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Abstract 

We postulate that the inverted metamorphic sequence in the Lesser Himalayan Sequence 

(LHS) of the Himalayan orogen is a finite product of its deformation and temperature history. 

To explain the formation of this inverted metamorphic sequence across the LHS with a focus 

on the Main Central Thrust (MCT) in eastern Bhutan, we determined the metamorphic peak 

temperatures by Raman spectroscopy of carbonaceous material (RSCM) and established the 

deformation temperatures by Ti-in-quartz thermobarometry and quartz c-axis textures. These 

data were combined with thermochronology, including new and published 40Ar/39Ar ages of 

muscovite and published apatite fission-track and apatite and zircon (U-Th)/He ages. To 

obtain accurate metamorphic, deformation and closure temperatures of thermochronological 

systems, pressures and cooling rates for the period of interest were derived by inverse 

modeling of multiple thermochronological datasets, and temperatures were determined by 

iterative calculations. 

The RSCM results indicate two temperature sequences separated by a thrust. In the 

external sequence, peak temperatures are constant across the structural strike, consistent with 

the observed hinterland-dipping duplex system. In the internal temperature sequence 

associated with the MCT shear zone, each geothermometer yields an apparent inverted 

temperature gradient although with different temperature ranges, and all temperatures appear 

to be retrograde. These observations are consistent with the quartz microfabrics. Further, all 

thermochronometers indicate upward younging across the MCT. 

We interpret our data as a composite peak and deformation temperature sequence that 

formed successively and reflects the broadening and narrowing of the MCT shear zone in 

which the ductile deformation lasted until ~11 Ma. 
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1 Introduction 

Along its entire length, the Himalayan orogen exhibits an inverted metamorphic 

sequence up to several tens of kilometers wide in map view. The apparent peak metamorphic 

temperatures range across the strike of the Himalaya and structurally upward from lower 

greenschist-facies conditions with temperatures of ~350 °C to upper amphibolite facies at 

~750 °C and local granulite-facies conditions (Beyssac et al., 2004; Caddick et al., 2007; 

Gaidies et al., 2015; Goscombe et al., 2018; Groppo et al., 2009; Kohn, 2014; Kohn et al., 

2001; Mottram et al., 2014; Vannay et al., 1999; Warren et al., 2011; Waters, 2019; 

Yakymchuk & Godin, 2012). The steepest peak-temperature gradient is observed in the field 

and predicted in geodynamic models across the Main Central Thrust (MCT; Jamieson et al., 

2004). The MCT is a crustal-scale, south-vergent, thrust sense, ductile shear zone 

characterized by a mylonite belt up to several kilometers wide (Searle et al., 2008, Starnes et 

al., 2020), which was active for ~10 million years. Geodynamic and thermokinematic models 

demonstrate that parallel to the displacement direction and perpendicular to the crustal-scale 

thrust, the strain and temperature are implicitly heterogeneous and that strain rates and 

temperature gradients are non-steady (e.g., Beaumont et al., 2004; Bollinger et al., 2004; 

Coutand et al., 2014; Jaquet and Schmalholz, 2018; this work). Flow stress estimates from 

natural mylonites based on various piezometric methods (e.g., Behr and Platt, 2014) indicate 

that the ductile middle crust below the brittle-ductile transition is the load-bearing element of 

the crust. Such studies, however, do not consider spatiotemporal changes in stresses or the 

effect of an inverted temperature gradient in a convergent setting in particular. 

Our understanding of the tectonic evolution of the Himalaya has been dominated by 

studies of high-grade metamorphic rocks from the Greater Himalayan Sequence (GHS, also 

called the Higher Himalayan Crystalline) because rocks suitable for studies of pressure-

temperature-time-deformation histories are present (Goscombe et al., 2018; Martin 2017; 
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Waters 2019). Given the inverted metamorphic sequence, this approach neglects critical 

information, as the majority of the inverted metamorphic field lies structurally beneath the 

GHS within the lower-grade Lesser Himalayan Sequence (LHS).  

Considering that the LHS consists of a frontal duplex and the MCT zone separated by a 

thrust, the question arises of whether the entire LHS represents one continuous metamorphic 

sequence or rather several imbricated metamorphic domains. The relative contributions of 

basal accretion, post-metamorphic shearing of isotherms and synkinematic inversion of 

isotherms also remain principal questions related to the general formation of the inverted 

metamorphic field gradient. To address these questions and to quantify the peak-temperature 

gradient, we applied three geothermometric methods on a suite of samples located between 

the Main Boundary Thrust (MBT) and the Main Central Thrust (MCT) along a transect in 

eastern Bhutan. This is the best-exposed and best-studied segment of the LHS in Bhutan 

(Grujic et al., 1996, Daniel et. al., 2003; Chambers et al., 2011, Coutand et al., 2014, 

Hirschmiller et al., 2014; Gilmore et al., 2018; Long et al., 2011 a, d; 2012; McQuarrie et al., 

2008, 2019, Singer et al., 2017), possibly in the Himalaya, and therefore provides the 

necessary foundation for this type of study. In this work, we focus on investigating the 

temperature history of LHS rocks affected by shearing along the MCT. However, we place 

our observations in the context of the complete section of the Himalayan orogen. 

The Raman spectroscopy on carbonaceous material (RSCM) geothermometer, which 

does not depend on metamorphic index minerals (garnet, biotite, or chlorite) conspicuously 

lacking in most of the LHS, has been used to extract geothermometric data from the LHS 

(e.g., Beyssac et al., 2004; Célérier et al., 2009, Long et al., 2016). In this paper, we present 

RSCM metamorphic and quartz deformation temperature data (Ti-in-quartz and opening 

angles of quartz c-axis texture). To ascertain the ages of these temperatures, we used 

muscovite 40Ar/39Ar thermochronology. However, we did not measure the absolute age at 
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which measured temperatures were attained but set measured temperature data in relation to 

the 40Ar/39Ar ages and their individual closure temperatures. The closure temperature of the 

muscovite 40Ar/39Ar system depends on the cooling rate, which is traditionally simply 

assumed. Furthermore, the Ti concentration in quartz and diffusion of 40Ar in muscovite are 

moderately pressure dependent. In shear zones with downdip displacement, the cooling rate is 

non-steady, and both the cooling rate and pressure at a specified temperature or time are 

difficult to constrain accurately because the strongly deformed temperature field and 

displacement along a ramp-flat surface decouple the exhumation and cooling. Combining 

new and published thermochronological results, we calculated for each sample the pressure 

and cooling rate at the period of interest by three-dimensional thermal-kinematic modeling 

and determined the deformation and closure temperatures by iterative calculations. Thus, the 

obtained time-temperature paths lead us to propose a qualitative model for the evolution of 

the deformation temperature field within the MCT zone. 

 

2 Geological setting 

2.1 Lithotectonic units 

The structure investigated in this study, the MCT (Martin, 2017, Searle et al., 2008; 

Starnes et al., 2020), separates two principal Himalayan lithotectonic units: the overlying 

GHS and the underlying LHS (Figure 1). The GHS consists of amphibolite- to granulite-

facies para- and orthogneisses and Miocene migmatites and leucogranites (Corrie et al., 2012; 

Daniel et al., 2003; Davidson et al., 1997; Gansser, 1983; Regis et al., 2014; Swapp & 

Hollister, 1991; Warren et al., 2011). Between the GHS and the LHS, exposed along the 

entire Bhutan Himalaya, lies a thin lithotectonic unit called the Jaishidanda Formation 

(Dasgupta, 1995; Long et al., 2011d), which consists of biotite-muscovite- and locally garnet-

bearing schist interbedded with biotite-rich quartzite and orthogneiss. This formation has 
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been interpreted as part of the underlying Daling-Shumar Group (Daniel et al., 2003), as a 

lithological unit in stratigraphic contact with the underlying Daling-Shumar Group (Long et 

al., 2011d, and references therein), or as a thin thrust sheet beneath the MCT in thrust contact 

over the Daling-Shumar Group (Bhargava, 1995). Because of the significant differences in 

metamorphic grade and inferred metamorphic path with respect to both underlying and 

overlying rocks (Chakungal, 2006), the Jaishidanda Formation is here considered a separate 

lithotectonic unit beneath the GHS but within the MCT shear zone (section 2.2).  

In eastern Bhutan, the LHS is deformed into a southward-younging series of 

dominantly clastic marine and continental sediments of middle to late Paleozoic age (Long et 

al., 2011d; McQuarrie et al., 2008, and references therein) divided into four lithostratigraphic 

units (Figure 1). From north to south and structurally highest to lowest, these units are the 

Daling-Shumar Group, Baxa Group, Diuri Formation and Gondwana sequence (Bhargava, 

1995; Gansser, 1983; Long et al., 2011d; McQuarrie et al., 2008). Although the highest 

structural units are stratigraphically the oldest and define an apparently inverted stratigraphic 

sequence, based on sedimentary structures, the individual lithostratigraphic units and beds are 

right side up, occasionally with preserved stratigraphic contacts (Long et al., 2011d; 

McQuarrie et al., 2008). 

The sub-Himalaya in Bhutan are represented by the Siwalik Group, which comprises 

Miocene to Pliocene foreland sediments shed off the Himalaya (Bhargava, 1995; Coutand et 

al., 2016; Gansser, 1983). Siwalik sediments are bounded above by the MBT and below by 

the Main Frontal Thrust (MFT) (Figures 1 and 2). 

2.2 Structures 

The MCT is a continental-scale ductile shear zone with a top-to-the-south shear sense 

that was active during the Miocene, from ~24 to ~13 Ma (Chambers et al., 2011; Daniel et 

al., 2003; Godin et al., 2008, Martin, 2017; Tobgay et al., 2012). At the base of the GHS, 
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south-vergent shear bands filled with leucosomes yield monazite and xenotime U-Pb 

crystallization ages of 14–15 Ma, and a 1–2 km thick leucogranite sill is dated at 13.4 ± 0.2 

Ma indicating that deformation within the GHS and along the MCT continued until at least 

13 Ma (Daniel et al., 2003). The shear zone is several kilometers thick with diffuse 

boundaries, heterogeneous strain and variable degrees of mylonitization. We contend that the 

mapped MCT is a protolith boundary (sec. Schmid et al., 1987), although several protolith 

boundaries may exist within a crustal-scale shear zone (Schmid et al., 1987). For this reason, 

the nature of the MCT changes along the strike; the relatively sharp structural boundary in 

Bhutan is quite different from the km-wide ductile shear zone in Sikkim (Mottram et al., 

2014a) or the relatively narrow zone of deformation in the Annapurna Himalaya (Parsons et 

al., 2016). We regard the pervasively sheared Jaishidanda Formation as a lithotectonic unit 

within the MCT mylonitic belt; its upper protolith boundary is the mapped MCT. Mylonitized 

Cambro-Ordovician granitoids of the GHS overlie the Jaishidanda Formation. Defining the 

upper boundary of the mylonitic belt is not possible because the entire GHS is sheared, and 

the gneisses are replaced by migmatites over a short structural distance (Daniel et al., 2003). 

The lower protolith boundary of the Jaishidanda Formation with the Shumar quartzites is 

either a stratigraphic discordance (Long et al., 2011c), a structural discordance caused by 

shearing within the MCT shear zone or a combination of both. According to the provenance 

criteria (Chakungal, 2006, Long et al., 2011c), we consider that the Jaishidanda Formation 

belongs stratigraphically to the GHS. The MCT mylonitic belt extends structurally downward 

for at least three kilometers, as documented by pervasive ductile deformation of quartzites 

with progressive changes in dynamic recrystallization mechanisms (Grujic et al., 1996; Long 

et al. 11c; Long et al. 2016; Starnes et al., 2020; this work). In addition, several bodies of 

mid-Proterozoic orthogneiss have been mapped within the Daling-Shumar Group (Gansser, 

1983; Daniel et al., 2003, McQuarrie et al., 2019). Their contacts with metasedimentary rocks 
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are highly strained, characterized by mylonites and ultramylonites (McQuarrie et al., 2008; 

our field observations). 

The GHS and Jaishidanda Formation are characterized by greenschist- to amphibolite-

facies metamorphism, general strain ductile shearing, strong planar transposition and 

dominant subhorizontal lengthening and subvertical shortening (Long et al., 2016; our 

observations). The dominant planar fabric, subparallel to the MCT, is schistosity to 

gneissosity formed under peak metamorphic conditions (Agustsson et al., 2016; Chakungal, 

2006; Daniel et al., 2003; Grujic et al., 1996; Warren et al., 2011). The deformation is 

pervasive, although heterogeneous, with the highest strain along the Jaishidanda–GHS 

protolith boundary (Daniel et al., 2003; Grujic et al., 1996, Long et al., 2016). The stretching 

lineation, mineral lineation and hinges of recumbent, tight to isoclinal folds, with the 

dominant foliation as axial planar foliation, all generally trend north-south (our observations). 

The shear sense is dominantly top-to-the-south, although at its top, the GHS is variably 

affected by a younger top-to-the-north shear fabric of normal-fault geometry within the South 

Tibetan Detachment system (Chambers et al., 2011; Kellett & Grujic, 2012; Kellett et al., 

2013; Kellett et al., 2009; Kellett et al., 2010). The pure shear component with dominant 

vertical shortening is significant and variable (Corrie et al., 2012; Grujic et al., 1996; Grujic 

et al., 2002; Long, et al., 2011b; Long et al., 2011c; Long et al., 2016) and has been 

recognized elsewhere in the Himalaya (e.g., Grasemann et al., 1999; Larson & Godin, 2009; 

Law et al., 2004; Law et al., 2011). 

In the Baxa Group, Diuri Formation and Gondwana sequence rocks, phyllitic cleavage, 

slaty cleavage (spaced smooth disjunctive to fine continuous) and axial planar, spaced 

cleavage to crenulation cleavage are found in fold hinges. In the Daling-Shumar Group, 

schist and phyllite dominate in the Daling Formation, and quartzite dominates in the Shumar 

Formation. The dominant planar fabric in the Daling Formation ranges from phyllitic 
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cleavage in the south to schistosity in the north, at a small angle to the lithological contact 

with quartzite. Bedding and compositional lamination are, however, preserved in quartzite, 

along with local tabular cross-bedding. Various kinematic indicators consistently show a top-

to-the-south sense of shear (Grujic et al., 1996; Long et al., 2011c). Folds are inclined, open 

to isoclinal, with south vergence, and the kinematic criteria indicate top-to-the-south 

thrusting.  

Few thrusts within the LHS are mappable, although several more are inferred in 

balanced cross sections (Long, et al., 2011a). The lower contact of the Daling-Shumar Group 

with the Baxa Group is always the Shumar thrust (Long et al., 2011d; McQuarrie et al., 2008; 

Ray et al., 1989), which is structurally similar to the Ramgarh thrust described farther west in 

Sikkim and Nepal (Bhattacharyya & Mitra, 2009; Shrestha et al., 1987a, 1987b; Srivastava & 

Mitra, 1994). For consistency with the related literature in Bhutan, however, we use the term 

Shumar thrust. The Diuri Formation is in stratigraphic contact above the Baxa Group in two 

localities, but all other contacts have been interpreted as tectonic (Long et al., 2011d). The 

upper contact of Gondwana sediments is a thrust with the Diuri Formation in its hanging 

wall, and the lower contact is the MBT (Figure 1). 

Structural mapping and construction of detailed retro-deformable cross sections (Parui 

& Bhattacharyya, 2018; McQuarrie et al., 2008; Long et al., 2011a) indicate two lithotectonic 

units with different deformation styles within the LHS. The hanging wall of the Shumar 

thrust—the internal duplex—is characterized by a few horses forming a hinterland-dipping 

duplex arrangement in a brittle-ductile orogenic wedge (Figure 2). The top of this 

lithotectonic unit is the MCT (the LHS/GHS protolith boundary), but, as defined here, the 

MCT shear zone likely did not act as a “roof thrust”, as in a critical Coulomb wedge. In 

addition, all the Daling-Shumar Group and Jaishidanda Formation rocks show pervasive 

ductile deformation, as evidenced by the presence of crystallographic preferred orientation 
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(CPO) in quartz and calcite mylonites and by dynamic recrystallization. The MCT ductile 

shear zone is the best explained by channel flow tectonics (Beaumont et al., 2006), according 

to which the MCT shear zone was the base of a Miocene south-flowing mid-crustal channel 

(Grujic 1996). The relation of this channel and the coeval upper crustal deformation or the 

role of the MCT in the extrusion and exhumation of this channel in the upper crust are 

outside the scope of this paper. The footwall of the Shumar thrust—the external duplex—is 

characterized by more but smaller horses in a hinterland-dipping duplex arrangement (Figure 

2) with the MBT as the floor thrust and the Shumar thrust as the roof thrust. Klippen of 

Daling-Shumar rocks in eastern Bhutan (Figure 1, Long, et al., 2011a), the map relationships 

in the Sikkim-Darjeeling Himalaya (Bhattacharyya & Mitra, 2009; Parui & Bhattacharyya, 

2018) and the burial temperatures presented here suggest that the Shumar thrust (or Ramgarh 

thrust in Sikkim) extended farther south. Along the strike of the eastern Himalaya, the 

geometry of this duplex varies greatly over distances of tens of kilometers (Long, et al., 

2011a); locally, the horses are arranged into a hinterland-dipping duplex (as along our 

section), an antiformal stack to a foreland-dipping duplex (Bhattacharyya & Mitra, 2009; 

Parui & Bhattacharyya, 2018) or a combination (Long, et al., 2011a). Localized basal 

accretion in the external duplex led to significant local rock uplift, which in conjunction with 

focused surface erosion, formed tectonic windows, e.g., the Paro window in western Bhutan 

(Tobgay et al., 2012) and the Tista and Rangit windows in the Sikkim-Darjeeling Himalaya 

(Bhattacharyya & Mitra, 2009; Landry et al., 2016). 

Farther south, the sub-Himalaya are deformed in the style of a foreland fold-and-thrust 

belt (i.e., critical Coulomb wedge) with thrusts and folds formed in a purely frict ional setting. 

The floor thrust is the MFT, and the roof thrust, which behaves as a backstop, is the MBT 

(Hirschmiller et al., 2014). 



 
©2020 American Geophysical Union. All rights reserved. 

The three main structures—MCT, MBT and MFT—merge at depth into the Main 

Himalayan Thrust (MHT) (Figure 2; Nelson et al., 1996), which is the basal detachment of 

the Himalaya. 

 

2.2. Metamorphism 

Thermobarometric data for the LHS are available only for the Jaishidanda Formation 

rocks because of the absence of suitable mineral assemblages (e.g., garnet, biotite, 

plagioclase, or chlorite) in other LHS rocks. Metamorphic index mineral isograds, however, 

have been mapped (Gansser, 1983); these isograds indicate a northward increase in 

metamorphic grade and, together with the northward dip of the foliation, principal shear 

zones and tectonic boundaries, define an inverted metamorphic field gradient (Le Fort, 1975). 

In the LHS of eastern Bhutan, three metamorphic isograds were mapped by Gansser (1983): 

the “lower greenschist-facies” isograd stretching along the MBT, the “higher greenschist-

facies” isograd in the upper Baxa Group, and the “biotite porphyroblast facies” isograd, 

which closely follows the trace of the MCT (Figure 1). At the structural level of the last 

isograd, within the Jaishidanda Formation, peak metamorphic mineral assemblages are 

interpreted to be garnet + biotite + muscovite + plagioclase + quartz, with peak metamorphic 

P-T conditions estimated in eastern Bhutan at ~650 ± 25 °C and 11-12 kbar (Daniel et al., 

2003) and in central Bhutan at ~620 ± 25 °C (Long et al., 2016). 

 

3 Geothermometry 

3.1 Raman spectroscopy of carbonaceous material (RSCM) 

We apply two calibrations of the RSCM thermometer: (a) the one developed by 

Beyssac et al. (2002) for the temperature range from 330 °C to 650 °C because all the 

equivalent studies elsewhere in the LHS have used the same calibration and (b) the 
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calibration by Lahfid et al. (2010) and Rahl et al. (2005) for the temperature range from ~100 

°C to 650 °C because many of our estimated temperatures are at the bottom range of the first 

calibration. Both RSCM thermometers use the same experimental setup and measured 

parameters (see Supporting Information Text S1 for details). 

 

3.1.1 Sample description and preparation 

Oriented carbonaceous material-bearing samples were collected from all lithological 

and tectonic units between the MCT and MBT (Figures 1 and 2; Table 1). The 19 samples are 

slates that contain disseminated fine-grained carbonaceous material. 

All samples were cut perpendicular to foliation and perpendicular to the intersection 

and crenulation lineation to account for structural heterogeneities (Beyssac et al., 2002). 

Highly polished thick (30-100 m) sections were prepared from these cuts. For samples with 

discrete graphite, the crystals were photographed using a reflected light microscope with a 

50X objective, and the resulting photomicrographs were used to guide RSCM analyses (see 

Supporting Information Text S1 for details). When possible, at least 25 spots were measured 

in a sample to assure representative values (Aoya et al., 2010). In addition, we performed 

average Tukey’s Biweight analysis (Press et al., 1992), in which the outlier values were 

ignored, and the reported temperatures were the mean values for coherent data. Temperature 

is reported with 2 standard errors of the mean (2 SEM), calculated as the quadratic addition 

of the 1σ internal error and external error of ± 50 °C from the calibration by Beyssac et al. 

(2002), divided by the square root of the number of analyses (n).  

 

3.1.2 Results 

The samples yield a set of Raman spectra for which the calculated mean temperatures 

range from ~340 to ~530 °C (Table 1, Figure 3). Since all the calculated temperatures are 
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>330 °C, the temperatures reported in the text and diagrams are calculated using the 

calibration by Beyssac et al. (2002); for discussion, see Lahfid et al. (2010). The LHS rocks 

in the footwall of the Shumar thrust exhibit uniformly low temperatures ranging from 337.0 ± 

30.4 to 358.7 ± 31.7 °C, with a mean of 349.5 ± 8.1 °C (Figure 3a). Within the hanging wall 

of the Shumar thrust, LHS rocks yield a range of temperatures from bottom to top of the 

section from 438.1 ± 21.0 to 528.1 ± 22.5 °C (Figure 3b). 

 

3.2 Ti-in-quartz geothermobarometry 

Ti-in-quartz thermobarometry (TitaniQ) is based on the pressure and temperature (P-T) 

dependence of the solubility of titanium in quartz (Huang & Audetat, 2012; Kawasaki & 

Osanai, 2008; Ostapenko et al., 1987; Ostapenko et al., 2007; Thomas et al., 2010; Wark & 

Watson, 2006). The experiments by Thomas et al. (2015) confirm the calibration by Thomas 

et al. (2010), which is thus adopted for all temperature calculations in this paper. 

To determine accurate temperatures, precise trace element measurements are coupled 

with microstructural observations, but two additional analyses should be applied: 

(a) Determination of the pressure at which the temperature was acquired; 

(b) Calculation of dynamic titania activity based on bulk rock chemistry. 

However, the entire process must be iterative. In each analysis, the temperature is both 

the unknown and a required calculation parameter. To solve (a), thermokinematic modeling 

of multiple thermochronometric datasets may provide the most accurate pressure-temperature 

paths. To implement (b), the estimated temperature and pressure are input parameters to 

calculate the activity that returns a corrected temperature, which in turn is compared to the 

calculated P-T path to obtain a more accurate pressure. 
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3.2.1 Sample description 

Over a structural distance of ~3000 m starting from the top at the Jaishidanda–GHS 

boundary (Figure 1), 11 samples of quartz tectonites were collected from the Jaishidanda and 

Shumar formations along a continuous roadside outcrop. All the samples display a mylonitic 

foliation and stretching lineation parallel to those of the MCT. Detailed studies of quartz 

microstructure were performed by (Grujic et al., 1996; Long et al., 2011c) and are not 

repeated here. The Jaishidanda and Shumar-Daling quartzites are characterized by grain 

boundary migration (GBM) recrystallization, which operates at temperatures between 500 

and 700 °C (Stipp et al., 2002) or ~550-650 °C (Law, 2014). The quartz microstructure, 

however, exhibits 120° triple junctions and straight or gently curved grain boundaries 

characteristic of foam (Schmid, 1994) or partial-foam microstructure (Figure 4) associated 

with the switch to lower stress deformation (Kidder et al. 2016, and references therein). This 

microstructure is overprinted by progressive subgrain rotation (SGR) at deformation 

temperatures between 400 and 500 °C (Stipp et al., 2002) and ~450-550 °C (Law, 2014). 

Farther south, structurally down, Baxa Group quartzite often contains evidence for bulging 

recrystallization (Long et al., 2011c, Long et al., 2016) that corresponds to deformation 

temperatures between ~280 and 400 °C (Stipp et al., 2002) and 350-450 °C (Law, 2014). 

Active quartz slip systems determined from a- and c-axis distributions (Grujic et al., 1996) 

indicate both crossed girdle and single girdle fabrics and display the greatest concentrations 

of c-axis orientations at the division points of the c-axis cross girdles and lesser numbers at 

the center of the c-axis stereogram. Such topology indicates dominantly [r/z]<a> with minor 

contributions [m]<a> slip. This combined slip system coincides with SGR recrystallization, 

from ~400 to ~500 °C (Stipp et al., 2002). No brittle microstructure is observed; therefore, we 

infer that the shear along the MCT zone stopped before the deformation conditions reached 

the brittle-ductile transition. 
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Cathodoluminescence (CL) images of quartz provide qualitative information about 

growth and/or recrystallization histories (Bestmann & Pennacchioni, 2015; Morgan et al., 

2014; Nachlas et al., 2014; Negrini et al., 2014). CL due to Ti is known to occupy the blue 

part of the spectrum in the region of 415 nm wavelength (Spear & Wark, 2009); however, 

comparisons between CL grayscale contrast and Ti concentration (Bestmann & 

Pennacchioni, 2015; Morgan et al., 2014) have shown that while in some cases Ti may be the 

main potential activator of the CL signal, in other cases, Ti is not the cause. Brightness 

contrasts in quartz CL textures (Figure 5) are sensitive to crystal lattice defects from 

recrystallization, and variations in trace element concentrations are secondary (e.g., Götze et 

al., 2004; Ramseyer et al., 1988). Therefore, in low-temperature quartz (i.e., low 

concentrations of Ti and other trace elements), CL zoning is dominated by lattice defects due 

to recrystallization (Watt et al., 1997). In the studied samples, the grain rims contain higher 

densities of subgrains and bulges. 

 

3.2.2 Analytical procedure 

All trace element measurements were performed on the sensitive high-resolution ion 

microprobe reverse-geometry (SHRIMP-RG) at Stanford University during four analytical 

sessions in 2010, 2012, 2013, and 2014 (see Supporting Information Text S2 for details). 

The estimated 2 uncertainty of the TitaniQ thermometer for the temperature range 

between 500 and 400 °C is ± 4–5 °C (Wark & Watson, 2006), while the analytical 

uncertainty for Ti measurements by SHRIMP-RG propagated into the geothermometer 

calibration is estimated to be ± 1–3 °C for the same temperature range (Grujic et al., 2011). 

Therefore, within-sample variations larger than ~10 °C are interpreted to reflect true 

temperature variations within the sample based on the standard deviation of replicate spot 
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analyses of the standard. The pressure of Ti-in-quartz equilibration and the effective aTiO2 are 

defined in section 6.2. 

 

3.2.3 Bimodal Ti-in-quartz concentration 

Quartz rims have lower Ti concentrations, confirming that the Ti content correlates 

with the CL intensity (see section 3.2.1). Statistical analyses of all measurements also 

indicate a bimodal distribution of Ti concentrations in each sample (Table 2). For further 

discussion, we use the Ti concentrations of two peaks determined by kernel density 

estimation (Vermeesch, 2012). However, we must first determine the likely pressures at 

which the Ti concentrations were attained in the quartz grain core and rim and determine 

their respective aTiO2 values (which also depend on pressure). 

 

3.2.4 Results 

Titania activities (Figure 6) were calculated following the modeling approach of Ashley 

and Law (2015) (see Supporting Information Text S2 and Tables S3 and S4 for details). For 

the initial presentation of the TitaniQ temperatures, we chose aTiO2 = 1 and the lowest 

pressure of 9 kbar (Table 2) determined for the metapelitic samples at the top of the transect 

(Daniel et al., 2003). The apparent temperature difference between the two data distribution 

peaks, corresponding to the CL bright cores and darker rims, is on the order of 10 °C (Table 

2). The quartz grain cores yield ~50 °C lower temperatures than those obtained by the RSCM 

method at the same location. These are, however, not the final temperatures adopted in this 

paper, which are discussed after the pressure of Ti-in-quartz equilibration and the effective 

aTiO2 are defined (section 6.2). 
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3.3 Quartz c-axis fabric opening-angle thermometry 

Thin sections of 16 quartz-dominated samples (11 new samples and 5 samples reported 

in Grujic et al., 1996) were examined using a Russell-Head Instruments G60+ automated 

fabric analyzer at the University of British Columbia, Okanagan, to determine quartz c-axis 

orientations following the procedure described in (Larson, 2018), wherein one c-axis 

orientation was measured per quartz grain until a fabric of ~1000 individual measurements 

was generated. One exception to this methodology was sample BH 808, for which a grid of 

~4000 points was used to determine the c-axis fabric. Previous studies using variations of this 

instrument design but employing the same principles yielded results indistinguishable from 

those generated using electron backscatter diffraction and X-ray texture goniometry 

(Peternell et al., 2010; Wilson et al., 2007). 

Deformation temperatures were estimated from the opening angle of quartz c-axis 

fabrics (Figure 4) as measured based on contour diagrams produced using the program Orient 

(Vollmer, 2015). The use of this empirically derived thermometer assumed a lack of 

hydrolytic weakening and an invariant critically resolved shear stress (Kruhl, 1998; Morgan 

& Law, 2004). Fabric opening angles were converted to temperature using the pressure-

independent calibration of Faleiros et al. (2016). Temperatures are reported with errors of ± 

50 °C, which is intended to capture uncertainty in the determination of the opening angle and 

natural variation related to the previous assumptions (Faleiros et al., 2016; Kruhl, 1998; Law 

et al., 2004). 

The obtained temperatures range from 390 to 600 °C (Table 3). These qualitative 

deformation temperature estimates are consistent with the corresponding RSCM temperatures 

but only marginally with the Ti-in-quartz temperatures. The final temperatures adopted in this 

paper are discussed after we define the pressure at which these temperatures were attained 

(section 6.2). 
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4 Muscovite 40Ar/39Ar Thermochronology  

The dating of deformation or thermochronology in shear zones is an iterative process. 

Because the geothermal gradients and cooling and decompression rates are transient in time 

and diachronous in space (e.g., Coutand et al., 2014), the effective closure temperature and 

closure pressure (e.g., Liang, 2017) must be calculated for each point along a structural 

profile based on independent estimates of P-T conditions and cooling rates. 

Muscovite was separated from five schist and gneiss samples adjacent to quartzite 

samples BH 133 and BH 804 for 40Ar/39Ar thermochronology (Figure 7). To obtain an 

internally consistent dataset, we also reanalyzed the data for four nearby samples originally 

reported by Long et al. (2012) and Stüwe & Foster (2001). No other samples could be 

analyzed because the Daling-Shumar rocks contain very fine-grained muscovite/illite, which 

could not be effectively separated from quartz. Muscovite defines the foliation in all samples 

and is interpreted as metamorphic. Muscovite grains are anhedral, and grain sizes range from 

~0.5 mm to 3–5 mm. 40Ar/39Ar step heat thermochronology of muscovite separates was 

conducted at Dalhousie University (Halifax, Canada) using a Heine-based Ta double-vacuum 

furnace (see Supporting Information S1 for details). The data and plots are reported in Table 

4 and Table S5 and Figure S1 in the supporting information. All ages are reported at the 2σ 

confidence level. 

The structurally highest sample 11 from Stüwe & Foster (2001) is an orthogneiss 

(muscovite + biotite + quartz + plagioclase + K-feldspar) located approximately two 

kilometers above the MCT. Muscovite yielded a heterogeneous 40Ar/39Ar age spectrum. The 

inverse isochron plot shows a poorly-defined mixing line between atmospheric and 

radiogenic Ar. Excluding the final step (which plots off the array), the sample yields an 

inverse isochron age of 14.04 ± 0.4 Ma (MSWD = 6.2). 
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Two samples of the GHS orthogneiss in the immediate hanging wall of the MCT were 

collected one meter from the contact with the underlying Jaishidanda schists. Muscovite from 

BH 801 produced a saddle-shaped spectrum. Initial old steps are characteristic of excess Ar, 

final old steps may reflect excess or inherited Ar, and central steps define a plateau age of 

11.76 ± 0.17 Ma. The inverse isochron plot shows a poorly-defined simple mixing line 

between atmospheric and radiogenic Ar with an age of 11.46 ± 0.45 Ma (MSWD = 8.2). The 

inverse isochron plot for equivalent sample 9 from Stüwe & Foster (2001) shows a poorly-

defined mixing line between atmospheric and radiogenic Ar. Excluding the final step (which 

plots off the array) yields an isochron age of 11.70 ± 1.0 Ma (MSWD = 7.4). 

Three samples from the Jaishidanda Formation were analyzed. Muscovite from sample 

BH 54 (garnet biotite muscovite schist) provided a saddle-shaped spectrum. The final old 

steps can arguably represent excess rather than inherited Ar, and steps 1100 °C and 1200 °C 

form an array toward highly radiogenic 40Ar/39Ar. Excluding the steps with extraneous Ar (1, 

2, 12-14), the remaining nine steps form a mixing line between atmospheric and radiogenic 

Ar with an age of 15.56 ± 0.60 Ma (MSWD = 4.1). Sample 8 from Stüwe & Foster (2001) is 

also a garnet two-mica schist, very likely from the same outcrop. The inverse isochron plot 

shows a mixing line between atmospheric and radiogenic Ar. Excluding the final step (which 

plots off the array) yields a well-defined inverse isochron age of 14.37 ± 0.48 Ma (MSWD = 

0.57).  

Muscovite from samples BH 802M (mica schist) and BH 802G (garnet schist), 

collected ~2 meters beneath sample BH 801, did not yield statistically significant plateaus. 

The inverse isochron plot for BH 802M shows a poorly-defined simple mixing line between 

atmospheric and radiogenic Ar with an age of 11.10 ± 0.87 Ma (MSWD = 6.0). In sample BH 

802G, the initial old steps and downstepping staircase pattern may reflect excess Ar that 

diffused from the grain edge. The final old steps may reflect excess or inheritance. The 
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inverse isochron plot shows a poorly-defined simple mixing line between atmospheric and 

radiogenic Ar with an age of 11.70 ± 1.0 Ma (MSWD = 20.0). 

Muscovite from BH 805, a sliver of mylonitic granitic gneiss within the Shumar 

quartzite ~600 m beneath the MCT, yields a well-defined plateau age of 12.18 ± 0.17 Ma. 

Including only the data that form an array between atmospheric and radiogenic Ar yields an 

inverse isochron age of 12.23 ± 0.39 Ma (MSWD = 4.7). 

The lowest available sample, BU07-22 from Long et al. (2012), is a metasandstone 

from the Baxa Group in the footwall of the Shumar thrust. The inverse isochron plot is not 

particularly useful for this sample because it is highly radiogenic and there is no tie line near 

atmospheric 40Ar/39Ar to anchor the slope. Anchoring the first seven steps to 40Ar/39Ar = 298 

yields an inverse isochron age of ca. 15 Ma. 

All the samples analyzed or reanalyzed in this study yield saddle-shaped spectra. The 

older steps indicate extraneous Ar that may be of excess (i.e., transported to the grain) or 

inherited (i.e., produced in situ) origin. The origins of the extraneous 40Ar component are not 

resolvable using the inverse isochron plots because atmospheric 40Ar accounts for such a 

large component of 40Ar measured. We interpret the ages reported for the above samples as 

maximum reset or cooling ages affected by extraneous Ar. 

The spectrum of sample BU07-22 is not saddle-shaped; the young initial steps and 

plateau followed by much older final steps indicate either partial inheritance of radiogenic Ar 

or a mixture of neocrystallized and incompletely reset detrital muscovite. The sample 

experienced the lowest metamorphic temperatures by far. The old ages, if due to inherited 

40Ar, require that the muscovite be detrital, not metamorphic (Grujic et al., 2017). Thus, we 

would interpret these data to represent mixtures of detrital muscovite and neocrystallized 

metamorphic muscovite that grew below the closure T of muscovite for these conditions. 
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Muscovite Ar compositions and systematics in metamorphosed and deformed rocks can 

be challenging to deconvolve. There is potential for 40Ar inheritance from incompletely 

degassed detrital or prograde metamorphic muscovite (non-open system behavior) (Mottram 

et al, 2015), uptake of excess 40Ar (which should be abundant during metamorphism of old 

K-rich rocks such as the LHS and GHS) during cooling, changes to the diffusion domain size 

due to deformation (e.g., Cosca et al., 2011), and deformation-induced recrystallization 

during cooling (e.g., Mulch et al., 2005). In the case of this study, samples selected for 

40Ar/39Ar analysis contain texturally metamorphic muscovite. The metamorphic temperatures 

of the dated samples are generally in the range of 425-550 °C (above the Shumar thrust), in 

which case the systems should have behaved as at least partly open if not fully open at the 

pressures estimated in this study (3-3.5 kbar), with respect to Ar (Warren et al., 2011). 

Sample BH 54 is the structurally lowest sample within the MCT shear zone and the sample 

most likely to have retained some inherited Ar and is therefore interpreted to reflect partial 

resetting of magmatic muscovite. Most of the dated samples show evidence of extraneous 

40Ar, with much older initial and/or final age steps. We interpret this result to reflect the 

uptake of excess Ar during cooling (Kelley, 2002), and we argue that inheritance is unlikely, 

although we cannot rule it out entirely. The resulting interpreted ages are broadly consistent 

among the samples according to structural location and are consistent with both higher and 

lower temperature chronometers (monazite U-Pb and zircon U-Th/He); thus, we argue that 

the 40Ar/39Ar ages are representative of the cooling of these samples through the modeled 

closure temperature window of ~484 ± 25 °C. However, we do acknowledge that the lack of 

flat age spectra introduces uncertainty, which is why we report the ages as maximum reset or 

cooling ages. 

To interpret the muscovite 40Ar/39Ar dates, we needed to independently determine the 

cooling rates and the pressures at which the local closure temperatures were attained. The 
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effective closure temperature for each sample was determined by iterative calculation using 

the pressure and the instantaneous cooling rate as predicted by thermokinematic modeling for 

each model “particle” at the corresponding location in the target temperature range. 

 

5 Thermokinematic modeling 

The 16 new and published muscovite 40Ar/39Ar thermochronometer ages are combined 

with four published apatite and 11 zircon (U-Th)/He and 37 apatite fission-track ages from 

Coutand et al. (2014) (Figure 7 and Table S6 in the supporting information) to perform 

formal inversions and assess the sensitivity of thermochronometric data to tectonic scenarios 

involving changing displacement rates on the MHT and various duplex-driven uplift 

processes. Although many more data are available for the region (Long et al., 2012, Coutand 

et al., 2014), the data were compiled along a relatively narrow, 25 km-wide swath (Figure 7) 

to avoid the influence of lateral structural variations in both the structures in the LHS (e.g., 

Long et al., 2011a; Long et al., 2012; McQuarrie et al., 2019) and the MHT itself (e.g., Singer 

et al., 2017). The inversions use the neighborhood algorithm (Rickwood & Sambridge, 2006; 

Sambridge, 1999) to select input values for the three-dimensional (3-D) thermokinematic 

model Pecube (Braun, 2003; Braun et al., 2012) and determine permissible ranges of 

geological parameters such as fault geometry, fault slip rate, crustal thermal properties, and 

the width, location and rate of duplex-induced accretion. Detailed descriptions of both the 

forward model Pecube (Braun et al., 2012) that we use, and the inversion procedure can be 

found in Coutand et al. (2014), Landry et al. (2016) and Supporting Information Text S3. The 

inversions were run on the cluster (ACEnet consortium) based at Dalhousie University and 

the geo-hpcc cluster at the University of Helsinki. 

The aim of this modeling work is to determine the tectonothermal scenario that best 

reproduces the modern distribution of thermochronological ages across the Himalayan range 
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in eastern Bhutan. In addition to constraining the geometry of the basal detachment, the 

MHT, we extract the cooling histories of model particles in the MCT zone from 15-11 Ma to 

calculate more accurate closure temperatures for the applied thermochronometers and 

thermobarometers.  

 

5.1 Model design and input parameters 

In this paper, we utilize a three-stage tectonothermal scenario consistent with local 

geological data (Daniel et al., 2003) and previous modeling studies (e.g., Coutand et al., 

2014; Long et al., 2012; McQuarrie et al., 2014, 2019, and references therein). This scenario 

involves a first stage from 15-11 Ma simulating the ongoing activity of the MCT after 13 Ma 

until the cessation of ductile shearing at 11 Ma (section 6.3, this study). A second stage starts 

at 11 Ma, during which the slip rate on the MHT changes after the MCT ceases activity and 

the MBT is activated. The duration of this second stage is not fixed and can last until from 7-

2 Ma (we invert for this time and call it the “transition time” (tt). Furthermore, localized 

crustal accretion simulating duplex-enhanced uplift is also activated from 11 Ma onward. 

From the tt until the end of the simulations at 0 Ma, the kinematics of the MHT are again 

allowed to vary to reflect a potential partitioning of the India-Eurasia convergence between 

uplift of the Shillong Plateau and convergence at the Himalayan front (Biswas et al., 2007; 

Coutand et al., 2014, 2016).  

The model domain extends from 26.5 to 28.5°N latitude and from 91 to 92.5°E 

longitude and thus has a surface extent of 165 × 220 km (Figure 8 summarizes the model 

design). The base of the model is 50 km below sea level, and the upper surface at the end of 

the simulations is defined using the modern topography. The modern topography is shifted at 

the start of the simulations such that lateral advection of the topography resulting from fault 

movement translates the model topography to its present-day location at 0 Ma (see Appendix 
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F of Coutand et al., 2014 for details). We note that some recent works have utilized an 

alternative approach to modelling topographic development in thermokinematic numerical 

models in Bhutan (McQuarrie and Ehlers, 2015; McQuarrie et al., 2019) where topography 

develops in response to fault-driven uplift with a defined elevation limit based on the taper 

angle of the topography across the Bhutanese Himalaya. While this approach has the benefit 

of simulating natural topographic growth, we have opted to utilize lateral translation of the 

modern topography because it is the simplest topographic treatment that ends with the 

present-day topography and includes its influence on the thermochronometer age data. 

Although the MCT in eastern Bhutan was active by at least 23 Ma (Daniel et al., 2003), 

our simulations start at 15 Ma because the input thermochronological data are younger, 

providing constraints on crustal cooling after this time only. Furthermore, the thermal 

calculations evolve from a thermal steady state at the start of the simulations based on the 

model and fault geometries at 15 Ma, approximating the thermal field after 8 Myr of motion 

on the MCT. The thermal solutions begin at 15 Ma from a steady-state thermal solution 

calculated using the initial fault geometry, kinematics and modern topography (for details, 

see Braun et al., 2012). The subsequent transient thermal fields are calculated until the end of 

the run at 0 Ma, with a constant temperature boundary condition at the base of the model (see 

Table 5 for model parameters). Because in previous Pecube modeling studies, the average 

radiogenic heat production and the basal temperature were anticorrelated (Coutand et al., 

2014; Landry et al., 2016), we fix the volumetric radiogenic heat production at an average 

value of 1.5 W/m3 (or 20 °C/Ma) and invert only for basal temperature in the range of 500-

700 °C based on the estimates of upper mantle temperatures that must be less than ~600 °C to 

account for the seismicity (McKenzie et al., 2005; Priestley et al., 2008). This temperature is 

also consistent with those reported in previous thermokinematic (Hetényi et al., 2007) and 

geodynamic (Beaumont et al., 2004) modeling studies. Surface temperature decreases with 
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elevation at a lapse rate of 6 °C/km from 25 °C at sea level in the foreland (Naito et al., 

2006). 

Typical crustal values are used for rock properties in the model (Table 5). The MHT 

geometry is defined by coordinate pairs (X, Y) that mark changes in fault dip at a given 

horizontal distance from the fault surface trace and vertical distance from sea level. A 

constant India-Himalaya convergence rate of 17 mm/yr (Marechal et al., 2016) is used with 

partitioning factors  that separate convergence into hanging wall overthrusting and footwall 

underthrusting (Figure 8). In the simulations in this work, we select three values for the 

partitioning factor reflecting the three different stages of the tested tectonomorphic scenario. 

1) A low value of 0.25 between 15 and 11 Ma implies that 75% of the total convergence is 

accommodated by overthrusting on the MHT (~12.75 mm/yr). This low partitioning factor 

value increases heat advection toward the surface consistent with the ductile activity of the 

MCT at this time (Anczkiewicz et al., 2014; Daniel et al., 2003; Mottram et al., 2015). 2) A 

range of 0.5-0.9 is used after 11 Ma (cessation of activity of the MCT and activation of the 

MBT), and 3) we invert for a tt that corresponds to further slowing of the overthrusting rate 

along the MBT in eastern Bhutan between x and 0 Ma. In addition, a zone of enhanced rock 

uplift driven by basal accretion is activated after 11 Ma once duplex formation and activation 

of the MBT occur (McQuarrie & Ehlers, 2015, McQuarrie et al., 2019). 

 

5.2 Modeling Results 

A total of 20 sets of inversions were run in this study, but we present only the 

tectonothermal scenario described in section 5.1, which yields the lowest misfit value 

between observed and predicted thermochronological ages (Tables 5 and 6). This inversion 

set comprises 30,840 forward models with an excellent lowest misfit value of 0.46 (see 
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Coutand et al., 2014 for details about the misfit calculation). The values of related free 

parameters are found in Table 5 and Figure 9.  

The geometry of the frontal (southern) part of the MHT is well constrained by independent 

geophysical and geological data (see points 1 to 5 in Figure 8 and Table 6; Hirschmiller et al., 

2014; Singer et al., 2017; Coutand et al., 2014 and references therein), whereas the NA 

appraisal yields mostly flat one-dimensional posterior probability density functions (1-D 

PPDFs) with large 1σ errors for the depths of points 6 to 8 located in the northernmost part of 

the model (see Z6, Z8 and (X7, Z7) in Table 6 and Figures 7a-c and 8). This result indicates 

that despite the convergence of the inversion, these parameters remain relatively poorly 

resolved within the investigated ranges (Figure 9a-c). The basal temperature of approximately 

550 C that we obtain has a large 1σ error, but it is <600 C and therefore consistent with the 

predicted Moho geotherm in this geotectonic setting (Mazzotti & Gueydan, 2018). 

The NA appraisal stage indicates that the age dataset is most sensitive to the fault 

kinematics and the width and rate of basal accretion because the NA appraisal produces 

exponential and Gaussian 1-D PPDFs for these parameters (Figure 9). The partitioning 

factors 2 and 3 for the post-11 Ma stages of the model (decrease in the overthrusting rate on 

the MHT) are relatively well defined with values of 0.7 -0.1/+0.1 and 0.9 -0.1/+0.0, 

respectively, which correspond to overthrusting rates of 5.1 and 1.7 mm/a along the MHT. 

These values show that the data require a pronounced deceleration of overthrusting on the 

MHT after 11 Ma from the rate of 12.75 mm/a between 15 and 11 Ma, which partially agrees 

with other thermokinematic studies (McQuarrie & Ehlers, 2015, 2019). The tt between 2 and 

3 remains poorly constrained at approximately 4.4 Ma but is compatible with approximately 

5.9 Ma from the study by Coutand et al. (2014), which did not include muscovite 40Ar/39Ar 

data and localized basal accretion. Notably, 2 and the tt are strongly anticorrelated in the 

inversion, as are 2 and 3 to a lesser extent (Figure S2). The inversion produces a well-
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defined 80 km-wide zone of basal accretion at a rate of 0.9 mm/a (Figure 9e-f) migrating 

southward during the last 11 Ma. Its southern margin is currently located 60 km north of the 

surface trace of the MFT and does not correspond to the location of the outer duplex (Figure 

2; Long et al., 2011b; McQuarrie & Ehlers, 2015). This result suggests that the model cannot 

detect this structure, probably because exhumation was insufficient to impact the distribution 

of the high-temperature thermochronological data. At the current outcrop level, all white 

mica in the outer LHS rocks is detrital and only locally reset by Miocene metamorphism 

(Long et al., 2012; Grujic et al., 2017). Furthermore, the distribution of low-temperature 

thermochronological data is too sparse to constrain the models. For this reason, we are 

cautious about the interpretation of the RSCM data from the outer duplex but are confident in 

the interpretation of our observed and modeled data for the upper LHS because it was not 

affected by the outer duplex. 

The parameters from the model with the lowest overall misfit were input into a high-

resolution Pecube forward model to extract the predicted age data. Figure 10 shows an 

excellent fit between the predicted and measured ages for three thermochronometers. 

Subsequently, we used this forward model to calculate time-depth-temperature particle paths. 

Here, we focus on only the first stage of the tectonothermal scenario from 15-11 Ma, which 

corresponds to the period covered by the muscovite 40Ar/39Ar dates and to the MCT zone 

with RSCM and quartz thermobarometric data. The time-depth-temperature particle paths 

(Figure 11) are not linear because of the variable geometry of the basal detachment but 

generally indicate that the particles at the base of the studied section cooled through the same 

temperature approximately 1 Myr earlier than those at the top of the section. We use these 

paths to derive the cooling rates for the period covered by ages of a particular 

thermochronometer to more accurately estimate the closure temperature. For muscovite 

40Ar/39Ar thermochronometry, deformation geothermometry and titania activity calculation, 
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which are all pressure dependent, we extract the pressure at the expected temperature to 

iteratively calculate the related temperatures discussed in the rest of this paper. 

 

6 Discussion 

6.1 Metamorphic temperature gradients in the MCT zone 

Seven of eight RSCM samples from the external (southern) duplex yield identical 

temperatures within uncertainty (Figures 2, 3a and S3). The external duplex is characterized 

by several horses, and the exhumation level is the same for all the measured samples (Figure 

2; Long et al., 2011a, 2011b). Assuming a geothermal gradient of ~30 °C/km in the top 10 

km of the crust (Figure 11c), a minimum Neogene burial depth of approximately 12 km is 

consistent with the geometry of the basal detachment in the area (Long et al., 2011b; 

McQuarrie & Ehlers, 2015; McQuarrie et al., 2019; Singer et al., 2017). All the 

metasedimentary rocks in the external duplex have Paleozoic depositional ages and likely did 

not experience any tectonic activity before Himalayan orogenesis; therefore, these 

temperatures might be Himalayan burial temperatures. Geological maps and cross sections in 

most of the Himalaya indicate that the GHS or even the Tethyan sedimentary sequence (Yu et 

al., 2015) extended significantly farther south than the current trace of the MCT; similarly, 

the Shumar thrust likely extended significantly farther south. Together, these thrust sheets 

and nappes may have provided tectonic burial that caused the Himalayan metamorphism of 

the Paleozoic rocks in the external duplex. The constant peak temperature for the 10 km of 

structural section between the MBT and Shumar thrust (Figure 3a) could have been produced 

by equally spaced hinterland-dipping horses, with nearly the same displacement and origins 

at the same crustal level (Figure 2; figure 3b in Long et al., 2012). 

The 11 samples in the internal (northern) duplex are presented with their structural 

distance from the MCT rather than from the MBT because of the uncertain sequence of 
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deformation as well as underlying folds and duplexes (Figure 3b). Over 2.3 km of structural 

distance between the Shumar thrust and Jaishidanda Formation, the temperatures range from 

~430 to ~530 °C (Figure 3b), yielding an apparent inverted temperature field gradient of 24.8 

°C/km (R2 = 0.9) (with error propagation in both temperature and structural location). 

Similar temperature ranges between 330 °C and 580 °C have been obtained by RSCM 

in the LHS in central and western Nepal (Beyssac et al., 2004; Bollinger et al., 2004), NW 

Indian Himalaya (Célérier et al., 2009), and Arunachal Pradesh (Mathew et al., 2013). The 

inverted temperature gradients across the LHS estimated in these studies range from 25 to 50 

°C/km. In central Bhutan, RSCM temperatures obtained by Long et al. (2016) range between 

310 °C and 620 °C and up to 720 °C in the GHS, yielding a temperature gradient of 

approximately 270 °C/km (over approximately 1 km of structural distance across the MCT). 

One of the potential reasons for the difference in temperature gradients could be sample 

localization. Because different authors constructed various cross sections, the structural 

distances were not estimated consistently. 

Furthermore, the mapped location of the MCT is not consistent among the various 

authors (for discussions on the topic, see Searle et al. (2008) and Martin (2017)). This 

location determines whether the highest temperature samples were included in the 

temperature field calculations. If we use the lowest RSCM temperature in the Shumar-Daling 

Group together with the thermobarometric data from Daniel et al. (2003), they would yield a 

gradient of approximately 70 °C/km, increasing to approximately 170 °C/km if we use the 

samples astride the MCT over a structural distance of 1.5 km (Figure 12). However, as 

discussed in section 6.3, these peak temperatures have different ages. 

An alternative cause for the differences in temperature gradients obtained by RSCM is 

that graphite could have been affected by deformation (Kirilova et al., 2018, Kouketsu et al., 

2019) or sample preparation (Kouketsu et al., 2019). The highest sample (BH 507) collected 
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from the Jaishidanda garnet schist ~2 meters beneath the GHS augen gneiss mylonite yields 

446 ± 32 °C. This is the only sample with graphite; it has the highest error (Table 1), and the 

temperature is significantly lower than expected from the trends of the RSCM data, the 

opening-angle thermometry and the standard thermobarometry (Figure 12). The Ti-in-quartz 

temperature at the same structural level is also lower than expected from the trends of the 

same data (Figure 12). The most likely explanations for this discrepancy are that in sheared 

rocks, graphite thermometers may underestimate the peak metamorphic temperatures by up to 

300 °C (Kirilova et al., 2018) and that the shearing caused by fault movement may lower 

graphite maturity (Kouketsu et al., 2019). We did not find evidence for brittle strain; thus, no 

evidence indicates that the last increments of deformation occurred at velocities sufficient to 

generate appreciable frictional heat. However, graphite is associated with muscovite, which is 

deformed by shearing and crenulation (Figure 4); therefore, graphite could be also deformed. 

We suggest that deformation under retrograde conditions (SGR recrystallization of large 

grains deformed by GBM recrystallization) outlasted the deformation toward the margin of 

the shear zone. In other words, the last stages of ductile shearing along the MCT were 

probably focused on a zone only tens of meters wide; therefore, any temperature gradient is 

apparent and is a finite result of the metamorphic and deformation history. 

 

6.2 Effective temperature of quartz recrystallization 

The quartz microstructure and texture indicate that dynamic recrystallization of the 

studied quartzite in the LHS occurred in the temperature range between ~400 and ~500 °C. 

The preliminary TitaniQ temperatures range between 400 and 470 °C (Table 2). The CL 

pattern and Ti-in-quartz concentrations indicate the core and rim microstructures of the quartz 

grains. The temperature differences obtained using the same P and aTiO2 for the core and rim 

are on the order of 10 °C. However, the pressure is unlikely to have remained constant during 
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cooling of the studied samples through this temperature range; it is thus plausible that the 

aTiO2 changed as well (cf. Figures 6 and 10). 

We address this problem by iteratively calculating the aTiO2 and TitaniQ temperatures 

using the pressure at the expected temperature as predicted by thermokinematic modeling for 

each model “particle” at the corresponding location. The preliminary “expected temperature” 

is calculated by Ti-in-quartz thermometry not including the pressure parameter (Wark and 

Watson, 2006). Depth-temperature paths of the model particles from the region covering our 

field data indicate that Ti-in-quartz temperatures were reached at depths between 

approximately 10 and 14 km. From the work by Ashley and Law (2015) and our modeling of 

preliminary temperatures and pressures (Figure 6), we obtain aTiO2 ~0.4. This value yields a 

more accurate temperature, in turn further constraining the pressure for each sample, which is 

inserted into the Ti-in-quartz thermobarometry equation including the pressure component 

(Thomas et a., 2010). The obtained temperature becomes the new “expected temperature”. 

The process is repeated until both the pressure and temperature values converge. These are 

the Ti-in-quartz temperatures in the quartz cores shown in Figure 12 and used in further 

discussion. The quartz rim composition was acquired along the retrograde path accompanied 

by subgrain rotation recrystallization. Using the same iterative procedure, we obtain the 

deformation temperatures at which the quartz rims re-equilibrated during cooling and 

ongoing dynamic recrystallization (Figure 12). 

Regardless of the accuracy of our temperature estimates, the rims of dynamically 

recrystallized quartz grains define an inverted temperature gradient, which indicates that the 

processes responsible for the inverted metamorphic sequence in the LHS were still operating 

during deformation under retrograde conditions until ~320 °C. Two samples collected within 

one meter from the contact with the GHS augen gneiss mylonite yield grain core 

temperatures approximately 25-50 °C lower than expected from the trend (Figure 12). 
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Equivalent to the trends of the RSCM temperatures, this result also indicates that ductile 

shearing in the core of the MCT shear zone outlasted the deformation toward the rim of the 

shear zone. 

Although the modeled aTiO2 value for some samples is 1 (Figure 6), the effective 

activities were probably lower. This feature is a result of the purity of the quartzites, where 

the lack of an appreciable amount of other oxide components (Al2O3, FeO, etc.) prevents the 

stabilization of other Ti-bearing phases in the thermodynamic models. This, in turn, forces 

the stability of rutile across P-T space; the predicted abundance of rutile is <0.1 volume % 

(see Table S4 in the supporting information). If this prediction is correct, then rutile would be 

disseminated throughout the sample in very small abundance, which would cause difficulties 

for achieving equilibrium at large distances from the rutile grains given the diffusive 

constraints on Ti buffering at these low temperatures (Ti is a high field strength element with 

sluggish diffusion at low temperatures). A more likely scenario is the presence of small 

amounts of biotite or white mica in the sample, which accommodate the trace amounts of 

bulk TiO2 measured. Titania activity, if regulated by biotite under standard Barrovian 

metamorphic conditions, is typically <0.5 (Ashley & Law, 2015) and results in temperature 

estimates consistent with those for the other quartzite samples. 

Observations (Grujic et al., 2011; Nachlas et al., 2014, this work) and experiments 

(Nachlas and Hirth, 2015; Negrini et al., 2014) reveal that Ti-in-quartz geothermometry is 

unlikely to register the peak deformation temperature in high-grade terranes (amphibolite 

facies and higher) if cooling is accompanied by ductile deformation. Investigation of the 

exact causes for this phenomenon is outside the aim of this paper, but the high diffusivity 

rates of Ti in quartz above 600 °C allow Ti to re-equilibrate fully and homogeneously to the 

retrograde conditions at the time scale of deformation under these temperatures. In contrast, 

sluggish diffusion rates of Ti at lower temperatures may cause partial re-equilibration with 
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the advantage of preserving synkinematic temperatures. The rate of Ti re-equilibration is 

dominated by volume diffusion rates if recrystallization is static (Cherniak et al., 2007; 

Thomas et al., 2015) or by the deformation mechanism type if recrystallization is dynamic 

(Grujic et al., 2011; Negrini et al., 2014). The observed Ti-in-quartz temperatures therefore 

also indicate that dynamic recrystallization continued with decreasing temperatures because 

at temperatures lower than ~400 °C, volume diffusion would require on the order of tens of 

million years to reset the concentrations of Ti in quartz to those corresponding to the 

measured temperatures in both the cores and rims. In the case of quartz mylonites in the MCT 

zone, this process occurred over 1-2 Myr. 

 

6.3 Timing for the inverted temperature gradient in the MCT zone 

The sample of Baxa quartzite in the immediate footwall of the Shumar thrust (Figure 

S4) yields mid-Proterozoic detrital zircon U-Pb ages with metamorphic overgrowths in the 

range of ~21 and ~14 Ma (Long et al., 2012, sample BU07-42). The weighted mean ages of 

17.2 ± 0.3 Ma for the overgrowths and of the youngest three analyses of 14.9 ± 0.6 Ma were 

interpreted by Long et al. (2012) as revealing the times of motion along the Shumar thrust. 

Alternatively, these ages may be interpreted either as the times of metamorphism due to 

heating by the GHS nappe that extended farther south, close to the present surface trace of the 

MBT (Figure 2) or as the times of deformation enhancing fluid migration, which facilitated 

zircon crystallization. A sample of Baxa quartzite from the same structural level (Long et al., 

2012, sample BU07-22) but located 30 km to the west yields a muscovite 40Ar/39Ar date of 

15.28 ± 0.27 Ma (Figure S4), interpreted by Long et al. (2012) as the “structural burial” time 

of this sample by the Shumar thrust. However, this muscovite date should be interpreted 

cautiously, as Baxa quartzites contain detrital muscovite grains (in the Darjeeling Himalaya, 

they are all detrital; Grujic et al., 2017) and fine syndeformational white mica (Long et al., 
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2012); therefore, the grain separates could have contained grains or fragments of both 

muscovite generations (Long et al., 2012, their figure 4d-e). In all LHS samples analyzed 

here, the muscovite grains are interpreted as metamorphic. In conclusion, and for further 

discussion, we assume that the motion along the Shumar thrust at approximately 450 °C was 

underway by approximately 15 Ma. 

The effective muscovite 40Ar/39Ar closure temperature for each sample was determined 

by iterative calculation (Dodson, 1973) using the diffusion parameters from Harrison et al. 

(2008) and the pressure and instantaneous cooling rate as predicted by thermokinematic 

modeling for each model “particle” at the corresponding location and the target temperature 

range. Thus, estimated cooling rates in the MCT zone during the period corresponding to the 

temperature range of 600-300 °C were steady and linear, ranging from 78 to 91 °C/Ma, with 

a mean of 82 °C/Ma. Similar cooling rates, although from a different analysis of the 

thermochronological data, were inferred for western Bhutan (McQuarrie et al., 2014) and the 

Darjeeling Himalaya (Landry et al., 2016). According to thermokinematic models, cooling 

through the muscovite 40Ar/39Ar closure temperature range occurred at 12-13 km depth, i.e., 

at ~3.2-3.4 kbar, consistent with the thermobarometric data for the base of the GHS and the 

Jaishidanda Formation (Daniel et al., 2003). The effective closure temperature (Tc) of 

muscovite grains with radii larger than 0.5 mm is thus calculated to be approximately 484 °C 

using the Dodson equation (Dodson, 1973) and 40Ar diffusion data at 5 kbar from (Harrison 

et al., 2009). For the GHS and Jaishidanda rocks, this temperature is retrograde; therefore, the 

muscovite 40Ar/39Ar dates are cooling ages. This Tc is slightly lower at the top and somewhat 

higher at the bottom of the shear zone than the RSCM and quartz texture opening-angle 

temperatures, which we therefore interpret as having been established shortly before or after 

these muscovite 40Ar/39Ar dates. Ti-in-quartz temperatures are on the order of 100 °C lower 
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and ca. 1 Myr younger, based on modeling outputs, consistent with the calculated cooling 

rates. 

Different ages (15.5 vs 11.5 Ma) from the same outcrop (BH 54 vs. Stu09) and same 

lithology (Jaishidanda schist) add complexity to the above interpretations. The 40Ar/39Ar age 

spectra obtained from mylonites frequently have staircase shapes (Kirschner et al., 1996). 

Muscovite grains from sample BH 54 (Figure S1) produce the most pronounced staircase 

40Ar/39Ar age spectrum. One group of causes for such spectra are micas with different grain 

sizes, pre-existing and thermally overprinted micas, or a mixture of pre-existing and 

recrystallized micas. A combination of these muscovite microstructures was observed in 

sample BU07-22 by Long et al. (2012). We interpret these data as representing Cambrian 

detrital mica (Grujic et al., 2017) that partially reset at ~15.5 Ma. In this case, extraneous Ar 

in the final steps may be preserved components of a pre-existing “age reservoir”. 

A second possible explanation for the staircase 40Ar/39Ar age spectra is a single mica 

population that has undergone incomplete or partial diffusive argon loss. Empirical 

(Kirschner et al., 1996) and experimental (Cosca et al., 2011) work has demonstrated that 

40Ar loss can be induced by deformation and that micas are likely to preserve significant 

40Ar/39Ar age variations and potentially record protracted time-temperature histories. All our 

samples are tectonites, and in all of them, muscovite crystals show evidence of plastic 

deformation, manifested as undulose extinction, crenulation, occasional kink bands, or 

muscovite blades damaged by shear bands (Figure 4). All samples with ~11 Ma populations 

include age steps at ~15 Ma (Figure S1). We have shown that the ductile deformation 

temperatures were below the ideal muscovite closure temperatures and thus tentatively 

suggest that the 11 Ma population reflects patchy 40Ar loss induced by deformation below the 

muscovite Tc, while the ~15 Ma population indicates cooling through the ideal Tc of ~480 °C. 

In summary, cooling of the MCT zone between ~500 and ~350 °C occurred from ~15 to ~11 
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Ma, and muscovite 40Ar/39Ar ages of ~11 Ma date the cessation of pervasive ductile 

deformation along the MCT. To more reliably distinguish between cooling and deformation 

ages, in situ UV-laser 40Ar/39Ar dating of muscovite in deformed rocks is necessary (e.g., 

Cosca et al., 2011, and references therein) yet remains analytically challenging for such 

young rocks.  

The onset of slip along the Shumar thrust by 15 Ma (Long et al., 2012) with ongoing 

shearing along the MCT until ca. 11 Ma, as proposed here, is compatible because the two 

shear zones could have operated coevally. The transfer of deformation toward the foreland 

and progressive cessation of shearing along the pre-existing principal shear zone have been 

predicted by numerical experiments (e.g., Jaquet et al, 2018). 

 

6.5 Kinematic models for the inverted temperature gradient in the footwall of an 

orogen-scale thrust 

Recent geochronological data indicate that the development of the inverted 

metamorphic sequence within the top of the LHS and the base of the GHS was progressive. 

In the Sikkim Himalaya, the tectonic unit corresponding to the Jaishidanda Formation is 

wider than that in Bhutan, allowing detailed investigation of the spatial trends of its pressure-

temperature history. Lu-Hf garnet geochronology in this zone indicates downward younging 

of the onset of garnet growth and the timing of peak metamorphism (Anczkiewicz et al., 

2014), varying from 14.6 ± 0.1 Ma in the sillimanite zone to 13.7 ± 0.2 Ma in the kyanite 

zone, 12.8 ± 0.3 Ma in the staurolite zone and 10.6 ± 0.2 Ma in the garnet zone. In western 

Bhutan, the prograde monazites are older in the north (~24 Ma) than in the south (~20 Ma; 

Tobgay et al., 2012), corresponding to downward younging of the prograde metamorphism 

within the GHS and the Jaishidanda Formation. However, monazite U-Th-Pb geochronology 

in Sikkim indicates that the peak of metamorphism along the same structural level is older in 
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the south than in the north—16 Ma vs. 10-9 Ma—presumably caused by the “progressive 

southward propagation of the slip” along the MCT (Mottram et al., 2015). 

Our data from the upper LHS in eastern Bhutan indicate that neither the RSCM nor the 

quartz deformation temperatures correspond to the peak metamorphic temperatures, yet both 

define an inverted temperature gradient (Figure 12). We cannot explain this discrepancy for 

the RSCM data but suggest that the system can be reset by deformation at lower 

temperatures. The study by Kouketsu et al. (2019) raises serious concerns about sample 

preparation procedures because the preparation may lower the maturity of carbon grains, i.e., 

lower the apparent metamorphic temperature. We followed the measurement procedure 

outlined by Beyssac et al. (2002); therefore, our RSCM data should be comparable to other 

published RSCM data in the Himalaya. The small scatter of data within a sample and the 

clear temperature trends make us confident that the results are real rather than laboratory 

artifacts. The deformation of graphite or carbon microstructure and the lowering of graphite 

crystallinity due to shearing caused by fault movement (Kirilova et al., 2018; Kouketsu et al., 

2019) could explain the lower than expected temperature of sample BH 507 closest to the 

contact the Jaishidanda schists and GHS gneisses. However, our RSCM temperatures are in 

the same range as those from all other studies in the Himalaya. For the quartz tectonites, the 

microstructures indicate replacement of higher temperature microstructures by colder 

microstructures. Reworking of the high-T microstructure (GBM recrystallization) by low-T 

shearing (SGR recrystallization) is consistent with the reduction in temperature over time. 

Furthermore, because pervasive ductile deformation persisted under decreasing temperatures 

and during 2-4 Myr, the high-temperature information locked in the minerals was deformed 

as a passive strain marker. This interpretation implies that a peak-temperature profile across a 

crustal-scale shear zone is a finite strain feature. 
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Pervasive ductile shear within the sequence and along the MCT shear zone emplaced 

hot rocks over colder rocks, overturning the synkinematic isotherms at the mid-crustal level 

(e.g., Beaumont et al., 2004); peak-temperature isotherms (if preserved in the rock record) 

were subsequently sheared and variably overprinted by ongoing ductile shear under 

retrograde conditions. A fine example of such a process was documented by Williams and 

Platt (2017) in the Alborán Domain, southern Spain. 

Thermokinematic modeling (Bollinger et al., 2006, Célérier et al., 2009; Herman et al., 

2010, Coutand et al., 2014; Landry et al., 2016) and sequential restoration of balanced cross 

sections guided by thermokinematic modeling (McQuarrie and Ehlers, 2015; 2019) show that 

thermochronological data obtained from the LHS can be well fit by a two-stage evolutionary 

scenario: an early-middle Miocene phase that involved thrusting of a hot hanging wall over a 

downgoing footwall and the later formation of the external duplex by basal accretion. To 

reconcile our microstructural, thermobarometric, and thermochronologic observations with 

the experimental data, we suggest that the pervasive ductile deformation along the MCT zone 

stopped at ~11 Ma when the deformation focused fully within the external LHS duplex. 

In such a dynamic crustal system, there is no steady thermal state or steady and unique 

cooling path of the rocks. The material points at different structural levels attain their 

respective peak temperatures at different times. Such progressive changes in deformation 

temperatures are recorded by deformation temperatures acquired by Ti-in-quartz 

thermobarometry. The dynamically recrystallized quartz grains did not record peak 

temperatures in the upper LHS. The quartz continued to deform under decreasing 

temperatures and re-equilibrate the Ti-in-quartz concentrations until ~320 °C, at which point 

crystal plastic deformation stopped. 

Muscovite samples covering the range of the Ti-in-quartz samples indicate a muscovite 

40Ar/39Ar age trend. Across the MCT shear zone, there is an upward-younging muscovite 
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40Ar/39Ar age trend; accordingly, the quartz deformation temperatures may be progressively 

younger down section. According to the time-temperature paths (Figure 11), cooling through 

the same temperature occurred approximately half a million years later at the protolith 

boundary than three kilometers below it. There remain uncertainties in the interpretation of 

Ar/Ar data for metamorphic muscovite such as those used in this study. Further corroboration 

of these results using complementary thermochronometers (e.g. apatite U-Pb) and/or along 

parallel transects would be beneficial to test these interpretations. This age difference across 

the shear zone is small yet may have important implications. The footwall samples away 

from the core of a crustal-scale shear zone cool earlier; thus, the dominant deformation 

mechanisms change earlier. Because lower temperature deformation mechanisms require 

higher flow stresses at the same strain rate, a shear zone most likely progressively narrows 

during cooling. Strain localization in the central part of a shear zone typifies Type 2 shear 

zones (e.g., Fossen & Cavalcante, 2017). Moreover, strain analyses indicate that the finite 

strain registered by quartz porphyroclasts (retrograde strain) increases toward the MCT (Long 

et al., 2016; Starnes et. al., 2020). In contrast, geochronological data linked to the peak 

metamorphic assemblages (Mottram et al., 2015) indicate shear zone widening and Type 1 

shear zones. 

These observations highlight the important fact that crustal-scale dip-slip shear zones 

evolve over long geologic intervals, during which temperature and pressure conditions 

change. In the prograde stage, the shear zone widens by wall rock weakening mechanisms, 

while in the retrograde stage, shear zones narrow, and flow stresses increase (see, e.g., Fossen 

& Cavalcante, 2017; Jaquet and Schmalholz 2018, and references therein). 
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7 Conclusions 

The spatial distributions of metamorphic and deformation temperatures indicate that a 

synkinematic inverted temperature field gradient was present between ~20 Ma and 11 Ma and 

was progressively deformed at all stages of ductile deformation. 

The spatial pattern of temperatures across the Lesser Himalayan Sequence (LHS), 

acquired by Raman spectroscopy on carbonaceous materials, indicates two temperature 

sequences. The external temperature sequence has a flat profile; i.e., peak temperatures are 

the same across 10 km of the structural sequence. The internal temperature sequence in the 

MCT shear zone shows an inverted temperature field gradient, from ~450 to ~530 °C, 

yielding an apparent temperature/structural distance gradient of approximately 12 °C/km. The 

same temperature gradient in the MCT shear zone is obtained by the deformation 

thermometry based on quartz c-axis fabrics. The Ti-in-quartz thermobarometry, however, 

yields significantly lower temperatures. The resetting of the Ti concentration in quartz in the 

observed temperature range and time span could have been achieved only by crystal plastic 

processes. This interpretation is consistent with the observed quartz microstructure. Because 

the muscovite blades in the same mylonites are deformed, we interpret the 11 Ma muscovite 

40Ar/39Ar dates as the age of the last ductile increment along the MCT in eastern Bhutan.  

To constrain the age of related deformation or better, the time span of ductile 

deformation under retrograde conditions, the most reliable thermochronological tool is likely 

in situ UV-laser 40Ar/39Ar dating of muscovite in deformed rocks (Cosca et al., 2011; Kellett 

et al., 2016; Mulch & Cosca, 2004). However, it is doubtful this could be done on Neogene 

muscovite, which would not yield sufficient radiogenic 40Ar to be sampled at a high enough 

spatial resolution. 

The inverted metamorphic field gradient is registered by various geothermometric 

systems and at different temperature ranges, indicating that the processes that formed the 



 
©2020 American Geophysical Union. All rights reserved. 

currently exposed (i.e., finite) metamorphic gradient endured over an extended geological 

interval along the retrograde metamorphic path and involved various processes at different 

stages: 

(a) Synkinematic steepening and inversion of the isotherms in the vicinity of the 

crustal-scale shear zone; 

(b) Locking in of the peak-T isotherms recorded by the metamorphic assemblages; 

(c) Ongoing pervasive ductile deformation characterized by general shear (both 

simple and pure shear components); 

(d) Deformation of the peak-T isotherms and formation of the quartz deformation 

isotherms; 

(e) Deformation focusing (progressive shear zone narrowing) that may have 

further deformed the peak-T isotherms. 
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Table 1 Summary of temperatures obtained by RSCM. Full data are provided in Table S1 in the supporting information. For comparison only, 

temperatures calculated using the calibration by Rahl et al. (2005) are also reported. Temperatures are reported as standard means at the 1σ and 2 

standard errors (2SE) confidence levels, accounting for both internal and external uncertainties. 

 

 

Table 1 
          

Data and metamorphic temperature obtained by Raman Spectroscopy on Carbonaceous Material 
   

Sample Unit n 
R1 Ratio 
(mean) 

R2 Ratio 
(mean) 

Beyssac temperature Rahl Temperature 

°C 1𝜎 2SEM °C 1𝜎 2SEM 

BH507 Jaishidanda Fm. 14 0.495 0.438 446.0 31.1 31.5 406.8 42 34.90 

BH511 Baxa Group 10 1.139 0.539 401.3 6.5 31.9 421.8 7 31.93 

BH513 Daling Fm. 11 0.582 0.419 454.4 9.6 30.7 448.9 13 31.15 

BH516 Diuri Fm. 10 1.758 0.634 358.7 2.1 31.7 373.7 3 31.68 

BH518 Gondwana Fm. 10 1.648 0.655 349.5 8.2 32.0 344.8 17 33.40 

BH519 Gondwana Fm. 10 1.543 0.635 358.5 10.4 32.3 357.9 20 34.06 

BH520 Gondwana Fm. 10 2.043 0.663 346.2 6.6 31.9 342.4 25 35.36 

BH521 Gondwana Fm. 11 2.012 0.683 337.0 7.0 30.4 322.4 20 32.47 

BH523 Gondwana Fm. 10 1.798 0.676 340.2 9.7 32.2 324.5 22 34.55 

BH524 Baxa Group 10 1.659 0.640 356.2 13.0 32.7 361.7 27 35.94 

BH525 Daling Fm. 11 0.565 0.414 456.8 22.2 33.0 449.7 29 34.86 

BH526A Daling Fm. 12 0.580 0.426 451.4 51.4 41.4 430.3 65 47.35 

BH526B Daling Fm. 12 0.401 0.355 483.1 11.5 29.6 473.9 17 30.49 

BH527 Daling Fm. 13 0.354 0.333 492.9 12.5 28.6 485.4 22 30.30 

BH528 Daling Fm. 11 0.288 0.309 503.4 13.2 31.2 492.6 23 33.19 

BH529 Daling Fm. 11 0.264 0.281 511.6 11.6 30.9 505.9 21 32.70 

BH909 Jaishidanda Fm. 24 0.320 0.254 528.1 23.4 22.5 559.8 23 22.54 

BH901 Daling Fm. 26 0.822 0.456 438.1 19.1 21.0 448.5 19 21.00 

BH904 Daling Fm. 18 0.774 0.485 444.9 20.3 21.9 399.1 20 25.44 
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Mean temperature is indicated with 1σ, the internal error (standard deviation of the temperature calculations) and the 2SEM which is the 
2-standard error of the mean is calculated as the square root of the summed internal error and calibration error of ± 50 °C from the 
Beyssac et al. (2002) squared, divided by the square root of the number of analyses (n). 
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Table 2 Summary of deformation temperatures obtained by Ti-in-quartz thermobarometry. The Ti-in-quartz data for all the analytical spots 

(Table S2 in the supporting information) within a sample were analyzed in the form of Kernel Density Estimator (KDE) following Vermeesch 

(2012) to constrain the two composition components of the entire data population within a sample. 

 

Table 2 Data and deformation temperatures obtained by Ti-in-quartz geothermobarometry 
 

Sample Structural 
distance 

Ti core (average) Ti rim (average) T core (°C) T rim (°C) 

 
m ppm mol ppm mol a =1 a=0.4 ± a=1 a=1 a=0.4 ± 

            P=9 kbar P=9 kbar 2SEM P=9 kbar P=4 kbar P=4 kbar 2SEM 

BH 133 -10.0 2.82 3.54E-06 2.23 2.80E-06 450.5 506.6 3.2 437.4 356.7 356.7 9.8 

BH 804 -265.3 3.93 4.94E-06 3.41 4.29E-06 469.9 529.2 2.9 461.6 378.1 378.1 7.6 

BH 132 -1400.0 1.68 2.11E-06 1.21 1.52E-06 422.2 473.8 10.2 405.5 328.4 328.4 10.6 

BH 806 -1511.9 2.70 3.39E-06 2.41 3.03E-06 448.1 503.8 2.7 441.7 360.5 360.5 8.4 

BH 57 -2403.9 1.56 1.96E-06 1.04 1.31E-06 418.5 469.5 7.2 398.1 321.9 321.9 4.5 

BH 56 -2551.7 1.47 1.84E-06 1.16 1.45E-06 415.2 465.7 3.2 403.2 326.3 326.3 6.5 

BH 809 -2551.7 3.21 4.03E-06 3.21 4.03E-06 457.9 515.3 6.7 445.4 363.7 363.7 16.5 

BH 810 -2757.4 2.33 2.82E-06 2.33 2.82E-06 432.3 485.5 5.3 432.3 352.1 352.1 10.2 

BH 812 -3098.0 1.02 1.29E-06 0.88 1.10E-06 397.2 445.1 3.1 389.8 314.5 314.5 4.8 

             
gray fields are the values adopted in this manuscript          

a indicates aTiO2            

2SEM is the 2-standard error of the mean calculated as the square root of the summed squared 2𝜎 accuracy of the Ti-in-Quartz thermometer in the 
temperature range between 700 and 400 °C of ± 4–5 °C (Wark and Watson, 2006), the analytical precision of the geothermometer using the 
SHRIMP‐RG analyses of ±1–3 °C (Grujic et al., 2011), and the standard deviation of the measurements, divided by the square root of the number of 
analyses (n, Table S2). It does not include the uncertainty on a and P. 
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Table 3 Deformation thermometry based on quartz c-axis fabrics 

 

Table 3 

Deformation 

thermometry 

based on 

quartz c-axis 

fabrics 

         

           

Sample Latitude (°N) 
Longitude 

(°E) 

Structural 
distance beneath 

the MCT [m] 

Opening 
angle 

(average) 
T (°C) 

error ( 
± °C) 

pressure 
[kbar] 

TP 
(°C)TP 

(°C) 

error ( 
± °C)  

BH 801 91.480770 27.299400 0 75 556.0 50 3.3 547.0 60 
 

BH 803 91.480770 27.299400 -20 71 538.0 50 3.3 524.5 60 
 

BH 39 27.284253 91.446337 -265 67 510.0 50 3.2 499.3 60 
 

BH 39 27.284253 91.446337 -265 68 518.0 50 3.2 505.4 60 
 

BH 58 27.295139 91.457000 -1333 72 597.0 50 3.3 530.2 60 
 

BH 58R 27.295139 91.457000 -1333 80 600.0 50 3.5 576.3 60 
 

BH 806 27.295260 91.453540 -1512 59 455.0 50 2.9 442.8 60 
 

BH 807 91.455560 27.286290 -1736 60 462.0 50 2.9 449.7 60 
 

BH 18 27.284877 91.447472 -2000 62 475.8 50 2.9 463.2 60 
 

BH 808 91.444660 27.281840 -2456 80 600.0 50 3.5 576.3 60 
 

BH 809 27.281650 91.433520 -2552 65 497.0 50 3.1 485.4 60 
 

BH 810 27.273950 91.424490 -2757 63 483.0 50 3.0 471.2 60 
 

BH 17 27.270754 91.418918 -2800 60 462.0 50 2.9 449.7 60 
 

BH 17 27.270754 91.418918 -2800 56 434.4 50 2.9 421.4 60 
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BH 812 27.256560 91.410180 -3098 52 407.0 50 2.6 386.7 60 
 

BH 12 27.309817 91.156767 -3098 49 386.1 50 2.6 362.3 60 

 
          

 On samples in bold the opening angles of the 

quartz c-axis fabrics were measuered on the 

diagrams publsihed by Grujic et al. (1996). 
           

 

 

 

 

 

 

 



 

©2020 American Geophysical Union. All rights reserved. 

Table 4 Summary of muscovite 40Ar/39Ar results. All the data are provided in Table S5 and at 

the Geochron database (http://www.geochron.org). 

 

Sample 
Latitude Longitude Elevation 

Tectonic unit 
Age ± 1 

Age type 
closure 

°N °E (m) (Ma) (Ma) type 

BH 54 27.241834 91.527189 2580 Jaishidanda fm 15.56 0.60 isochron cooling 

BH 801 27.2994 91.48077 735 Jaishidanda fm 11.76 0.17 plateau reset 

BH 802g 27.2994 91.48077 735 Jaishidanda fm 11.70 0.97 isochron reset 

BH 802m 27.2994 91.48077 735 Jaishidanda fm 11.10 0.85 isochron reset 

BH 805 27.29865 91.47592 763 LHS - gneiss  12.18 0.17 plateau reset 

 

 

 

 

 

Table 5. Pecube model parameters 

 

Parameter name Parameter range Units 
Parameter 

Symbol 
Reference 

     
Material Properties 

    

     
Thermal diffusivity 35 km2/Ma   

Radiogenic heat production 1.6 𝜇W/m3 A  

     

Pecube Model Parameters 
    

     
Mean annual surface temperature in the 
foreland 

25 °C Ts  

Atmospheric lapse rate 6 °C/km L Naito et al, 2006 

Basal Temperature 500-700 °C Tb  
India-Eurasia convergence rate 17 mm/yr conv Marechal et al., 2016 

Convergence partitioning Variable n/a 
Model time step Optimal years 

  
Horizontal node spacing 0.9 km 

  
Vertical node spacing (0-5km) 0.9 km 

  
Vertical node spacing (5-15km) 2.7 km 

  
Vertical node spacing (15-50km) 8.1 km 

  
Model domain 165x220x50 km 

  

Fault geometry Variable km (Xn, Zn) 

Singer et al., 2017, 

Hirschmiller et al., 

2014; Coutand et al., 

2014 and refs therein 

Crustal accretion (south boundary) Variable km CAdist  

Crustal accretion (north boundary) Variable km CAprox  

Crustal accretion vertical rate Variable mm/yr CA  

     

The bold entries indicate the free parameters that were inverted for in our numerical simulation 

http://www.geochron.org/
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Table 6. Inversion results 

 

Inversion name RAB01 References 

Number of models 21624  

Best misfit 0.45  

Tb (°C) 556 (500:700)  

(X8, Z8) (km) (177;35:40) 

(177;39.5) 

Coutand et al., 2014 

(X7, Z7) (km) (120:140;20:35) 

(120;33) 

 

(X6, Z6) (km) (90;20:25) 

(90;20) 

Coutand et el., 2014 

(X5, Z5) (km) (68;19.5) 
Singer et al., 2017 

(X4, Z4) (km) (58;12.5) 
Singer et al., 2017 

(X3, Z3) (km) (21;10) 
Singer et al., 2017 

(X2, Z2) (km) (7;4) 
Hirschmiller et al., 

2014 

(X1, E1) (km) (0;0.5) 
 

Running time (Ma) 15-0  

Stage 1 (15-11 Ma) 

Partitioning factor () 
0.25 

 

   
Stage 2 (11-4.4 Ma) 

Partitioning factor () 
0.7 (0.5:0.9) 

 

Stage 2 (4.4-0 Ma) 

Partitioning factor () 
0.9 (0.5:0.9) 

 

Transition time x (Ma) 4.4 (4:7)  

Vertical accretion rate 

(vCA) (mm/a) 
0.9 (0:3) 

 

   Vertical accretion zone 

south limit (CAdist) (km) 
59.9 (15:60) 

 

   
Vertical accretion zone 

north limit (CAprox) (km) 
141.1 (60:150) 

 

   
Values separated by colons indicate the investigated range of a free 
parameters and the lowest misfit values for each parameter are 
indicated in bold. 
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Figure 1 Geological map of eastern Bhutan with thermometry sample locations. White boxes 

are the samples for RSCM, the yellow boxes are the samples for the Ti-in-quartz 

thermobarometry, and white lozenges are vitrinite reflectance data (Grujic et al., 2018). 

Geology after Long et al. (2011b) modified by data in McQuarrie et al. (2019), Grujic et al. 

(2018), and our observations. The cross section AA’ in Figure 2 follows the latitude 90°32’E. 

B are lines of section by McQuarrie et al. (2019). Abbreviations are: MFT, Main Frontal 

Thrust; MBT, Main Boundary Thrust; ST, Shumar Thrust; MCT, Main Central Thrust; KT, 

Kakhtang Thrust; oSTD, Outer South Tibetan Detachment; iSTD, Inner South Tibetan 

Detachment. Insert in top left is the simplified geologic map of Bhutan and surroundings. 

Insert in lower left is the simplified tectonic map of the Himalaya and Tibet after Gansser 

(1983). 
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Figure 2 Cross section AA’ across the eastern Bhutan Himalaya. Temperatures (in °C) with 

blue circles were acquired by RSCM thermometry, and temperatures with yellow circles were 

acquired by traditional thermobarometry (Daniel et al., 2003; Kellett et al., 2010). Cross 

section after Long et al. (2011a), modified by data from Coutand et al. (2014) for the MHT 

geometry, Hirschmiller et al., (2010) for the geometry of the Sub-Himalaya, and our 

observations for the STD. The section across the LHS is therefore not retrodeformable as in 

the original form by Long et al. (2011a). Abbreviations are: MFT, Main Frontal Thrust; 

MBT, Main Boundary Thrust; ST, Shumar Thrust; MCT, Main Central Thrust; KT, Kakhtang 

Thrust; oSTD, Outer South Tibetan Detachment; iSTD, Inner South Tibetan Detachment. 
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Figure 3 Peak temperatures across the LHS of the eastern Bhutan Himalaya. (a) 

Temperatures obtained by RSCM (in blue) plotted with their structural distance from the 

MBT according to the cross section (Figure 2). Temperatures in green from the Siwaliks 

group sediments are vitrinite reflectance data (Grujic et al., 2018). Yellow: metamorphic peak 

temperatures in the Jaishidanda formation and at the base of the GHS in eastern Bhutan 

(Daniel et al., 2003). (b) RSCM temperatures in the internal duplex plotted with their 

structural distance from the MCT. RSCM data are reported with the 2 SEM (Table 1). All the 

structural distances from the main shear zones and faults were measured along the cross 

section of Long et al. (2011a). 
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Figure 4. Microstructure. (a and b) Equal-area lower hemisphere stereonet projections of 

quartz c-axis measurements. All specimens are oriented such that north is to the right and 

south is to the left such that a ‘sinistral’ asymmetry corresponds to a top-to-the-south sense of 

shear. The foliation for each specimen plots as a vertical east-west plane while the maximum 

extension direction plots as a horizontal east-west line. (b) With the exception of BH808, 

each specimen is contoured as probability density with 10 steps as implemented in the 

software program Orient (Vollmer, 2015); BH808 is contoured using 20 steps. Warmer colors 
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indicate increased probability. (c) Micrographs of representative microstructures. Sample 

BH507 micaschist shows deformed white mica containing graphite inclusions. Sample 

BH801 shows mica blades deformed by top-to-the south sense shear bands. Sample BH 57 

shows the microstructural evolution observed in all quartz mylonites. Larger grains were 

deformed by GBR recrystallisation The quartz microstructure, however, exhibits 120° triple 

junctions and straight or gently curved grain boundaries characteristic of foam or partial-foam 

microstructure. These grains are overprinted by SGR recrystallisation. Note the same size and 

orientation of subgrains in quartz porphyroclasts and of the new grains. Sample BH 812 is the 

structurally lowest. Note the progressive decrease of grain size from the highest (BH 801) to 

the lowest (BH812) consistent with the lower deformation temperatures. Scale bar on all 

micrograpahs is 1 mm. 
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Figure 5 Scanning electron microscope, cathodoluminescence (CL) patterns in the LHS 

quartzites showing brighter luminescent cores and darker rims for dynamically recrystallized 

grains. 
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Figure 6 Titania activities were calculated following the modeling approach of (Ashley & 

Law, 2015). Modeled aTiO2 for bulk composition and Ti isopleth projection, based on the 

calculated activity map. (a) Sample (BH 133, (b) sample BH 801, (c) Sample BH 810. The 

aTiO2 in a sample is estimated using the combination of Ti concentration in analytical spots 

and the independently estimated range of peak temperature and pressure. For samples with 

low bulk TiO2 (<0.05 wt. %), no chemical potentials could be calculated for there is no stable 

Ti-bearing phases in abundance (results in “NaN” values in the output). X-ray fluorescence 

bulk rock data are given in the Table S3 and the solution models considered in 

thermodynamic calculations are given in table S4 as supporting information. 
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Figure 7 Geological map of eastern Bhutan (same as Figure 1) showing the location of 

thermochronometric samples. Locations details and ages are listed in Table S6. 
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Figure 8. Thermo-kinematic model boundary conditions, free parameters (variables) and 

example thermal solution (parameters and variable ranges are given in Tables 5 and 6). 

Reported is the MHT geometry from our lowest misfit forward model. a) The kinematic 

model has Indo-Tibetan convergence partitioned on either side of the MHT, which is defined 

by a series of points along its length that may occupy any position within each corresponding 

search box. Point 1 (X1, Z1) is the modern surface trace of the MHT; Point 2 is from 

Hirschmiller et al. (2014), Points 3 to 5 from Singer et al. (2017), and points 6 and 8 from 

Coutand et al. (2014). ( b) Isotherms (thin white lines) show significant perturbations to the 

subsurface thermal field, mainly from advection through the velocity field (black arrows) 

generated by the kinematic model. Enhanced rock uplift simulates vertical crustal accretion 

(CA) at a rate 𝜈ca resulting from duplex development. Instantaneous exhumation rates 

correspond to the vertical component of the velocity vectors. Figure modified after Coutand 

et al. (2014) and Landry et al. (2016). For comparison indicated are the published MHT 

geometries in dashed lines: (l) Long et al. (2011) section AA’ in figure 1. (a) McQuarrie et al. 

(2019) model a; (b) McQuarrie et al. (2019) model b; (c) McQuarrie et al. (2019) model c. 

Line of section by McQuarrie et al. (2019) is indicated as B in figure 1. 
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Figure 9 Inversion results solving for 11 free parameters (see Table 5) with (a) Z6 versus Z8, 

(b) Z8 versus Tb, (c) Z7 versus X7, (d) 2 versus 3, (e) VCA versus Transition time, and (f) 

CAprox versus CAdist. Each dot represents a single forward model, and its color corresponds to 

the goodness of fit to the data (red (blue) dot = highest (lowest) misfit). The red star 

represents the parameter values obtained from the forward model with the lowest misfit. One-

dimensional posterior probability density functions (1-D PPDFs) derived from the NA 

appraisal are shown adjacent to the axes for each parameter. The red lines indicate parameter 

values for the lowest misfit forward model. Two-dimensional PPDFs (2-D PPDFs) are 

represented by lines overlying the scatter diagram where the solid black line is the 1σ 

confidence interval and the dashed line the 2σ confidence interval. 
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Figure 10. Comparison between observed (orange circles) and predicted (blue line, defined 

by 62 model points) thermochronological ages. (a) apatite U-Th/He ages; (b); apatite fission-

track ages (c) zircon U-Th/He ages; (d) muscovite 40Ar/39Ar ages. 
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Figure 11. Time-temperature-depth paths of model particles in the upper LHS, the base of 

the MCT shear zone. The paths are arranged from south (purple) to north (red), i.e., 

structurally from bottom to the top. Gray bars indicate the here calculated closure temperature 

range for the muscovite 40Ar/39Ar dates. 
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Figure 12 Deformation temperatures and metamorphic temperatures in the LHS of eastern 

Bhutan plot with the structural distance from the MCT. Peak Ti-in-quartz temperatures were 

calculated at 9 kbar according to thermobarometric estimates by Daniel et al. (2003). Peak Ti-

in-quartz temperatures for quartz grain cores are the maximum estimates; at lower titania 

activities the deformation temperatures would have been higher than the RSCM temperatures 

at the same locations. Deformation temperatures for quartz rims are minimum estimates. The 

corresponding pressure of 4 kbar is estimated from the published PT paths (Daniel et al., 

2003), the titania activity of 0.4 (consistent with a system buffered by Ti-bearing biotite) 

yields temperatures closest to the metamorphic temperature at 4 kbar. Higher activity would 

yield temperatures lower than the deformation temperatures estimated from the quartz 

microstructure and would be minimum estimates. RSCM data are reported with the 2 SEM 

(Table 1). Deformation temperatures determined by c-axis fabric opening-angle thermometry 

are reported with ± 50 °C calibration error. Symbols in faded colors are outlier temperatures 

that may explained by the role of water weakening and strain rate in controlling the opening 

angle (Law, 2014). 


