1 or 0 depending
on whether the pixel center is within the signal path with width �s or not. This has been
done to ease the computation as the in/out decision is faster than computing the precise
intersection lengths. However, this shortcut is known to often give rise to so-called salt
and pepper noise (Kak and Slaney, 1988). Another feature often included in ART is the
non-negativity constraint.
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3.5.3 Multiplicative algebraic reconstruction technique (MART)

Whereas ART converges to the least squares solution of the linear system, the multiplicative
algebraic reconstruction technique (MART) (Gordon et al., 1970) is a modification of ART
that converges to the maximum entropy solution (Censor, 1983; Raymund et al., 1990).
As the name suggests, instead of additional corrections, the unknowns along each raypath
are scaled by multiplying as

f (k+1)

i
=

 
mj

aT
j
f (k)

!
�kaji

f (k)

i
, i = 1, . . . , N (3.23)

The update formula is written for a single unknown element as the exponent includes the
intersection length between the jth raypath and that specific ith unknown element. The
relaxation parameter fulfills 0  �k  1 and the initial value for the unknown is given as
f (0) = e�11 (Censor, 1983).

3.5.4 Simultaneous iterative reconstruction tecnique (SIRT)

The update caused by single measurement j in Equation (3.21) can be written as a correc-
tion required for the unknown

�f (k+1),j = f (k+1)
� f (k) = aj(a

T

j aj)
�1(aTj f

(k)
�mj), 1  j  M. (3.24)

The simultaneous iterative reconstruction technique (SIRT) is a modification of ART where
the correction (3.24) is computed from each measurement without updating f in between.
Only after the corrections are computed for every measurement j = 1, . . . ,M , the new
iteration is obtained as

f (k+1)

i
= f (k)

i
+

1

Mi

MiX

j

�f (k+1),j

i
, i = 1, . . . , N,

where Mi is the number of measurements intersecting the corresponding unknown. The
above formula is written for a single unknown element as the number Mi varies for di↵erent
i. The convergence of SIRT is slower than in ART, but the quality of the reconstructed
image can often be better (Kak and Slaney, 1988).

3.5.5 Simultaneous algebraic reconstruction tecnique (SART)

The simultaneous algebraic reconstruction technique (SART) (Andersen and Kak, 1984)
combines some features of ART and SIRT methods. An important idea in SART is that
the reconstruction can be improved with a more accurate modelling of the projections
in the forward model. Hence, instead of the pixel approximation, the representation of
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the unknown is generalised to a finite set of weighted base functions. In SART specif-
ically bilinear elements are utilised as base functions. The iteration is then carried out
non-sequentially with resemblance to SIRT, but in steps of individual projections. In one
iteration, the corrections obtained from all measurements in one view angle are combined
and used simultaneously in the update. Finally, when the corrections are applied to un-
known elements along the ray paths in the projection, a Hamming window function is used
to emphasise the corrections made at the middle of the ray and to damp the beginning and
the end of the ray.
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Chapter 4

Bayesian statistical approach

4.1 Introduction to Bayesian inference

In Bayesian statistical inference, all the variables and parameters are modelled as random
variables. The randomness describes the lack of information concerning the realisations
of the variables. The conclusions are based on probabilistic statements that are compiled
with Bayes’ formula

p(f |m) =
p(m|f)p(f)

p(m)
, (4.1)

where p(f |m) is the posterior probability distribution and p(f) the prior probability dis-
tribution of f , and p(m|f) is the sampling distribution of m, but can also be seen as the
likelihood function of f given m. For a fixed m, the marginal distribution p(m) is a con-
stant and independent of f , however, it can be di�cult to derive from a complicated joint
distribution, hence the following unnormalised posterior distribution is often considered
instead

p(f |m) / p(m|f)p(f). (4.2)

The prior distribution indicates the most likely state and the related uncertainty of
the unknown parameter f before the observations m are made. The posterior probability
distribution is obtained by updating the prior distribution with the likelihood function
that connects unknown parameters with the information provided by the observations.
The posterior distribution is the solution that combines all the available information on f .

As high-dimensional posterior distributions can be di�cult to visualise, the distribution
is usually characterised with some point and spread estimates. One of the mostly used point
estimates is the maximum a posteriori (MAP) estimate

fMAP = arg max
f2RN

p(f |m). (4.3)
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If the maximiser for the estimator (4.3) exists, it is possible that it is not unique. Another
point estimate is the conditional mean (CM), which is defined as

fCM = E{f |m} =

Z

RN

f p(f |m)df . (4.4)

Conditional covariance is an estimator for the spread of the posterior distribution. It
is defined as

cov(f |m) =

Z

RN

(f � fCM)(f � fCM)Tp(f |m)df 2 RN⇥N , (4.5)

provided that the integral converges. The spread of the posterior distribution describes
the remaining uncertainty of the unknown parameter. A typical illustration for the spread
is to calculate probability intervals from the posterior covariance estimator.

If the true state of the unknown parameter f is given a non-zero prior probability,
as the sample size increases, the posterior distribution is asymptotically independent of
the prior distribution and the maximum a posteriori estimate converges to the well-known
maximum likelihood estimate

fML = arg max
f2RN

p(m|f). (4.6)

Then again, if the measurements provide only little information on the parameter of inter-
est, the posterior is dominated by the prior.

A connection to ill-posed inverse problems can be seen in situations where the maximum
likelihood estimate is not identifiable, but when a prior distribution is included, a proper
posterior distribution can be obtained. Especially in highly ill-posed problems, the selection
of the prior can then be the most critical phase in the inference and should be done based on
expert knowledge on the studied quantity. One of the advantages of the Bayesian approach
for inverse problems is that the required stabilisation can be given in a very interpretative
manner in terms of physical quantities and related uncertainties.

Before considering the specific linear forward model presented in Section 3.2 the Gaus-
sian model is considered for the general variables f and m. By assuming that f and m
have a joint multivariate Gaussian distribution


f
m

�
⇠ N

✓
f̄
m̄

�
,


⌃f ⌃fm

⌃mf ⌃m

�◆
, (4.7)

with Gaussian identities the conditional distribution for f given m can be written as

p(f |m) / exp

✓
�
1

2
(f � f̄ (1))

⇣
⌃(1)

f

⌘�1

(f � f̄ (1))T
◆
. (4.8)
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In the Gaussian system the CM and MAP estimators are the same. With Gaussian iden-
tities the MAP and posterior covariance estimators can be written as

f̄ (1) = fMAP = fCM = f̄ +⌃fm⌃�1

m (m� m̄) (4.9)

and
⌃(1)

f = cov(f |m) = ⌃f �⌃fm⌃�1

m ⌃mf . (4.10)

4.2 Gaussian priors for linear inverse problems

For the likelihood function, the nature of measurements and central limit theorem often
justifies the use of Gaussian normal distribution. Then again, the assumption of Gaussian
prior distribution is not always the most realistic choice. A downside is that the distribution
cannot be easily truncated to consist only of non-negative values. The benefit of the
Gaussian prior is that it is a conjugate prior for the Gaussian likelihood, resulting in a
Gaussian posterior distribution with the closed form estimators (4.9); (4.10). Hence often,
as is the case here, a Gaussian prior distribution is assumed.

The discretisation of the linear forward model (3.2) was briefly discussed in Section
3.2.1. However, the discretisation can be performed at di↵erent phases of the solution.
Following Tarantola (1987), when modelling an inverse problem, one should first consider
whether it is easier to imagine the forward problem acting on a sequence of parameters or
on a field. In many geophysical applications, such as ionospheric imaging, it is indeed a
natural way to conceptualise the unknown and the prior distribution as a continuous field.
In this section Gaussian random fields (Tarantola, 1987; Christakos, 2005; Rasmussen and
Williams, 2006) will be utilised.

Definition 4.1. Given a probability space (⌦,F , P ), a real-valued d-dimensional spa-
tial random field (RF) f(z) := f(z,!), z 2 Rd,! 2 ⌦ is a family of random variables
{f(z1), f(z2), . . . } at points z1, z2, . . . , where each random variable is real valued and de-
fined on (⌦,F , P ).

A spatial RF is a generalisation of a stochastic process. Where a stochastic process is
often seen as indexed by points in time, a spatial RF is indexed by d-dimensional Euclidean
space, where d is typically two or three.

Definition 4.2. A multivariate Gaussian random field (GRF) is a spatial random field
where any finite number of random variables have a joint Gaussian distribution.

GRF is then completely specified by its mean and covariance functions and denoted
here as

f(z) ⇠ GRF(f̄(z),K(z, z0)), (4.11)
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where

f̄(z) =E[f(z)]
K(z, z0) =E

⇥
(f(z)� f̄(z))(f(z0)� f̄(z0))T

⇤
.

(4.12)

The GRF (4.11) is used here as the prior for obtaining all of the following posterior esti-
mators in this chapter. For a finite set of points z 2 RN⇥d, as denoted in Equation (2.5),
a GRF is simply a multivariate Gaussian normal distribution

f ⇠ N (f̄ ,⌃f ), (4.13)

where f̄ 2 RN and ⌃f = K(z, z) 2 RN⇥N .

4.2.1 Continuous Gaussian random field prior

GRFs are closed under linear operations. Hence, when considering a linear problem (3.2)
with GRF prior (4.11), the covariance and cross-covariances can be written as

E
⇥
(m� m̄)(m� m̄)T

⇤
=E

⇥
((Azf(z) + "�Az f̄(z))(Az0f(z

0) + "�Az0 f̄(z
0))T

⇤

=E
⇥
(Az(f(z)� f̄(z))(Az0(f(z

0)� f̄(z0)))T
⇤
+ E

⇥
""T

⇤

=AzK(z, z0)AT

z0 +⌃" = KAfAf +⌃",

(4.14)

E
⇥
(m� m̄)(f(z0)� f̄(z0))T

⇤
= E

⇥
(Azf(z)�Az f̄(z))(f(z

0)� f̄(z0))T
⇤
= AzK(z, z0)

E
⇥
(f(z)� f̄(z))(m� m̄)T

⇤
= E

⇥
(f(z)� f̄(z))(Az0f(z

0)�Az0 f̄(z
0))T

⇤
= K(z, z0)AT

z0 ,

(4.15)

where m̄ = Az f̄(z), f?" and the subscript i in operator Ai indicates the parameter in
the covariance function that it acts upon. The transpose is defined as (AzK(z, z0))T =
K(z, z0)AT

z0 .
The interest can now be in arbitrary locations z 2 RN

⇤⇥d, which does not need to be
the full lattice and thus N⇤

 N . Then, given the measurements m and a GRF prior
(4.11) with mean and covariance as above (4.12), the covariance is a matrix

K(z, z) = Kff 2 RN
⇤⇥N

⇤

and the covariance matrices between the measurements and the unknowns

AzK(z, z) =KAff = (KfAf )
T = (K(z, z)AT

z )
T
2 RM⇥N

⇤
.

The posterior distribution for the unknown field at locations z is then given with Equation
(4.8), where

f̄ (1) = f̄(z) +KfAf (KAfAf +⌃")
�1 (m� m̄) 2 RN

⇤
(4.16)
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⌃(1)

f = Kff �KfAf (KAfAf +⌃")
�1KAff 2 RN

⇤⇥N
⇤
. (4.17)

If the linear transformations with Az in Equations (4.14) and (4.15) can be solved
analytically without discretising f , the discretisation of the covariance kernel leading to
a covariance matrix for the complete discretised domain can be avoided in the MAP es-
timator. In literature this approach is often referred to as Kriging or Gaussian process
(Rasmussen and Williams, 2006). Especially in these approaches a parameterised covari-
ance kernel is chosen and the parameters are estimated from the data. Gaussian processes
with linear operations are discussed by Särkkä (2011) and Minkwitz et al. (2015).

4.2.2 Discrete multivariate Gaussian prior

Here the Bayesian approach is applied to a discretised linear system of Equation (3.3)
on a lattice z 2 RN⇥d, such as given in Equation (2.5). Hence, the multivariate normal
distribution prior given in Equation (4.13) is used. The covariances and cross-covariances
between the variables are then

E
⇥
(m� m̄)(m� m̄)T

⇤
=E

⇥
(Af + "�Af̄)(Af + "�Af̄)T

⇤

=E
⇥
(Af �Af̄)(Af �Af̄)T

⇤
+ E

⇥
""T

⇤

=A⌃fA
T +⌃" 2 RM⇥M

(4.18)

and

E
⇥
(m� m̄)(f � f̄)T

⇤
= E

⇥
(Af �Af̄)(f � f̄)T

⇤
=A⌃f 2 RM⇥N

E
⇥
(f � f̄)(m� m̄)T

⇤
= E

⇥
(f � f̄)(Af �Af̄)T

⇤
=⌃fA

T
2 RN⇥M ,

(4.19)

where m̄ = Af̄ . The posterior distribution is then again of the form given in Equation
(4.8), with

f̄ (1) = f̄ +⌃fA
T
�
A⌃fA

T +⌃"
��1

(m� m̄) 2 RN (4.20)

⌃(1)

f = ⌃f �⌃fA
T
�
A⌃fA

T +⌃"
��1

A⌃f 2 RN⇥N . (4.21)

Although it is now necessary to form the N ⇥ N prior covariance matrix, the matrix
inversions in estimators (4.20) and (4.21) take place in the M ⇥ M measurement space.
Hence, if M  N , the numerical computation is generally easier than in the following
model space solution. However, with large N , the prior covariance matrix can become
excessively large even for numerical storage.
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4.2.3 Model space solution

For the Gaussian linear case, the MAP estimator (4.9) and posterior covariance (4.10)
can be derived with well-known Gaussian identities from their joint distribution (4.7). By
deriving the posterior distribution directly from the Bayes’ formula (4.2) for the linear
model (3.3), the quadratic form can also be arranged to provide the following equivalent
forms for the estimators

f̄ (1) = ⌃(1)

f

⇣
AT⌃�1

" m+⌃�1

f f̄
⌘

2 RN (4.22)

⌃(1)

f =
⇣
AT⌃�1

" A+⌃�1

f

⌘�1

2 RN⇥N . (4.23)

The above estimators can also be derived from Equations (4.20) and (4.21) with the
matrix inversion lemma also known as Woodbury matrix identity or Sherman-Morrison-
Woodbury formula (Golub and Van Loan, 2013). Since it is now necessary to invert two
N ⇥N matrices, this would generally be the preferred approach only in situations where
N ⌧ M . However, if the prior information can be given directly as inverse covariance the
situation can change, as it is demonstrated in the following section.

4.3 Gaussian Markov random field (GMRF) priors

The sparsity of a matrix signifies the large proportion of strict zeros in matrix elements.
Sparse linear system then refers to a linear system that is so large and sparse that it is
beneficial to rethink the standard factorising methods of two-dimensional arrays (Golub
and Van Loan, 2013). For a sparse matrix it requires significantly less memory to index
the non-zero matrix elements as vectors and to use operations designed for such systems.

When solving the posterior estimates given in previous sections, the measurement error
covariance ⌃" is typically assumed as a diagonal matrix. If the theory matrix A is sparse,
as is the case here (2.4), the main concern is the prior covariance matrix ⌃f . A proper prior
distribution with a non-diagonal covariance structure results in a dense N ⇥N covariance
matrix.

A Gaussian Markov random field (GMRF) is a multivariate Gaussian distribution Sat-
isfying the Markov property. In GMRF, the Markov property indicates that an element
conditioned with its neigbouring elements is independent of the rest of the elements in
the field. The independence between elements is equivalent to the precision between the
elements being zero. Typically GMRFs are used in a situations where the neighbourhood
does not include the complete field, hence the precision matrix is characteristically a sparse
matrix. A comprehensive introduction to GMRF is provided by Rue and Held (2005).

Definition 4.3. Neighbourhood Ni to fi is the set {fj , j 2 Ni | kzi � zjk  r, j 6= i},
where radius r > 0.
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Definition 4.4. A random vector f 2 RN is called GMRF with respect to neighbourhood
Ni with mean f̄ and precision matrix Qf > 0 if and only if its density has the form

f ⇠ (2⇡)�n/2
|Qf |

1/2 exp

✓
�
1

2
(f � f̄)TQf (f � f̄)

◆

and
[Qf ]i,j 6= 0 () j 2 Ni 8 i 6= j.

With GMRF prior, the model space estimators in Equations (4.22) and (4.23) can then
be written by replacing Qf = ⌃�1

f 2 RN⇥N , resulting in

f̄ (1) = ⌃(1)

f

�
AT⌃�1

" m+Qf f̄
�

2 RN (4.24)

⌃(1)

f =
�
AT⌃�1

" A+Qf

��1
2 RN⇥N . (4.25)

It is not required that the precision matrix Qf is invertible. A GMRF with a symmetric
positive semidefinite precision matrix is called intrinsic GMRF, which results in improper
prior density for f . A useful intrinsic GMRF, and an improper prior distribution, can
be constructed by selecting Qf = �LTL, where L is a di↵erence matrix and � a weight
parameter. Such a di↵erence prior promotes smoothness, but is invariant to an addition of
a constant. If no boundary conditions are added, Ker(L) 6= {0}. Then again, if Ker(A) \
Ker(L) = {0}, the resulting Gaussian posterior distribution defines a proper probability
density, with mean and covariance given in Equations (4.24) and (4.25) above. Further,
by assuming ⌃" = �2I and denoting ↵ := �2�, the resulting MAP estimator (4.24) is the
generalised Tikhonov regularised solution given in Equation (3.18).

4.3.1 Correlation priors

The strength of a proper Gaussian prior is in the covariance where the provided information
is easily interpretable in a probabilistic and physical sense. The downside is that it results
in a full covariance matrix, making the storage and computation problematic when the
number of unknowns is large.

GMRF priors are convenient when the ill-posed problem can be stabilised with mod-
erate smoothing. In these cases the use of an intrinsic GMRF is straightforward, the
interpretation in a mechanical sense is clear and the sparsity of a di↵erence matrix L al-
lows computations for much higher dimensional problems than working with a full prior
covariance matrix ⌃f . Even so, if the problem is severely ill-conditioned and requires
stronger stabilisation, the implementation of more strict constraints and boundary condi-
tions in the precision matrix can get complicated, the e↵ect of the possibly overlapping
constraints unpredictable, and the physical interpretation di�cult.
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If su�cient boundary conditions are included into a di↵erence matrix L, the precision
LTL = Qf becomes invertible and (LTL)�1 = Q�1

f = ⌃f . However, for e�cient computa-
tion it would be profitable to work with the sparse L matrix while knowing the covariance
structure in ⌃f without solving it.

So-called correlation priors were introduced in Roininen et al. (2011, 2013). Similarly
to the GRF case, the starting point for building a correlation prior is the selection of a
continuous prior covariance function

K(z, z0) = Cov(z, z0,↵, `, c), (4.26)

where the covariance function between points z and z0 is parametrised with variance scaling
parameter ↵, correlation length parameters ` and shape parameters c. In the aforemen-
tioned articles it is shown that certain classes of covariance functions can be represented
as solutions for systems of stochastic partial di↵erential equations and that these systems
can be approximated discretely with combinations of di↵erence matrices. The matrices are
formed with di↵erences weighted with ↵, ` and c parameters inherited from the original
covariance function, and with a discretisation length parameter h. The solution for the
discrete system is a multivariate normal distribution with covariance matrix (LT

C
LC)�1,

where LC contains the required weighted di↵erence matrices in a stacked form. The re-
sulting covariance is discretisation independent, which means that the obtained discrete
covariance converges to continuous covariance at the discretisation limit. The approach
then provides a scheme to write the posterior estimators (4.24) and (4.25) for a known
prior covariance function (4.26) with a precision matrix Qf = LT

C
LC.
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Chapter 5

Spatiotemporal evolution

The solutions for the linear inverse problem presented in Chapters 3 and 4 have considered
individual snapshots, where the unknown is assumed to be static in time and the measure-
ments observed all at once. In this chapter, the state of the system is solved for sequential
time steps. The first intuition would be to use any of the presented methods sequentially
for di↵erent states. Another approach would be to solve the problem for one state and
then use the obtained solution, depending on the method, as an initial guess or a prior
for the next. Hence, the Bayesian approach provides a very natural way for dealing with
temporally dynamic systems. For a more comprehensive treatment of Bayesian filtering
and smoothing see e.g. Särkkä (2013).

5.1 Recursive linear estimation

The measurement model in Equation (3.3) is written for the time step l as

m(l) = A(l)f + "(l), (5.1)

where "(l) ⇠ N (0,⌃(l)

" ) and l = 0, 1, 2, . . . It is assumed that the posterior estimates f̄ (l�1)

and⌃(l�1)

f for time l�1 are available. The posterior distribution can then be used as a prior
for the estimates of the following state l, and the discrete measurement space estimators
(4.20) and (4.21) are

f̄ (l) = f̄ (l�1) +⌃(l�1)

f (A(l))T
⇣
A(l)⌃(l�1)

f (A(l))T +⌃(l)

"

⌘�1 ⇣
m(l)

�A(l)f̄ (l�1)

⌘
(5.2)

⌃(l)

f = ⌃(l�1)

f �⌃(l�1)

f (A(l))T
⇣
A(l)⌃(l�1)

f (A(l))T +⌃(l)

"

⌘�1

A(l)⌃(l�1)

f . (5.3)
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Often temporary variables, innovation S and Kalman gain G, are used to write the above
in the following steps

S(l) =A(l)⌃(l�1)

f (A(l))T +⌃(l)

"

G(l) =⌃(l�1)

f (A(l))T(S(l))�1

f̄ (l) =f̄ (l�1) +G(l)

⇣
m(l)

�A(l)f̄ (l�1)

⌘

⌃(l)

f =⌃(l�1)

f �G(l)S(l)(G(l))T.

(5.4)

The recursive algorithm allows online updating when new information becomes available.
However, the algorithm is based on an assumption that the unknown f is constant and
each update is accumulating information from the same state. Hence, the lth solution could
be obtained also by using all measurements at once.

5.2 Kalman filtering

The more general Bayesian filtering is restricted here to a linear Gaussian case, when the
algorithm is known more famously as Kalman filter (Kalman, 1960). Here the unknown
f (l) is assumed to evolve in time with states l = 1, 2, . . . and that its dynamics can be
modelled with a probabilistic state space model. In practise, in comparison with recursive
linear filtering above, this means mainly the addition of linear dynamic model

f (l) = H(l�1)f (l�1) + e(l�1), (5.5)

where the stochastic dynamics are modelled with a transition matrix H(l�1) acting on the

previous state of the system and with process noise e(l�1)
⇠ N (0,⌃(l�1)

e ). The measure-
ment model of Equation (5.1) is then written for each state as

m(l) = A(l)f (l) + "(l). (5.6)

Hence, intuitively in Bayesian inference for a dynamical system, the best guess for the
present state is not given by the previous posterior distribution, but by their mappings
with the transition matrix, resulting in the predictive distribution

f (l)
|m(1:l�1)

⇠ N (f̂ (l), ⌃̂(l)

f ), (5.7)

where the mean and covariance are defined below in Equation (5.8).
Now the solution for state l is the posterior distribution where the predictive distribution

is used as the prior and the likelihood constructed from the current measurement model
and measurements. Traditionally, the estimators are again separated in steps with the new
variables:

45



Prediction step

f̂ (l) =H(l�1)f̄ (l�1)

⌃̂(l)

f =H(l�1)⌃(l�1)

f (H(l�1))T +⌃(l�1)

e

(5.8)

Update step

v(l) =m(l)
�A(l)f̂ (l)

S(l) =A(l)⌃̂(l)

f (A(l))T +⌃(l)

"

G(l) =⌃̂(l)

f (A(l))T(S(l))�1

f̄ (l) =f̂ (l) +G(l)v(l)

⌃(l)

f =⌃̂(l)

f �G(l)S(l)(G(l))T.

(5.9)

5.3 Kalman smoothing

In Kalman filtering the earlier and current measurements are used to compute the best
possible estimate for the current state of the system. However, when applications are not
run online, a complete data set m(l) for each l = 1, . . . , T might be available. If the interest
is not in the last state, but in the whole process, with Bayesian smoothing it is possible to
take into account also the future states of the system, while evaluating state l.

The Gaussian linear version of the Bayesian smoother is known also as Rauch-Tung-
Striebel smoother and Kalman smoother. In its standard form the smoother algorithm is
divided in forward and backward passes. In forward pass, the data is filtered with steps
(5.8) and (5.9) and the results are saved. The filtering results are then used in the backward
pass with steps

C(l) =⌃(l)

f (H(l))T(⌃̂(l+1)

f )�1

f̃ (l) =f̄ (l) +C(l)(f̃ (l+1)
� f̂ (l+1))

⌃̃(l)

f =⌃(l)

f +C(l)(⌃̃(l+1)

f � ⌃̂l+1

f )(C(l))T,

(5.10)

where f̂ (l+1), ⌃̂(l+1)

f , f̄ (l) and ⌃(l)

f are the predicted and filtered solutions from the forward

pass. The backward pass is started from the state T , with f̃ (T ) = f̄ (T ) and ⌃̃(T )

f = ⌃(T )

f .

5.4 Ensemble Kalman filter (EnKF)

When increasing the spatial resolution in a three-dimensional model the number of un-
known variablesN increases rapidly and theN⇥N dimensional covariance matrices become
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infeasible to handle in the above filtering and smoothing algorithms. In ensemble Kalman
filter (EnKF) (Evensen, 1994, 2003, 2009) the maintenance of large covariance matrices is
eased by not solving the updated posterior covariance in Equation (5.9) directly. Instead,
samples from each posterior distribution are simulated and the covariance information is
carried within the sample. The EnKF belongs to a wider category of particle filters and it
was developed mainly for nonlinear problems. Here the main idea is presented in a linear
setting.

First an initial prior ensemble

F(0) = [f (0)

1
, . . .f (0)

Nens
] 2 RN⇥Nens (5.11)

is generated, where the number of ensemble members Nens ⌧ N .
At step l an ensemble of observations

M(l) = [m(l)

1
, . . .m(l)

Nens
] 2 RM⇥Nens , (5.12)

is simulated as m(l)

i
= m(l) + "i, where "i ⇠ N (0,⌃"). The predicted ensemble is then

obtained as

EnKF prediction step

F̂(l) =H(l�1)F(l�1)
2 RN⇥Nens . (5.13)

The predicted ensemble mean is then

f̂ (l)

ens =
1

Nens

F̂(l)1Nens⇥1 2 RN (5.14)

and the corresponding sample covariance

⌃̂(l)

fens
=

1

Nens � 1

⇣
F̂(l)

� f̂ (l)

ens11⇥Nens

⌘⇣
F̂(l)

� f̂ (l)

ens11⇥Nens

⌘T

=�(l)

fens
(�(l)

fens
)T,

(5.15)

where �(l)

fens
2 RN⇥Nens . The posterior ensemble matrix F(l) is then obtained with EnKF

update step.

EnKF update step

V(l) =M(l)
�A(l)F̂(l)

S(l) =
⇣
A(l)�(l)

fens

⌘⇣
(�(l)

fens
)T(A(l))T

⌘
+⌃(l)

"

G(l) =�(l)

fens

⇣
(�(l)

fens
)T(A(l))T

⌘
(S(l))�1

F(l) =F̂(l) +G(l)V(l),

(5.16)
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wherein the order of operations can be selected such that no N ⇥N matrices are formed at
any stage. The ensemble carries correct error statistics for deriving the ensemble mean and
covariance, as with increasing ensemble size, the linear EnKF solution converges exactly
to the Kalman filter solution (Evensen, 2009).
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Chapter 6

Ionospheric measurements

In this chapter the physical background of the mostly used measurements in ionospheric
imaging are presented. The chapter begins with an introduction to general electromag-
netic wave propagation as it provides the basis for the modelling of radio measurements of
satellite-transmitted signals and ionosonde measurements. As the ground-based measure-
ments of very-high frequency (VHF, 30–300 MHz) and ultra-high frequency (UHF, 300–3000
MHz) satellite signals are the most important data component and the understanding of the
related measurement errors and biases is essential, the background of these measurements
will be examined in more detail. Ionosonde, incoherent scatter radar and satellite in situ
measurements provide precise information on ionospheric electron density; however, as the
spatial coverage of these measurements is local-scale, they can be used only as additional
or validation data and are reviewed here more briefly.

6.1 Electromagnetic wave propagation

An electromagnetic wave propagating along axis z 2 R+ in temporally and spatially ho-
mogeneous medium can be represented as

 (t, z) = E0 cos(!t� kz) = E0 cos
⇣
!t�

!

c
nz
⌘
, (6.1)

where E0 is the peak amplitude, t is the time, ! is the angular frequency, k = !/v is the
wavenumber and c and v are the velocities of an electromagnetic wave in vacuum and in
the medium correspondingly. Finally the refractive index n describes the velocity of the
electromagnetic wave in thee medium. It is defined as

n =
c

v
. (6.2)

49



6.1.1 Ionospheric refractive index

The complex refractive index of magnetised plasma containing free electrons is given by
the Appleton-Lassen or the Appleton-Hartree formula (Budden, 1961)

n2 = 1�
X

1� iZ +
1
2Y

2 sin2 ✓

(1�X�iZ)
±

r
1
4Y

4 sin4 ✓

(1�X�iZ)2
� Y 2 cos2 ✓

, (6.3)

where i =
p
�1 is the imaginary number, X =

!
2
p

!2 , Y = !H

!
, Z = ⌫

!
, !p is the angular

plasma frequency, ⌫ is the electron collision frequency, ✓ is the angle between wave normal
and inclination of magnetic field and !H is the electron gyrofrequency.

Plasma frequency

The angular plasma frequency can be written as

!p =

s
Nee2

✏0m
, (6.4)

where Ne is the electron density, e is the electron charge, m is the electron mass and ✏0 is
the permittivity of free space. Useful conversions between electron density and (temporal)
plasma frequency fp = !p

2⇡
can then be obtained by inserting the natural constants to

Equation (6.4) and solving

fp ⇡ 8.98⇥
p
Ne (Hz) and

Ne ⇡ 0.012⇥ f2p (1/m3).
(6.5)

Collision frequency

The complex part in the Appleton-Lassen formula (6.3) is related to absorption. The
absorption results when charged particles that oscillate along with the electromagnetic wave
collide with other, mainly neutral particles. The collisions then decrease the energy of the
radiation. At mid latitudes, the e↵ective collision frequency is less than 104 Hz (Fehmers,
1996). The maximum collision frequency measured in an example case in Tromsø 1991 is
around 106 Hz at an altitude of 100 km, from where it decreases rapidly as the altitude
increases (Brekke, 1997). As can be seen in the Appleton-Lassen formula (6.3), part Z
containing collisions decreases with increasing signal frequency. When the frequency of the
propagating electromagnetic wave is greater than about 1 MHz the electron collisions can
be neglected and Z can be approximated with zero (Budden, 1961; Davies, 1965).
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Gyrofrequency and magnetic field

Gyrofrequency can be written as

!H =
B0|e|

m
, (6.6)

where B0 is the magnetic field strength. It is the angular frequency of a charged particle,
here electron, circling around a uniform magnetic field in a direction perpendicular to the
field. In a case of magnetised plasma, the plusminus sign in Appleton-Lassen formula (6.3)
indicates how the propagating wave is split in two modes. The mode with the “+” sign is
called ordinary and the mode with the “�” sign extraordinary component.

A general typical value for gyrofrequency is around 1 MHz (Budden, 1961) and 1.5
MHz (Parkinson et al., 1996). Also Y in Appleton-Lassen formula (6.3), that contains the
gyrofrequency, decreases with increasing signal frequency.

6.1.2 Group refractive index

As can be seen in Appleton-Lassen formula (6.3), the ionospheric refraction depends on
the frequency of the propagating signal, i.e. the ionosphere is a dispersive medium. When
considering a modulated signal the velocities of the signal carrier phase and modulation
envelope will di↵er due to the dispersion. Following Davies (1965, 1990), to demonstrate
this e↵ect, two electromagnetic waves propagating along one-dimensional axis z 2 R+ are
considered

 1(t, z) =E0 cos (!t� kz)

 2(t, z) =E0 cos ((! +�!)t� (k +�k)z) ,
(6.7)

where �! and �k are the small di↵erences in angular frequency and wavenumber between
signals  1 and  2. An amplitude-modulated signal can be created by summation and then
writing with trigonometric identities as

 1(t, z) +  2(t, z) =2E0 cos

✓
�!

2
t�

�k

2
z

◆
cos

✓
! +

�!

2

◆
t�

✓
k +

�k

2

◆
z

�

⇡2E0 cos

✓
�!

2
t�

�k

2
z

◆
cos (!t� kz) ,

(6.8)

where the first cosine term represents the modulation envelope and the second the carrier
phase. The modulation envelope then propagates with group velocity

vg = lim
�k!0

�!

�k
=

d!

dk
. (6.9)

The group refractive index can then be given with the definition in Equation (6.2) as

ng =
c

vg
= c

dk

d!
=

d

d!
(ck) =

d

d!

⇣
c
!

v

⌘
=

d

d!

⇣ c
v
!
⌘
=

d

d!
(n(!)!) = n(!) + !

dn(!)

d!
.

(6.10)
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6.1.3 Tropospheric refractive index

While the electromagnetic wave approaches Earth’s surface, in neutral atmosphere, below
the ionosphere, the number of free electrons decreases to zero and the ionospheric refractive
index approaches one. However, due to dry gases and water vapour, the refractive index in
the troposphere di↵ers from the free space. The accumulated phase di↵erence caused by the
tropospheric refraction can be significant, but typically less than that of the ionosphere.
The changes in the total contribution of the troposphere are also within ±10% even in
longer time periods, whereas the ionosphere can have large rapid changes (Klobuchar,
1996). More detailed studies on tropospheric parameters are provided by Bernhardt et al.
(2000); Rüeger (2002). According to Wells et al. (1986) the troposphere is nondispersive
for frequencies below 30 GHz. Kaplan and Hegarty (2006) state that the limit is 15 GHz.
Below these limits, the tropospheric refractive index is then independent of the frequency,
and the group and phase velocities are equal. Hence, it is enough to denote the tropospheric
refractive index here as

ntr = 1 +�ntr, (6.11)

that is the refractive index of vacuum perturbed with the tropspheric contribution �ntr.

6.2 Radio measurements of satellite transmissions

As of today, there exist several global navigation satellite systems (GNSS), such as GPS,
GLONASS, GALILEO and BEIDOU that can be used for ionospheric observations. The
di↵erent GNSSs operate in UHF frequencies ranging from GALILEO’s lowest frequency of
1176.45 MHz to the highest GLONASS frequency of 1605.375 MHz. In ionospheric studies
the most used satellite system has been GPS with the main frequencies of 1575.42 (L1) and
1227.60 MHz (L2). The satellite orbit altitudes used by di↵erent GNSS are for GLONASS
19,100 km, for GPS 20,180 km, for BeiDou 21,528 km and for GALILEO 23,222 km (Kaplan
and Hegarty, 2006). Besides GNSS systems, low Earth orbit (LEO) beacon satellites have
also been used frequently in atmospheric studies. LEO satellite beacons operate typically
with dual or tri-band VHF and UHF frequencies of 150, 400 and 1067 MHz. LEO refers
to orbital altitudes less than 1,500 km (Bernhardt et al., 2000; Yamamoto, 2008; Vierinen
et al., 2014).

6.2.1 Refractive indices for VHF and UHF signals

The principle of ionospheric observations with radio measurements of satellite beacon sig-
nals is based on the connection between the frequency-dependent refractive index and
electron density, given with the Appleton-Lassen formula (6.3). However, in its original
form given above, the connection is nonlinear and complex. For an e�cient measurement
model a linear equation without imaginary part is sought for.
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As the UHF and VHF frequencies are much greater than 1 MHz, the electron collisions
can be neglected and Z can be approximated with zero (Budden, 1961; Davies, 1965). This
removes the imaginary part from the Appleton-Lassen formula (6.3). A gyrofrequency of
1.5 MHz results in Y = 0.01 at 150 MHz and decreasing with increasing signal frequency.
Hence, Y in the Equation (6.3) can also be approximated with zero.

When electron collisions and gyrofrequencies are both omitted, the Appleton-Lassen
formula (6.3) simplifies to

n2 = 1�X = 1�
!2
p

!2
. (6.12)

The relation is indeed more simple, however, still nonlinear. Therefore, as ! � !p, the
refractive index can be approximated with first order Taylor polynomial at !p

!
= 0 with

n ⇡ 1�
1

2

⇣!p

!

⌘2
. (6.13)

Inserting !p =
q

Nee
2

✏0me
(rad/s) then results in

n ⇡ 1�
Nee2

2✏0me!2
. (6.14)

The simplifying and linearising assumptions in Approximation (6.14) give rise to an error
less than 1% with 150 MHz frequency, decreasing with higher frequency (Fehmers, 1996).

With Equation (6.10), the group refractive index for VHF and UHF signals can then
be derived as

ng = n(!) + !
dn(!)

d!
⇡1�

Nee2

2✏0me!2
+ 2

Nee2

2✏0me!2
= 1 +

Nee2

2✏0me!2
. (6.15)

6.2.2 Wave propagation of VHF and UHF signals

Spatially inhomogeneous medium wave propagation in Equation (6.1) can be written as

 (t, L) = E0 cos

✓
!t�

!

c

Z
L

0

n(z)dz

◆
, (6.16)

where, for the sake of convention, the integral is defined from receiver at z = 0 to satellite
at distance z = L.

It is here enough to concentrate on the integral part inside the cosine function (6.16)
that is the e↵ect of the medium for the propagating signal. For the carrier phase it is
typically given in radians

�(L) =
!

c

Z
L

0

n(z)dz (6.17)
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and for the modulation envelope in metres

⇢(L) =

Z
L

0

ng(z)dz. (6.18)

When taking into account the nondispersive tropospheric contribution (6.11), the phase
(6.17) can be written for the di↵erent intervals as

�(L) =
!

c

✓Z
L0

0

ntr(z)dz +

Z
L

L0

n(z)dz

◆
, (6.19)

where the first integral is defined along the signal path from ground receiver to distance
L0 where the ionospheric refraction becomes significant, and the second integral from this
altitude to the upper boundary of the ionosphere L. Inserting the refractive index (6.14)
results in radians as

�(L) =
!

c

Z
L0

0

(1 +�ntr)dz +

Z
L

L0

✓
1�

Ne(z)e2

2✏0me!2

◆
dz

�
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!

c
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Z
L0

0

�ntrdz �

Z
L

L0

Ne(z)e2

2✏0me!2
dz

�

=
!

c
L+

!

c
T (L)�

↵

c!
TEC(L).

(6.20)

Similarly for the group delay, combining Equations (6.18), (6.11) and (6.15) results in
metres as

⇢(L) = L+ T (L) +
↵

!2
TEC(L). (6.21)

In both Equations (6.20) and (6.21), L is the range between the transmitter and receiver,

T (L) =
R
L0

0
�ntrdz is the tropospheric contribution, ↵ = e

2

2✏0me
a combination of constants

and

TEC(L) =

Z
L

L0

Ne(z)dz (6.22)

is the slant total electron content (TEC). The last term, which includes TEC, is posi-
tive when considering phase velocity and negative when group velocity is considered. In
GNSS literature temporal frequency is often used instead of angular. The coe�cient in the
ionospheric part is then ↵

!
= ↵

4⇡2f2
⇡

40.3

f2
.

6.2.3 Observables

The two main measurement types, made from satellite beacon signals are the pseudorange
observable based on the group delay given in Equation (6.21) and the carrier phase ob-
servable based on the phase advancement given in Equation (6.20). For other ionospheric
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e↵ects on satellite signals, such as Doppler shift and Faraday rotation and their use as
measurements see e.g. Klobuchar (1985, 1996).

In traditional use of satellite positioning, the main interest in an individual measure-
ment is in the range between a user with an unknown position and a satellite with a known
position. In such range measurement the ionosphere is a source of error. In ionospheric
measurements the location of the receiver and hence the range to the satellite is known
and the primary interest is in the unknown TEC.

The satellite orbital altitudes used by di↵erent GNSSs are around 20,000 km. In Equa-
tion (6.21), the contribution of a relatively high TEC of 100 TECU in pseudorange extends
from 15 m at 1605.375 MHz to 1,800 m at 150 MHz. The total contribution of troposphere
to pseudorange in satellite beacon frequencies is approximately between 2.4–25 m (Kaplan
and Hegarty, 2006). Hence, for the navigation, with the aid of atmospheric models the
range estimation can be carried out with su�cient accuracy even from a single measure-
ment. However, when the interest is in the ionosphere, it is evident from the numbers
above that the situation is much worse.

Equations (6.20) and (6.21) describe an ideal measurement taking into account only
the physical composition of the atmosphere. Unfortunately, in real life, the measurements
also su↵er from several other nuisances. Below, the most significant errors and biases
for the TEC measurements are included in the models of both observables. The error
sources omitted here include antenna-phase center variations, earth tides, ocean loading,
and for phase measurement, the phase windup e↵ect (H̊akansson et al., 2017). Taking
the additional errors and biases into account consolidates the intuition why individual
measurements as such are useless for most of the applications considering TEC.

To overcome this problem, at least partially, measurements with two di↵erent fre-
quencies !1 and !2 are used. As part of the errors and biases are dispersive and part
nondispersive, i.e. coherent, the coherent errors can then be canceled by combining the
measurements, leaving only the frequency-dependent part.

Pseudorange observable

The transmitted GNSS satellite signals are modulated with di↵erent pseudorandom noise
codes depending on the satellite system and the frequency at issue. When received, the
signal is aligned with a reference signal and the modulated signals are compared. Due
to the pseudorandomness the maximum correlation between the received and the replica
code is achieved only when the signals are aligned perfectly. The amount the replica
code needs to be shifted for maximising the correlation provides the travelling time of the
signal. When multiplied with velocity c, the range between the receiver and the satellites is
obtained (Wells et al., 1986; Kaplan and Hegarty, 2006). In GNSS positioning terminology
the measurement of group delay is known as pseudorange, as it includes several biases.
By including the most significant bias terms in Equation (6.21), the pseudorange can be
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written as

⇢!(L, t) =c (⌧rec + ⌧sat + b⇢,rec,!,code + b⇢,sat,!,code) +M⇢,sat,rec,!,code(t)

+ L+ T (L) +
↵

!2
TEC(L) + "⇢,sat,rec,!,code(t),

(6.23)

where the new parameters ⌧ are the receiver and satellite clock errors, parameters b are
the receiver and satellite hardware biases, M is the multipath error and " is the measure-
ment error due to thermal noise etc. The dependencies of di↵erent parameters to specific
observations are given with subindex variables !, ⇢, rec, sat, code referring in corresponding
order to frequency, observable type, receiver and satellite names and the measured code.
For example, b⇢,PRN02,L1,C/A is the satellite bias for pseudorange measurements that uses
GPS satellite PRN02 and L1 frequency with coarse/acquisition code modulation.

A rule of thumb for the measurement precision is 1% of the period between two code
epochs (Wells et al., 1986). For GPS codes, this results in a precision of 1 ns for the P-code
and 10 ns for the C/A-code. Converted to TEC measurements the P-code precisions are
then 1.9 TECU for L1 and 1.1 TECU for L2. For C/A-code the precision in L1 is 19
TECU.

Di↵erential group delay

When pseudorange measurements with two di↵erent angular frequencies !1 and !2 are
available, the coherent part consisting of the range (with possible errors), clock errors and
tropospheric error is canceled out in subtraction, resulting in

�⇢(L, t) =⇢!2(L, t)� ⇢!1(L, t)

=↵

✓
1

!2
2

�
1

!2
1

◆
TEC(L)

+ cb⇢,rec,!2, � cb⇢,rec,!1, + cb⇢,sat,!2 � cb⇢,sat,!1

+M!2,⇢,2(t)�M!1,⇢,1(t) + "!2,⇢(t)� "!1,⇢(t).

(6.24)
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The TEC can be then solved as
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+M⇢,!1,!2(t) + "⇢,!1,!2(t),

(6.25)

where the scaling of the di↵erential error and bias terms converts them into TEC units.
As it is convenient to use TEC units from here on, the terms are renamed on the last
line. Variable DCB stands for di↵erential code bias (DCB) and it is unknown. For the
more precise P-code di↵erential group measurement a 2 ns precision results in a 5.7 TECU
precision. The possible multipath errors in the observations are in the scale of 10 m (Wells
et al., 1986) resulting in almost 100 in TECU. Hence, in practice, the di↵erential group
delay TEC can be considered as an absolute measurement up to DCB, but contaminated
with relatively large measurement noise.

Carrier phase observable

The Carrier phase, also known as carrier beat phase, phase di↵erence and phase advance-
ment measurement or observable, is used similarly for LEO beacon and GNSS di↵erential
carrier phase measurements. In the carrier phase measurement the di↵erence is taken
between the incoming signal phase and a constant reference frequency generated in the
receiver. The measurement is the phase di↵erence. When measuring the phase, the initial
number of full phase di↵erence cycles cannot be detected. Hence, a new bias term, phase
ambiguity �, needs to be included in the model. If the signal is lost during the measurement
a new phase ambiguity bias term needs to be added into the model (Wells et al., 1986;
Vierinen et al., 2014).

By including the phase ambiguity, with other additional bias and error parameters, in
Equation (6.20), the carrier phase observable can be written as

�(t) =! (⌧rec + ⌧sat + b�,rec,! + b�,sat,!) +
!

c
(L+ T (L))

�
↵

c!
TEC(L) +M�,sat,rec,!(t) + �sat,rec,! + "�,sat,rec,!(t),

(6.26)

where similarly to pseudorange measurements the clock and hardware bias terms ⌧ and b
are converted from seconds and range and tropospheric bias from metres to radians.
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For a di↵erential carrier phase measurement in GPS L1 frequency the precision rule
of 1% from the wavelength results in a range precision of 2 mm (Wells et al., 1986).
The corresponding TEC measurement precision is approximately 0.02 TECU. The TEC
measurement precision improves with lower frequencies.

Di↵erential carrier phase measurement

As the carrier phase observable is measured in radians, measurements in two frequencies
need to be scaled to same frequency before the subtraction.

�� =�!2 �
!2

!1

�!1
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(6.27)

Converting the measured di↵erence to TEC units results in

c

↵

✓
!2
1
!2

!2
2
� !2

1

◆
�� =TEC(L) +

c

↵

✓
!2
1
!2

!2
2
� !2

1

◆
(!2 (b�,rec,!2 � b�,rec,!1)� !2 (b�,sat,!2 � b�,sat,!1))

+
c

↵

✓
!2
1
!2

!2
2
� !2

1

◆✓
M�,sat,rec,!2(t)�

!2

!1

M�,sat,rec,!1(t)

◆

+
c

↵

✓
!2
1
!2

!2
2
� !2

1

◆✓
�sat,rec,!2 �

!2

!1

�sat,rec,!1

◆

+
c

↵

✓
!2
1
!2

!2
2
� !2

1

◆✓
"�,sat,rec,!2(t)�

!2

!1

"�,sat,rec,!1(t)

◆

=TEC(L) + IFB�,rec,!1,!2 + IFB�,sat,!1,!2 +M�,sat,rec,!1,!2(t)

+ �⇤
�,sat,rec,!1,!2

+ "⇤
�,sat,rec,!1,!2

(t),

(6.28)
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where the scaled di↵erential bias terms are in TEC units and renamed at the last line as
interfrequency bias (IFB) denoted here with variable IFB, and the naming for the rest of
the parameters is self-explanatory.

The phase ambiguity �⇤ is an unknown constant for a continuous measurement between
a satellite-receiver pair. The IFBs can be assumed constant for each individual receiver
and satellite when using the same frequency pairs. Hence, the IFBs can be included in the
phase ambiguity parameter as

��,sat,rec,!1,!2 := IFB�,rec,!1,!2 + IFB�,sat,!1,!2 + �⇤
�,sat,rec,!1,!2

.

The multipath error is on a centimeter scale (Wells et al., 1986) and can be included in
the measurement error term

"�,sat,rec,!1,!2(t) := M�,sat,rec,!1,!2(t) + "⇤
�,sat,rec,!1,!2

(t).

The di↵erential carrier phase TEC measurement can then be written as

c

↵

✓
!2
1
!2

!2
2
� !2

1

◆
�� =TEC(L) + ��,sat,rec,!1,!2 + "�,sat,rec,!1,!2(t). (6.29)

The precision of di↵erential phase measurement at GPS frequencies is approximately 0.03
TECU and di↵erential phase measurements with much lower LEO beacon frequencies are
even more precise. However, as ��,sat,rec,!1,!2 is not known, the measurement remains
relative.

6.2.4 Carrier phase leveling

The di↵erential code measurement is absolute up to DCB, but has a low precision. The
phase di↵erential measurement is relative due to the unknown phase ambiguity; however
the measurement precision is high.

To achieve the absolute scale for the more accurate carrier phase measurement, the
di↵erential carrier phase is fitted to the di↵erential group delay measurement. The fitting is
done by calculating the o↵set �o↵set between the two measurements using the high-elevation
parts as the low-elevation measurements are more prone to multipath errors (Klobuchar,
1996; Horvath and Crozier, 2007). The curve fitting results in real TEC measurement,
which is absolute with respect to phase ambiguity and has the accuracy of the phase
measurements, but still contains hardware biases. The final measurement can be written
as

c

↵

✓
!2
1
!2

!2
2
� !2

1

◆
��+ �o↵set = TEC(L) +DCB⇢,rec,!1,!2 +DCB⇢,sat,!1,!2 + "�,sat,rec,!1,!2(t).

(6.30)
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Di↵erential code bias (DCB)

The reason why di↵erential phase measurements with DCB, instead of phase ambiguity, are
preferred is that the phase ambiguity remains the same only for each individual satellite-
receiver lock. The DCBs are also unknown, however, it can often be assumed that each
individual signal transmitted from a GNSS satellite has a DCB that is independent of
the receiver. Correspondingly, it can be assumed that each receiver has a DCB for each
di↵erent signal, independent of the transmitting satellite. In comparison to TEC, it can
be assumed that the changes in DCBs are slow. However, the receiver DCB depend on
e.g. temperature (Coster et al., 2013) and daily variations of over 8 TECU are reported
(Dyrud et al., 2008). In the GLONASS system, each satellite transmits slightly di↵erent
frequencies and thus each satellite-receiver combination has its unique DCBs for di↵erent
signals between the pair. Detailed reviews about GNSS biases are provided by Dyrud et al.
(2008); H̊akansson et al. (2017). For bias calibration see e.g. Dyrud et al. (2008); Vierinen
et al. (2016).

6.2.5 LEO beacon satellite measurement model

The ground-based measurement of LEO dual-frequency beacon signals is a di↵erential
carrier phase measurement as given in Section 6.2.3. The TEC measurements can then be
written as a linear model given in Equation (3.3)

mLEO ⇡ALEOf +B�� + "LEO, (6.31)

where the vector mLEO consists of individual relative slant TEC measurements given in
(6.29) and correspondingly "LEO the measurement errors "�,sat,rec,!1,!2 . Similarly to Equa-
tion (2.3), the rows of matrix ALEO are discrete approximations for the integral operators
of slant TEC (6.22) for all the measured signal paths operating on the unknown electron
density values f 2 RN in the discretised three-dimensional domain. The vector � consists
of unknown phase ambiguity constants ��,sat,rec,!1,!2 and it needs to be taken into account
as an additional unknown. As the phase ambiguity remains the same during each con-
tinuous observation, several individual measurements in the above model share a common
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��,sat,rec,!1,!2 parameter.

B� =

2
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(6.32)

is a design matrix of zeros and ones, which picks the correct ambiguity parameter for each
measurement.

6.2.6 GNSS satellite measurement model

TEC measurements of GNSS satellite signals are based on the levelled carrier phase mea-
surement given in Equation (6.30). In the form of Equation (3.3), a vector of GNSS
measurements can then be modelled as

mGNSS ⇡AGNSSf +Brecbrec +BGNSSbGNSS + "GNSS, (6.33)

where again the vector mGNSS consists of individual GNSS TEC measurements (6.30).
The measurement error vector "GNSS consists of error terms "�,sat,rec,!1,!2 . Similarly to
LEO measurements, the matrix AGNSS is the discretisation of the integrals in slant TEC
(6.22) acting on the discretised electron density values f , as shown in Equation (2.3)
for the two-dimensional measurements. The vectors brec and bsat consists of DCBs of the
measurements. Brec and Bsat are design matrices, similar to B� in Equation (6.32), picking
the correct DCB for each measurement.

The altitudes of GNSS satellites are around 20,000 km, thus besides the ionosphere,
most of the signal propagation takes place in the plasmasphere above. The electron density
in plasmasphere is generally much lower than in the ionosphere; however, due to the long
ray paths, the resulting contribution to electron content can be significant. In Lunt et al.
(1999) it is reported that during solar minimum the plasmaspheric contribution over Europe
is typically a few TEC units. At night, especially in winter it can constitute 50% or even
more in GNSS measurements. The contribution decreases at higher latitudes and the
proportional contribution decreases towards solar maximum.

If the whole domain spanned by the receivers and satellites should be modelled similarly,
the resulting grid size can become unnecessarily high-dimensional. One technique to reduce
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dimensions is by using an irregular grid, where voxel sizes increase towards the boundaries,
particularly at high altitudes. Another scheme is to extend the grid only over the ionosphere
and use plasmaspheric models (see e.g. Jakowski and Hoque (2018) and references therein)
for the exceeding parts of the measurements. The plasmaspheric model can be introduced
into the measurement model in (6.22), as

TEC(L) =

Z
Liono

L0

Ne(z)dz+

Z
L

Liono

Ne(z)dz ⇡

Z
Liono

L0

Ne(z)dz+

Z
L

Liono

Ne,pmodel(z), (6.34)

where Liono is the upper boundary altitude of the reconstruction grid and Ne,pmodel a
plasmaspheric model. A straightforward approach is to assume a uniform but unknown
plasmaspheric electron density, resulting in

TEC(L) ⇡

Z
Liono

L0

Ne(z)dz + (L� Liono)Ne,punif , (6.35)

where Ne,punif the uniform plasmaspheric electron density constant. The TEC in (6.34) or
(6.35) is then plugged into equation (6.30). The selection of (6.35) introduces an additional
unknown in the final measurement model (6.33).

In ionospheric studies, the majority of GNSS TEC measurements are typically made
with ground-based receivers, with fixed and known locations. However, in satellite radio
occultation (RO) the GNSS measurement is carried out with a LEO satellite onboard
receiver (Hajj et al., 1994). The main di↵erence between the two is thus that in RO also
the receiver is in motion. The equations above can be used for modelling both ground-based
and RO measurements.

6.3 Ionosonde measurements

In 1924 Breit and Tuve (1926) proved the existence of an ionised layer in Earth’s atmosphere
by receiving ionospheric echoes from a transmitted high-frequency (HF, 3–30 MHz) signal.
The seminal study laid the foundation for ionospheric soundings and ionosondes.

An ionosonde is practically a radar transmitting HF pulses and measuring the time it
takes for a pulse to travel back and forth to the reflection altitude in the ionosphere. The
reflection occurs when the refractive index reaches zero. For the ordinary mode that is the
altitude where the plasma frequency matches the frequency of the propagating wave, while
a signal with a higher frequency than the current maximum plasma frequency will penetrate
trough the ionosphere. Hence, the range of the transmitted frequencies should cover the
current plasma frequency. Usual ionospheric peak electron densities range from 1010 to
1012 1

m3 (Klobuchar, 1985), with conversions given in Equation (6.5) the corresponding
plasma frequency range from 0.9 to 9 MHz. A typical ionosonde covers the frequencies
from 0.5 to 20 MHz.
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When the signal frequency in use is close to the plasma frequency the earlier assump-
tions regarding collision and gyro frequencies are not valid. After the lowest frequencies,
when the signal frequency is higher than 2 MHz (Klobuchar, 1985), the collisions can again
be neglected, however, even at the highest frequencies used in ionosondes, the presence of
the magnetic field and hence gyrofrequency needs to be taken into account in the refractive
index given with Appleton-Lassen formula (6.3).

The pulses transmitted from an ionosonde travel at group velocity (6.9). Before the
reflection occurs, the propagating wave is slowed down by the ionisation below the reflection
altitude. Hence, deriving the altitude from the signal travel time assuming that the pulses
propagate with the speed of light will result in so-called virtual height

h0 =
c

2
�t. (6.36)

The modelling for the roundtrip time can be carried out more accurately by taking the
group index into account as

�t =
2

c

Z
h

0

ng(z)dz, (6.37)

where the integral is defined along a line from ionosonde location at z = 0 to z = h, where
h is the real height i.e. the actual reflection height. When the pulse frequency and plasma
frequency up to current altitude are included, the virtual height can be written as

h0(!) =

Z
h(!)

0

ng(!p(z),!)dz. (6.38)

The solution for h(!) in Equation (6.38) is a nonlinear problem and cannot be solved within
the linear framework provided in Chapter 4. In ionospheric imaging, usually real height pro-
files pre-analysed with some specific scaling algorithm, such as NhPC (Huang and Reinisch,
1996) within Automatic Real Time Ionogram Scaler with True Height (ARTIST) (Reinisch
and Huang, 1983), POLynomial ANalysis (POLAN) (Titheridge, 1985), Autoscala (Pez-
zopane and Scotto, 2004) and NeXtYZ (Zabotin et al., 2006) are used.

An analysed real height profile is a vector of reflection altitudes for corresponding pulse
frequencies. Typically it is assumed that the reflections take place directly above the
instrument location. This results in a measurement model

hionos(!) = h(!) + "ionos(!), (6.39)

where "ionos are errors in altitude that are dependent on each other within each anal-
ysed profile. When converting the plasma frequencies and measurement errors to electron
density and approximating them in model grid points, ionosonde measurements can be
modelled in the form of Equation (3.3) as

mionos ⇡Aionosf + "ionos, (6.40)
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where Aionos is a simple design matrix picking the column of f closest to the instrument
location up to the highest reflection altitude.

6.4 Incoherent scatter radar measurements

The principle of a basic radar is to transmit pulsed or continuous electromagnetic waves
and to receive the signal reflected from a hard target, such as an aeroplane, a ship or a
speeding car. Based on the travel time and the doppler shift of the signal the measurement
typically gives the distance to the target as well as the speed in the radial direction from
the radar.

The incoherent scatter radar (ISR) theory was first proposed by Gordon (1958) to in-
vestigate Earth’s ionosphere. Intuitively the incoherent scatter can be understood as a
number of small scatterers distributed randomly in a volume. However, instead of an ac-
tual reflection, the free electrons in the ionosphere will accelerate when illuminated with
the incident electric field of the radar signal. As a result, the electrons start to re-radiate
as Hertzian dipoles in the corresponding frequency. The physical phenomenon is called
Thomson scattering. The movement of the electrons in ionospheric plasma is not com-
pletely free, but it is dominated by the significantly more massive positive ions. Thus, even
though the incoherent backscatter is from the electrons, the measurement will include a
Doppler e↵ect originating from the ion velocities.

In contrast to a single hard target, the ionosphere is a continuous medium and the
scattering will take place at several altitudes. If a plain continuous sine wave signal is
transmitted, it is impossible to say from which distance the received signal is scattering.
To overcome this so-called range ambiguity, some transmission modulation is required in
the transmitted signal.

Due to spatial and temporal fluctuations in plasma, the measured backscattered field
can be considered as a Gaussian random variable with zero mean. Hence, it is more
informative to estimate the covariance of the measurements. The estimated autocovariance
function can be represented also with its Fourier transform pair i.e. power spectral density.
Based on the power spectral density, plasma parameters such as electron density, ion and
electron temperature, ion mass ratio and ion velocity can be obtained.

For ionospheric imaging, the most important plasma parameter is the electron density.
An individual electron density measurement can be modelled as

mIS = Ne(z) + "IS, (6.41)

where z 2 R3 is the measurement location along the radar beam and "IS the corresponding
measurement error. Similarly to ionosonde measurements, the incoherent scatter radar
measurements can be interpolated to model grid points and modelled as direct measure-
ments of unknown electron densities in the form of Equation (3.3) as

mIS ⇡AISf + "IS, (6.42)
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where the design matrix AIS selects values of f related to corresponding measurements.

6.5 Langmuir probe in situ measurements

Langmuir probe is named after Irving Langmuir, who pioneered the method at General
Electric in the 1920s. It is one of the most straightforward ways of measuring plasma
(Klobuchar, 1985). However, it is an in situ measurement performed inside the medium,
hence, ionospheric plasma measurements require a vehicle with an access to the ionosphere,
such as a satellite or a rocket.

Langmuir probe measurements are based on detection of electric current between two
conducting surfaces interacting with the medium. Typically the current is measured be-
tween a plane, a cylindrical, or a spherical shaped electrode and the satellite surface. The
measurements are carried out by changing the probe potential in small steps. The sweep
over a range of realistic potentials produces a voltage-current curve. Plasma parameters,
such as electron density, electric potential of plasma and electron temperature, can then
be determined from the curve (Klobuchar, 1985; Hargreaves, 1992; Chen, 2003).

Similarly to ionosonde and incoherent scatter radar measurements, an individual elec-
tron density measurement provided my Langmuir probe is modelled here as

mLP = Ne(z) + "LP, (6.43)

where z 2 R3 is the location of the probe. For a discretised system (3.3), a vector of
measurements is modelled again as

mLP ⇡ALPf + "LP, (6.44)

where the design matrix ALP selects values of f related to the probe location at the time
of the measurement.
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Chapter 7

Development of methodology in
ionospheric imaging

The use of tomographic methods for ionospheric imaging was first suggested by Austen et al.
(1986) and later published in Austen et al. (1988). The article presented a two-dimensional
simulation study assuming LEO satellite measurements from a chain of receiver stations.
Iterative ART and SIRT algorithms were used with a Chapman profile (Chapman, 1931)
as an initial guess.

The first electron density reconstructions with real observations from LEO satellite
transmissions were presented by Andreeva (1990). The relative nature of phase measure-
ments was taken into account by solving the phase ambiguity within the inversion that was
carried out with ART. Pryse and Kersley (1992) used independent EISCAT incoherent
scatter radar data to validate reconstruction results obtained with a setup of two receivers
and the SIRT algorithm.

Another early simulation study was carried out with MART by Raymund et al. (1990).
In the aforementioned study the limitations of ionospheric measurements and necessity of
prior information was acknowledged. The limitations of the satellite measurement geome-
try and the resulting ill-posedness were studied more explicitly later by Yeh and Raymund
(1991) and Raymund et al. (1994b). Studies on resolution limits due to geometric limita-
tions and e↵ects on station spacing were later carried out by Na et al. (1995) and Sutton
and Na (1995). Saksman et al. (1997) showed that due to restricted measurement geom-
etry an infinite amount of ionospheric electron density functions can be defined that are
invisible to such a set-up.

Work presented in Fremouw et al. (1992) had several major contributions for the field.
It discussed the use of stochastic inversion presented in Tarantola and Valette (1982), used
earlier mostly in geophysics. However, the inversion was carried out with weighted damped
least squares (Menke, 1989), which is analogous to generalised Tikhonov regularisation.
The approach also utilised basis functions, namely Fourier basis functions in the horizontal
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direction and empirical orthogonal functions (EOF) in the vertical. The EOFs were based
on model ionospheres.

The use of ionosonde measurements in ionospheric imaging was speculated on in Kersley
et al. (1993). Raymund et al. (1994a) used scaled ionograms in a simulation study. Later
Heaton et al. (1995) used ionosonde as prior information.

The inclusion of GNSS measurements to ionospheric imaging was already suggested by
Yunck et al. (1988). The far-sighted speculations also acknowledged the lack of vertical
information provided by ground-based satellite measurements and considered possibilities
of satellite radio occultation (RO) measurements. A two-dimensional simulation study
with GPS-to-LEO RO measurements was carried out by Hajj et al. (1994), where the
TSVD approach was used to regularise the inversion. Singular values were also used to
study the e↵ect of improved measurement geometry. The first experimental results with
GPS measurements were carried out by Rius et al. (1997). The approach used a three-
dimensional spatial domain with four vertical layers and Kalman filter for the temporal
dimension.

The use of basis functions in three dimensions was presented by Howe et al. (1998). The
functions were constructed by combining spherical harmonics in the horizontal and EOF
in the vertical direction. The simulation study considered GPS and LEO measurements
and solved the GPS DCB within the procedure. The use of EOFs for three-dimensional
tomography was continued later with Multi-Instrument Data Analysis System (MIDAS)
by Mitchell and Spencer (2003); Bust et al. (2007); Chartier et al. (2012); Bruno et al.
(2019).

In global-scale four-dimensional ionospheric imaging the amount and quality of mea-
surements vary spatially, and in voxel-based approaches, the role of realistic physical prior
information becomes even more pivotal. Due to the significant role of the prior distribution,
these approaches are often referred to as data assimilation methods, and the prior distribu-
tion is then more commonly known as background model. The data assimilation methods
and nomenclature originate from meteorology, oceanography and geophysics (Tarantola,
1987; Menke, 1989; Daley, 1991; Daley and Barker, 2000). In ionospheric imaging, most of
the applied methods are variations of Kalman filter and can use any measurements that can
be modelled as linearised functions of electron density. However, the large number of un-
known parameters give rise to computational issues with the Kalman filter approach. The
size of the covariance matrices in model space is N ⇥N and computational complexity for
school-book matrix multiplication and inversion grows as O(N3). Hence, in the following
methods there are practically two main di↵erences: First, the selected background iono-
spheric model that can be anything from a simple climatology to complicated parametrised
physical models. Second, how the algorithm handles the covariance matrices that are too
large to fit in the computer memory.

Bust et al. (2004, 2007) derived the Ionospheric Data Assimilation Three-Dimensional
(IDA3D) algorithm from Three-Dimensional Variational Data Assimilation (3DVAR) (Da-
ley, 1991). The 3DVAR is a general approach allowing a nonlinear forward model, however,
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when assuming a linear forward model and Gaussian measurement error and background
distributions, the approach reverts to the Kalman filter. IDA3D uses ground-based GPS
and LEO satellite, satellite RO, satellite in situ and ionosonde measurements. Several iono-
spheric models have been used as a backgound model, including International Reference
Ionosphere (IRI) (Bilitza et al., 1993; Bilitza, 2001) and Parameterized Ionosphere Model
(PIM) (Daniell et al., 1995). The background information is fed into the Kalman filter in
the prediction step that is a mixture of earlier time step and the background model (Bust
and Mitchell, 2008). According to Bust et al. (2004), IDA3D does not solve the posterior
covariance, but only its diagonal i.e. the posterior variance.

Angling and Cannon (2004) presented an approach very similar to IDA3D, later entitled
Electron Density Assimilative Model (EDAM) (Angling and Khattatov, 2006; Angling,
2008). EDAM uses PIM or IRI model as the prior mean and updates it with satellite RO
and ground-based satellite measurements. EDAM is also a version of a Kalman filter, where
a persistence model with exponential delay is used as a dynamic model. Only the diagonal
of the posterior covariance matrix is solved and parametric correlations are given for non-
diagonal entries for the following time step. Prior covariance matrix elements with the
distance exceeding a predefined value are discarded resulting in a sparser covariance matrix.
The method is also capable of solving DCBs within the tomographic analysis (Angling,
2008). Angling and Jackson-Booth (2011) added virtual height ionosonde measurements
to EDAM in a nonlinear setting.

A method called GPS Ionospheric Inversion (GPSII) was presented by Fridman et al.
(2006, 2009). It uses GPS and LEO satellite, GPS-LEO satellite RO, radio altimeter
VTEC, LEO in situ, and ionosonde measurements. It uses a nonlinear model to obtain
nonnegative solutions and the actual solution is obtained with the Newton-Kontorovich
method. Within iterations, the GPSII uses a combination of generalized Tikhonov regu-
larisation and Bayesian approach with a discrete multivariate Gaussian prior: The method
uses a prior covariance matrix but it is also a weighted with a regularisation parameter.
The Kalman filter-type error covariance matrix propagation is not used. Both IRI 2000
and PIM have been used as a background model. It is stated that a factorised (separable)
representation of the covariance matrix has a substantial positive e↵ect on the memory
requirements and computation speed. GPSII solves DCB within the inversion.

A method utilising the Gaussian random field prior/Kriging/Gaussian process was in-
troduced by Minkwitz et al. (2015). In this approach the covariance is given as a three-
dimensional function that can be integrated according to measurement geometry to obtain
the covariance for the TEC measurements. The covariance function parameters are then
estimated from the measurement data. For the actual inversion, the covariance needs to
be evaluated then only between the reconstructed locations and the TEC measurements.
Hence, the reconstruction could be carried out e.g. for an individual two-dimensional plane
inside the actual three-dimensional domain. In Minkwitz et al. (2016) the approach was
extended to a four-dimensional case by adding the temporal dimension to the covariance
function.
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An approach called the Global Assimilation of Ionospheric Measurements (GAIM)
model (Schunk et al., 2004; Scherliess et al., 2004; Gardner et al., 2014; Scherliess et al.,
2017) has been developed by Utah State University. There exist di↵erent versions of the
approach that use a reduced-state Kalman filter and ensemble Kalman filter. Di↵erent
background models have been used from more simple ionospheric models (Schunk et al.,
2004) to a physical Ionosphere-Plasmasphere Model that utilises ionospheric drivers such
as neutral densities and winds, magnetospheric and equatorial electric fields, and auroral
precipitation (Scherliess et al., 2004).

The similarly named Global Assimilative Ionospheric Model (GAIM) has been devel-
oped by the University of Southern California and the Jet Propulsion Laboratory (USC/JPL)
(Rosen et al., 2001; Hajj et al., 2004; Wang et al., 2004). GAIM USC/JPL, again, has a
simpler version utilising a Kalman filter, where covariance matrix elements corresponding
to distances over a preset value are discarded. A more complicated version uses the 4DVAR
approach. 4DVAR (Courtier et al., 1994) is a general variational approach for data assim-
ilation, which, in a case of linear measurement and dynamical models, reverts to Kalman
smoother (Carrassi et al., 2018). The 4DVAR version of GAIM USC/JPL incorporates
several ionospheric drivers that are estimated along the electron density within a range of
time.

More recently, Elvidge and Angling (2019) presented a method called advanced en-
semble electron density assimilation system (AENeAS). Similarly to di↵erent GAIM mod-
els, AENeAS is a physics-based data assimilation model and it seeks to predict the iono-
spheric state. AENeAS uses Thermosphere Ionosphere Electrodynamics General Circula-
tion Model (TIE-GCM) (Qian et al., 2014) and NeQuick (Nava et al., 2008) as background
models and local ensemble transform Kalman filter (LETKF) (Hunt et al., 2007). LETKF
is a version of EnKF where the assimilation is performed only for local regions, which
further reduces the state space of the model.

An early review on ionospheric imaging methods is provided by Raymund (1994) and a
comparison of methods by Raymund (1995). Another introduction to ionospheric imaging
and its early methods is given by Fehmers (1996). A book on ionospheric imaging with
focus on iterative methods is provided by Kunitsyn et al. (2003). Bust and Mitchell (2008)
provide a comprehensive review article where most of the present methods are already
discussed.

7.1 TomoScand

TomoScand is a system for ionospheric imaging generated during the 2010s in the Finnish
meteorological institute and Sodankylä geophysical observatory, University of Oulu. At
this point it has been used mostly regionally over Northern Europe. It utilises measure-
ments of GPS, GLONASS, GALILEO and LEO satellite signals, incoherent scatter radars,
ionosondes, satellite in situ probings and GNSS-to-LEO RO. The GNSS DCBs can be
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estimated within the system.
Similarly to methods such as IDA3D, EDAM etc. presented above, the TomoScand

algorithm uses a simplified Kalman filter without solving the posterior covariance, or solving
only its diagonal. Currently the dynamical model (5.8) in use is a persistence model with
transition H(l�1) = �I and attenuation 0  �  1. Alternatively, some ionospheric model
can be used in the prediction step or directly as a prior mean.

The essential di↵erence to aforementioned similar techniques is in the construction
of the prior covariance. In paticular, TomoScand uses GMRF correlation priors, pre-
sented in Section 4.3, for representing the prior distribution. TomoScand then relies heav-
ily on sparse matrix implementations. Currently MUltifrontal Massively Parallel sparse
direct Solver (MUMPS) (Amestoy et al., 2001, 2019) with an R interface RMUMPS
(https://github.com/morispaa/rmumps) is used for solving the high-dimensional linear
problem in parallel. The main steps of TomoScand are given in Algorithm 1. An ex-
ample visualisation of TomoScand reconstruction from GNSS measurements is given in
Figure 7.1.
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Algorithm 1 TomoScand analysis

1. Set the spatial and temporal domain.

• Grid (lat, long, alt) (geographic coordinates, possibly irregular).

• Start and end time (UTC).

2. Read data

• Read measurements (GNSS, LEO, ionosonde, in situ, occultation,...).

• Read GNSS satellite DCBs (Section 6.2.4).

• Data quality control and filtering.

3. Form measurement models

• Formation of matrices AGNSS,ALEO, . . . corresponding with the measurements
in use (Chapter 6).

• Measurement error estimation, if not provided with data.

4. Form prior distribution (i.e. background model) (Chapter 4).

• Set prior mean for the unknown electron density (i.e. background mean).

– Prediction step (5.8)

• Set prior covariance (i.e. background error covariance).

– Set standard deviation/variance mask for the unknown electron density.
Previous posterior variance can be used (see Step 6 below).

– Set correlation lengths (in all 3 coordinate directions).

– Form matrix LC (Section 4.3.1).

• Set prior distributions for:

– GNSS DCBs

– LEO phase ambiguity

– Uniform plasmaspheric contribution

5. Solve MAP estimate (4.24) for the sparse linear system (RMUMPS).

6. Optionally solve the posterior covariance, its diagonal, or parts of it (RMUMPS).

7. Save and plot results.

8. Set start and end time for the next step and start again from item 2 above.
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Figure 7.1: Example output from TomoScand analysis. Top: Tomographic domain, with
irregular reconstruction grid and locations of the GPS and GLONASS satellite pierce points
at an altitude of 350 km within a 2-min interval. Bottom: Three-dimensional reconstruction
of ionospheric electron density.



Chapter 8

Discussion and conclusions

In this thesis an algorithm for four-dimensional multi-instrument ionospheric electron den-
sity imaging is developed. The algorithm uses a Bayesian approach for obtaining the most
probable state of the ionospheric electron density, by updating the prior distribution i.e.
the existing information of the ionospheric state with a set of new measurements. When
used sequentially, the method is generally known as Kalman filter. In contrast to other
Bayesian approaches used for ionospheric imaging, the prior distribution is essentially given
as a Gaussian Markov Random Field correlation prior. The approach allows determining
the prior covariance in an intuitive manner with a parametric function. However, for the
numerical computations the covariance information is represented with a sparse precision
matrix. Thus, instead of forming the N ⇥ N covariance matrix, approximately the same
information is given with a precision matrix where the number of non-zero elements grows
only as O(N). The precision matrix is also quick to construct and can easily be modified
for di↵erent covariance structures. E↵ectively the same information can also be given for
di↵erent discretisations of the domain as well as for irregular grids, as long as the discreti-
sation lengths remain substantially shorter than the corresponding correlation lengths.

Unfortunately the sparsity cannot contribute to further steps when using full Kalman
filter. Despite the initial sparsity, the resulting posterior covariance would again be a full
and dense matrix that cannot be solved for high-dimensional problems. A solution for the
diagonal of the posterior covariance i.e. posterior variance is possible. In this respect the
approach is on par with the earlier methods.

To take into account the covariance from one time step to another, methods such as
ensemble Kalman filter should be considered. However, on a regional scale, the dynami-
cal transitions in ionospheric electron density can be substantial even in short timescales.
Hence, even if the previous posterior covariance was solved, the role of the poorly known
process noise covariance at the prediction step can be significant. Especially, when consid-
ering ionospheric imaging in an operational manner, how much can be achieved by putting
much e↵ort into advancing the covariance temporally is a relevant question. On the other
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hand, for understanding the uncertainty related to any ionospheric electron density recon-
structions, the examination of posterior covariances is essential.

For numerical computations, an R (R Core Team, 2017) implementation of the algo-
rithm, called TomoScand, was written. Similarly to other imaging methods it can use any
ionospheric electron density model as its background. However, on a regional scale the
ionospheric electron density models can sometimes be severely flawed. Even in a case with
dense receiver networks, the data assimilation can struggle if the background information is
critically misleading. Hence, recently only a persistence model with attenuation coe�cient
has been used. Instead, emphasis is placed on the modelling of the prior/background error
covariance that controls the uncertainty associated with the unknown electron density dis-
tribution. The approach improves the performance in regional imaging of the high-latitude
ionospheric dynamics, providing an extension for the local measurements such as ISR and
ionosonde measurements.
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J. M. Rüeger. Refractive Index Formulae for Radio Waves. Integration of Techniques and
Corrections to Achieve Accurate Engineering, pages 1–13, 2002.

E. Saksman, T. Nygrén, and M. Markkanen. Ionospheric structures invisible in satellite
radiotomography. Radio Science, 32(2):605–616, 1997. ISSN 00486604.
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Abstract We present a novel ionospheric tomography reconstruction method. The method is based on
Bayesian inference with the use of Gaussian Markov random field priors. We construct the priors as a system
of stochastic partial differential equations. Numerical approximations of these equations can be represented
with linear systems with sparse matrices, therefore providing computational efficiency. The method enables
an interpretable scheme to build the prior distribution based on physical and empirical information on
the structure of the ionosphere. We show through synthetic test cases in a two-dimensional setup of
latitude-altitude slices how this method can be applied to satellite-based ionospheric tomography and how
information about the structure of the ionosphere can be implemented in the prior. The technique is
capable of being easily extended to multifrequency tomographic analysis or used for the inclusion of other
data sets of ionospheric electron density, such as ground-based observations by radars or ionosondes.

1. Introduction

The object of ionospheric tomography is to study the electron density of Earth’s upper atmosphere between
altitudes of 60 and 1000 km. The idea was originally proposed by Austen et al. [1988], and the statistical
approach for the problem was first presented by Fremouw et al. [1992]. The first to utilize Bayesian statistical
theory and Gaussian prior information for ionospheric tomography was Markkanen et al. [1995]. Later
studies in the field are concentrated mostly in the three-dimensional cases and real-time estimations
[Hansen, 2002; Mitchell and Spencer, 2003] where the problem is essentially the same as that in two
dimensions, but the sparseness of the data and increasing computational demand become even more
crucial factors. More recently, Seemala et al. [2014] have used algorithm similar to Markkanen et al. [1995] for
three-dimensional ionospheric tomography. The method development of ionospheric tomography is well
documented by Bust and Mitchell [2008]. Standard ionospheric tomography techniques are covered in text
books, such as Kunitsyn and Tereshchenko [2003].

The main data component in ionospheric tomography is usually provided with ground-based mea-
surements of signals transmitted by Global Positioning System (GPS) satellites or Low Earth Orbit (LEO)
beacon satellites. Here we concentrate on a simple case that models the overflight of one LEO satellite
and is illustrated in Figure 1. However, the method presented here can utilize various types of ionospheric
measurements.

The unknown object of interest is the electron density in the ionosphere. We assume that it is constant
in time during the flyby, which for an overflight of a LEO satellite over a regional tomographic receiver
network on the ground, like the TomoScand receivers in Fenno-Scandinavia, is approximately 15 min
Vierinen et al. [2014].

Mathematically, ionospheric tomography is an ill-posed problem which can be considered a sparse
limited-angle tomography and an inverse problem [Kaipio and Somersalo, 2005]. The low information
provided by the measurement setup in ionospheric tomography has been discussed in several articles. The
restrictions caused by the limited elevation angle and limited number of receivers have been studied by
Yeh and Raymund [1991], and the connection between measurement geometry and possible lattice
resolutions are analyzed by Na and Sutton [1994]. Saksman et al. [1997] show that the ionosphere can
contain structures that remain completely invisible for a certain class of receiver geometries.

As the information provided by the receiver-satellite geometry is very limited, the unknown electron
density cannot be solved without stabilizing/regularizing the problem with some additional information.
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Figure 1. Schematic plot of ionospheric tomography.

The most commonly used methods in ionospheric tomography include iterative methods such as the
Algebraic Reconstruction Technique [Andreeva, 1990] and similar iterative techniques [Raymund et al., 1990;
Pryse et al., 1993], use of base functions in the vertical direction [Na and Lee, 1990; Fremouw et al., 1992], and
smoothness constraints [Markkanen et al., 1995].

Raymund [1995] compared different algorithms and their variations for ionospheric tomography. While
there were significant differences between the methods, it was also reported that the well performing
algorithms did not have consistency over different cases. As one calibration of the model can produce good
solution with some data, it can be very unsuitable under different conditions.

As the ionospheric tomography reconstructions are dominated by the additional information of the
algorithm, it is important to understand what this information is and how strongly it affects the solution. In
the Bayesian statistical approach, the stabilization for the inverse problem is given as an a priori probability
distribution. The a priori probability distribution contains the information on the unknown parameters one
has before actual measurements. The solution, i.e., the a posteriori probability distribution is constructed
from the a priori distribution and the likelihood density functions. The latter, given the measurements,
states the likelihood of unknown parameters. For the remainder of the paper we refer to these probability
distributions simply as prior and posterior and to parameters of these distributions with the premodifiers
prior and posterior.

Markkanen et al. [1995] used Bayesian approach for ionospheric tomography where the stabilization was
provided by constraining the differences between neighboring pixels with an altitude-dependent
regularization parameter profile. This approach gives a computationally efficient way to stabilize the
problem by requiring smoothness from the reconstruction. However, this kind of smoothness constraint
does not result in a proper prior probability distribution; i.e., the covariance matrix does not exist, and the
regularizing effect is controlled with a regularization parameter that has no clear physical interpretation.

Natterer [1986] considered general computerized tomography where an isotropic exponential model can
be understood as a prior covariance function for a Radon transform problem. For ionospheric tomography,
Arikan et al. [2007] used similar approach with Gaussian random field priors with proper covariance matrices.
This method is a truly Bayesian approach for ionospheric tomography, where the prior information can
be given as a proper distribution. Instead of hiding the stabilization inside the algorithm, it is given with a
clear physical interpretation. In practice, the prior distribution can be formed by choosing the prior mean
and covariance structure based on, e.g., International Reference Ionosphere model, Chapman profile, other
ionospheric models, or additional measurements such as profiles from ionosonde measurements. The
variance of the system should then reflect the credibility of the given parameters.

Despite the evident advances of the Bayesian approach, the shortcoming, that was remarked also by Arikan
et al. [2007], is that due to the resulting full covariance matrix, the problem becomes easily computationally
unfeasible. This is the case especially in the three-dimensional ionospheric tomography where the number
of unknown parameters rises rapidly.

Here we follow Roininen et al. [2011, 2013, 2014] to utilize similar smoothness constraints as in Markkanen
et al. [1995] but parametrized in a more advanced manner so that the given constraints form a Gaussian
Markov random field (GMRF). The GMRFs are implemented with sparse matrices providing computational
efficiency, yet the approach provides a known and controllable covariance structure. Hence, the prior
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probability distribution can be defined by prior mean and covariance, which are given as physical quantities
in units of electrons per volume and length.

The GMRF prior provides also discretization invariancy, i.e., the information given with the prior, and hence,
the resulting reconstructions are essentially not affected by the change of the lattice used for the modeling.
However, most importantly, the GMRFs provide a computationally efficient way for truly Bayesian statistical
inversion with proper prior distributions. To our knowledge, this is the first time that GMRF priors are used
to address the problem of ionospheric tomography.

The paper is organized as follows: in section 2, we review the basic concepts of the Bayesian statistical
inversion. The construction of prior distribution with GMRF is explained in section 3, and the altitude
information and the corresponding parametric fields for GMRFs are covered in section 4. In section 5 we
show how the Bayesian statistical inversion with the GMRF priors is applied to ionospheric tomography in
practice. Following section 6, which has our conclusions and discussion, we briefly consider the future plans
on the topic in section 7. The first results with real measurement data are presented in the companion paper
Vierinen et al. [2014].

2. Bayesian Statistical Inversion

Figure 1 shows a schematic plot of ionospheric tomography. The dual-frequency signal is transmitted from
the beacon satellites and received on the ground. The relative difference of ionospheric propagation delays
of the two different frequencies can be measured tracking the phase of the two carriers. When subtracting
one phase curve from a scaled version of the other, the contribution of tropospheric refraction, clock drifts,
and uncertainties in the satellite position to measurements are canceled out and the relative electron
content along the signal path remains, up to an unknown constant. The actual measurement can then be
modeled as a line integral of electron density

mt = !i + ∫Lt

Ne(z)dzt, (1)

where mt is the measured relative total electron content, t is the time, Ne(z) the electron density of the
domain, and z ∶= (z1, z2) ∈ R2 the coordinate. The integral is defined over the measurement signal path
Lt with coordinates zt . The unknown constant !i is due to the 2" ambiguity of the initial phase difference
and the index i refers to a certain receiver-satellite combination. For details see Davies [1965]. We assume a
ray-casting approximation for the paths, i.e., the path from satellite to receiver is always a straight line.
We call equation (1) the continuous observation model.

When the electron density and phase constants are known, we call the solution for mt of equation (1) the
forward problem. The inverse problem is then to solve the electron density Ne(z) and phase constants !i,
when other parameters of the forward model are known.

For computations, we need a discrete approximation of the continuous observation model (1). We set
zj,k ∶= (z1,j, z2,k) ∶= ( jh1, kh2), where h1 and h2 are the discretization lengths, i.e., the horizontal and vertical
dimensions of the pixel in the discretized two-dimensional domain, row index j = 1, 2,… , nrow and column
index k = 1, 2,… , ncol. It is well known that a discretization of a linear integral equation can be obtained by
a discrete linear approximation. Let us write the approximation as a linear matrix equation

m = Ax (2)

where m ∶= (m1,…mnm
)T is the measurement vector containing the measured electron contents, A the

theory matrix, and the vector x ∶= (Ne(z1,1),… ,Ne(znrow ,ncol
), !1,… , !n )T contains the unknown electron

densities and phase constants. The index nm is the total number of measurements and n the total number
of phase constants. The theory matrix A is formed according to the measurement geometry, and it
approximates the line integrals given in equation (1). Here the matrix A ∈ R(nrowncol)×(nrowncol+n! ) also includes
the design matrix part which adds a correct !i parameter for the corresponding measurement.

In reality, the measurements are noisy. The noise can come from various sources, for example, radio
frequency interference, thermal noise of the measurement device itself, and from small scale-changes in
plasma that cannot be captured within the model resolution. For more detailed discussion on the error
sources we refer to our companion paper Vierinen et al. [2014].
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In statistical inverse problems also all the other variables are viewed as random variables. The randomness
describes our degree of information concerning their realizations [Kaipio and Somersalo, 2005]. Hence, we
change the paradigm from a deterministic matrix model of equation (2) to a stochastic matrix model

M = AX + e, (3)

where e = (e1.… , enm
)T is the measurement noise vector and all vectors M, X, and e are considered random

variables. For the observed measurements we use m as a realization of M. We assume that the e is normally
distributed with zero mean and ! covariance. We denote this as e ∼  (0,!). We also assume that we know
the covariance matrix !, but we do not know realizations of the noise e pathwise. In practice the mean and
covariance of the measurement error distribution are estimated from the data.

The solution to the Bayesian statistical inverse problem is the posterior probability distribution given with
the Bayes’ formula [Kaipio and Somersalo, 2005].

Dpost(X) =
D(M|X)Dpr(X)

D(M) ∝ D(M|X)Dpr(X) ∝ exp
(
−1

2
(M − AX)T!−1(M − AX)

)
Dpr(X),

where we use ∝ for proportionality, D is a Gaussian normal density function with subscript “post” for
posterior and “pr” for prior. D(M|X) is a normal density function for a conditional distribution of M when
X is given, and here it is obtained from the discrete approximation of equation (3). D(M|X) can also be
understood as a likelihood function for realizations of parameter X given observed measurements M = m.

From now on, we assume that the continuous unknown electron density lies in R2. We further assume
that the prior distribution of the discrete unknown electron density X is a Gaussian field, i.e., a multivariate
normal distribution with a mean value " and a covariance !pr. Then the unnormalized posterior density is

Dpost(X) ∝ exp
(
−1

2

(
(m − AX)T!−1(m − AX) + (X − ")T!−1

pr (X − ")
))

,

from which we can calculate the maximum a posteriori (MAP) estimator, i.e., the most probable state of the
ionosphere, given the prior information and measurements. We give the maximum a posteriori estimator by
the matrix equation

xMAP = !post

(
AT!−1m + !−1

pr "
)
, (4)

where

!post =
(

AT!−1A + !−1
pr

)−1
(5)

is the posterior covariance estimator. We note that the maximum a posteriori estimator is analytically the
same as the generalized Tikhonov regularized solution but, in this case, carries a statistical interpretation
[Kaipio and Somersalo, 2005].

The prior covariance matrix !pr can be formed with a desired structure as in Natterer [1986] and Arikan et al.
[2007]; however, the resulting covariance matrix !pr is a full matrix, and therefore, the computation of the
posterior covariance becomes computationally heavy.

Let us assume that we know a sparse matrix L which satisfies LT L = !−1
pr . Then we do not need to invert

the full covariance matrix. On the other hand, we can then represent the same information as a virtual
measurement equation

L(X − ") = W ∼  (0, I) (6)

where the vector W is normally distributed, the mean 0 a vector of zeros, and the covariance I an identity
matrix. Then the model can be written as a system of matrix equations

[
M
L"

]
=
[

A
L

]
X +

[
e
W

]
. (7)

It is then trivial to note that the weighted least squares solution of the system of equations (7) gives the
maximum a posteriori estimate of equation (4). This is a critical point in the development of the method
expounded in this paper, as we can present the full covariance matrix by a sparse matrix L. In the following
two sections, we consider how to construct this matrix L as a sparse matrix.
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3. Gaussian Markov Random Field Prior

The main goal of this article is to build the matrix !−1
pr of equation (4) as a sparse matrix, but in such a way

that it together with the prior mean " defines a proper normal distribution with known covariance structure.
Here we do this with the formalism of the GMRFs.

The GMRF can be understood as a multivariate normal distribution, but instead of mean and covariance,
the distribution is defined by its mean and precision matrix, i.e., the inverse covariance matrix !−1

pr . Here
we concentrate on cases where the positive definite precision matrix is sparse. The zeros in the precision
matrix indicate that the corresponding unknown is conditionally independent from these elements, given
the nonzero entries. This is known as the Markov property. For a detailed definition of GMRFs we refer to Rue
and Held [2005].

Here we follow Roininen et al. [2011, 2013] to build the matrix L of precision matrix LT L = !−1
pr in (4) so that

the resulting GMRF covariance matrix approximates a continuous Gaussian-shaped covariance function. We
first define and parametrize the distribution we are aiming at and then show how the corresponding matrix
L is formed.

Let X(z), z ∈ R2 be a real-valued Gaussian random function with finite moments of second order. We set

E(X(z)) = !(z) = !,
C(s) ∶= E(X(z)X(y)) = E(X(z − y)X(0)),

where E stands for the expectation operator and s ∶= (s1, s2) ∶= z − y, and s, z, y ∈ R2. Let us assume that
C(s) is an absolutely integrable function, then X(z) is a weakly stationary random field. We then choose the
prior distribution to be a weakly stationary Gaussian random field with mean ! and a squared exponential
autocovariance function

C(s) = " exp

(
−
(

s2
1

l2
1

+
s2

2

l2
2

))
, (8)

We call parameter " the scaling factor of the variance, and l1, l2 correlation lengths to respective
coordinate directions.

We then present how the corresponding GMRF is constructed. We first define the discretized white noise as
a discrete approximation of the continuous white noise W at a lattice point ( j, k)

Wj,k ∼ 
(

0, 1
h1h2

)
, (9)

where h1 and h2 are the discretization lengths, i.e., the horizontal and vertical pixel dimensions of an
uniform lattice. We denote the finite approximation of the continuous mean ! by vector " = (!̄,… , !̄).
Then, according to Roininen et al. [2011, 2013], we can approximate the continuous spatial differential
operator equations as a system of stochastic partial difference equations

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪⎩

Xj,k − !̄ =
√

"l1 l2
c0h1h2

W(0,0)
j,k

Xj,k − Xj−1,k =
√

"h1 l2
c1 l1h2

W(1,1)
j,k

Xj,k − Xj,k−1 =
√

"h1 l2
c1 l1h2

W(1,2)
j,k

l21
h2

1

(
Xj+1,k − 2Xj,k + Xj−1,k

)
+

l22
h2

2

(
Xj,k+1 − 2Xj,k + Xj,k−1

)
=
√

"l1 l2
c2h1h2

W(2,0)
j,k ,

(10)

where W(p,p′) are independent discrete white noise processes as in (9), where the p ∈ {0, 1, 2, ...} gives
the order of differences and p′ ∈ {0, 1, 2} indicates the direction of differences with correspondence
1 = horizontal, 2 = vertical, and 0 = both directions; e.g., W(1,2) is a white noise process corresponding to
first-order differences in vertical direction. Parameters cp are known scaling constants chosen as explained
in Roininen et al. [2013].
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In Roininen et al. [2011, 2013] the equations in (10) were defined on whole space R or R2. For computations
we change the paradigm from the whole space to a bounded domain. This is done via the introduction of
periodic boundary conditions

Xj,k = Xj+nrow ,k, and Xj,k = Xj,k+ncol
. (11)

Finally, we can write the discrete approximation in equation (10) as a stacked matrix equation corresponding
to equation (6) as

⎡
⎢
⎢
⎢
⎢⎣

L(0,0)

L(1,1)

L(1,2)

L(2,0)

⎤
⎥
⎥
⎥
⎥⎦

(X − !) = W ∼  (0, I), (12)

where the matrices L(p,p′) ∈ Rnrowncol×nrowncol are defined as follows: The white noise matrix

L(0,0) =

√
c0h1h2

!l1l2
I.

Let us denote by ⊗ the Kronecker product and an identity matrix by Inrow×nrow
∈ Rnrow×nrow . Then the

first-order difference matrices are

L(1,1) =

√
c1l1h2

!h1l2
Inrow×nrow

⊗

⎡
⎢
⎢
⎢
⎢⎣

−1 1
⋱ ⋱

−1 1
1 −1

⎤
⎥
⎥
⎥
⎥⎦ncol×ncol

and

L(1,2) =

√
c1h1l2
!l1h2

⎡
⎢
⎢
⎢
⎢⎣

−1 1
⋱ ⋱

−1 1
1 −1

⎤
⎥
⎥
⎥
⎥⎦nrow×nrow

⊗ Incol×ncol
.

The second-order differences can be presented as

L(2,0) =

√
c2h1h2

!l1l2

⎛
⎜
⎜
⎜
⎜
⎜
⎜⎝

Inrow×nrow
⊗

⎡
⎢
⎢
⎢
⎢
⎢⎣

−2 1 1
1 −2 1

⋱ ⋱
1 −2 1

1 1 −2

⎤
⎥
⎥
⎥
⎥
⎥⎦ncol×ncol

+

⎡
⎢
⎢
⎢
⎢
⎢⎣

−2 1 1
1 −2 1

⋱ ⋱
1 −2 1

1 1 −2

⎤
⎥
⎥
⎥
⎥
⎥⎦nrow×nrow

⊗ Incol×ncol

⎞
⎟
⎟
⎟
⎟
⎟
⎟⎠

.

In Roininen et al. [2013] it is shown that by taking the order of difference matrices and the discretization
interval into the limit, i.e., p → ∞ and h1, h2 → 0, the resulting covariance converges toward the
continuous Gaussian-shaped covariance function given in equation (8). However, it is numerically verified
that the matrices L(p,p′) can be used to form an adequate discrete approximation for this covariance already
with max(p) = 2, when h1 and h2 are shorter enough than the desired correlation lengths of the field.

As the discretization length is taken into account, the prior is discretization invariant and essentially the
same information can be used for different lattice sizes. Also, the construction of priors on irregular lattices
can be done similarly to the method used in this section. Any regular finite-difference approximation can be
used in these cases. For the sake of notational clarity, we will not go through the construction of these priors
on irregular lattices.

In Roininen et al. [2014] a similar idea was applied to a nonlinear Bayesian inverse problem, the electrical
impedance tomography, but with finite element methods.
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4. Altitude Information for the GMRF Prior

The electron density of the ionosphere varies spatially. For that, we change the constant parameters
!, ", l1, l2 introduced in the previous section to continuous, differentiable, and positive functions
!(z), "(z), l1(z), l2(z) for locations z, where z ∈ R2.

Then the discrete GMRF approximation is

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪⎩

Xj,k − !j,k =
√

"j,k l1,( j,k) l2,( j,k)
c0h1h2

W(0)
j,k

(Xj,k − !j,k) − (Xj−1,k − !j−1,k) =
√

"j,k h1 l2,( j,k)
c1 l1,( j,k)h2

W(1,1)
j,k

(Xj,k − !j,k) − (Xj,k−1 − !j,k−1) =
√

"j,k l1,( j,k)h2

c1h1 l2,( j,k)
W(1,2)

j,k

l21,( j,k)
h2

1
((Xj+1,k − !j+1,k) − 2(Xj,k − !j,k) + (Xj−1,k − !j−1,k)) +

l22,( j,k)
h2

2
((Xj,k+1 − !j,k+1) − 2(Xj,k − !j,k)

+(Xj,k−1 − !j,k−1)) =
√

"j,k l1,( j,k) l2,( j,k)
c1h1h2

W(2)
j,k ,

(13)

where the parameters !j,k, "j,k, l1( j,k), and l2( j,k) are the values of the corresponding continuous functions at
the location zj,k . The approximation can then be presented with a similar stacked matrix representation as in
equation (12).

In section 5, we show through numerical simulations that in practice the prior distribution can be deter-
mined with the parameters !j,k, "j,k, l1( j,k), and l2( j,k) and that the effect of the parameters is interpretable.
With the resulting GMRF prior, we can model structural properties of the ionosphere; i.e., we have an
inhomogeneous prior. This approach is somewhat similar to the work of Bardsley [2013] and to Kaipio et al.
[1999], in that we model the structural properties of the priors.

We note that from the purely mathematical point of view, we have not verified that there is a continuous
GMRF prior in the discretization limit h1, h2 → 0. However, numerical simulations support this idea, and we
conjecture that the resulting GMRF prior is discretization invariant. Hence, the reconstructions computed
are essentially independent of the computational lattice used.

5. Numerical Examples

In this section we show how the prior distributions are built with GMRFs and demonstrate with synthetical
examples how the Bayesian approach with GMRF priors is implemented for ionospheric tomography. The
first results with real data are presented in our companion paper Vierinen et al. [2014].

In the examples, we first simulate samples from the constructed prior distributions to show that the
distributions actually incorporate the information given with the parameters of previous sections. We
then show how well the unknown electron density, with a certain altitude characteristics and scale size of
structures, can be reconstructed in an optimal case where we know the exact prior distribution. However,
as with real measurements, the exact prior distribution is never actually known; we then show how well the
unknown electron density can be reconstructed with a loose prior that does not restrict the solution with
strict information that we actually do not have.

We take the theory presented in previous sections and build the inverted prior covariance matrix with matrix

L =

⎡
⎢
⎢
⎢
⎢⎣

L(0,0)

L(1,1)

L(1,2)

L(2,0)

⎤
⎥
⎥
⎥
⎥⎦

,

where matrices L(0,0), L(1,1), L(1,2), and L(2,0) are constructed by following equation (13). In the vertical
direction, we give the mean value ! = (!1,1,!1,2 … ,!nrow ,ncol

)T and standard deviation
√
" =

(√"1,1,
√"1,2,

… ,√"nrow ,ncol

)T
of the field with a Chapman profile [Brekke, 1997].

Chapman profiles are altitude profiles of the ionospheric electron density, which result from the balance
between electron production and loss processes in the ionosphere. Specifically, as a production process the
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Figure 2. Parameter fields for prior distribution used in Prior 1.

Chapman profiles include electrochemical ionization due to energy input into the neutral atmosphere, and
as a loss process recombination due to interaction of electrons with ions and neutral particles. The shape
of the Chapman profile is defined with scale height, peak value, and peak altitude. The latter two of these
parameters define what the expected maximum of the electron density is and its altitude. Scale height gives

Figure 3. Six samples from the Prior 1 distribution.

NORBERG ET AL. ©2015. American Geophysical Union. All Rights Reserved. 145



Radio Science 10.1002/2014RS005431

Figure 4. Case 1. (top row) The new prior standard deviation and the corresponding sample. (middle row) The posterior
standard deviation and maximum a posteriori estimate with the correct prior. (bottom row) The posterior standard
deviation and maximum a posteriori estimate with Prior 1. Receivers marked with cyan plus signs.

the vertical width of the profile. Shorter scale heights, close to 100 km or under, gives a profile where the
electron density is expected to be concentrated strictly around the peak altitude. Larger scale heights such
as 145 km used in the simulations here spreads the profile of expected electron density wider to low and
high altitudes.

The mean value is our initial guess on the unknown electron density before the measurements, and the
standard deviation states how much we trust this initial guess. In addition to that, we set a correlation length
for both horizontal l1 and vertical directions l2. We define here the correlation length as a distance where
the correlation between two points drops to 10% of variance. These parameters can be interpreted as how
large details we expect to detect in the reconstruction. Very long correlation lengths correspond to a very
smooth ionosphere.

The periodicity conditions of equation (11) are given for computational reasons. As these conditions cannot
be justified physically, in the vertical direction we have cut the correlation length close to the vertical
dimension of the pixel size at the boundaries. This could also be done for the horizontal direction, but in
practice the reconstructions have to be done in domains larger than it is reasonable to use for analysis.
Hence, the possible boundary effects are cut out from the resulting domain for ionospheric analysis.

In Figure 2 we present the mean value and standard deviations for an example case, from now on referred
to as Prior 1. The peak for mean value is 2.5 ⋅ 1011Ne∕m3 at 300 km altitude. For the standard deviation the
peak is 2 ⋅ 1011Ne∕m3, also at 300 km altitude. The scale height for the standard deviation profile is 120 km
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Figure 5. Case 2. (top row) The new prior standard deviation and the corresponding sample. (middle row) The posterior
standard deviation and maximum a posteriori estimate with the correct prior. (bottom row) The posterior standard
deviation and maximum a posteriori estimate with Prior 1. Receivers marked with cyan plus signs.

and 145 km for the mean. The horizontal correlation length is set to 10◦ and vertical to 400 km. In Figure 3
we have drawn six sample realizations from Prior 1 distribution. The samples are simulated by multiplying a
standard normal random vector with Cholesky decomposition of the prior covariance matrix, then adding
the prior mean value [Gentle, 2005].

The samples can be considered as likely realizations of the ionospheric electron density based only on our
existing knowledge before the measurements. The samples provide us with a way to understand the prior
distribution and to observe that the information stated in previous paragraphs is really incorporated in
the samples. At this point we are not using any positivity constraints and, as the standard deviation of the
prior is so large, there are some areas with negative values. We do not claim that these samples would be
physically realistic realizations of the ionosphere but that we can clearly characterize structural information
with the distributions as the samples clearly correspond to the chosen parameter values. The idea here is to
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Figure 6. Case 3. (top row) The new prior standard deviation and the corresponding sample. (middle row) The posterior
standard deviation and maximum a posteriori estimate with the correct prior. (bottom row) The posterior standard
deviation and maximum a posteriori estimate with Prior 1, where the peak value of the mean is decreased to
1.3 ⋅ 1011Ne∕m3. Receivers marked with cyan plus signs.

build the Prior 1 with a large variance so that it would contain only the very basic information we have on
the ionosphere.

We then study four different cases illustrated in Figures 4–7. In the first three we form a stricter prior
distribution than Prior 1, by dropping the peak standard deviation to half, and generate a random sample
from that distribution. The sample is then taken as our unknown electron density. The samples in the
example cases are all simulated with the same random seed as sample 1 of Figure 3; hence, the effect of
different parameter values can be observed by comparing the samples. In the fourth case in Figure 7, we
build a simple electron density with vertical Chapman profile and arbitrary horizontal profile without known
prior distribution.

The simulation of measurements is done by solving equation (3) as a forward problem. The domain for the
electron density is given in latitudes from 55◦ to 75◦. Vertically, it is limited from ground level to 1000 km
altitude. We assume one satellite overflight and five receivers spread uniformly between the latitudes of
60◦ and 70◦. The elevation angle limit for the observations that are used in the tomographic inversion is
set to 10◦. Given this measurement geometry, we first form the matrix A, take the simulated sample as x,
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Figure 7. Case 4. (top row) The standard deviation of Prior 1 and a simple synthetical sample. (bottom row) The posterior
standard deviation with Prior 1 and the maximum a posteriori estimate. Receivers marked with cyan plus signs.

and compute m of equation (2). We then simulate the measurement noise e as white noise, with standard
deviation ! = 0.01 max(m) and add this to the measurements to get the relative total electron content
measurements M of equation (3). As explained after equation (1), the real-life ground measurements are
relative measurements. Hence, for each satellite-receiver combination we also add an additional random
constant "i to model the absolute level of total electron content. Here we generate these constants from a
Gaussian distribution with a standard deviation of 0.1 max(m). As we are assuming one satellite overflight,
this gives us five additional unknown parameters, one for each receiver.

From the simulated measurements, we then solve the “unknown” electron density and phase ambiguity
parameters with the estimators given in equations (4) and (5). For the three first cases, the reconstructions
are done with both, the correct prior used for sampling and the less restrictive Prior 1 distribution. For
the fourth case, the reconstruction is done only with the Prior 1 distribution. In Figures 4–7 the posterior
standard deviations are also presented. The posterior standard deviations show the uncertainties of the
solution, given the prior distribution and the measurements.

The samples for electron densities are done for 100 × 200 lattices that correspond to 10 km × 0.1◦ pixel size
in this example. For the reconstructions we have considered 40 × 80 lattices with 25 km × 0.25◦ pixels.

Case 1. In Figure 4 the scale height of the prior standard deviation is set to 100 km and the peak value to
1 ⋅1011 Ne∕m3. The scale height of mean value is also decreased to 125 km. Other parameters are left as in
Prior 1. When comparing the sample produced with these parameters to “sample 1” from Figure 3, it can
be seen that the main structures remain intact, but the high density is limited to a thinner layer and the
variation is lower.

In reconstruction with the correct prior the main structures are recovered, peak densities being slightly
lower than in the original electron density. The posterior standard deviation decreases approximately to
half from the prior. In reconstruction with Prior 1 the main structures are still somewhat recovered but the
overall quality is weaker. As the Prior 1 is less informative, the posterior standard deviation is larger than with
the correct prior.
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Figure 8. Comparisons of vertically integrated electron content of the original electron density (black) and
reconstructions with correct prior (red) and Prior 1 (green). Receivers marked with plus signs.
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Case 2. In Figure 5 the parameters are unchanged from Case 1 except for the horizontal correlation length
which is set to 20◦. When comparing the sample to the sample of the previous case, the effect is clearly
visible as the horizontal correlation has increased. With the correct prior, the main features of the
reconstructed electron density are reasonably visible, but smoothing is slightly larger than in the previous
case. As the horizontal correlation length of Prior 1 is 10◦, the Prior 1 can be considered even less
informative for Case 2 than it is for Case 1. However, part of the main features is still visible in this
reconstruction. As the Prior 1 was used and the measurement geometry was unchanged, the information
obtained from the system remains the same as in the previous case, and therefore, the posterior standard
deviation is also unchanged.

Case 3. In Figure 6 the parameters are again the same as in Case 1, but the profiles for the prior standard
deviation and prior mean have maximum latitude at 57◦ from where they are horizontally decreasing.
The results behave accordingly. As the standard deviation is decreasing northward we are giving stricter
information to that direction and the reconstruction with correct prior is therefore also more accurate. This
can be seen from the posterior standard deviation which gets very low northward when the correct prior
is used. In the first reconstruction trials with Prior 1, in large parts of the area the mean value is significantly
larger than in the original electron density; also, some negative densities were produced in reconstruction.
Hence, for the reconstruction with Prior 1 in Figure 6 the mean of Prior 1 was scaled down to 1.3⋅1011 Ne∕m3

until the reconstruction was strictly positive. The posterior standard deviation remains the same compared
to previous cases.

Case 4. In Figure 7, a simple electron density is constructed by multiplying a vertical Chapman profile with
an arbitrary two-peak horizontal profile. Hence, in this case there is no exact prior knowledge and we rely
only on the Prior 1 distribution. In the reconstruction, the main features of the electron density are recovered
rather well; however, some values are present that are higher than those in the original electron density.
Similar to previous cases, the posterior standard deviation is unchanged as the information provided by the
system is the same.

In Figure 8, we have compared the vertically integrated electron content between the original electron
density and different reconstructions. In all of the cases the Prior 1 seems to overestimate the electron
content slightly. Overall the plots show reasonable agreement between integrated electron contents. In
Vierinen et al. [2014] the method is applied successfully also to real measurements.

6. Conclusion and Discussion

It is well known that the ionospheric tomography problem, as presented here, is ill posed and cannot be
solved uniquely. In order to get a reasonable tomographic reconstruction, additional information is needed
to stabilize/regularize the problem. To give this additional information in an easily interpretable manner, we
have used Bayesian statistical inversion, where the stabilization is given as a prior distribution.

As the Bayesian approach results in computational difficulties with the full covariance matrices that
need to be inverted, we have used GMRF priors to overcome these computational difficulties. We have
demonstrated that with GMRFs we can incorporate physically interpretable information in the prior
distribution. Most importantly, the GMRFs are implemented with extremely sparse matrices. The sparse
matrices provide computational efficiency making the Bayesian statistical inversion approach feasible with
simple matrix computations.

In Bayesian statistical inversion, when working with real data, the prior distribution can be chosen based
on other measurements or models. However, our uncertainty on this guess should be then reflected in the
variance of the prior distribution. The possibility to choose the prior somewhat subjectively might feel
unsound, but we stress that all the different tomographic algorithms need the stabilizing/regularizing
information and in this Bayesian approach this information is just made visible and interpretable.

In synthetic test cases, where the true electron density is known, the correspondence between the
individual reconstruction and the underlying truth can be enhanced considerably by tuning the parameters
through trial and error. Instead of using such an approach, the examples presented in section 5 give an
overall understanding of how well the ionospheric tomography problem can be solved in extreme
cases, with regard to the scale of details in the electron density and to the uncertainty of the state of the
ionosphere before the measurements.
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In the Bayesian framework, the posterior covariance also provides us with understanding of the
uncertainties of the resulting reconstruction. In cases with the correct prior, credible intervals can be
computed from the posterior standard deviations. As the solution is highly dependent on the prior in
use, one has to be cautious before jumping to conclusions about credible intervals when using real data.
However, when prior modeling is done carefully, even this kind of reasoning can be justified.

7. Future Work

We are currently building a new ionospheric tomography receiver network in Fenno-Scandinavia. The
future work will include applications of the method presented in this paper to real dual-frequency bea-
con data. The framework presented in the paper is also well suited for multidata source inversion, allowing
the inclusion of measurements from other ionospheric remote sensing instruments, such as ionosondes,
GPS receivers, and incoherent scatter radars. We also plan to extend the method for three-dimensional
ionospheric tomography.
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Abstract We introduce a new coherent dual-channel beacon satellite receiver intended for ionospheric
tomography. The measurement equation includes neutral atmosphere and ionosphere propagation effects,
relative errors in satellite and receiver clocks, and residual Doppler shifts caused by errors in the satellite
ephemeris. We also investigate the distribution of errors for phase curve measurements and the use
of phase curve measurements for limited angle tomography using the framework of statistical linear
inverse problems. We describe the design of our beacon satellite receiver software and present one
possible hardware configuration. Finally, we present results obtained using a network of four newly
developed receivers and compare the results with those of an existing ionospheric tomography network at
Sodankylä Geophysical Observatory.

1. Introduction

Ground-based ionospheric tomography is a method for estimating ionospheric electron density using
measurements of ionospheric delay as electromagnetic waves transmitted from satellites are received
at multiple ground stations [Austen et al., 1988; Raymund et al., 1990; Kunitsyn et al., 1994; Markkanen et
al., 1995; Nygrén et al., 1996; Mitchell et al., 1997; Bernhardt et al., 1998; Kunitsyn and Tereshchenko, 2003;
Garner et al., 2009]. There are two main families of satellites that can be used for this purpose: low Earth
orbit beacons and global navigation satellites. We will focus in this work on low Earth orbit (LEO) satellites
that transmit phase coherent 150/400 MHz signals. These are of interest especially for local high-resolution
tomography, as lower frequencies are more affected by the ionosphere than global navigation satellite
frequencies. LEO satellites also have fast ground station transit times, providing significantly greater inde-
pendent measurements of line integrals within a given time interval. These measurement qualities provide
enhanced time resolution of derived ionospheric density structures over that possible with, e.g., GPS satel-
lite networks [Rideout and Coster, 2006]. Bernhardt and Siefring [2006] provide an overview of coherent
beacon satellite theory and operation.

The Sodankylä Geophysical Observatory (SGO) in Finland operates an existing tomography receiver
network with receivers that were custom built by Invers Ltd. These receivers rely on a Russian Tsykada
navigation satellite system [Kunitsyn et al., 1994] limited to three currently operational transmitting plat-
forms. In order to upgrade these receivers for modern observations, we require a new receiver that can
function autonomously, observe multiple satellites simultaneously, and support all currently operational
150/400 MHz beacon satellites.

One practical way of implementing an ionospheric tomography receiver is using a software-defined
radio [Mitola III, 2000; Reed, 2002], in which most of the signal processing is performed with software on
a general purpose computer. The main advantage of this approach is that the receiver software can be
continuously improved, even after deployment of the instrument. Scientific numerical algorithms can
also be used, instead of fixed purpose signal processing hardware. An implementation of an open-source
software-defined beacon satellite receiver is described by Yamamoto [2008]. In this paper, we will introduce
a new beacon receiver that builds on the work of Yamamoto and is specifically intended for autonomous
operation of receivers in a large network configuration.

In the following sections, we derive equations of radio propagation through the atmosphere and describe
the fundamentals of a beacon satellite measurement. We then outline the basic principle of tomographic
reconstruction of ionospheric electron density using relative propagation time differences measured using
a ground-based receiver network. After a description of the technical details of our hardware and software,
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we conclude by presenting results from several newly deployed ionospheric tomography receivers. These
results will be compared with data from the existing ionospheric tomography receiver chain operated by
the SGO.

2. Atmospheric Propagation

The phase velocity of radio waves in a medium is defined as

vp = cn−1, (1)

where n is the refractive index of the medium. In the ionosphere, the refractive index of the medium
is given by the Appleton-Lassen magnetoionic propagation equation [Appleton and Chapman, 1932;
Lassen, 1927; Hartree, 1929]. With the frequencies used in VHF and UHF beacon satellites, it is possible to
ignore electron-neutral collisions and the magnetic field. In this case, the refractive index provided by the
Appleton-Lassen equation can be approximated using

n =
(

1 − !2
p∕!

2
) 1

2 , (2)

where !p =
√

Nee2

"0me
is the electron plasma frequency (rad/s), and ! is the frequency of the radio wave (rad/s).

The term Ne is electron density (m−3), e is charge of an electron, "0 is the permittivity of free space, and me is
the mass of an electron.

Below 50 km, the refractive index of plasma approaches 1 as the number density of electrons approaches
0. However, the refractive index of the neutral atmosphere starts becoming significant as the density of air
grows. The lower atmospheric refractive index ntr of radio waves below 20 GHz is assumed to be nondis-
persive and can be related to the pressure, temperature, and humidity of air using the following formula
[Rüeger, 2002]

ntr = 1 + 10−6
(

77.68
pd

T
+ 71.30

pw

T
+ 3.75 ⋅ 10−5 pw

T 2

)
, (3)

where pd is the partial pressure of dry air (hPa), T is the temperature (K), and pw is the partial pressure of
water vapor (hPa). We will not discuss inversion of tropospheric water vapor parameters [Bernhardt et al.,
2000] in this work, but we will investigate the effect of the tropospheric propagation for the relative phase
curve measurement. For this, it is sufficient that we represent the refractive index in the simple form

ntr = 1 + Δntr, (4)

where the small perturbation in the refractive index Δntr is equivalent to the second term on the right-hand
side of equation (3).

We assume that an electromagnetic wave propagates from the satellite to a ground station along the axis z,
with distance L between the satellite and ground station. In this case, with the satellite at z = 0 and phase
velocity vp(z), the electric field amplitude can be expressed as

E(L, t) = E0 cos
(
!
(

t − ∫
L

0
dz∕vp(z)

))
. (5)

From this we can determine the phase E(L, t) = cos(#′(t)) of a signal at a ground station at a
time-dependent distance L(t) from the satellite as

#′(t) = !t − !
c ∫

L(t)

0
n(z)dz. (6)

However, a radio receiver is typically tuned to the center frequency !, which cancels out the term !t
and leaves

#(t) = #′(t) − !t = −!
c ∫

L(t)

0
n(z)dz. (7)
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In order to convert this into an integral of Ne(z), we use the approximative form of the refractive index in
equation (2) to determine the electron density as a function of the refractive index

Ne(z) = −
!0me"2

e2
(n(z)2 − 1). (8)

By approximating this as a first-order Taylor polynomial expanded around n(z) = 1 we obtain

Ne(z) ≈ −
2!0me"2

e2
(n(z) − 1), (9)

which is a good approximation when " ≫ "p [Davies, 1965]. Using this, we get a formula for n(z):

n(z) ≈ 1 − e2

2!0me"2
Ne(z). (10)

If we now combine equations (10) and (4) and insert them into equation (7), we get

$(t) = −"
c

L(t) + a
" ∫

L(t)

L0(t)
Ne(z)dz − "

c ∫
L0(t)

0
Δntr(z)dz, (11)

where a = e2

2!0mec
. The above equation relates the measured phase to the line integral of electron density and

the line integral of the perturbations in the refractive index caused by lower atmospheric propagation. Here
the term L(t) contributes to the Doppler shift of the signal in vacuum. This is typically known to some accu-
racy, and it can also be removed by adjusting the center frequency of the receiver correspondingly. However,
we will leave this term in order to show how errors in L(t) will affect the signal. The range L0(t) corresponds
to the range where the refractive index transitions from tropospheric refractive index to ionospheric refrac-
tive index. We can make this assumption, as there is no appreciable overlap between those altitudes where
ionospheric refractive index and the neutral atmosphere refractive index is significantly different from 1.

When receiving a signal for the first time after the satellite rises above the horizon, practical measurements
of $(t) have the difficulty of unknown initial phase % due to the inherent 2& phase ambiguity. Additional
errors are also introduced by unknown relative clock drifts of the satellite and the ground station, as well as
uncertainties in the distance between the satellite and the ground station, which are all here denoted by a
random variable r(t). In practice, our measured phase curve will be of the form

$(t) = % − "
c
(L(t) + r(t)) + a

" ∫
L(t)

L0(t)
Ne(z)dz − "

c ∫
L0(t)

0
Δntr(z)dz. (12)

Using L(t) for the upper bound of the integral is a sufficiently good approximation as the errors in range are
insignificant r(t) ≪ L(t). We can also write this in more concise form as follows:

$(t) = % + "( (t) + a
" ∫

L(t)

L0(t)
Ne(z)dz, (13)

where

( (t) = −1
c

(
L(t) + r(t) + ∫

L0(t)

0
Δntr(z)dz

)
. (14)

When estimating total electron content using dual-frequency beacon satellites, two simultaneous measure-
ments of $(t) are made at two different frequencies, i.e.,

$1(t) =%1 + a"−1
1 ∫

L(t)

L0(t)
Ne(z)dz + ( (t)"1

$2(t) =%2 + a"−1
2 ∫

L(t)

L0(t)
Ne(z)dz + ( (t)"2.

(15)

When we multiply $1(t) with "2
"1

and subtract $2(t) from it, the term ( (t) is canceled out up to an unknown
constant % ′ = "2

"1
%1 − %2 and we obtain

"2

"1
$1(t) − $2(t) = % ′ + a

(
"2

"2
1

− 1
"2

)

∫
L(t)

L0(t)
Ne(z)dz,
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where the contribution of ! (t) is completely eliminated. This also has the benefit of eliminating lower
atmospheric propagation effects, relative clock errors, and trajectory errors. We can express this in another
way as

Δ"12(t) = # ′′ + ∫
L(t)

L0(t)
Ne(z)dz = 1

a

(
$2

$2
1

− 1
$2

)−1 (
$2

$1
"1(t) − "2(t)

)
, (16)

where Δ"12(t) is the so-called relative total electron content, comprising the line integral of electron density
along the path between the satellite and the receiver, up to an unknown constant # ′′. This is the basic mea-
surement that goes into the ionospheric tomography inversion procedure, which determines # ′′ and Ne(z)
from simultaneous observations at multiple stations.

In practice, relative total electron content is typically measured at 1–50 Hz sampling rate during the pass
of a satellite. We assume that Δ"12(t) changes slowly as a function of time, which allows us to unwrap
2% phase ambiguities by selecting the smallest of the possible phase differences. However, if one of the
satellite signals is lost for a sufficiently long time, removing this phase ambiguity becomes more difficult.
In this case, one sensible option is to split the phase curves into two phase curves with independent
unknown constants.

Using a similar well-known subtraction procedure [Danchik, 1998], we can also estimate ! (t), which con-
tains information about the troposphere, the clock errors, and the satellite trajectory errors. In this case, we
multiply "1(t) with $1 and "2(t) with $2 and then we subtract the first from the second to obtain

! (t) = # +
$1"1(t) − $2"2(t)

$2
1 − $2

2

, (17)

where # is again an unknown constant. This measurement has the considerable benefit of eliminating iono-
spheric effects. If the trajectory is known to a good enough accuracy (r(t) is small), then it is possible to
make inferences of the tropospheric refractive index. The measurement ! (t) can be also be used to perform
accurate orbital elements using multiple receiver stations [Izsak, 1960].

3. Measurement Errors

Correct modeling of errors in phase curve measurements is important for ionospheric tomography. To cor-
rectly express phase errors, we first inspect a discretized baseband measurement of a signal st = aei"t ∈ C,
contaminated with noise that affects the amplitude and phase of the signal. This is in essence the measure-
ment mt ∈ C of a beacon satellite transmission

mt = st + &t = (a + &a)ei('t+&'t ). (18)

Here &a and &'t are real-valued random processes that describe the amplitude and phase noise of the mea-
surement. When assuming small enough additive Gaussian noise &t ∼ NC(0, (2), &a and &'t can also be
approximated as Gaussian noise.

When estimating the differential phase curve "t ∈ R, we examine the phase increment associated with each
measurement mt and cumulatively sum this together

"t =
t∑

n=0

Arg(mn∕mn−1), (19)

or

"t =
t∑

n=0

'n − 'n−1 + &'n − &'n−1. (20)

Assuming that 'n − 'n−1 + &'n − &'n−1 ≪ 2%, the cumulative summation does not lead to a cumulative error.
To see this, we first investigate what happens at the initial step, t = 1

"1 = '1 − '0 + &'1 − &'0 . (21)
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Figure 1. Phase errors with unwanted ±2! jumps. In the case of low
SNR (−10 dB), the jumps are nearly random jumps uniformly between
[−!,!]. These cannot be easily detected. In the case of medium SNR
(3 dB), there are a few discrete ±2! jumps. In the case of high SNR
(10 dB), random jumps of ±2! are extremely rare.

At t = 2, we get

"2 =
2∑

n=0

(#n − #n−1) + $#2 − $#0 , (22)

as $#1 cancels out. Through induction,
we can then see that on step t + 1,
we only have two noise terms, com-
posed of initial error $#0 and a new term
$#t+1. All of the intermediate noise terms
have canceled out in the successive
cumulative sums.

"t+1 =
t+1∑
n=0

(#n − #n−1) + $#t+1 − $#0 . (23)

Thus, for small enough errors, we can
assume that the phase curve error is an
identically distributed and independent
Gaussian random variable. However, if
the random errors are too large, there
will be a 2! ambiguity that cannot
be removed.

Simulated phase curve errors for several different signal to noise ratios are depicted in Figure 1. These were
done by using equation (18) with constant signal st = 1 and added complex Gaussian random noise with
variance %t ∼ NC(0, SNR−1). In this simulation, it is apparent that with a SNR of 10 dB, the errors are zero
mean and they are not cumulative. With a SNR of 3 dB, the additive noise occasionally causes a 2! jump
in either direction. In the case of a SNR of −10 dB, the signal resembles a random walk with uniformly
distributed [−!,!] steps in phase.

In order to properly handle cases where there is a significant drift of phase due to poor SNR, one possibil-
ity is to examine the SNR and to simply determine that the phase curve is not continuous anymore at the
location where large erroneous drifts in phase are expected. In this case, when performing tomographic
inversion, there will be multiple independent phase curves during each satellite overpass. This is discussed
in section 4.

In practice, there are also other signal degrading factors that cause errors when estimating the phase curve.
Signals from other beacon satellites, and other man-made radio noise can cause large erroneous drifts in the
phase curve. In practice, these cannot be detected from SNR alone. In this case, one option is to search for
large sudden jumps in the phase curve.

4. Tomographic Reconstruction

The purpose of a tomographic reconstruction of the ionosphere is to estimate the two- or three-dimensional
electron density function Ne(p) from phase curves measured during a satellite pass on multiple receiver
stations. Here p represents a spatial coordinate. A conceptual diagram of a beacon satellite measurement is
shown in Figure 2.

This problem, which is sometimes called the limited angle tomography problem [Kaipio and Somersalo,
2005], is ill posed in the sense that the measurements do not contain enough information so that a unique
solution for the unknown can be found. In order to get an estimate for the unknown, some additional
information is therefore needed to stabilize the problem. In the case of ionospheric tomography, multi-
ple possible approaches exist. One common method is to assume that the solution is spatially smooth and
temporally unchanged during the time when the satellite passes over the receivers.

Numerically, the problem is solved by parametrizing Ne(p) in some way, i.e., using the form Ne(p; !) where
! ∈ RNp denotes the finite set of model parameters that define the electron density within the volume, and
Np is the number of parameters.

VIERINEN ET AL. ©2014. American Geophysical Union. All Rights Reserved. 1145



Radio Science 10.1002/2014RS005434

Figure 2. A conceptual diagram of an ionospheric tomography
measurement. A satellite passes above ground-based receivers,
which measure the propagation delay for the signal transmitted by
the satellite.

In order to relate the measurements
to the unknown parameters, the line
integrals in equation (16) must be
approximated in some way. The most
straightforward way to do this is to uti-
lize the Riemann sum approximation for
a line integral through the parameter-
ized medium. We also have to take into
account the fact that each phase curve
measurement mt,n has an unknown
constant phase offset !n and is con-
taminated with additive noise "t,n. Each

station producing an independent phase curve is indexed here with n. Thus, our measurement equation for
each observation becomes

mt,n = 1
N

N∑
i=1

Ne(lt,n
i ; !) + !n + "t,n, (24)

where lt,n
i denotes the location of the ith point along the Riemann sum with N partitions and t denotes a

time point on the measured phase curve.

If the relation between the model parameters and the unknown is linear, then the Riemann sum can be writ-
ten in the following form, where f (p) ∈ RNp is a vector-valued weighting function that evaluates Ne(p; !)
at the given point p according to the interpolation and integration rules. This allows the measurement
equation to be written as

mt,n = 1
N

N∑
i=1

f (lt,n
i ) ⋅ ! + !n + "t,n, (25)

where ⋅ denotes a dot product between f (p) and !.

An equation of linear form can be expressed as a linear matrix equation

m = Ax + ", (26)

where m is a vector containing all the phase curve measurements mn,t . The vector x contains the unknown
parameters # as well as the unknown constant offsets !n. The theory matrix A contains elements that make
equations (25) and (26) mathematically equivalent. The vector " contains the measurement errors, which are
assumed to be normally distributed.

Such a linear problem can be solved within the framework of statistical inverse problems [Kaipio and
Somersalo, 2005; Calvetti and Somersalo, 2007]. The maximum a posteriori estimator for the unknown
parameters x can be written as

x̂MAP = #postA
T#−1m, (27)

where

#post = (#−1
pr + AT#−1A)−1. (28)

In this case, the prior covariance assumption #pr is used to stabilize the problem by enforcing smoothness
to the solution. This approach is also used by the ionospheric tomography chain operated by the SGO
[Markkanen et al., 1995] and has also been studied, e.g., by Nygrén et al. [1997].

5. Architecture

Our beacon satellite receiver design can be divided into the following parts: (1) Analog radio front end, (2)
coherent dual-channel digital receiver, (3) general purpose personal computer, and software for extracting
phase curves from dual-channel digital baseband signals.
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Table 1. Locations of New Software-Defined Ionospheric
Tomography Receivers

Name Latitude (N) Longitude (E)

LYR 78.15 16.04
KEV 69.76 27.01
TRO 69.58 19.22
SOD 67.37 26.63
MEK 62.77 30.97
TAR 58.26 26.46

The main task of the analog front end
is to provide amplified signals from the
antenna to the digital receiver. The digital
receiver then takes analog signals on two
channels (150 and 400 MHz) and pro-
duces coherently downconverted digitized
baseband signals with sufficient band-
width to include all beacon satellites of
interest. This signal is then transferred to
the computer.

This approach has several advantages compared to integrated hardware-based solutions. The software
is easily customizable and allows more advanced signal processing methods to be used. The overall cost
for developing a software-based system also turns out to be cheaper than developing an integrated
hardware-based receiver, as pointed out by Yamamoto [2008].

We have implemented a new receiver based on these underlying principles. All of these programs associ-
ated with the receiver can be run in real time on a standard Linux PC with modest processing capacity. This
collection of programs has been released under the General Public License as a project named Jitter (GNU
Ionospheric Tomography Receiver). The software can be downloaded from http://www.sgo.fi/∼j/jitter/web.
This software package will autonomously produce phase curves from satellite passes. (Subsequent
tomographic inversion analysis as described in this paper is scheduled for a future software release.)

It should be noted that Professor Mamoru Yamamoto has also described a relative total electron content
estimation hardware and software system [Yamamoto, 2008] with many similarities to our system. The main
difference is that Jitter is designed for autonomous operation in a large network of receivers and is also
capable of simultaneously receiving multiple satellites.

6. Hardware

We have recently deployed six 150/400 MHz beacon satellite receivers as part of Finnish Meteorological
Institute’s TomoScand project to develop a new 3-D ionospheric tomography capability. Four of these
receivers are used in the tomography example in this paper. Two more receivers have since been installed
(KEV and LYR) but are not used in the results presented in this paper. The locations of all receivers are listed
in Table 1. We plan to expand the receiver network in the near future.

The hardware for these receivers consists of a dual-band quadrifilar helix antenna by Nagara Denshi Ltd.,
a dual-band preamplifier for the antenna, and an RF front-end stage that is located near the computers.
The 150 and 400 MHz channels are received with a single USRP N2x0 series digital receiver equipped with
a dual-channel TVRX2 daughterboard (50–860 MHz). A block diagram of the receiver hardware is described
in Figure 3.

As the data recording portion of the software is written using the Gnuradio open software framework,
it is also possible to use other digital receivers with at least two coherent receiver channels, such as the
USRP1, USRP E100, or USRP2. The software also supports alternate daughterboard configurations, e.g., WBX
or BasicRX daughterboards for receiving the signals. While we discuss dual-band 150/400 MHz satellite
observations in this paper, the software itself is general enough that it can be configured to record other fre-
quency pairs as well such as 150/1066 MHz, provided a suitable antenna, RF front end, and digital receiver
is used.

7. Software

The software is divided into different subsystems run as separate processes. One process records narrow-
band signals to disk on a scheduled basis whenever a satellite is passing a station. Scheduling information
including predicted pass times is provided by another process using standard satellite ephemeride rou-
tines. A third process is used to analyze the narrowband recordings, with the help of ephemeris-predicted
Doppler shift information to further narrow the bandwidth of the individual channels and to calculate a rel-
ative phase difference curve. All of the software written for this package was designed with autonomous
long-term operation in mind.

VIERINEN ET AL. ©2014. American Geophysical Union. All Rights Reserved. 1147



Radio Science 10.1002/2014RS005434

Figure 3. A block diagram of the RF front end used in the FMI beacon receiver chain.

Each day, Jitter automatically retrieves new two-line element orbital ephemeris files over the internet from
publicly available sources (e.g., CelesTrak) and calculates satellite overflights for the next 24 h for the con-
figured satellites. This information is written in a compact schedule file that is read by the data recording
process. The ephemeris file retrieval and satellite overflight prediction programs are written in Python. The
prediction program uses the PyEphem ephemeris package for calculating satellite positions.

The data recording process continuously receives wideband (typically 1 MHz) signals around the requested
frequencies (typically 150 and 400 MHz). This allows the receiver to simultaneously record narrowband sig-
nals from multiple satellites transmitting different center frequencies, as long as their center frequency and
Doppler shift fits within the wide receiver band. The data recorder process digitally tunes to the center fre-
quency of each satellite when a predicted satellite pass occurs. The signal is digitally band-pass filtered and
decimated, and the signal from an individual pass is stored on local media in complex single-precision float-
ing point with a sample rate of 40 kHz, which is still large enough to accommodate the Doppler shift of an
individual satellite pass. The data recording program is written in C++ using the Gnuradio framework.

The phase curve analysis process reads in newly recorded data files for a satellite pass. It then estimates
the Doppler shift of the signal based on the ephemeris file (i.e., L(t)) for the satellite. This information is
then used to remove the bulk of the Doppler shift of the satellite signal. After this, the remaining Doppler
shift is estimated from the data and corrected. This is done by least squares fitting an outlier-removed
seventh-order polynomial to the peak of the dynamic spectrum of the satellite signal. These operations are
performed in an identical (albeit frequency scaled) way for both receiver channels to maintain their phase
coherence. Finally, the data are band-pass filtered and decimated with a very narrowband filter (typically
50 Hz), and the differential phase curve Δ!t is formed by subtracting the frequency scaled phase of one
channel from the other Δ!t = 3

8
!400

t − !150
t (last term of equation (16)). The resulting relative phase curve

and satellite trajectory is stored in a data file with appropriate metadata (e.g., satellite ID, timestamp, and
receiver location). The phase curve analysis program and plotting routines are written in Python, and the
data are stored in HDF5 [Folk et al., 2011] format.

8. Satellites

A number of beacon satellites currently exist on orbit with transmissions that can be received with the
designed system, but not all of these transmit above a given receiver location for various reasons (e.g.,
incompatible orbital inclination). In Scandinavia, we have successfully received signals from COSMOS 2407,
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Figure 4. The new TomoScand receiver stations
deployed by FMI, the old SGO receiver chain, and
the projected satellite path.

COSMOS 2414, COSMOS 2429, COSMOS 2463,
COSMOS 2454, RADCAL, and DMSP F15. With one receiver
located in Ethiopia, we have also recorded the beacon on
the Communications/Navigation Outage Forecasting Sys-
tem satellite. We have also recently received the Coherent
Electromagnetic Radio Tomography beacon on the newly
launched ePOP satellite [Bernhardt and Siefring, 2006].

9. Example Measurement

We perform an example study with COSMOS 2463 satel-
lite overflight measurements collected from Scandinavia
on 2013-10-23 at 09:50 UTC and produce a tomographic
reconstruction of ionospheric electron density from the
collected data. We chose this particular case due to the
projection of the overflight passes between the receivers,
as can be seen in Figure 4.

Data were collected with beacon satellite receivers
designed as described in this paper and installed between
2011 and 2013 by the Finnish Meteorological Institute
on the following four stations: TRO, SOD, MEK, and TAR
(Table 1). The locations are also shown with colored
squares on the map in Figure 4.

The satellite overflight takes approximately 15 min, and we assume a temporally stationary ionosphere for
that duration. In two-dimensional tomography, we also assume a longitudinally uniform ionosphere in the
observation domain.

The software employed for two-dimensional tomography in this example is described in the companion
paper by J. Norberg et al., (Ionospheric tomography in Bayesian framework with Gaussian Markov random
field priors, submitted to Radio Science, 2014). The software has been developed as part of Finnish Meteo-
rological Institute (FMI)’s TomoScand project with the goal of three-dimensional ionospheric tomography
using different data sources, e.g., beacon, GPS satellite, and ionosonde measurements.

In addition to showing results from new receivers, we compare the results obtained from the same satellite
overflight with an existing receiver chain of four receivers operated by SGO, shown in Figure 4 with triangles.

9.1. Measurements
The phase difference curves measured by each receiver are shown in Figure 5. As explained in section 2,
the presented curves are relative measurements. Hence, at this point we cannot make conclusions
from the different absolute levels of the measurements, and instead focus on their relative shape. From the
SGO curves (Figure 5, top) using existing receivers, we see that the measurement from Luleå (violet) and
Kiruna (cyan) are noisier and contain probable measurement artifacts. For example, the Kiruna data close
to 70◦ latitude shows a probable phase jump. The measurements with the new receivers shown in Figure 5
(bottom) are consistent when compared to each other. When comparing the two data sets, we find good
overall correspondence between adjacent measurements of different receiver types.

To process with tomographic inversion, we first reduce the phase curve sampling rate by averaging.
However, the high-resolution phase curves are simultaneously used to estimate the variances of the mea-
surement error. Thus, we get an error variance estimate for each measurement point of the low-resolution
phase curve used in the actual inversion computation. While estimating the measurement error variance,
we also obtain information that can be used to handle the phase jump errors. Specifically, we set a thresh-
old value for the variance and if it is exceeded, we assume that the signal has experienced disturbances that
have caused unknown phase jumps. As mentioned at the end of section 3, we consider the measurements
after the disturbance as a new independent observation with a new unknown phase offset.

9.2. Inversion
The computational domain for the tomographic reconstruction is defined by the measurement quality
and geometry. For this work, we restrict the tomographic latitude range to 40◦–78◦ latitude. The minimum
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Figure 5. The relative phase difference curves from old receivers of
SGO and new receivers of TomoScand/FMI receivers. Latitudes of each
receiver station are marked by symbols.

elevation angle for measurements is set
to 10◦. The maximum altitude is set to
1000 km to accommodate the satellite
orbit altitude. The pixel size is 0.25◦ in
the horizontal direction and 25 km in
the vertical direction. This results in a
160×40 grid. The theory matrix connect-
ing the measurements to grid points is
then formed by discrete linear approx-
imation of the line integrals of satellite
signal paths.

We form the inverse prior covariance
matrix Σ−1

pr of equation (28) following
the approach introduced by Roininen et
al. [2011, 2013]. The prior distribution is
parametrized with mean value, standard
deviation, and directional correlation
lengths. In the vertical direction, the
mean value and the standard deviation
are given here using Chapman profiles
[Brekke, 1997]. The Chapman ionization
profile is determined by its peak value,
peak altitude, and scale height.

As the prior parameters have an actual
physical meaning, we first choose
arbitrary but realistic prior parameter

values, and then fine tune the parameters so that the reconstruction starts to resemble the existing SGO
receiver network reconstruction with the same data. This is mostly to show that regardless of the differences
between the algorithms, it should be possible to produce reasonably similar reconstructions with them,
when the same data are used.

We begin with a scale height of 140 km and a peak altitude of 280 km for both the mean and the standard
deviation. The peak value for mean prior electron density is set to 4 ⋅ 1011m−3 and the standard deviation
to 2 ⋅ 1011m−3. The higher the standard deviation is, the less we are forcing the reconstruction to follow
the prior mean. The correlation length is defined here as the distance where the correlation between two
points drops under one tenth of the variance. The horizontal correlation length is set to 4◦ and the vertical to
400 km. This gives us a rather loose prior where large variations over a given mean value are likely.

After initial results, we then change the scale height to 120 km, the peak electron density to 2 ⋅ 1011m−3, the
peak of the standard deviation to 1 ⋅ 1010m−3, and the horizontal correlation length to 8◦. This results in a
much more restrictive prior distribution.

The SGO tomography algorithm is described by Markkanen et al. [1995]. It uses the statistical inversion
method described in section 4 with slightly different prior assumptions than the ones in this study.

9.3. Results
As the information provided by the measurements becomes very small when the distance between satellite
and receivers increases, reconstructions in Figure 6 are carried out in a smaller grid than is used for the actual
computation.

When comparing the results between the two data sets, it is important to keep in mind that the receiver
locations have significant differences in the longitudinal direction, as can be seen from Figure 4. However,
we assume longitudinal uniformity of the ionosphere during the overflight based on separate measure-
ments from the Magnetometers-Ionospheric Radars-All-sky Cameras Large Experiment magnetometer
network (not shown).
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c) Old receiver d) SGO reconstruction

Figure 6. Tomographic reconstructions using new and old receiver data. (a) A reconstruction is made with the new algo-
rithm with the initial prior and from the new receiver data. (b) The new algorithm with the initial prior and with the old
receiver data. (c) The new algorithm with a stronger prior (smoother) and old receiver data. (d) A reconstruction with
SGO’s algorithm and old receiver data.

Figure 6a shows the tomographic reconstruction with the new algorithm using looser prior parameter
values, based on data collected with the new receivers. Figure 6b plots the reconstruction with the same
algorithm and parameters from SGO receiver data. The reconstructions have considerable similarities, but
the reconstruction from the new receiver data is generally smoother throughout the reconstructed iono-
sphere. With the data from SGO receivers, in the reconstruction between the latitudes of 61◦ and 63◦, there
are also some faint structures in the ray direction that are quite clearly processing artifacts.

Figure 6c plots the results from the new algorithm with the SGO receiver data, but now with the stronger
prior assumption. Figure 6d plots the reconstruction with SGO’s production tomography algorithm, the SGO
receiver data. When comparing these Figures 6c and 6d, we see that the algorithms are consistent when
correspondingly strong prior distribution is used. In general, both reconstructions suffer from wave-like
structure around the receivers. This would suggest that the prior is pulling the electron density too low on
areas with less information. This could probably be corrected by adjusting the prior distribution.

10. Conclusions

We have implemented a new beacon satellite receiver system for 150/400 MHz dual-band transmissions.
The current software is used for routine operational measurements. Once configured and operational, the
receiver software automatically downloads the satellite ephemeris files and records all satellite passes. The
software then performs a phase curve analysis on these measurements with another background process.

We have also produced realistic tomographic reconstruction of the ionospheric electron density with the
data provided by our newly developed and newly deployed receivers. We have also shown that the tomo-
graphic algorithm used in this study gives results comparable to the ones produced by the existing SGO
receiver system. The measured phase curves of the new receiver typically have fewer phase jumps than the
SGO system, which indicates that the new receiver is more sensitive.

11. Future Work

After a more rigorous validation of the system using direct electron density profiles from incoherent scat-
ter radar observations, future work will focus on deploying more 150/400 MHz beacon satellite receivers
to obtain better geographical coverage. We will also focus on improving our tomographic algorithms in
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such a way that they can incorporate auxiliary information about electron densities from ionosondes,
incoherent scatter radars, and GPS receivers. Eventually, the developed algorithm will be extended to the
three-dimensional case.
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Abstract. We validate two-dimensional ionospheric tomog-
raphy reconstructions against EISCAT incoherent scatter
radar measurements. Our tomography method is based on
Bayesian statistical inversion with prior distribution given
by its mean and covariance. We employ ionosonde measure-
ments for the choice of the prior mean and covariance param-
eters and use the Gaussian Markov random fields as a sparse
matrix approximation for the numerical computations. This
results in a computationally efficient tomographic inversion
algorithm with clear probabilistic interpretation.
We demonstrate how this method works with simultane-

ous beacon satellite and ionosonde measurements obtained
in northern Scandinavia. The performance is compared with
results obtained with a zero-mean prior and with the prior
mean taken from the International Reference Ionosphere
2007 model. In validating the results, we use EISCAT ultra-
high-frequency incoherent scatter radar measurements as the
ground truth for the ionization profile shape.
We find that in comparison to the alternative prior infor-

mation sources, ionosonde measurements improve the recon-
struction by adding accurate information about the absolute
value and the altitude distribution of electron density. With
an ionosonde at continuous disposal, the presented method
enhances stand-alone near-real-time ionospheric tomography
for the given conditions significantly.

1 Introduction

In ionospheric satellite tomography the electron density dis-
tribution of the ionosphere is reconstructed from ground-
based measurements of satellite-transmitted radio signals.
The use of tomographic methods for ionospheric research
was first suggested by (Austen et al., 1988). (Bust and
Mitchell, 2008) provide a good overview on the development
of the topic.
Mathematically ionospheric tomography is an ill-posed

inverse problem and cannot be solved without some addi-
tional stabilization or regularization information. In iono-
spheric tomography the additional information is often in-
corporated with the use of iterative reconstruction algorithms
such as algebraic reconstruction technique with a strong ini-
tial model for the ionosphere (Andreeva, 1990). Bayesian
statistical inversion was applied to ionospheric tomography
first by (Markkanen et al., 1995). The Bayesian approach
provides an interpretable approach for the stabilization as
the additional information is given as a prior probability dis-
tribution of unknown parameters. However, in the work of
(Markkanen et al., 1995), the prior distribution is not defined
by its covariance, but by an assumption of smoothness result-
ing from the limiting of the differences of neighboring pixels.
This is an often valid assumption, but the relation between
the prior parameters and the physical quantities is not clear.
Recently, (Norberg et al., 2015) have described a method in
which the prior can be built in a computationally efficient
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way as a probability distribution with a known covariance
structure. The prior is parameterized with physical units and
can be understood as a probability distribution for realiza-
tions of the ionosphere.
Regardless of the tomographic algorithm in use, the infor-

mation provided by satellite to ground measurements is poor
in the vertical direction. This is due to the limited measure-
ment geometry, namely the lack of horizontal signal paths.
Consequently, the peak altitude and the vertical gradient of
the reconstructed ionosphere will be determined mostly by
the regularizing prior assumptions that are built in to the em-
ployed tomography algorithm. In this study we employ the
ionosonde measurements to give these assumptions for the
vertical profile.
An ionosonde is a radar used to investigate the iono-

sphere. An ionosonde transmits electromagnetic frequency
pulses, sweeping through the high-frequency (HF) range,
and receives the signals reflected from an altitude where the
radar frequency matches a critical frequency (Breit and Tuve,
1926). For ordinary mode polarization the critical frequency
is the plasma frequency of the local electron density. Be-
cause refractive index along the signal path differs signif-
icantly from that of a vacuum, conversion of signal travel
time into reflection height is not trivial, but the electron den-
sity profile along the path needs to be taken into account. The
reflections and the travel times at multiple frequencies can be
used to estimate an electron density profile of the ionosphere.
Because the ionosonde relies on reflection, it can directly
measure only the bottom side of the ionospheric altitude pro-
file up to the peak of the electron density profile. Also, it is
not very effective for observing local minima, e.g., the val-
ley region between the E and F regions of the ionosphere.
Ionosonde measurements provide recurrent and accurate but
geographically localized information of the ionospheric elec-
tron density profile. In mesoscale tomographic analysis, it is
often the best information available, even if the analyzed re-
gion is somewhat displaced from the ionosonde site.
Inclusion of ionosonde measurements in ionospheric to-

mography has been studied by (Kersley et al., 1993), where
ionosonde measurements were used to form the background
profile for an iterative reconstruction algorithm. The study
had mixed results on the impact of ionosonde measurement
inclusion. They also observed up to 70% differences be-
tween the ionosonde and incoherent scatter radar-derived
electron density profiles. More recently (Chartier et al., 2012)
used ionosonde measurements to set vertical basis func-
tions for the inversion, as well as using them as local mea-
surements of peak density and bottom-side profile gradi-
ents. The inclusion improved the tomographic results signifi-
cantly, but the sensitivity to ionosonde measurement bias was
also underlined. (Chiang and Psiaki , 2014) also combined
ionosonde data with GPS measurements for ionospheric to-
mography. The presented method concentrates on estimating
parameterized local electron density profile at the location of
the ionosonde. For latitudinal and longitudinal changes, only

the first-order dependence of vertical total electron content
was considered.
In this article we continue the work presented in (Nor-

berg et al., 2015) and include the ionosonde measurements
in the Bayesian statistical inversion approach for ionospheric
tomography. For comparison, we analyze the data also with
the prior mean taken from the International Reference Iono-
sphere (IRI) model, and with a zero-mean prior. The IRI
model is chosen as it is a well-known ionospheric model,
and unlike the ionosonde, it provides information also on
horizontal electron density gradients. The zero-mean prior is
included to demonstrate the performance with simpler and
more general prior information. The zero-mean prior car-
ries essentially similar information to the prior model used
in (Markkanen et al., 1995). We construct the prior mean
electron density profile for the entire ionospheric tomogra-
phy domain according to the chosen information source. This
assumption is then controlled with the prior covariance, as it
states how strictly the reconstruction should follow the prior
mean. As the prior distribution is parameterized with physi-
cal units, the method provides clear understanding on infor-
mation used for the tomographic reconstruction. Hence the
approach makes the inversion possible with less ad hoc ad-
justment. This is a very important aspect for achieving reli-
able operational near-real-time tomography results.
The approach is applied to Scandinavian sector with tomo-

graphic measurements from the TomoScand receiver chain
(Vierinen et al., 2014) and ionosonde data from the Euro-
pean Incoherent Scatter Scientific Association (EISCAT) dy-
nasonde in Tromsø, Norway. The IRI model used for the
comparison is the International Reference Ionosphere 2007
(IRI-2007) (Bilitza and Reinisch, 2008). We validate the re-
sults with EISCAT ultra-high-frequency (UHF) incoherent
scatter radar measurements carried out on 20 and 21 Novem-
ber 2014 and 11 and 14 March 2015 in Tromsø.

2 Methodology

The dual-frequency signal transmitted from low Earth or-
bit (LEO) satellites consists of frequencies of 150 and
400MHz. The ionospheric refraction causes a phase shift
to propagating electromagnetic waves. This phase shift is
proportional to density of electrons along the signal path
(Davies, 1990) and can be modeled as

mt, sat, rec = �sat, rec+
Z

Lt, sat, rec

Ne(z)dl + "t, sat, rec, (1)

where mt, sat, rec is the measured relative total electron con-
tent at time t between the satellite sat and receiver rec, and
"t, sat, rec the corresponding measurement error. Ne(z) is the
two-dimensional continuous field of electron densities with
coordinates z = (z1,z2) 2 R2. The integral is defined over
the measurement signal path Lt, sat, rec. The receiver–satellite
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specific constant �sat, rec is due to the unknown amount of
electron content when the satellite is first observed.
For practical computations, we discretize Eq. (1) for all

measurements. The discretized measurement model for the
ionospheric tomography is given as

M = AX + E. (2)

The measurement vector is M 2 Rnm. Theory matrix A 2
Rnm⇥nx gives the measurement geometry between the satel-
lite measurement points and receiver locations. The vector of
unknown parameters X 2 Rnx includes both electron densi-
ties and the 2⇡ -ambiguity constants � . The measurement er-
ror vector isE 2 Rnm. The number of measurements is given
as nm and the number of unknown parameters as nx .
Let us denote by x and m the realizations of the random

variables X andM , respectively. We can then write the like-
lihood function for unknown parameters, given the measure-
ments as

L(x|m) = DE(Ax � m), (3)

where DE is the probability density function of measure-
ment errors. From here on we assume that E ⇠N (0,6E):
the measurement errors follow a multivariate normal distri-
bution with zero mean and covariance 6E 2 R(nm)⇥(nm).
As the ionospheric tomography is an ill-posed problem,

the maximum likelihood estimate for Eq. (3) cannot be
solved without including some additional information re-
garding the unknown parameters. Here we use Bayesian sta-
tistical inversion (Markkanen et al., 1995; Kaipio and Som-
ersalo, 2005) to give this information as a prior distribution.
We assume that the unknown X follows a multivariate nor-
mal distribution X ⇠N (µ,6pr), where vector µ 2 Rnx is
the mean value and the matrix 6pr 2 R(nx)⇥(nx) the covari-
ance. Again, the vector µ as well as the matrix 6pr consists
of parts for both the unknown electron densities and the un-
known � parameters. We denote the prior probability den-
sity function withDpr(x). Following the Bayes’ theorem, we
then obtain the posterior distribution for X as

Dpost(x|m) = DE(Ax � m)Dpr(x)R
Rnx DE(Ax � m)Dpr(x)dx

, (4)

where the denominator is a normalization constant and we
can write

Dpost(x|m) / DE(Ax � m)Dpr(x). (5)

From the posterior distribution we can then derive the most
probable value for the unknown parameters based on the
prior distribution and observed measurements, namely, the
maximum a posteriori estimator (MAP)

xMAP = 6post
⇣
AT6�1

E m + 6�1
pr µ

⌘
, (6)

where

6post =
⇣
AT6�1

E A+ 6�1
pr

⌘�1
(7)

is called posterior covariance.

As we assume that the unknown parameters follow multi-
variate normal distribution, the prior density functionDpr(x)

is defined with its mean and covariance. In Bayesian statis-
tical approach for ionospheric tomography, the prior mean
can be understood as the most probable state of the iono-
sphere before the actual satellite measurements. With the co-
variance we can express how reliable the information of prior
mean is and how correlated the ionospheric electron densities
are. Actual values of these parameters should be based on
all information we have at our disposal, i.e., on other mea-
surements, models, statistical data and the physics of iono-
sphere. In the performed experiments, we use three different
schemes to compose the prior: IRI-2007 ionospheric model,
zero mean and, most importantly, the ionosonde measure-
ments. The prior covariance is given as a squared exponen-
tial, i.e., as a Gaussian-shaped function that is defined with
its amplitude (variance or standard deviation) and correlation
length. The correlation length is given separately for horizon-
tal and vertical directions and is defined here as the distance
where the covariance drops to 10% of variance.
It is very natural to represent the prior information as

a probability distribution. However, for the MAP estimator
Eq. (6) only the precision matrix 6�1

pr (i.e., the inverse of
the prior covariance) is required besides the prior mean. In
(Norberg et al., 2015) it is shown how the precision matrix
of a known covariance can be constructed with a sparse ma-
trix representation with Gaussian Markov random fields. The
approach provides us with the interpretation of a probability
distribution, yet it keeps the approach computationally feasi-
ble, in comparison to operating with full covariance matrices.
Unfortunately, the linear system allows also negative val-

ues in the solution. A large proportion of negative values
would suggest that the prior distribution differs drastically
from the actual ionospheric conditions and needs to be re-
considered. Then again, small areas of negative values indi-
cate that the model accuracy is less than the corresponding
absolute values. Here, if some negative values are found, we
add them as new measurements into the linear system. We
then set these new measurements to zero with a small vari-
ance (10�20) and solve the system again. We note that here
this positivity constraint is mostly a cosmetic ad hoc method
which will be reconsidered in future studies.

3 Experiments

Two EISCAT UHF incoherent scatter radar measure-
ment campaigns were performed in November 2014 and
March 2015. Three daytime and one nighttime COSMOS
satellite overflights, suitable for two-dimensional tomogra-
phy, were measured with TomoScand receivers starting ap-
proximately on 20 November 2014 at 12:50, 3 Novem-
ber 2015 at 13:50, 14 March 2015 at 13:20 and 21 Novem-
ber 2014 at 02:50UTC. The magnetic local time is approxi-
mately UTC+ 2.5 h. The altitude of COSMOS satellites is
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approximately 1000 km and the duration of measurements
from an overflight is roughly 10min. For the ionosonde prior
mean the NeXtYZ (Zabotin et al., 2006) analyzed EISCAT
dynasonde results from Tromsø (see Sect. Data availability)
were collected. The ionosonde electron density profiles that
were measured during each satellite overflight were averaged
together to form one profile. We denote the resulting profile
with µNeXtYZ. The NeXtYZ provides also a modeled profile
for the top-side ionosphere, but to gain better control over
the prior, we here give the top side as an exponential pro-
file. The complete altitude profile for the prior mean based
on ionosonde measurement can be written as

µionosonde(z) = (8)
(

µNeXtYZ(zpeak)exp
⇣
� z�zpeak

s

⌘
, zpeak < z  zmax

µNeXtYZ(z), 0 z  zpeak,

where z is the altitude with the maximum zmax = 1000
(km) and zpeak = argmax

z
(µNeXtYZ(z)), i.e., the altitude of

the maximum electron density. The parameter s defines how
rapidly the electron density decreases at the higher altitudes.
The IRI-2007 electron density profiles were taken for the

reconstruction times with longitude parameter 26�. With the
IRI-2007 we obtain a two-dimensional profile with latitudi-
nal variation for the complete domain where the ionospheric
tomography takes place.
To validate the resulting tomographic reconstructions, for

each satellite overflight, the EISCAT UHF was set to per-
form a scan of four measurements along the corresponding
satellite track. The altitude resolution used for EISCAT data
analysis was 10 km. The UHF data were calibrated against
the EISCAT Tromsø dynasonde. The calibration data were
taken from periods when the radar was not scanning and the
ionosphere was reasonably stable. Each few-hours-long con-
tinuous radar run was calibrated separately.
In the following three subsections we compare the EIS-

CAT UHF measurements to corresponding electron density
profiles from the obtained tomographic reconstructions. With
the Overflight I the reconstruction was made multiple times
to choose the measurement domain and prior parameters
other than the prior mean. Based on these trials the measure-
ments used for the tomography were limited between the lat-
itudes of 55 and 75� and the elevation angles over 20�. The
chosen sampling rate of 0.5Hz then produces between 100
and 200 suitable measurements from each receiver station.
The corresponding measurement errors are estimated from
the original 20Hz sampling rate data. The measurement er-
rors are assumed to be independent, resulting in a diagonal
measurement error covariance matrix.
The prior standard deviation (SD) is given as a Chapman

function for the vertical profile, with approximately the same
peak altitude as the prior mean, and the maximum electron
density approximately 40% of the corresponding NeXtYZ
maximum. The Chapman profile was modified to have dif-

25° 50°

60°

70°

EISCAT 1

2

3

4

Overflight I (11.20.2014 12:50 UT)
Projected  COSMOS_2463  track
EISCAT measurements (1−4)
TomoScand receivers

Figure 1. TomoScand receiver network and the satellite overflight
ground track with four EISCAT UHF scan paths.

ferent scale heights for above and below the maximum. The
chosen values used here are 200 and 60 km correspondingly.
In vertical direction the prior correlation length was chosen
to be 200 km and in the horizontal 2�. The s parameter for the
upper profile of the prior was chosen to be 140 km. This re-
sults as a slightly steeper gradient for the top-side ionosphere
than provided by NeXtYZ. With the zero-mean prior we use
the same prior standard deviation as with the ionosonde case
but, to allow larger changes in electron density, the maximum
is set to 80% of the NeXtYZ maximum. For all of the exper-
iments, the prior mean values for the � parameters are set to
zero, and the prior standard deviations as large as 1020 m�3,
nearing an uninformative prior. The resolution for the domain
is 200⇥ 200, resulting in pixel size of 5 km⇥ 0.1�.
For numerical reasons, the prior distribution is built to

have periodic boundary conditions (Norberg et al., 2015).
Here, the given vertical prior profile constrains the values of
highest and lowest altitudes so strongly that boundary effects
in that direction are prevented. To avoid boundary effects in
horizontal direction, the correlation lengths at the boundaries
are decreased to 10% of the initial values and the actual in-
version is carried out in a larger domain than is our actual
interest.
After calibrating the parameters with the Overflight I,

for the Overflights II and III the parameter values are ad-
justed only according to corresponding ionosonde measure-
ments without additional tuning. For the Overflight IV the
ionosonde profiles differ significantly from the previous
ones. Hence also the prior standard deviation shape is ad-
justed to correspond to these conditions.
In each of the following cases we first visualize the gen-

eral measurement setup on a map in Figs. 1, 3, 5 and 7.
The results are presented in Figs. 2, 4, 6 and 8, first as
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Figure 2. Reconstruction, phase curves and profile comparisons for Overflight I starting on 20 November 2014 at 12:50UTC.
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Figure 3. TomoScand receiver network and the satellite overflight
ground track with four EISCAT UHF scan paths.

two-dimensional altitude–latitude reconstructions of electron
densities, i.e., the MAP estimates where the ionosonde prior
is used. On top of the reconstruction the EISCAT UHF scans
are shown with white paths. We then compare the prior and
posteriori distribution parameters to corresponding EISCAT
UHF scan locations by assuming a longitudinally uniform
ionosphere. The ionosonde prior means are plotted with solid
green lines and the 95% prior credible intervals (Ionosonde
prior mean ±2⇥ prior SD) with dashed green lines. The
profiles taken from the reconstruction with ionosonde prior
are plotted with solid black lines (MAP ionosonde) and the
corresponding 95% posterior credible intervals with dashed
black lines (MAP ionosonde ±2⇥ posterior SD). The elec-
tron density profiles obtained with EISCAT UHF scans are
plotted with red. The blue dashed line is a profile taken from
the reconstruction where the prior is based on IRI-2007 pro-
file (MAP IRI) and the cyan dashed line from the reconstruc-
tion with zero-mean prior (MAP ZERO). In Table 1 the rel-
ative mean errors for profile peak electron densities and the
mean errors for peak altitudes are given. In addition to the
profile comparisons, we show the relative phase difference

www.atmos-meas-tech.net/9/1859/2016/ Atmos. Meas. Tech., 9, 1859–1869, 2016
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Figure 4. Reconstruction, phase curves and profile comparisons for Overflight II starting on 3 November 2015 at 13:50UTC.
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Figure 5. TomoScand receiver network and the satellite overflight
ground track with four EISCAT UHF scan paths.

measurements used for the inversion for each station, as well
as the corresponding measurements predicted from the re-
construction obtained with ionosonde prior.

3.1 Overflight I

The COSMOS 2463 overflight (Fig. 1) starts on 20 Novem-
ber 2014 at 12:50UTC. The direction of the satellite track
is from north to south. The relative phase difference curves
in the top right panel of Fig. 2 indicate smooth ionosphere,
with some local structures visible in the Tromsø station
curve. The ionosonde measurements used for the prior are
from 12:54, 12:56, 12:58 and 13:00UTC. The largest differ-
ences between the ionosonde profiles were at 330 km alti-
tude, with standard deviation of 2.3⇥ 1011 m�3. The peak
altitudes range from 320 to 340 km. In Fig. 2, the ob-
tained tomographic reconstruction is shown in the top left
panel. On top of the reconstruction are plotted the four
EISCAT UHF measurements performed at (1) 12:53:00–
12:54:10, (2) 12:55:03–12:56:03, (3) 12:56:20–12:57:20 and
(4) 12:57:35–12:58:35UTC. The latitude–longitude direc-
tions of the measurement can be seen in Fig. 1. Hourly aver-
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Figure 6. Reconstruction, phase curves and profile comparisons for Overflight III starting on 14 November 2015 at 13:20UTC.
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Figure 7. TomoScand receiver network and the satellite overflight
ground track with four EISCAT UHF scan paths.

aged Kp and F10.7 indices at 13:00UTC were 1.3 and 164.1,
respectively.
The profile comparisons 1–4 in Fig. 2 show that the south-

ward increment of electron density is captured by all three re-
constructions. In the profiles based on the IRI-2007 and zero-
mean prior reconstructions the maximum electron density is
significantly lower than in the EISCAT UHF profiles and
shape of the profiles clearly disagrees with the UHFmeasure-
ments in comparisons 1 and 2. With IRI-2007 the peak alti-
tude is underestimated in all of the profiles. The ionosonde
prior shows a good agreement between shapes of the cor-
responding profiles. Although the satellite rises almost to
zenith above Tromsø, F-region peak density estimates from
the ionosonde are about 30% higher than the calibrated UHF
measurements. However, the prior standard deviation enables
large enough changes to capture the correct level in the MAP
estimate. With the ionosonde prior the most glaring differ-
ence between the UHF and tomographic profiles is in the al-
titude of the peak electron densities.
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Figure 8. Reconstruction, phase curves and profile comparisons for Overflight IV starting on 20 November 2014 at 02:50UTC.

3.2 Overflight II

The COSMOS 2407 overflight starts approximately on
3 November 2015 at 13:50UTC (Fig. 3). The direction of
the satellite track is from north to south. The relative phase
difference curves in Fig. 4 indicate a smooth ionosphere.
Based on the ionosonde measurements collected at 13:54,
13:56, 13:58 and 14:00UTC the electron density level is ex-
pected to be lower than in Overflight I. The largest differ-
ences between the ionosonde profiles were at 260 km alti-
tude, with standard deviation of 0.6⇥ 1011 m�3. The peak
altitudes range between 260 and 280 km. The new prior pro-
files for this overflight are shown in the lower four panels
of Fig. 4. Besides the altitude profiles for prior mean and
standard deviation, the other parameters remain unchanged.
In the top left panel of Fig. 4 the reconstruction and the
EISCAT UHF measurement projections from (1) 13:54:28–
13:55:28, (2) 13:55:50–13:56:50, (3) 13:57:11–13:58:11,
and (4) 13:58:26–13:59:30UTC are shown. Hourly averaged
Kp and F10.7 indices at 14:00UTC were 2.3 and 129.9, re-
spectively.

The IRI-based profiles have very good agreement with the
maximum densities of EISCAT scans. However the peak al-
titude is underestimated. The profiles taken from the recon-
struction with zero-mean prior clearly disagree with the UHF
measurement, in terms of both profile shape and peak elec-
tron density.
With the ionosonde-based prior, in Profile comparison 1

the prior mean and the closest UHF measurement are very
similar and also the tomographic reconstruction is almost un-
changed from the prior profile. Again, the electron density
slightly increases southwards, which is well captured in the
reconstruction. Both the peak density and altitude are very
close to each other between the reconstruction and UHF pro-
files.

3.3 Overflight III

The COSMOS 2407 overflight starts on 14 March 2015
at 13:20UTC (Fig. 5). The direction of the satellite track
is from north to south. The ionosonde measurements used
for the prior were collected at 13:26, 13:28, 13:30 and
13:32UTC. The largest differences between the ionosonde
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profiles were at 310 km altitude, with standard deviation
of 0.5⇥ 1011 m�3. The peak altitudes range from be-
low 250 km to almost 320 km. The reconstruction and the
EISCAT UHF measurement directions at (1) 13:27:45–
13:28:45, (2) 13:29:01–13:30:02, (3) 13:30:20–13:31:21 and
(4) 13:31:35–13:32:35UTC are shown in the top left panel of
Fig. 6. Hourly averaged Kp and F10.7 indices at 13:00UTC
were 1.7 and 114.3, respectively.
With IRI prior the maximum densities are slightly pro-

nounced and the peak altitude remains below the UHF
peak. With the zero-mean prior both the profile shapes and
peak densities clearly disagree with the UHF, again. For the
ionosonde case the best agreement in general profile shape
is again visible, even though the errors in peak altitudes and
densities are in the same level with the IRI-based reconstruc-
tions.

3.4 Overflight IV

The COSMOS 2407 overflight starts on 21 November 2014
at 02:50UTC (Fig. 7). Direction of the satellite track is from
north to south. The relative phase difference curves in Fig. 8
indicate more small-scale structures in ionosphere than in the
previous measurements. The ionosonde measurements were
collected at 02:56, 02:58, 03:02 and 03:04UTC, as the data
for 03:00 are missing. The largest differences between the
ionosonde profiles were at 180 km altitude, with standard de-
viation of 0.7⇥ 1011 m�3. The measurements show a strong
E region at 100 km altitude. As the ionosonde measurements
indicate that the electron density is not concentrated on one
altitude, the maximum of the prior standard deviation is here
set to the lower E-region peak of the ionosonde profile and
the upper-scale height is increased to 600 km to allow more
variation also around the higher F-region peak. Otherwise
the prior profiles are formed similarly to previous cases.
The reconstruction and the EISCAT UHF measurement di-
rections at (1) 02:57:40–02:58:50, (2) 02:59:15–03:00:30,
(3) 03:00:50–03:02:05 and (4) 03:02:25–03:03:35UTC are
shown in the top left panel of Fig. 8. Hourly averaged Kp
and F10.7 indices at 03:00UTC were 3.3 and 158.6, respec-
tively.
With IRI prior an F region is visible, although at the

wrong altitude, but the E-region peak is completely miss-
ing. The zero-mean prior spreads electron density also to
lower altitudes, but it cannot distinguish the two-peak struc-
ture. With ionosonde the shape of the reconstruction seems
to be strongly dictated by the prior. Horizontal gradients in F-
region peak density are rather well reproduced in the recon-
struction, whereas the reconstructed E-region peak is almost
unchanged in the profile comparisons, although the UHF
radar shows significantly different peak density at each point-
ing direction. In the reconstruction in the upper left panel
of Fig. 8 a southward decrement in E-region density is vis-
ible between the receivers, where the information provided
by the measurements is higher. Directly above the receivers

Table 1. Errors of tomographic profiles compared with EISCAT
UHF scans.

Relative mean error of Mean error of
peak density (%) peak altitude (km)

Overflight I Ionosonde 5 41
IRI 27 55
Zero 52 74

Overflight II Ionosonde 5 17
IRI 6 58
Zero 54 15

Overflight III Ionosonde 4 33
IRI 6 31
Zero 60 33

Overflight IV Ionosonde 5 40
IRI 12 84
Zero 61 50

information about the vertical profile is very poor and the re-
construction relies on the prior information. Hence the lower
layer remains.

4 Discussion

The presented method for ionospheric tomography includes
several prior parameters, and the selection of the correspond-
ing values might seem arbitrary. The objective of this arti-
cle is not to optimize all of the prior parameters, but to con-
centrate on the altitude profiles of the prior mean and the
standard deviation. Based on trials with the algorithm and
different data, the information on the vertical structures has
the most crucial effect on the reconstruction quality. This is
also evident in the presented results. When zero-mean prior
is used, the peak altitude can be found relatively well, but the
measurements do not contain enough information to produce
steep enough vertical gradients. Then again, when a vertical
profile is given within the prior, the reconstruction of peak
electron density is improved significantly, but the peak alti-
tude becomes less sensitive to measurements.
In horizontal direction, the gradients can be reconstructed

rather well regardless of the prior mean in use. Hence, infor-
mation on horizontal electron density structures (IRI model)
is less important if the trade-off is the accuracy on the vertical
structure.
When accurate vertical electron density profile is provided

within the prior, the selection for the values of the other prior
parameters is less critical. For all prior parameters the sta-
bilizing effect is also rather intuitive. Decreasing the corre-
lation lengths allows more small-scale variation in the re-
constructions; however, getting close to the corresponding
discretization can result in artifacts. The increment of cor-
relation lengths smoothens the reconstruction, but very long
correlation lengths can again produce unexpected behavior.
With all cases in the previous section, the use of horizon-

tal correlation length values between 1 and 10� and verti-
cal correlation lengths between 20 and 500 km were carried
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out without drastically unrealistic changes in reconstructions.
The peak value of standard deviation was also altered in a
range from 20 to 100% with anticipated results.
As mentioned in Sect. 3, the standard deviation profile is

parameterized as a Chapman function. Hence, the ionosonde
profile cannot be used explicitly, but the choice of the pa-
rameter values can be done viably based on the ionosonde
measurements. For the first three overflights only the peak
standard deviation altitude and density were set according
the corresponding ionosonde measurements. With Overflight
IV, the ionosonde profiles are significantly different; thus
also the scale heights of the prior standard deviation were
changed. Altogether, the results for the overflights II, III and
IV could be enhanced by optimizing the parameters through
trial and error individually for each case, but the results show
that already intuitive realistic choices of these parameters are
enough to give reasonable solutions.
As the ionosonde measurements provide relatively accu-

rate measurements of the ionospheric electron density, it
would be straightforward to use them also as direct mea-
surements above the instrument location. However, the satel-
lite overflight hits rarely at the zenith of the ionosonde site,
and the electron densities measured by ionosonde and tomo-
graphic receiver can vary largely. When 2-D assumption (i.e.,
small gradients in longitude) is used, the ionosonde measure-
ment error should reflect this discrepancy. Hence the infor-
mation for the projected ionosonde measurement points can-
not be modeled as accurately as they are in their actual lo-
cation, and the prior distribution provides substantially the
same information. In the 3-D case the situation will be dif-
ferent as all of the measurements will be modeled in their
actual locations.
Electron density profiles measured with the EISCAT UHF

are routinely calibrated by means of comparing F-region
peak electron density estimates from the UHF and the dy-
nasonde. Thus, when the ionosonde-based prior is used, F-
region peak densities above the Tromsø site are taken from
the same instrument in both the tomography prior and the
UHF results. Our tomography measurements and the ground
truth UHF measurements are thus not completely indepen-
dent. However, we anticipate that this is not a very serious
problem, as the calibration data were not used for the valida-
tion. Furthermore, calibration does not affect the UHF den-
sity profile shape, but only its absolute values, and calibration
is not performed for individual profiles, but the same scaling
is used for a longer period of time. Especially, the actual vali-
dation measurements with beam steered far away from zenith
are never used for calibration.

5 Conclusions

In this study the use of Bayesian statistical inversion with
known prior distributions and with the inclusion of simul-
taneous ionosonde measurements for ionospheric tomogra-

phy is validated. Most importantly we show that the prior
distribution can be constructed based on the ionosonde mea-
surements, which helps in constraining the otherwise poorly
defined altitude profile shape of the tomographic reconstruc-
tion.
We demonstrate the applicability of the method with four

satellite overflights measured with the TomoScand receiver
network, and with EISCAT dynasonde measurements from
the EISCAT Tromsø site. In comparisons we used Interna-
tional Reference Ionosphere 2007 and zero mean in build-
ing of the prior. The validation is made against simultaneous
EISCAT UHF incoherent scatter radar measurements.
The biggest issue with IRI-2007 consists in the problems

with the peak altitude. With zero mean it is the significant
underestimation of the electron density. From both of the ref-
erence schemes it can be seen that the measurements cannot
provide enough information on the vertical gradients of the
ionosphere. The use of ionosonde in the building of the prior
distribution outperforms the compared alternatives. The re-
sults show better agreement between the incoherent scatter
radar measurements and the corresponding electron density
profiles taken from the reconstruction. The reconstructions
seem reasonable even further away from the ionosonde lo-
cation. However, the electron density height profiles are dic-
tated by the prior model and could be biased further away
from the ionosonde. Use of multiple ionosondes and altering
the prior profile in horizontal direction would be straightfor-
ward within the method and highly recommended.
The results also indicate that when reliable prior informa-

tion is provided, the required prior parameters can be pre-
determined and the method used without additional tuning.
This makes the operational stand-alone use feasible, at least
for typical ionospheric conditions. With the lattice sizes in
the reported scale and with a modern PC the required com-
putations can be made in real time.
As in the Bayesian inference we are presenting the infor-

mation as probability distributions, we also have direct ac-
cess to the credible intervals. If the prior is truly realistic, the
posteriori credible interval can be highly informative. How-
ever, it is important to note that when interpreting the poste-
rior distribution and credible intervals derived from it, they
are highly dependent on the given prior distribution. Poste-
rior credible intervals should thus be used with caution.

Data availability

The data for analyzed EISCAT dynasonde results from
Tromsø are available from the EISCAT Dynasonde Database
(http://dynserv.eiscat.uit.no/DD/Iono_form.php). The IRI-
2007 electron density profiles are available from the
IRI-2007 website (http://omniweb.gsfc.nasa.gov/vitmo/iri_
vitmo.html).
Ionospheric tomography measurements and analyzed data

products used in this paper are freely available upon request
from the Finnish Meteorological Institute.
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Gaussian Markov Random Field Priors in
Ionospheric 3-D Multi-Instrument Tomography

Johannes Norberg , Juha Vierinen, Lassi Roininen, Mikko Orispää, Kirsti Kauristie,
William C. Rideout, Anthea J. Coster, and Markku S. Lehtinen

Abstract— In ionospheric tomography, the atmospheric
electron density is reconstructed from different electron density
related measurements, most often from ground-based measure-
ments of satellite signals. Typically, ionospheric tomography
suffers from two major complications. First, the information
provided by measurements is insufficient and additional infor-
mation is required to obtain a unique solution. Second, with
necessary spatial and temporal resolutions, the problem becomes
very high dimensional, and hence, computationally infeasible.
With Bayesian framework, the required additional information
can be given with prior probability distributions. The approach
then provides physically quantifiable probabilistic interpreta-
tion for all model variables. Here, Gaussian Markov random
fields (GMRFs) are used for constructing the prior electron
density distribution. The use of GMRF introduces sparsity to
the linear system, making the problem computationally feasible.
The method is demonstrated over Fennoscandia with measure-
ments from global navigation satellite system (GNSS) and low
Earth orbit (LEO) satellite receiver networks, GNSS occultation
receivers, LEO satellite Langmuir probes, and ionosonde and
incoherent scatter radar measurements.

Index Terms— Bayesian, Gaussian Markov random fields
(GMRFs), ionospheric tomography, multi-instrument.

I. INTRODUCTION

IONOSPHERIC tomography involves reconstruction of the
atmospheric electron density within a volume, using a

number of different measurements of electron density. The
first studies on ionospheric tomography were made in [1].
A general introduction to the topic is provided in [2].

The electron density measurements can be divided to indi-
rect and direct measurements. Indirect measurements refer
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Fig. 1. Multi-instrument ionospheric electron density measurements. GNSS
satellites provide line-integrated measurements all the way up to the plasma-
sphere, but as the satellites move relatively slow, the measurement geometry
with respect to ground stations does not change significantly. The inclination
angles of different GNSSs are low. LEO beacon satellites, which cover the
ionosphere up to about 1000 km, can have a polar orbit and move relatively
fast, allowing a 2-D slice of the ionosphere to be covered. LEO satellites
with GNSS receivers provide variable look angles through the topside of the
ionosphere. Langmuir probe provides the only in situ measurements available.
Ionosondes provide localized bottomside profiles. ISRs provide localized
profiles of electron density.

here to satellite-to-ground and satellite-to-satellite measure-
ments, where the measurements are modeled as integrals over
electron density. In this paper, ground-based total electron
content (TEC) measurements from global navigation satellite
system (GNSS) and low Earth orbit (LEO) satellites and
GNSS occultation TEC measurements are employed. These
measurements have a lower accuracy of structural information,
but typically a large spatial coverage can be attained. Direct
measurements, such as different radar and satellite in situ
measurements, provide relatively accurate structural informa-
tion, but from a restricted area. This paper utilizes a satellite
on-board Langmuir probe, incoherent scatter radars (ISRs),
and ionosondes as direct measurements. However, even within
these two categories the different measurements have different
strengths and weaknesses, and are highly complementary.
A 2-D simplification of measurement geometries is shown
in Fig. 1.

Typically, the available measurements are predominantly
indirect satellite measurements with limited elevation angles,
and the resulting information, particularly on vertical gradients
is low. Consequently, the electron density cannot be solved
uniquely without some additional structural information. The
essential difference between different ionospheric tomography
methods follows from how this information is implemented
into the algorithm.
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In [3], an extensive overview on different approaches and
their development is provided. More recently, the topic has
been studied in [4]–[7].

With Bayesian statistical approach, the required additional
information can be given as a prior probability distribu-
tion. When Gaussian distributions are assumed, the prior
information can be represented with the mean and covari-
ance. In ionospheric tomography, the prior mean corresponds
to most probable state of the atmospheric electron den-
sity, whereas the covariance describes its uncertainty. All
the parameters included in the prior have, thus, a clear
probabilistic interpretation with physical quantities. Hence,
when the measurement and model errors are modeled cor-
rectly, in principle, the model has no free parameters that
need to be calibrated. If additional tuning is nevertheless
required, all the changes in the parameters have a clear
meaning.

A comprehensive introduction to statistical inverse prob-
lems is provided in [8] and [9]. In ionospheric tomography,
the Bayesian inference has been applied in [10]–[13]. The
Ionospheric Data Assimilation Three-Dimensional (IDA3D)
presented in [14] is based on the Three-Dimensional Varia-
tional Data Assimilation Technique (3DVAR) and uses slightly
different terminology. However, with Gaussian prior and error
distributions, the Bayesian statistical approach and 3DVAR are
computationally identical.

The drawback of Bayesian approach is in computa-
tion, as the solution requires operations of large covari-
ance matrices. In this paper, Gaussian Markov random field
(GMRF) [15] priors for ionospheric tomography, presented
in [12] and [13], are generalized to the 3-D multi-instrument
case. The GMRF approach provides an extension to Bayesian
and 3DVAR methods, as the prior covariance can be replaced
with a sparse matrix approximation. Essentially, by imple-
menting GMRF with sparse systems solvers, the computational
cost in the high-dimensional matrix operations is reduced
significantly.

This paper is organized as follows. In Section II, the mod-
els for different measurements are described. In Section III,
the Bayesian statistical approach for linear tomography is
revisited. In Section IV, the GMRF approximation of prior
precision matrix is described, with a short summary of alterna-
tive ways to overcome the computational issues. In Section V,
the performance of the considered method is presented. First,
with a simulated example using the International Reference
Ionosphere 2012 (IRI-2012) model as the unknown, and then
with real multi-instrument data. The EISCAT ISR measure-
ments are included for validation. Discussion and conclusion
of the study are given in Sections VI and VII. The future plans
are considered in Section VIII.

II. MEASUREMENTS

The approach presented in this paper can exploit any
measurement depending linearly on the ionospheric elec-
tron density with estimable measurement error. The electron
density is given here as function Ne(t, z), where t is the time
and z = {zlat, zlong, zalt} ∈ R3 is the spatial coordinates.

A. Indirect Measurements

A GNSS TEC measurement along signal path Lsat,rec(t)
between satellite sat and receiver rec at time t can be modeled
as a line integral

msat,rec(t)=
∫

Lsat,rec(t)
Ne(t, z)dl+asat(t)+brec(t)+εsat,rec(t)

(1)

where asat(t) and brec(t) are the receiver and satellite instru-
ment biases. Discretization and assumption of time homo-
geneous ionosphere cause errors that need to be taken into
account in the model. Here, the modeling errors are assumed
independent of the unknown electron densities and added all
together in εsat,rec(t).

The forward model for GNSS occultation measurements is
the same as for the ground-based measurements given in (1).
The practical difference is that the on-board receiver is also
in motion.

The relative TEC (RTEC) measurement between a LEO
beacon satellite and a ground-based receiver can be modeled as

msat,rec(t) =
∫

Lsat,rec (t)
Ne(t, z)dl + γsat,rec + εsat,rec(t) (2)

where the phase ambiguity is given with γsat,rec and it is
different for each signal lock [16].

Despite the similarity of the TEC measurement models,
there are significant practical differences. By combining the
different observables, the GNSS TEC does not suffer from
the phase ambiguity [17]. The remaining GNSS satellite and
receiver biases can have a significant effect on the TEC
measurement. However, the changes in these biases are rela-
tively slow and they can be estimated before the tomographic
analysis [18], [19], thus the bias-corrected GNSS measure-
ments can be assumed to be close to absolute TEC. On the
other hand, as the bias estimation requires several simplifying
assumptions, it is beneficial to keep the parameters asat and
brec in the model and assume that after the bias correction,
they are closer to zero, but not completely eliminated.

Due to lower signal frequencies (150 and 400 MHz),
the LEO TEC measurements are more sensitive for detailed
ionospheric structures, however, as the phase ambiguity is
typically in the magnitude of current local maximum TEC,
the measurement is relative and γsat,rec needs to be solved
as an additional unknown in the tomographic analysis. The
orbital inclinations of GNSS satellites are relatively low
[GPS 55◦, Global Navigation Satellite System (GLONASS)
64.13◦, GALILEO 56◦]. For the polar regions, the low incli-
nation induces low elevation angles making the measure-
ments susceptible for larger errors. LEO beacon satellites can
have orbital inclinations close to polar orbits (CASSIOPE/e-
POP 80.99◦, COSMOS 2407 and 2463 83◦), thus providing
high-elevation measurements also from high-latitude receivers.
Following from the higher orbital altitudes of GNSS satellites
(GLONASS 19 140 km, GPS 20 180 km, and GALILEO
23 222 km), the plasmaspheric contribution in the TEC mea-
surement can be significant. With orbital altitudes around
1000 km, there is no plasmaspheric contribution in the LEO
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RTEC measurements. The lower altitude also results in a
higher relative satellite velocity, and hence better spatial
coverage for the individual satellite when present. Multiple
GNSS satellites can be viewed from all locations and at all
times, especially now there are several satellite constellations.
GNSS observations are also easily obtained as large receiver
networks exist. This differs from the case of LEO satellites as
there are fewer receivers (LEO receivers are built specifically
for this purpose) and there are only few suitable satellites.
Hence, in general, the GNSS TEC measurements are the most
important data component, providing constant spatiotemporal
coverage with absolute measurements. LEO RTEC measure-
ments provide more detailed information and provide higher
elevation data in polar areas, but the spatiotemporal availability
is inferior to GNSS.

B. Direct Measurements

When the electron density is detected in a specific location,
as is the case with different radar and satellite in situ mea-
surements, the direct measurement from instrument I can be
modeled simply as

mI(t, z) = Ne(t, z) + εI(t, z). (3)

With satellite in situ measurements z = (zlat, zlon, zalt) is
the location of the Langmuir probe, and with ISR, it is the
location of measurement integration. With inverted, real-height
ionosonde electron density profiles (zlat, zlong) is the location
of the instrument and zalt is the real reflection height.

In comparison to any indirect measurement, these measure-
ments provide significantly more accurate and detailed infor-
mation on ionospheric structures. As a downside, the spatial
coverage of measurements is typically limited.

III. BAYESIAN STATISTICAL APPROACH

By assuming stationary electron density for a given time
interval and discretizing the measurement models (1)–(3),
all the ionospheric measurements can be combined and
written as

m = AX + ε (4)

where m ∈ RM is a vector of all measurements. Geometry
matrix A ∈ RM×N is a linear mapping from discretized spatial
domain to measurement space. Vector

X =
(

x
θ

)
∈ RN

consists of unknown electron densities x ∈ Rn , as well
as all the additional unknown error parameters θ =
(asat1 . . . asatA , brec1, . . . , brecB , γ1,1 . . . γC,D,ρ)T, where ρ is
the plasmaspheric electron density contribution per meter,
A, B , C , and D are the counts of GNSS satellites, GNSS
receivers, LEO satellites, and LEO receivers, respectively, and
n + A + B + C × D + 1 = N . Vector ε ∈ RM contains all the
measurement and modeling errors. Here, it is assumed that the
error vector follows a multivariate normal distribution

ε ∼ N (0,#ε)

and that the realistic states of the ionosphere and additional
parameters can be described satisfactorily with a prior distri-
bution, which is also multivariate normal

X ∼ N (Xpr,#pr) (5)

where Xpr is the prior mean of the ionosphere and additional
parameters. Covariance #pr describes the related prior uncer-
tainties. Following the Bayes theorem [9], the posterior distri-
bution for X is then also a multivariate normal distribution

X|m ∼ N (XMAP,#post)

where maximum a posteriori (MAP) estimator

XMAP = #post
(
AT#−1

ε m + #−1
pr Xpr

)
(6)

and posterior covariance estimator

#post =
(
AT#−1

ε A + #−1
pr

)−1
. (7)

In an application to ionospheric tomography, the MAP
estimator XMAP can be understood as the most probable
state of the ionospheric electron density and other unknown
parameters, whereas the remaining uncertainty is given with
the error covariance #post.

IV. COMPUTATION

The downside of Bayesian statistical approach for inverse
problems is that the assumption of a proper prior distribu-
tion (5) results with a dense N × N covariance matrix #pr.
The estimators (6) and (7) contain inverted covariance matrices
and the posterior covariance estimator involves one more
matrix inversion. Hence, the solution becomes exceedingly
demanding computationally. To ease the computational bur-
den, the dimensions would need to be reduced or sparsity
would need to be introduced into the linear system. Two
previously applied approaches are first revisited, before intro-
ducing the GMRF approach for sparse approximation of the
covariance matrix.

A. Generalized Tikhonov Regularization

When independent measurement errors are assumed,
the measurement covariance matrix is diagonal, #ε = σ 2

ε I, and
due to the nature of the measurements, the geometry matrix A
is a sparse matrix. If the inverted covariance matrix, i.e., the
prior precision matrix #−1

pr could be given also as a sparse
matrix, the memory required for storage would decrease and
optimized solvers for sparse linear systems could be utilized
for the computation.

In more general sense, the MAP estimator (6) is a regular-
ized least squares solution. Selecting #−1

pr = 0 reduces it to
ordinary least squares estimator. With #−1

pr = δI, the estimator
corresponds to Ridge regression and Tikhonov regularized
solution. When #−1

pr is any suitably chosen matrix, the esti-
mator is called the generalized Tikhonov regularization [9].
Typically, #−1

pr = δ$T$, where $ is a difference matrix. These
can be extremely sparse systems and the inversion in (7) is
possible even for relatively high-dimensional problems. With
these approaches, it is possible to add structural constraints for
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the solution. For ionospheric tomography, in [4] and [10], a
vertical weight profile is included in matrices ! to regularize
the problem more strictly at the very low and high altitudes
and to allow more variability to electron densities at altitudes
where the highest values and dynamics are expected. The
constraint ends up to provide essentially similar information
than a full prior covariance would, but as it lacks some of the
interpretation, it requires ad hoc calibration.

B. Data Space Solution

With matrix inversion lemma, the MAP estimator (6) can
be written equivalently as

XMAP = Xpr + "prAT(
A"prAT + "ε

)−1
(m − AXpr) (8)

and

"post = "pr − "prAT(
A"prAT + "ε

)−1A"pr. (9)

This form is preferred by IDA3D [14] and in the standard for-
mulation of Kalman filter. The advantage is that the inversion
is done for M × M matrix, whereas in (6), an N × N matrix
is inverted. Typically, in ionospheric tomography, M # N
which can unburden the inversion. Here, the computational
bottleneck is in representing and storing the covariance matrix
"pr and performing the matrix multiplications. In case of
global ionospheric tomography, it can be assumed that loca-
tions with long enough distance have a zero correlation. This
covariance tapering [20] introduces sparsity to the system.
However, in local tomography, the correlation lengths extend
over the domain, hence, the prior covariance is a dense matrix.

C. Gaussian Markov Random Field Prior

The idea here is the following. As the estimator (6) does
not require actual covariance matrices, but rather precision
matrices, a sparse precision matrix Q is constructed so that

Q−1 ≈ "pr (10)

where the matrix Q is built with the formalism of GMRFs.
When parameterized correctly, a GMRF gives rise to a known
spatial covariance. So, even though the actual covariance
matrix is never constructed, the precision matrix can be
determined by its covariance properties.

The detailed theoretical background for these types of
GMRFs is given in [21]–[24]. Here, an example is given,
where the target precision "−1

pr is determined with a squared
exponential covariance function

Cov(zi − z j ) = α(zi , z j ) exp
[

− 1
2

( (
zi,lat − z j,lat

#lat

)2

+
(

zi,long−z j,long

#long

)2

+
(

zi,alt −z j,alt

#alt

)2 )]

(11)

where #lat, #long, and #alt > 0 are the correlation lengths
homogeneous in each coordinate direction and α(zi , z j ) > 0
is a location-dependent variance mask.

Following [24], an anisotropic continuous GMRF with a
covariance approximating (11) can be formed as a solution
to a stochastic partial differential equation





√
c0 I√

c1#lat∂lat√
c1#alt∂alt√

c1#long∂long√
c2

(
#2

lat∂
2
lat + #2

alt∂
2
alt + #2

long∂
2
long

)





X (z) =
√

α(z)#lat#alt#long





W(0)(z)
W(1,lat)(z)
W(1,alt)(z)
W(1,long)(z)
W(2)(z)




(12)

where X (z) and W(·)(z), z ∈ R3 are the continuous ran-
dom fields and independent continuous white noise fields,
respectively. For squared exponential covariance function (11),
the shape parameters ck = 2−k/k!, with k corresponding to
the order of the derivative.

To make (12) applicable for computations, there are two
objects to discretize the differential operator on the left-hand
side and the white noise on the right-hand side. By using finite
difference methods, a 3-D domain is defined with dimensions
nlat×nalt×nlong = n and voxel widths hlat, halt and hlong in the
different coordinate directions. To simplify the following for-
mulation, new parameters slat := (hlat/#lat), salt := (halt/#alt)
and slong := (hlong/#long) are defined. Here, only the unknown
electron densities x = (x1, . . . , x j , . . . xn)T are considered.
The additional error parameters θ are independent of x and
are included after the field is discretized at the end of the
section.

The discrete approximation for white noise is

W (k)
j ∼ N

(
0,

α j

ck

1
slatsaltslong

)

where the superscript k is an index for the order of difference.
The discrete white noise process is then set as

x j = W (0)
j . (13)

The first-order differences are

%latx j := 1
slat

(x j+1 − x j ) = W (1,lat)
j

%altx j := 1
salt

(x j+nlat − x j ) = W (1,alt)
j

%longx j := 1
slong

(x j+nlatnalt − x j ) = W (1,long)
j (14)

where the first superscript on the right-hand side is the
order of difference and the second superscript is the effective
coordinate direction. The second-order differences are given as

%2 x j := %2
latx j + %2

altx j + %2
longx j = W (2)

j (15)
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where

!2
latx j :=

(
x j+1 − x j

slat
− x j − x j−1

slat

)
1

slat

!2
altx j :=

(
x j+nlat − x j

salt
− x j − x j−nlat

salt

)
1

salt

!2
longx j :=

(
x j+nlatnalt − x j

slong
− x j − x j−nlatnalt

slong

)
1

slong
.

The white noise W (k)
j can be standardized as

√
ck

α j
slatsaltslong W (k)

j = ξ (k)
j ∼ N (0, 1)

and for all indices j and k as

ξ0 =
(
ξ (0)

1 , . . . , ξ (0)
n

)
∼ N (0, In),

ξ1 =
(
ξ (1,lat)

1 , . . . , ξ (1,long)
n

)
∼ N (0, I3n),

ξ2 =
(
ξ (2)

1 , . . . , ξ (2)
n

)
∼ N (0, In).

Now the differences (13)–(15) can be written in matrix form
as follows.

For the standardized white noise process, the matrix form is
√

c0

α
slatsaltslong ◦ [Inlong ⊗ Inalt ⊗ Inlat ]x =: L0x = ξ0 (16)

where Is are identity matrices with diagonal length corre-
sponding to the subscript, the variance mask is given as

1
α

:=




1
...
1



 ⊗
[

1
α1

, . . . ,
1
αn

]
∈ Rn×n

the symbol “◦” is the Hadamard product and the symbol “⊗”
is the Kronecker product.

For the first-order differences, the different coordinate direc-
tions are given in matrix form separately at their own rows





√
c1
α

saltslong
slat

◦ [Inlong ⊗ Inalt ⊗ Lnlat ]√
c1
α

slatslong
salt

◦ [Inlong ⊗ Lnalt ⊗ Inlat ]√
c1
α

slatsalt
slong

◦ [Lnlong ⊗ Inalt ⊗ Inlat ]




x =: L1x = ξ1 (17)

where Lnlat , Lnalt , and Lnlong are difference matrices with
structure 



−1 1
−1 1

. . .
. . .

1 −1





and dimensions nlat × nlat, nalt × nalt, and nlong × nlong,
correspondingly.

The second-order differences are given in matrix form as
(√

c2

α

saltslong

s3
lat

◦
[
Inlong ⊗ Inalt ⊗

(
LT

nlat
Lnlat

)]

+
√

c2

α

slatslong

s3
alt

◦
[
Inlong ⊗

(
LT

nalt
Lnalt

)
⊗ Inlat

]

+
√

c2

α

slatsalt

s3
long

◦
[(

LT
nlong

Lnlong

)
⊗Inalt ⊗Inlat

])
x =: L2x = ξ2.

(18)

Finally, the matrix equations (16)–(18) can be stacked as


L0
L1
L2



 x =




ξ0
ξ1
ξ2



 =: Lx = ξ ∼ N (0, I5n). (19)

The solution for x is the desired prior GMRF with an n × n
precision matrix LTL. The precision matrix can then be
completed to N × N dimensions, to also take into account
the additional error parameters θ as(

LTL 0
0 diag

(
σ−2

θpr

)
)

= Q (20)

where a prior distribution θ ∼ N
(
θpr, diag

(
σ 2

θpr

))
is assumed,

with prior mean θpr ∈ R(N−n) and diagonal prior covariance
matrix diag

(
σ 2

θpr

)
∈ R(N−n)×(N−n) .

Now, the matrix inversion Q−1 is a close approxima-
tion for %pr, with the covariance structure for x given
in (11). Most importantly, the matrix LTL in Q consists
only of 25 × n nonzero elements, whereas the corresponding
covariance would be a dense n × n matrix. Obviously, in 3-D
cases, n is orders of magnitude greater than 25.

With the given discretization, the methodology provides
inhomogeneous GMRF priors, which take into account
the discretization of the unknown, hence providing a
discretization-invariant reconstruction method (for references
on discretization invariance, see [22]). From the practical
point of view, this means that the posterior distributions
and reconstructions on different computational meshes are
essentially the same, given dense enough mesh. In this
section, in (13)–(19), a regular discretization was used.
However, an irregular grid could be used as well, and in the
example of Section V, this is the case. The use of irregular
discretization is straightforward, but, as the parameters h and
s become vectors and for one index, the discretization step
can be different depending on which side the difference is
taken, the indexing of the previous equations would become
more difficult to follow.

V. RESULTS

A time window on November 8, 2015 from 10:18:00 to
10:38:00 UTC is chosen for analysis as all the observation
types described in Section II are available at that time. The
corresponding magnetic local time interval at EISCAT site,
Tromsø, is approximately from 12:35 to 12:55.

The analyzed period was geomagnetically quiet with the
Auroral Electrojet index [25] being clearly below 100 nT.
However, a major geomagnetic storm took place during the
previous day and during the prior 12 h, a couple of minor
(B and C-level) solar flares were apparent. During the after-
noon and evening hours of November 8, auroral electrojet
activity index activity enhanced again to levels above 1000 nT.

The receiver and measurement locations are presented
in Figs. 2 and 3. The observations include: 1) seven in-sight
GPS satellites measured with 81 Geotrim,1 324 SWEPOS,2

and 123 International GNSS Service receivers, all first col-
lected with 30 s and then averaged to 300 s time resolu-
tion; 2) simultaneous COSMOS 2407 and 2463 LEO beacon

1http://www.geotrim.fi
2https://swepos.lantmateriet.se



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 2. Locations of available ground-based instruments. Only the area of
the dashed rectangle is shown in the following 3-D reconstructions.

satellite overflights, both measured with seven ground-based
TomoScand receivers [16]; 3) Swarm B satellite overflight
providing Langmuir probe in situ measurements, as well
as satellite occultation TEC measurements from one GPS
satellite [26]; 4) EISCAT Dynasonde electron density profiles
with 120 s time resolution 3 [27]; 5) EISCAT ultra high
frequency (UHF) ISR measurements with elevation = 35◦ and
azimuth = 145◦; and 6) EISCAT very high frequency (VHF)
ISR measurements with elevation = 90◦.4

Two prior mean options were used. First, a simple zero
profile and then an altitude dependent ionosonde profile. With
the ionosonde prior mean, the lower profile is taken as the
altitude medians from 10 EISCAT Dynasonde profiles from the
given time interval. Above the peak electron density altitude,
an exponential profile is used with scale height of 180 km.
For covariance, a squared exponential spatial function was
chosen with correlation lengths: !lat = 20◦, !long = 25◦, and
!alt = 400 km. The correlation length is defined here as the
distance where the covariance drops to 10% of variance. The
altitude-dependent variance scaling profile α is determined
here with standard deviation (SD). The SD is given as a Chap-
man profile with peak altitude taken from EISCAT Dynasonde

3http://dynserv.eiscat.uit.no/DD/login.php
4https://www.eiscat.se/madrigal/

Fig. 3. Locations of available ground-based instruments, ionospheric pierce
points of satellite measurements, and Swarm satellite measurements. Only the
area of the dashed rectangle is shown in the following 3-D reconstructions.

real-height peak and electron density corresponds to 50% of
Dynasonde’s peak electron density. The scale height is set
to 140 km.

Approximations for the measurement error SDs are pro-
vided with the data. SD of 2 total electron content units
(TECU) is assumed for modeling errors. For preprocessed
GPS station biases, zero mean with 1 TECU SD and for GPS
satellite biases zero mean with 0.1 TECU SD is assumed.
The phase constants of LEO measurements are given an SD
of 10 TECU. The plasmaspheric contribution above 1250 km
altitude is assumed to be uniformly 0.1 TECU for 2 ×104 km
with SD of 0.1 TECU.

The 3-D spatial domain chosen for analysis covers latitudes
from 54◦ to 80◦, with 2◦ resolution at boundaries and 0.25◦

resolution between the latitudes 58◦ and 74◦; longitudes from
5◦ to 40◦ with 2◦ resolution at boundaries and 0.25◦ resolution
between the longitudes 9◦ and 36◦; and altitudes from ground
level to 750 km with 25 km resolution and then up to
1250 km with 50 km resolution. This results as a grid of
n = 309 120 voxels. Combined with phase constant, bias, and
plasma parameters, the total number of unknown variables in
this case is N = 309 648.

Now, when using the GMRF approach of Section IV,
the resulting prior precision matrix has only 0.008% nonzero
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Fig. 4. IRI-2012 model electron density with default parameters for
November 8, 2015 10:30:00 UTC.

Fig. 5. Vertically integrated TEC (0–1250 km) from IRI-2012 model electron
density with default parameters for November 8, 2015 10:30:00 UTC.

elements. When the prior precision is added together with
the measurement information, in case, where all available
instruments are used, the posterior precision that needs to be
inverted in (6) still only has 0.034% nonzero elements.

Next, a simulation study is carried out, where the perfor-
mance of the method is demonstrated with a known ionosphere
taken from the IRI-2012 model. After simulation, the tomog-
raphy is performed for the real measurements.

A. Simulation

The IRI-2012 model [28] electron densities are shown
in Fig. 4, and the altitude integrated electron densities in Fig. 5.
The IRI-2012 model was used with its default parameter val-
ues.5 The previously described electron density measurements

5https://omniweb.gsfc.nasa.gov/vitmo/iri2012_vitmo.html

Fig. 6. Simulation case: reconstruction from simulated LEO beacon mea-
surements with zero-mean GMRF prior.

Fig. 7. Simulation case: reconstruction from simulated ground-based LEO
satellite measurements. Simulated ionosonde measurements are used in the
scaling of GMRF prior mean and variance mask.

are simulated with coordinates corresponding to real measure-
ments. The measurement errors are simulated according to the
estimated and assumed error distributions given earlier.

The tomographic inversion is then performed several times
by adding the measurement sets one by one. The results are
shown in Figs. 6–12.

In Fig. 6, only the LEO satellite measurements are used with
a zero prior mean profile xpr = 0. The reconstructed electron
density differs from zero only in the vicinity of the areas where
the LEO beacon measurements are made. Even in the area of
measurements, the electron density is underestimated.

In Fig. 7, again only the LEO satellite measurements are
used, but the prior mean for electron densities xpr are taken
from the simulated ionosonde profile corresponding to the
location of EISCAT Dynasonde. The prior mean profile is
used as such for the whole domain. Areas far from the
measurements remain unchanged from the given prior value.
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Fig. 8. Simulation case: reconstruction from simulated ground-based LEO
and GPS satellite measurements. Simulated ionosonde measurements are used
in the scaling of GMRF prior mean and variance mask.

Fig. 9. Simulation case: reconstruction from simulations of ground-based
LEO and GPS satellite measurements, ionosonde, satellite in situ, and satellite
occultation measurements. Simulated ionosonde measurements are used in the
scaling of GMRF prior mean and variance mask.

In Fig. 8, the simulated GPS measurements are added to
the inversion. The reconstructed electron densities are changed
from prior in a much wider area. However, due to the low incli-
nation of GPS satellites, at the higher latitudes, the solution is
somewhat dictated by the prior, especially in Northwest corner
of the domain.

In Fig. 9, all simulated measurements are added to the
inversion. When the ground-based GPS satellite observations
are already included, the effect of satellite occultation and
in situ measurements is mostly invisible. In Fig. 10, the recon-
structed electron density is integrated along the altitude similar
to Fig. 5. The relative differences between the vertically
integrated TEC of IRI-2012 and the last reconstruction with
all simulated measurements are shown in Fig. 11.

To demonstrate another aspect of Bayesian approach,
the prior and posterior variances, σ 2

pr = diag("pr) and

Fig. 10. Simulation case: vertically integrated TEC (0–1250 km) from
tomographic reconstruction in Fig. 9.

Fig. 11. Simulation case: relative error in vertically integrated TEC
(0–1250 km) between IRI-2012 model in Fig. 5 and the tomographic recon-
struction in Fig. 9.

σ 2
post = diag("post), respectively, are computed to derive

σ 2
expl = (1 − (σ 2

post)/(σ
2
pr)) × 100% to describe how much

of the prior variance is explained with the measurements. If
σ 2

pr is not affected by the measurements at all, σ 2
expl will be

zero and if the information of the measurements is high, σ 2
expl

will be close to hundred.
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Fig. 12. Explained variance σ 2
expl presents the relative difference of prior and

posterior variances. When σ 2
expl = 0%, the prior assumption is not improved

by the measurements at all. When σ 2
expl = 100%, the prior uncertainty is

explained completely by the measurements. The explained variance depends
only on measurement geometry, error and prior covariance. Here, the planes
are shifted to longitudes intersecting the ionosonde and Swarm overflight
locations.

In Fig. 12, σ 2
expl is given for the case where all measure-

ments are included in the computation of σ 2
post. As σ 2

expl
can be visualized in the original grid for the electron density
parameters, the uncertainty of the solution can be assessed at
different locations. At areas with best measurement coverage,
σ 2

expl is high. The planes in Fig. 12 are moved to intersect
the longitudes of EISCAT Dynasonde and Swarm in situ
measurements to demonstrate the superior accuracy of the
direct measurements. Fig. 12 shows that the satellite in situ
measurements add information to system, but in this case,
the measurements are in such a good agreement that the actual
reconstruction is almost unchanged between Figs. 8 and 9.

B. Real Data

The actual GPS measurements are first presented with a
single-layer model [17] in Fig. 13, where slant TEC mea-
surements are mapped to vertical TEC, projected to location
of 350 km ionospheric pierce points and bilinearly interpo-
lated. The actual pierce points are also shown. Fig. 13 indicates
lower TEC compared to IRI model from the same time
in Fig. 5; hence, a lower scale is selected to the following
visualizations of real data analysis.

In the inversion with real measurements the prior parameter
values are unchanged, except for the mean and variance
parameters that are scaled according to ionosonde. The 3-D
electron density reconstruction is presented in Fig. 14, and
the corresponding vertically integrated TEC in Fig. 15. The
EISCAT UHF radar beam is projected in Fig. 15, and both
ISR profiles are shown in Fig. 16. On top of the measured
ISR electron densities are the corresponding profiles from the
tomographic reconstruction.

VI. DISCUSSION

The EISCAT ISR validation presented in Fig. 16 is some-
what compromised with the proximity of EISCAT Dynasonde

Fig. 13. Real data case: GPS measurements on November 8, 2015 from
10:18:00 UTC to 10:38:00 UTC mapped to vertical TEC with the single-layer
model and bilinear interpolation.

Fig. 14. Real data case: tomographic reconstruction on November 8,
2015 from 10:18:00 UTC to 10:38:00 UTC. Data consist of ground-based
LEO and GPS satellite measurements, ionosonde, satellite in situ, and satellite
occultation measurements. Ionosonde measurements are used in the scaling
of GMRF prior mean and variance mask.

and ISR. Within the model resolution, the VHF radar and
Dynasonde are measuring from the very same location. How-
ever, as can be seen from Fig. 15, with the low-elevation UHF
profile, the location of the measured F-region maximum is
several hundred kilometers Southeast from the EISCAT base.
In comparison of vertical TEC mapped from GPS measure-
ments in Fig. 13 and TEC integrated from reconstruction
in Fig. 15, there is also an agreement between the main
features.
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Fig. 15. Real data case: vertically integrated TEC (0–1250 km) from
tomographic reconstruction in Fig. 14 with projected EISCAT UHF ISR beam
that is used for validation.

Fig. 16. Real data case: comparison between EISCAT ISR profiles and
corresponding profiles from the tomographic reconstruction.

Obviously, for an individual case the parameters could be
tuned endlessly; hence, more precise analysis on these results
would not give a realistic concept on the overall performance
from case to case. In the presented results, the prior parameters
were not tuned between the cases, except for the different
ionosonde profiles and the first trial with a zero prior. This
suggests consistency of the model, but on the other hand,
the robustness with respect to changes in the prior parameters

was not demonstrated. However, based on the development
and work with the model, it can be said that in general, when
a realistic prior is chosen, the changes in different parameters
produce anticipated changes in the results. Some particular
parameters are further discussed in the following.

In comparison of Figs. 13 and 15, the TEC map integrated
from the reconstruction might seem slightly over smoothed.
This is intuitive as the correlation length parameters were
not changed from the simulation case and are relatively long
considering the situation in Fig. 13. With shorter correla-
tion lengths, the prior allows more small scale structures in
the reconstruction, however, the prior mean dominates more
strongly the areas with no measurement, as the effect of the
nearby measurements is decreased.

When only LEO RTEC data are used, the distribution of
the phase constants γ can have a significant effect. If the
phase constant can be approximated beforehand, it improves
the accuracy of the absolute level of the solution. When GNSS
absolute TEC measurements and direct measurements are in
use, the absolute level of LEO TEC can be estimated more
accurately within the tomographic inversion.

The GPS measurements used here were already bias cor-
rected. Therefore, a relatively small prior SD could be given
for the GPS biases. A trial run was carried out also without
the GPS receiver bias correction. The resulting reconstructions
with larger bias SD were practically unchanged and the
solved biases were very close to preprocessed ones. However,
as the model was originally calibrated with bias-corrected data,
the performance might be exaggerated with this respect. Then
again, it is fair to assume that GNSS biases could be solved to
some degree within the inversion, but it would add to general
uncertainty of the solutions.

One of the last additions in the presented model was the
modeling error. The satellite phase measurements are very
accurate and can detect details much finer than a discrete
model of this scale can represent. Also, in the time scale of
tens of minutes, the changes in ionosphere can be significant.
It is then intuitive to relax the model for these factors. In the
presented case, the same model without any added modeling
error will overestimate the electron density parameters to
include unrealistic details.

Here, the nonzero prior mean was extrapolated from the
ionosonde measurements horizontally uniformly for the whole
domain. This is a rather simple approach and more detailed
prior information could also be included. Similar to [14], it is
possible to use other sources as the prior mean, for example,
ionospheric models such as IRI. However, in regional scale,
the models can be significantly off, hence, even a simple
model that is based on direct ionospheric measurements is
often preferable.

In [14], three methods for taking into account the time
propagation were discussed. The presented GMRF prior can
be used directly in the two first, where updates are not used at
all, or only the background, i.e., the previous MAP-estimate is
used without updating the covariance. In addition, instead of
full covariance matrix its diagonal, the posterior variance, can
be solved and used for scaling of the prediction covariance.
Once implemented, the formation of the GMRF precision
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matrix is so fast, that if the parameters of covariance function,
e.g., the covariance lengths, can be estimated meaningfully,
the change of covariance from one time to another does not
increase the computation time in practice. For the general case
of time propagation, the solution of posterior covariance is a
major computational issue. The prediction step is additive for
covariance, and the posterior covariance is needed for each
time step. Even with the GMRFs, the solution for posterior
covariance results a dense matrix and the parametric form is
not known. Hence, in the general case, the GMRF contributes
only to the first time step, and if the full posterior covariance is
required for the subsequent time steps, the sparseness is lost.

VII. CONCLUSION

It is well known that ionospheric tomography is a very
ill-posed problem and the atmospheric electron density cannot
be reconstructed without including additional information into
the system. It is mostly this information that separates the
different tomographic approaches from another. Therefore,
it is important to understand the nature of the constraining
information in use.

In this paper, first the Bayesian statistical approach for
multi-instrument ionospheric tomography is demonstrated.
When Gaussian likelihood and prior distributions are assumed,
the Bayesian method corresponds computationally to the
widely used 3DVAR method. The method provides a clear
physical interpretation for the required prior/background infor-
mation. However, the problem with n unknowns is that it
requires representation and operations of an n × n covari-
ance matrix, and thus becomes computationally complex with
large n.

Here, the approach is expanded with the use of GMRF
priors to make the problem computationally feasible. In the
presented example, a Gaussian prior field with a squared expo-
nential covariance function is approximated with a GMRF. The
resulting GMRF has a sparse prior precision matrix with only
25×n nonzero elements. In comparison to operating with n×n
covariance matrix, this results in a significant decrease in the
computational memory and time consumption. In the presented
numerical example, the sparse matrix approximation for the
309 6482 posterior precision matrix has only 0.034% nonzero
elements, making the computation possible with a modern PC.

It is here shown how the GMRF model is constructed with
physically interpretable covariance structure, parameterized
with correlation lengths and variance mask, without forming
the actual covariance matrix. The performance is validated
with results from simulated and real multi-instrument data with
comparisons to EISCAT ISR and vertical TEC mapped from
original data.

The operative performance depends on how the prior para-
meters can be fixed or selected dynamically to different
ionospheric conditions. Based on the presented results, it is
reasonable to expect that this can be done at the level of
any present ionospheric tomography system. Further validation
of parameter selection requires its own study, which should
be performed for consecutive reconstructions for longer time
intervals.

VIII. FUTURE WORK

The authors are currently working on a 4-D Bayesian fil-
tering for ionospheric tomography, where 3-D reconstructions
are made dynamically to consecutive time instants.
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