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ABSTRACT 

Neuromuscular disorders (NMD) are highly heterogenic with around 1000 reported different 
subtypes. Most are genetic in origin, and some 500 genes are currently identified to cause 
NMDs. Massively parallel sequencing (MPS) approaches have been widely used to increase 
the cost-effectiveness and diagnostic yield in the work-up of the genetic molecular diagnosis 
and to speed up the process. Copy number variants (CNVs), deletions and duplications larger 
than 50 base pairs, explain approximately 10% of the Mendelian disorders. No best practices 
pipelines have been developed yet for CNV analysis from MPS data. Therefore, the detection 
and verification of CNV findings has often involved complementary methods, such as array 
comparative genomic hybridization (array CGH), multiplex ligation-dependent probe 
amplification (MLPA) and quantitative PCR approaches. Recently, various CNV detection 
programs have been developed, but for widely different types of designated research settings, 
which complicates choosing the correct approach for NMDs. These individual programs have 
generally exhibited less than ideal sensitivity and specificity for CNV detection.  

Our aim was to develop a comprehensive pipeline for the detection and annotation of CNVs 
with high accuracy from targeted gene panel sequencing and whole exome sequencing (WES) 
data of patients with NMDs. Four different CNV analysis programs were chosen for this study: 
CoNIFER, XHMM, ExomeDepth and CODEX. The targeted gene panel MYOcap includes 349 
genes for myopathic disorders and MNDcap 302 genes for neurogenic disorders in their current 
panel versions. 2359 samples were sequenced with MYOcap, 942 samples with MNDcap and 
262 samples with WES. This included for the targeted gene panels 24 positive control samples 
with previously characterized CNVs and 31 negative control samples with certain genes 
verified to not have CNVs. A detection sensitivity of 100% and specificity of 100% were 
reached for these control samples. Previously undetected CNVs from MYOcap or MNDcap 
sequenced samples were verified as true positive detections in 36 cases with MLPA, PCR or 
array CGH, and eight CNVs were verified as false positive detections. These and the positive 
control samples were utilized in validation of a predictive logistic regression model. In silico 
CNV generation into MYOcap sequenced samples provided 18,677 specific and 3892 
unspecific CNV detections to initially train the model. The model was trained to differentiate 
true positive detections from false positive detections in order to increase the specificity of the 
CNV detection pipeline.  

The advantage of using four different CNV detection programs compared to using them 
individually, or with any other combination, was demonstrated by CNV detection sensitivity 
from the set of in silico CNVs. The predictive model with variables from all four programs 
provided the highest sensitivity (96.6%) and specificity (87.5%) for predicting CNV detections 
correctly, indicating an accuracy of 95.5% (95% CI 87.3–99.1%). The CNV detection pipeline 
together with the predictive model was validated for WES samples with control samples with 
235 previously characterized CNVs. For CNVs spanning at least three exons, the detection 
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sensitivity was 97.3% and the sensitivity of the predicative model was 99.3% after adjusting 
the model threshold for WES data.  

The CNV annotation platform cnvScan was expanded to contain the most recent CNV 
population databases as well as in-house CNV databases for all the sequenced sample sets. 
CNV detection results were filtered by < 1% frequency with reciprocal overlap of 90% in the 
common CNV population databases, with both it and < 5% frequency with 50% reciprocal 
overlap in the in-house CNV database, and by the true positive prediction with the model. These 
procedures significantly decreased the workload (with 3–13% of the original CNV detections 
preserved) in evaluating the CNVs further regarding clinical significance. The added value, i.e. 
the additional diagnostic yield from CNVs for both the targeted gene panel sequenced samples 
and WES samples was estimated to be 1.9%. Altogether 39 final genetic diagnoses were solved 
with these CNV findings. In addition, 18 patient cases had a likely pathogenic finding, and five 
had a heterozygous CNV likely pathogenic for a recessive disease without association to the 
patient’s phenotype. The clarified cases included six different DMD deletions or duplications 
causing dystrophinopathies. In three sequenced familial cases, the detected CNVs in 
CACNA1A, SGCD and TTN genes co-segregated with the disease. One case had two separate 
genetic diseases, tibial muscular dystrophy (TMD) and BMD, caused by the founder mutation 
FINmaj in the gene TTN and a deletion in DMD. Some of the solved cases had novel findings: 
the second ever reported large intragenic deletion in NEB causing dominant disease, and the 
first CNV, an intragenic deletion, in TIA1 in a patient diagnosed with Welander distal myopathy 
(WDM).  

Some of the genes associated with NMDs are challenging to analyze from short-read 
sequencing data due to homology or repetitive regions. An additional script was thus written to 
differentiate copy numbers of the highly homologous genes, SMN1 and SMN2. Two 
SMN1/SMN2 copy number 0/3 control cases were successfully recognized, and five cases were 
identified with a possible exon 7 conversion in SMN1 and a compatible spinal muscular atrophy 
phenotype. The latter findings were considered likely pathogenic and are awaiting further 
validation on the genomic level. Comparison of CNV detections within the in-house CNV 
database revealed divergences in the CNV detections within the triplicate repetitive region of 
NEB with potentially clinically significant changes. One array CGH validated change correlated 
well with the nemaline rod pathology observed in the patient.  

CNV analysis utilizing MPS data from targeted gene panels and WES samples provided 
increased diagnostic yield as reported also in other studies on NMDs. Our multi-algorithm and 
-platform approach decreased the workload in variant analysis and provided more insight into
the many difficult to analyze genomic regions involved in NMDs. In the future, whole genome
sequencing and long-read sequencing will likely provide higher resolution for CNV detections
and reveal an even wider spectrum of structural genomic variants, together with other emerging
comprehensive methods, such as optical mapping.
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TIIVISTELMÄ 

Lihastaudit ovat hyvin heterogeenisiä, ja niistä on kuvattu noin tuhat alatyyppiä. Suurin osa on 
perinnöllisiä tauteja, ja tähän mennessä on tunnistettu noin 500 eri lihastauteja aiheuttavaa 
geeniä. Massiivista rinnakkaissekvensointia (MPS) on käytetty laajalti perinnöllisten tautien 
diagnostisen prosessin nopeuttamiseksi, kustannustehokkuuden parantamiseksi ja lopullisen 
geeniperäisen diagnoosin saavuttamiseksi. Kopiolukumuutokset, yli 50 emäsparin deleetiot tai 
duplikaatiot, aiheuttavat arviolta 10 % Mendelin mukaisesti periytyvistä taudeista. 
Kopiolukumuutosten havaitsemiseen sekvensointidatasta ei ole vielä kehitetty yleisesti 
hyväksyttyjä ja suositeltuja käytänteitä. Kopiolukumuutosten havaitsemiseksi ja 
varmistamiseksi käytetäänkin usein täydentäviä menetelmiä, kuten vertaileva genominen 
hybridisaatio sirulla (aCGH), rinnastettu ligaatio-riippuvainen alukemonistus (MLPA) ja 
kvantitatiivinen PCR. Kopiolukumuutosten havaitsemiseen sekvensointidatasta on kehitetty 
useita työkaluja vaihtelevissa tutkimusasetelmissa, mikä hankaloittaa oikean lähestymistavan 
valitsemista lihastaudeille. Yksittäisten ohjelmien on todettu tuottavan usein epätäsmällisiä ja 
herkkyydeltään vaihtelevia tai riittämättömiä havaintoja.  

Tämän tutkimuksen tavoitteena oli kehittää kattava menetelmä kopiolukumuutosten 
havaitsemiseen ja annotointiin suurella tarkkuudella kohdennetun geenipaneelin ja koko 
eksomin (WES) sekvensointidatasta lihastautipotilailta. Tutkimukseen valittiin neljä 
kopiolukumuutosanalyysin työkalua: CoNIFER, XHMM, ExomeDepth ja CODEX. 
Kohdennetuista geenipaneeleista MYOcap kattaa 349 geeniä lihaspainotteisille taudeille ja 
MNDcap 302 hermopainotteisille taudeille nykyisissä paneeliversioissa. MYOcap:lla 
sekvensointiin 2359 näytettä, MNDcap:lla 942 ja WES:llä 262. Kohdennetuilla 
geenipaneeleilla sekvensointiin 24 positiivista kontrollinäytettä, joissa on aiemmin tunnistettu 
kopiolukumuutos, ja 31 negatiivista kontrollinäytettä, joissa tietyt geenit oli varmistettu 
kopiolukumuutoksia sisältämättömiksi. Kontrollinäytteille saavutettiin kehittämällämme 
menetelmällä 100 % havaitsemisherkkyys ja 100 % tarkkuus. MYOcap:lla tai MNDcap:lla 
sekvensoiduista näytteistä havaituista kopiolukumuutoksista 36 varmistettiin todellisiksi 
havainnoiksi MLPA:lla, PCR:lla tai aCGH:llä ja kahdeksan varmistettiin vääriksi positiivisiksi. 
Nämä ja positiiviset kontrollinäytteet sisällytettiin logistiseen regressioon perustuvan 
tilastollisen mallin validointiin. Erottelumallin kehitysvaiheessa MYOcap-sekvensoituihin 
näytteisiin tehtiin in silico kopiolukumuutoksia, mikä tuotti 18677 spesifiä ja 3892 ei-spesifiä 
kopiolukumuutoshavaintoa mallinnukseen. Malli kehitettiin erottelemaan todelliset 
kopiolukumuutoshavainnot vääristä positiivista havainnoista havaintomenetelmän tarkkuuden 
lisäämiseksi.  

Neljän ohjelman havaintojen käyttämisen paremmuus verrattuna ohjelmien käyttämiseen 
yksittäin tai muilla yhdistelmillä todennettiin in silico kopiolukumuutosten havaitsemisen 
herkkyyden tuloksilla. Erottelumalli, jossa oli muuttujia kaikilta neljältä ohjelmalta, saavutti 
korkeimman herkkyyden (96,6 %), täsmällisyyden (87,5 %) ja tarkkuuden 95,5 % (95 % CI 
87,3–99,1 %) kopiolukumuutosten erottelulle. Kopiolukumuutoshavaitsemismenetelmä ja 
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erottelumalli validoitiin WES-kontrollinäytteillä, joissa oli 235 aiemmin tunnistettua 
kopiolukumuutosta. Havaitsemisherkkyys kopiolukumuutoksille, jotka sisältävät vähintään 
kolme eksonia oli 97,3 %, ja erottelumallin herkkyys oli 99,3 % kunhan mallin arviointiraja oli 
uudelleensäädetty WES-datalle. 

Kopiolukumuutosten annotaatiotyökalu cnvScan laajennettiin sisältämään uusimmat 
kopiolukumuutospopulaatiotietokannat ja talonsisäinen kopiolukumuutostietokanta kaikista 
sekvensointinäytejoukoista. Alkuperäiset kopiolukumuutoshavainnot neljältä ohjelmalta 
suodatettiin 1 % enimmäisyleisyyden ja vastavuoroisen 90 % muutoksen kattamisen 
vaatimuksella yleisissä kopiolukumuutospopulaatiotietokannoissa, tällä sekä 5 % 
enimmäisyleisyyden ja vastavuoroisen 50 % muutoksen kattamisen vaatimuksella 
talonsisäisessä tietokannassa, ja lisäksi erottelumallilla todellisiin havaintoihin. Nämä 
toimenpiteet vähensivät merkittävästi työmäärää kliinisen merkityksen arvioinnille 
kopiolukumuutoksille säästäen 3–13 % alkuperäisistä havainnoista.  

Lisääntyneiden diagnoosien määrä kopiolukumuutoshavaintojen myötä sekä kohdennetuilla 
geenipaneeleilla että WES-sekvensoiduilla näytteillä oli noin 1,9 %. 
Kopiolukumuutoshavainnoilla saavutettiin 39 lopullista geneettistä diagnoosia potilaille. 
Lisäksi 18:lla tutkitulla oli todennäköisesti patogeeninen löydös, ja viidellä tutkitulla havaittiin 
heterotsygoottinen kopiolukumuutos, jonka arvioitiin olevan patogeeninen peittyvästi 
periytyvän taudin variantti ilman yhteyttä potilaan taudinkuvaan. Selvitettyihin tapauksiin 
sisältyi kuusi eri DMD-geenissä olevaa deleetiota tai duplikaatiota, jotka aiheuttivat 
dystrofinopatioita. Kolme potilasta, joilla oli oireisia perheenjäseniä, sekvensointiin 
perhetapauksina, ja havaitut kopiolukumuutokset geeneissä CACNA1A, SGCD ja TTN 
segregoituivat yhdessä taudin kanssa. Yhdellä tutkitulla havaittiin kaksi perinnöllistä tautia, 
tibiaalinen lihasdystrofia (TMD) ja BMD, joiden aiheuttajina olivat perustajamutaatio FINmaj 
TTN-geenissä ja deleetio DMD-geenissä. Osalla selvitetyistä tapauksista oli ennen 
havaitsemattomia löydöksiä: NEB-geenissä toinen koskaan raportoitu iso geeninsisäinen 
deleetio, joka aiheuttaa vallitsevasti periytyvän taudin, sekä TIA1-geenin geeninsisäinen 
deleetio, joka on ensimmäinen havaittu kopiolukumuutos TIA1:ssä Welanderin 
distaalimyopatiaa (WDM) sairastavalla potilaalla. 

Jotkin geeneistä, jotka on liitetty lihastauteihin, ovat haastavia analysoitavia lyhytlukuisesta 
sekvensointidatasta homologian ja toistojaksojen takia. Hyvin homologisille geeneille SMN1 ja 
SMN2 kehitettiin erillinen ohjelma erottelemaan geenien kopiolukumäärät. Kaksi 
kontrollitapausta tunnistettiin onnistuneesti SMN1 ja SMN2 kopiolukumäärillä 0 ja 3, ja lisäksi 
tunnistettiin viisi tapausta, joilla on mahdollisesti eksonin 7 konversio SMN1:ssä ja 
yhteensopiva spinaalinen lihasatrofia. Jälkimmäiset löydökset luokiteltiin todennäköisesti 
patogeeniseksi, ja ne odottavat genomista lisävarmistusta. Kopiolukumuutoshavaintojen 
vertailu NEB-geenin triplikaattitoistoalueella talonsisäisessä tietokannassa paljasti 
eroavaisuuksia, joilla on potentiaalisesti kliinisesti merkitystä. Yksi aCGH:llä varmistettu 
muutos korreloi selkeästi nemaliinisauvakappalepatologian kanssa, joka potilaalla oli havaittu. 
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Kopiolukumuutoshavainnointi käyttäen sekvensointidataa kohdennetusta geenipaneelista tai 
WES-näytteistä lisäsi diagnoosien määrää kuten aiemmissa vastaavissa tutkimuksissa 
lihastaudeille. Käyttämämme usean algoritmin ja alustan lähestymistapa vähensi 
varianttianalyysin työmäärää ja tarjosi lisää tietoa useista hankalasti analysoitavista genomisista 
alueista, jotka on liitetty lihastauteihin. Tulevaisuudessa koko genomin sekvensointi ja 
pitkälukuinen sekvensointi tarjonnevat paremman resoluution kopiolukumuutoksille ja 
paljastavat enemmän rakenteellisia genomin muutoksia yhdessä muiden kehitteillä olevien 
kattavien menetelmien kanssa, kuten optinen kartoitus. 
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1 INTRODUCTION 

Massively parallel sequencing (MPS) has enabled surveying of the human genome at an 
unprecedented scale and throughput. This method with different applications has brought more 
insight on the genomic organization, function and variance both in health and disease (Goodwin 
et al., 2016). Most of all, MPS methods are becoming the standard for the diagnosis of genetic 
diseases and for research on new genetic defects and disorders (Lappalainen et al., 2019). 

The most common variant types in the human genome are single nucleotide variants and small 
insertions and deletions sized 1–1000 base pairs (bp) (1000 Genomes Project Consortium et al., 
2015; Mills et al., 2006). Structural variants are much less numerous but encompass genomic 
sequence more by multitudes compared to the smaller variation (Chaisson, M. J. P. et al., 2019). 
Structural variants include copy neutral events, such as translocations and inversions, and copy 
number variable changes with deletions and duplications, which can span from 50 bp to 
aneuploidies of whole chromosomes (Harel and Lupski, 2018). Structural variants have been 
recognized as disease-causing genetic entities (Stankiewicz and Lupski, 2010). Diseases 
associated with structural variation include multifactorial disorders, such as schizophrenia and 
autism (Stefansson et al., 2008; Krumm et al., 2015) and various Mendelian disorders (Truty et 
al., 2019; Pfundt et al., 2017). Approximately 10% of Mendelian disorders are estimated to be 
explained by copy number variants (CNV) (Truty et al., 2019). The first comprehensive 
databases for population-wide structural variation have recently been released (Collins et al., 
2020; Ruderfer et al., 2016). 

Neuromuscular disorders are predominantly genetic in origin and one of the most 
heterogeneous group of diseases (Bonne et al., 2018). With overlapping phenotypes and varying 
disease presentations, discovery of the molecular genetic defect is often required for achieving 
a definitive diagnosis (Laing, 2012). MPS approaches have been especially pivotal in advancing 
the diagnostics of such diseases with unambiguous phenotypic presentations and genetic 
backgrounds. They have both increased the diagnostic yield in neuromuscular disorders and 
decreased costs and workload (Bacquet et al., 2018; Ankala et al., 2015). Some well-known 
pathogenic CNVs have been documented for neuromuscular disorders, such as the reciprocal 
deletion and duplication of the whole gene PMP22 (Chance et al., 1993; Lupski et al., 1991). 
CNVs affecting other genes have also been confirmed to cause neuromuscular disorders (Kiiski, 
K. et al., 2016; Bacquet et al., 2018; Hiraide et al., 2019). However, no conclusive
recommendations for best practices for CNV analysis from MPS data have been achieved.

Currently, multiple CNV detection tools for MPS data are available for widely differing 
settings, and they commonly suffer from low sensitivity and specificity (Kosugi et al., 2019; 
Roca et al., 2019). Therefore, CNV analysis has often been conducted with complementary 
methods to MPS methods or neglected completely (Nishikawa et al., 2017; Dohrn et al., 2017). 
However, only accurate molecular genetic diagnosis allows for correct management, genetic
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counseling and prognosis for the patients, and in some cases is the basis for direct therapeutic 
interventions (Carter et al., 2018). CNV analysis from MPS data requires extensive procedures 
for validation and improvement in accuracy in order to be applied in a routine genetic diagnostic 
setting.
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2 REVIEW OF THE LITERATURE 
2.1 Structural genomic variation 
2.1.1 Extent of genomic variation 
The most frequent variants in the human genome are single nucleotide polymorphisms (SNP), 
a difference in one single DNA nucleotide (or base pair, bp) compared to the reference genome. 
SNPs occur with an average of 3.5 to 4.5 million per genome (1000 Genomes Project 
Consortium et al., 2015; Lappalainen et al., 2019). The next most frequent are small insertions 
and deletions (indels, variants sized 1–1000 bp) with an average of 550,000 to 625,000 per 
genome in different populations (1000 Genomes Project Consortium et al., 2015; Mills et al., 
2006). A typical genome contains approximately 27,000 distinct structural variants, but their 
estimated impact on genomic sequence is higher by multiple orders of magnitude as compared 
to SNPs (1000 Genomes Project Consortium et al., 2015; Lappalainen et al., 2019; Chaisson, 
M. J. P. et al., 2019). Structural variants include copy number variable events (copy number
variant, CNV), such as deletions, tandem duplications, dispersed duplications, and higher-grade
amplifications (triplications, quadruplications, etc.), as well as novel insertions. Structural
variation can also occur as copy number neutral events, which lead to changes in genomic
segment orientation or localization without associated gain or loss of DNA. These variants
include inversions, translocations, and complex combinations of the previous (Carvalho, C. M.
and Lupski, 2016; Redin et al., 2017; Hurles et al., 2008). The total differences from the human
reference genome are estimated to originate by 0.1% for the SNPs and by 0.8–1.2% for the
CNVs and indels, the latter having greater genomic content regardless of their lower frequencies
(Pang et al., 2010; Conrad et al., 2010; Redon et al., 2006).

The first genomic structural variants detected were at minimum 3 mega base pairs (Mb, 
1,000,000 bp) in size, such as aneuploidies, some rearrangements and fragile sites (small breaks 
or constrictions in a chromosome visible under specific cell-culture conditions) (Feuk et al., 
2006). The improvements in studying elongated prometaphase chromosomes allowed the 
observation of more discrete structural variants, such as reciprocal translocations, deletions, 
duplications, insertions and inversions (Feuk et al., 2006). Studies by Sebat et al. and Iafrate et 
al. during 2004 provided the first large scale maps for CNV prevalence globally in the human 
genome, and others followed (Iafrate et al., 2004; Sebat et al., 2004; Tuzun et al., 2005). For 
the duration of almost the whole first decade of large scale CNV studies, CNVs were defined 
to be at least 1 kilo base pairs (kb, 1,000 bp) in size (Conrad et al., 2010; Korbel et al., 2007; 
Hwang et al., 2015). Then the detection developed enough to discern smaller structural variation 
(Mills et al., 2011; Collins et al., 2020). Consequently, the CNV size scale is currently defined 
as varying from the size of an average exon, 50 to 200 bp, to Mbs of DNA (Carvalho, C. M. 
and Lupski, 2016; Conrad et al., 2010; Alkan et al., 2011; Collins et al., 2020).  

Estimations on CNV content in the human genome have varied depending on the number of 
subjects and ethnicities included in the studies and the CNV detection methods used (Redon et
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al., 2006; Itsara et al., 2009; Conrad et al., 2010; Iafrate et al., 2004; Feuk et al., 2006; Sebat et 
al., 2004; Zarrei et al., 2015; Chaisson, M. J. P. et al., 2019; Collins et al., 2020). According to 
some recent estimations, 4.8 to 9.5% of the genome is affected by CNVs (Zarrei et al., 2015). 
The amount and types of CNVs vary between populations; some CNVs are entirely unique for 
an individual, whereas some are common polymorphisms shared across populations (Redon et 
al., 2006; Itsara et al., 2009; Mills et al., 2011; Conrad et al., 2010; Sebat et al., 2004). According 
to the most recent comprehensive studies for structural variant prevalence, most structural 
variants are less than 1 kb in size with a median of 331 bp, and rare with approximately 92% of 
the detected variants presenting with less than 1% frequency (Chaisson, M. J. et al., 2015; 
Collins et al., 2020; Chaisson, M. J. P. et al., 2019).  

2.1.2 Formation mechanisms of structural variation 
The locus-specific mutation frequency is orders of magnitude greater for structural variation 
compared to point mutations, especially during meiosis (Hastings, Lupski et al., 2009). A recent 
rough estimation for de novo structural variation emergence is 0.29 variants per generation 
(Collins et al., 2020). Compared to SNPs and indels, the formation of structural variants requires 
disruption of the DNA sugar-phosphate backbone (Carvalho, C. M. and Lupski, 2016). 
Genomic regions surrounding the breakpoints of different structural variant types have only the 
degree of conservation in common, mirroring their differing origins (Abyzov et al., 2015). 

Copy number variable regions are significantly associated with segmental duplications (SD) 
and some other types of repetitive genomic sequences (Redon et al., 2006; Itsara et al., 2009; 
Hastings, Lupski et al., 2009; Bailey et al., 2002). Over 50% of the human genome consists of 
repeat sequences, which include mobile elements (Alu-processed pseudogenes being the most 
prevalent), simple sequence repeats, tandem repeat sequences (predominantly in centromeres, 
telomeres and ribosomal gene clusters), and low-copy repeats (LCR), which include SDs 
(Carvalho, C. M. and Lupski, 2016; Lander et al., 2001; Stankiewicz and Lupski, 2002b). 
Definitions for the different classes of repetitive variants have remained arbitrary and 
overlapping (Lappalainen et al., 2019). Short Tandem Repeats (STR), or microsatellites, are 
consecutive expansions of repeat units of 1 to 6 bp (Dashnow et al., 2018; Lappalainen et al., 
2019). Variable Number Tandem Repeats (VNTR), or minisatellites, have 6 to 100 bp repeating 
units (Bakhtiari et al., 2018; Lappalainen et al., 2019). Both VNTRs and STRs cover 
approximately 3% of the human genome (Dashnow et al., 2018; Bakhtiari et al., 2018). 

LCRs share over 97% sequence identity and typically occur only twice or a few times as units 
of 10–400 kb in the highly complex regions of the genome (Stankiewicz and Lupski, 2002b). 
LCRs can contain single or multiple genes, gene fragments, pseudogenes, endogenous 
retroviral sequences or other paralogous fragments of direct or inversely oriented sequences 
(Bailey et al., 2002; Harel and Lupski, 2018; Stankiewicz and Lupski, 2002a). SDs share at 
least 90% sequence identity and are at least 1 kb in length (Carvalho, C. M. and Lupski, 2016; 
Bailey et al., 2002). LCRs and SDs themselves are often present in variable copy number in 
addition to participating in their formation, as discussed further, and can thus be counted as 
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CNVs (Feuk et al., 2006; Iafrate et al., 2004; Stankiewicz and Lupski, 2010). Transposable 
elements can also form structural variants; most of the mobile element insertions are Alu 
elements of 300 bp or L1/LINEs of 6 kb (Mills et al., 2011; Abyzov et al., 2015). 

The relative orientation, size, degree of homology and distribution of local repeat and other 
sequences help predict the types of structural variants the region is susceptible to, and their 
possible formation mechanisms (Carvalho, C. M. and Lupski, 2016; Stankiewicz and Lupski, 
2002a). DNA repair and replication mechanisms, which occasionally lead to structural variants, 
leave mutational signatures behind on the genomic regions surrounding the breakpoints. These 
have been studied to explain the complex array of polymorphic human structural variants and 
their origin mechanisms (Abyzov et al., 2015; Austin-Tse et al., 2018). For example, the 
formation of duplications seems to be more sequence dependent than deletions with more 
breakpoint-associated sequence motifs (Conrad et al., 2010). The emergence rate for 
triplications from duplications is over 100X higher than the rate of de novo duplications, which 
means that an existing duplication significantly predisposes the region to further amplifications 
(Liu, P. et al., 2014). Inverted duplications tend to participate in complex rearrangements, which 
occur also more often in tandem (Newman et al., 2015). Generally, different types of structural 
variants have different meiotic versus mitotic risks to form. The timing of replication is also 
associated with the mechanisms, which could generate the different rearrangements (Carvalho, 
C. M. and Lupski, 2016; Abyzov et al., 2015). As an example, recurrent CNVs seem to be more
likely produced on regions of early replication, whereas non-recurrent CNVs occur more
frequently on regions replicated later (Carvalho, C. M. et al., 2015).

2.1.2.1 Recurrent structural variation 

Recurrent structural variants can be detected with the same size, breakpoints and genomic 
content in different, unrelated individuals (Figure 1) (Carvalho, C. M. and Lupski, 2016; 
Austin-Tse et al., 2018). These variants tend to have long stretches of homology at their 
breakpoint junctions provided by long highly identical glancing interspersed paralogous 
repeats, most often LCRs. These elements provide homology for the mechanisms producing 
the structural variants (Hastings, Lupski et al., 2009; Carvalho, C. M. and Lupski, 2016). Early 
on it was recognized that LCRs predispose genomic regions to frequent genomic 
rearrangements (Lupski, 1998; Stankiewicz and Lupski, 2002a). 

Structural aberrations can originate from processes related to DNA recombination, replication 
or repair, and the recombination-based changes were the first to be observed (Carvalho, C. M. 
and Lupski, 2016; Stankiewicz and Lupski, 2002a). Homologous recombination is normally 
used in the repair of double-strand DNA breaks or broken replication forks with single double-
strand ends. Homologous recombination takes also part in ordered segregation and allelic 
recombination in meiosis (Hastings, Lupski et al., 2009). Homologous recombination is the 
basis for accurate DNA repair with a requirement for as much as 300 bp of homology and the 
sister chromatid as the preferred recombination pair (Hastings, Lupski et al., 2009).  
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In non-allelic homologous recombination (NAHR), a non-allelic homologous segment is used 
as template. This leads to a loss of heterozygosity (LOH) without change in the quantity of the 
involved genomic sequence. If the homologous sequence originates from different 
chromosomal location, a translocation, inversion, duplication or deletion can be the outcome 
(Stankiewicz and Lupski, 2002b; Hastings, Lupski et al., 2009). NAHR requires substrates with 
near-perfect homology, such as LCRs, SDs or repetitive sequences, and also with suitable 
length and within a certain distance (Stankiewicz and Lupski, 2002a; Abyzov et al., 2015). A 
typical formation mechanism for recurrent structural variation is NAHR between 
intrachromosomal (or occasionally interchromosomal) at least 10 kb LCRs within 10 Mb 
distance (Carvalho, C. M. and Lupski, 2016; Stankiewicz and Lupski, 2002a; Stankiewicz and 
Lupski, 2010). Therefore, NAHR occurs mostly near telomeres and recombination hotspots, 
where susceptible LCRs misalign during mitosis or meiosis (Mills et al., 2011). Most recurrent 
CNVs seem to be produced during meiosis through NAHR (Watson et al., 2014). 

Generally, NAHR forms recurrent rearrangements with clustered breakpoints and leaves behind 
long homologous sequences at breakpoints (Carvalho, C. M. and Lupski, 2016; Stankiewicz 
and Lupski, 2002a; Abyzov et al., 2015). NAHR tends to produce longer CNVs compared to 
other mechanisms (Redon et al., 2006; Conrad et al., 2010). Depending on whether the repeats 
seeding the rearrangement are located on the same chromatid or on different chromatids or 
chromosomes, and the orientation of the repeats, NAHR can lead to deletions, duplications or 
inversions of the intervening genome (Lupski, 1998; Hastings, Ira et al., 2009; Stankiewicz and 
Lupski, 2002a). NAHR can also generate arrays of tandem duplications with varying sizes, and 
reciprocal deletions and duplications (Redon et al., 2006). The regions with LCRs or SDs were 
early on linked to recurrent genetic diseases, such as microdeletion and microduplication 
syndromes with more than 20 different currently recognized (Carvalho, C. M. and Lupski, 
2016; Bailey et al., 2002; Watson et al., 2014). 

Figure 1: Recurrent and non-recurrent rearrangements. In recurrent rearrangements, the breakpoints of the variants 
are grouped in the same genomic location, while non-recurrent rearrangements have more varied breakpoint 
locations. Recurrent rearrangements are often mediated by flanking LCRs, the orientation of which affects whether 
deletions, duplications or inversions are formed. (All figures in the Review of the literature are made by Salla 
Välipakka and created with BioRender.com.) 
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2.1.2.2 Non-recurrent and complex structural variation 

Non-recurrent rearrangements are unique in size and genomic content. Nevertheless, 
individuals with overlapping clinical phenotypes may be found to have the same dosage 
sensitive gene or genes affected by structural variation in the smallest region of overlap, 
representing a breakpoint grouping region in these copy number variable regions (Carvalho, C. 
M. and Lupski, 2016; Zarrei et al., 2015). Most non-recurrent rearrangements tend to have
either simple blunt ends or microhomologies of < 35 bp at their breakpoints, and they can be
considerably complex in structure (Carvalho, C. M. and Lupski, 2016; Lee, J. A. et al., 2007;
Hastings, Lupski et al., 2009). These junctions can display a mixture of amplified, inversed,
deleted and unchanged sequence (Hastings, Lupski et al., 2009).

The mechanisms forming non-recurrent structural variants include both non-homologous end 
joining (NHEJ) used in the repair of DNA, and replication related mechanisms, such as break-
induced replication (BIR), microhomology-mediated break-induced replication (MMBIR), and 
fork stalling and template switching (FoSTeS) (Carvalho, C. M. and Lupski, 2016; Harel and 
Lupski, 2018; Abyzov et al., 2015). NAHR and NHEJ are both recombination-based 
mechanisms occasionally leading to rearrangements, with NHEJ accounting for the majority 
(Hastings, Lupski et al., 2009). According to one study, NHEJ was involved in the formation 
of 56% of structural variants, retrotransposition 30% and NAHR 14% (Korbel et al., 2007), but 
older studies may be biased because of limited detection of structural variants, which will be 
discussed later.  

The DNA replication-based mechanisms require at least microhomology as a primer for 
replication. NHEJ can utilize Alu-elements with notably less sequence identity (as low as 75%) 
as compared to SDs (Carvalho, C. M. and Lupski, 2016; Lee, J. A. et al., 2007). If the 
microhomology originates from another chromosome, then deletions, duplications, inversions 
or translocations can be formed. Annealing with the homologous chromosome rather than the 
sister chromatid leads to LOH for the affected region (Hastings, Lupski et al., 2009). NHEJ is 
also utilized in repairing double-stranded DNA breaks alternatively with microhomology-
mediated end-joining mechanisms (MMEJ), which can function on sites without extensive 
sequence homology (Abyzov et al., 2015; Hastings, Lupski et al., 2009). NHEJ can lead to 
small indels of 1 to 4 bp, while MMEJ needs homology of 5 to 25 bp and can lead to larger 
deletions between stretches with microhomology (Hastings, Lupski et al., 2009). NHEJ can 
either generate blunt CNV breakpoints or leave short homology or small insertions or deletions 
of random nucleotides at the breakpoints, much like MMEJ (Carvalho, C. M. and Lupski, 2016; 
Abyzov et al., 2015). 

The breakpoints of non-recurrent rearrangements tend to occur in LCR-rich regions with 
complex genetic architecture (Hastings, Lupski et al., 2009; Stankiewicz et al., 2003). 
Therefore, LCRs are thought to mediate recurrent rearrangements by NAHR and also stimulate 
non-recurrent rearrangements by offering homology or microhomology for the DNA repair-
based mechanisms (Liu, P. et al., 2011; Stankiewicz et al., 2003). The occurrence of non-
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recurrent CNVs close to LCRs could also be explained by the tendency of these regions to form 
secondary DNA structures, leading to replication fork stalling or collapse, which may provide 
single-stranded regions as starting points for some of the formation mechanisms (Hastings, 
Lupski et al., 2009; Carvalho, C. M. and Lupski, 2016). In template switching, the single-
stranded DNA template is switched during replication to either another template with 
microhomology within the same replication fork, or to a template originating from a different 
replication fork (short and long-distance template switch) (Carvalho, C. M. and Lupski, 2016). 
Template switching occurs more frequently within a chromosome, but interchromosomal 
rearrangements can occur as well (Carvalho, C. M. and Lupski, 2016). Generally, these 
disturbances in replication can also lead to the switching of replicative polymerases to more 
efficient but error-prone low-processivity polymerases, which in turn can generate structural 
variation (Carvalho, C. M. and Lupski, 2016).  

In BIR, homologous recombination is utilized to repair single-end double-stranded DNA breaks 
left behind by collapsed or broken replication forks (Hastings, Lupski et al., 2009; Carvalho, C. 
M. and Lupski, 2016). Sometimes a replication fork collapses or stalls under stress without the
proteins or long enough homology required by BIR. Additionally, a collapsed replication fork
may leave only one single-stranded DNA end, in which case NHEJ with the requirement for
double-stranded breaks cannot function either (Hastings, Lupski et al., 2009). In these cases,
microhomology-mediated BIR is used instead. In this process, the 3’ end from the collapsed
fork anneals with any single-stranded template with microhomology, initiating DNA synthesis
and a low-processivity replication fork anew (Hastings, Lupski et al., 2009; Carvalho, C. M.
and Lupski, 2016). Depending on whether the new fork is located upstream or downstream,
deletion or duplication occurs, and whether the leading or lagging strand is used as a template
decides the orientation of the incorporated fragment (Stankiewicz and Lupski, 2010; Hastings,
Ira et al., 2009).

MMBIR may be the main mechanism for the formation of non-recurrent structural variation as 
it can lead to multiple genomic consequences: deletions, inversions and translocations, and in 
particular duplications, triplications and complex rearrangements (structural variants with more 
than two breakpoint junctions), as well as segmental uniparental disomy, or LOH (Hastings, 
Lupski et al., 2009; Carvalho, C. M. and Lupski, 2016; Liu, P. et al., 2011; Hastings, Ira et al., 
2009). Since MMBIR has less stringent requirements for homology in recombination compared 
to BIR, it leads more probably to LOH (Carvalho, C. M. et al., 2015; Hastings, Ira et al., 2009). 
MMBIR can also explain the frequently observed microhomology and inserted short segments 
at non-recurrent structural variation breakpoints, since the template switch can occur multiple 
times (Hastings, Lupski et al., 2009; Carvalho, C. M. and Lupski, 2016; Liu, P. et al., 2011; 
Hastings, Ira et al., 2009).  

The replication-error mechanism FoSTeS produces non-recurrent complex rearrangements in a 
replication-based manner. The replication fork can stall at DNA lesions or at closely located 
LCRs and jump back and forth on the genomic length. Skipping of segments leads to deletions 
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and re-replicating them generates duplications (Lee, J. A. et al., 2007). This jumping may also 
target a single-stranded DNA with microhomology on a nearby replication fork to reinitiate 
DNA synthesis (Stankiewicz and Lupski, 2010). Thus, FoSTeS can also generate deletions with 
micro-insertions originating from elsewhere in the genome (Lee, J. A. et al., 2007). These 
events may mix and occur multiple times in the same region during a single replication event, 
thus generating complex structural variants with deletions and/or duplications interrupted by 
normal sequence or triplicated segments (Lee, J. A. et al., 2007; Stankiewicz and Lupski, 2010; 
Liu, P. et al., 2011). FoSTeS occurs especially at lagging-strand template, sites of frequent 
transcription, and at sites prone to secondary DNA structures (Hastings, Lupski et al., 2009). 
Furthermore, FoSTeS and MMBIR can both participate in forming LCRs themselves, which 
predisposes genomic regions to structural changes, invoking a cycle to form complex 
rearrangements (Stankiewicz and Lupski, 2010; Hastings, Lupski et al., 2009).  

Chromothripsis, a chromosome-shattering event leading to numerous genomic rearrangements 
with dozens to hundreds of breakpoints, was first described in cancers (Weischenfeldt et al., 
2013; Liu, P. et al., 2011). These rearrangements can include deletions, duplications, 
triplications, translocations and inversions (Liu, P. et al., 2011). Chromothripsis affects 
typically one or two chromosomes (Turajlic et al., 2019). A constitutionally acquired similar 
event, chromoanasynthesis (chromosome re-assortment) has been described as well (Liu, P. et 
al., 2011; Pellestor and Gatinois, 2018). Both of these mechanisms are estimated to be based 
on similar events with error-prone DNA repair on the cellular level (Liu, P. et al., 2011). 
Chromothripsis seems to be driven by random events of chromosomal shattering stitched 
together by NHEJ, while chromoanasynthesis is thought to be based on a replication-based 
process involving FoSTeS or MMBIR (Pellestor and Gatinois, 2018). The rearrangements 
appear to be formed in one single event, since the multiple rearrangements are localized on a 
certain genomic region usually involving only one chromosome. The individual rearrangements 
are also present at equal amounts, rather than mosaic, which would hint towards the 
rearrangements appearing at different times (Liu, P. et al., 2011).  

DNA repair-mediated non-recurrent rearrangements are more likely to be formed during 
mitosis, and therefore contribute more to diseases arising from somatic mutations, such as 
cancers (Carvalho, C. M. and Lupski, 2016). Generally, genomic rearrangements in genomic 
disorders are less complex compared to the ones in cancer. This probably reflects different 
selective forces, since organisms would not survive large-scale and widespread genomic 
changes occurring early in development (Liu, P. et al., 2011). 

The different types of structural variants discussed above are illustrated in Figure 2. 
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Figure 2: Different types of structural variants. Structural variants include unbalanced copy number variable 
events, such as deletions and duplications, and balanced events, such as translocations and inversions. 

2.1.3 Impact of structural variation 
One of the first disorders studied in depth and revealed to be caused predominantly by CNVs 
was Charcot-Marie-Tooth disease type 1A (CMT1A) caused by duplication of the gene PMP22 
(Lupski et al., 1991; Raeymaekers et al., 1991). CMT1A is an autosomal dominant progressive 
demyelinating peripheral neuropathy characterized by weakness and atrophy of distal limb 
muscles (Raeymaekers et al., 1991). Soon following this, hereditary neuropathy with liability 
to pressure palsies (HNPP) was found to be caused by a deletion encompassing the same gene. 
HNPP causes episodic focal pressure neuropathies with mild disability and occasional 
peripheral neuropathy manifestations (Chance et al., 1993). The deletion and tandem 
duplication that cause these disorders were discovered to be recurrent reciprocal recombination 
products on a genomic region, where flanking CMT1A-REP repeats serve as substrates for 
NAHR (Pentao et al., 1992; Reiter et al., 1998; Stankiewicz and Lupski, 2002b). Following 
these findings, genomic disorders were defined in a seminal paper as entities originating from 
changes in the genome architecture leading to a loss or gain or disruption of integrity of a gene 
or genes with dosage sensitivity (Lupski, 1998). This description has been expanded during the 
following two decades of studying structural variants and their effects on phenotype and 
involvement in genetic disorders (Stankiewicz and Lupski, 2010; Harel and Lupski, 2018; 
Collins et al., 2020). 

2.1.3.1 Evolutionary point of view 

According to genome-wide surveys, most structural variants seem to be neutral from an 
evolutionary point of view (Hurles et al., 2008). Nevertheless, their distribution is unequal 
throughout the genome. Namely, structural variants are biased away from genes and other 
functional elements (Redon et al., 2006). CNVs are more pronouncedly located in 
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pericentromeric and subtelomeric regions (Bailey et al., 2002; Schuster-Bockler et al., 2010; 
Collins et al., 2020). For example, changes in the repeat size of VNTRs lead most commonly 
to small structural variants packed at centromeres (Mills et al., 2011; Collins et al., 2020). 
Additionally, ultraconserved elements in all mammalian genomes have less structural variants 
(Zarrei et al., 2015). Deletions seem to be more biased away from genes as well as 
evolutionarily conserved genomic regions than duplications (Redon et al., 2006; Abyzov et al., 
2015). Genes involved in disorders and genes with high genic intolerance score and 
haploinsufficiency index (HI) have less structural variants compared to others (Zarrei et al., 
2015).  

For haploinsufficient genes, a decrease in gene dosage is detrimental, whereas dosage sensitive 
genes are affected adversely by either an increase or a decrease of the dosage (Weischenfeldt 
et al., 2013). The HI score is based on the integration of genomic, evolutionary and functional 
information (Huang et al., 2010). Genes with high genic intolerance score are statistically 
depleted of protein sequence affecting (non-synonymous) variation (Zarrei et al., 2015; Lek et 
al., 2016). Genic intolerance score has also been calculated separately for CNVs and provides 
similar values both for deletions and duplications (Ruderfer et al., 2016; Collins et al., 2020). 
Genic intolerance score for CNVs correlates with the HI calculated for SNVs and indels, and 
the correlation is stronger for deletions than duplications (Ruderfer et al., 2016; Lek et al., 2016; 
Collins et al., 2020).  

Haploinsufficient genes have higher expression levels during early development, more 
interaction partners, and statistically higher association with dominant diseases than other genes 
(Huang et al., 2010). Genes with intolerance for LOF mutations are also generally more 
expressed and present more widely in different tissues (Karczewski et al., 2020). Additionally, 
constitutive regulatory elements in non-coding regions are more dosage sensitive than cell-type 
specific regulators (Abel et al., 2018). Evidently, structural variation is biased away from genes 
involved in protein phosphorylation, signal transduction, protein degradation, transcriptional 
machinery and regulation, intracellular transport, development, differentiation and cell cycle 
(Zarrei et al., 2015). Purifying selection acts more strongly against deletions than duplications, 
which could also explain the tendency of deletions to be shorter than duplications (Itsara et al., 
2009; Redon et al., 2006; Hastings, Lupski et al., 2009; Conrad et al., 2010; Ruderfer et al., 
2016). Individuals have less deletions compared to duplications in their genome, especially on 
whole gene level (Truty et al., 2019; Ruderfer et al., 2016). Benign CNVs tend to be 
substantially shorter compared to pathogenic, and even when corrected for length, pathogenic 
CNVs include more genes than benign (Rice and McLysaght, 2017).  

On the contrary, genes with functions in immune responses, responses to biotic stimuli such as 
olfactory receptors, drug and steroid metabolism, starch and sucrose metabolism, pregnancy-
specific adhesion molecules, ER, vesicle and Golgi apparatus are enriched with structural 
variation, especially duplications (Bailey et al., 2002; Feuk et al., 2006; Zarrei et al., 2015; 
Schuster-Bockler et al., 2010; Mills et al., 2011; Redon et al., 2006). Therefore, structural 
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variation may have a role in adaptability in response to external pressure; duplication followed 
by functional specialization could provide the variability required for adaption and for the 
potential to evolve (Bailey et al., 2002; Feuk et al., 2006). CNV rich regions may drive 
evolution through frequent duplications, which occasionally get fixed and lead to the evolution 
of gene families (Schuster-Bockler et al., 2010). An example of this is AMY1, salivary amylase, 
involved in the digestion of starch. Individuals can possess 1–10 copies of the gene, which 
affects the protein levels and is associated with population-specific differences in starch 
consumption (Hurles et al., 2008; Perry et al., 2007). On the other hand, complete deletion of 
some genes seems to have no apparent phenotypic effect. Individuals have on average 11 genes 
inactivated by homozygous deletions (Collins et al., 2020). These genes could belong to a gene 
family, have redundant function or cause late-onset phenotypes, and thus not affect fitness 
(Zarrei et al., 2015). 

2.1.3.2 Mechanisms for influencing gene function 

The most apparent mechanism for CNVs to alter gene function is by altering the dosage of the 
genes they encompass (Schuster-Bockler et al., 2010; Stankiewicz and Lupski, 2010). 
Evolutional constraint of a gene against gain or loss suggests dosage sensitivity, and these genes 
tend to have more pathogenic CNVs (Rice and McLysaght, 2017; Schuster-Bockler et al., 
2010). Genes constrained by dosage sensitivity may need to maintain stoichiometric balance 
with other genes or act in a coordinated concentration-dependent manner, such as 
developmental morphogenes or co-factors (Weischenfeldt et al., 2013). Their protein products 
may be prone to form aggregates toxic to cells or bind non-physiologically in high 
concentrations (triplosensitive genes). Alternatively, a minimum amount of protein may be 
required to achieve effect, such as with many transcription factors and developmental genes 
(haploinsufficient genes) (Wu et al., 2015; Schuster-Bockler et al., 2010; Rice and McLysaght, 
2017). Pathogenic CNVs are enriched especially in developmental and neurodevelopmental 
genes, reflecting probably the dosage sensitivity of the process (Rice and McLysaght, 2017; 
Redin et al., 2017). Some of these diseases will be described and discussed further. 

Haploinsufficiency and triplosensitivity affect more likely genes controlling the expression of 
other genes and their protein products, which are often involved in complexes (Schuster-
Bockler et al., 2010; Papp et al., 2003; Cabrejo et al., 2006). Less duplications have been 
detected in genes partaking in protein complexes, which supports the fact that a stoichiometric 
balance needs to be retained in protein complexes (Schuster-Bockler et al., 2010). Excess of 
one sub-unit could form harmful homodimers as compared to the natural and functional 
heterodimer, disturb the balance in regulatory subunits of the protein complex, or form toxic 
aggregates (Papp et al., 2003). Enzymes tend to be more resistant to CNVs but could be 
haploinsufficient through functioning as a rate limiting factor in a biochemical pathway 
(Schuster-Bockler et al., 2010; Harel and Lupski, 2018). 

Change in gene dosage can occur in various ways and at various stages. In most cases (80%), 
the copy number is positively correlated with gene expression, but the opposite has also been 
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shown (Hurles et al., 2008; Schuster-Bockler et al., 2010). Change in mRNA level may be 
inconsistent with the change in protein level since the latter is affected by additional post-
transcriptional mechanisms, translational control, and protein folding and stability 
(Weischenfeldt et al., 2013). Dosage compensation mechanisms, such as epistatic interactions, 
regulatory feedback mechanisms or phenotypic buffering with genes with redundant functions 
could be in effect in the more starkly unintuitive cases (Weischenfeldt et al., 2013). 
 
Homo- and hemizygous deletions, whether partial with one or both of the CNV breakpoints 
within the gene or encompassing the whole gene, often result in a total loss of gene function 
(Alkuraya, 2015; Gambin, Akdemir et al., 2017). Most duplications (83%) seem to result in the 
copy being in tandem with the original gene and in direct orientation (Newman et al., 2015). In 
these cases, one normal copy of the gene may be preserved, whereas inverted and inserted 
duplications may disrupt genes at breakpoint junctions, affecting also the original gene 
(Newman et al., 2015). CNVs may also generate chimeric or completely novel fusion genes if 
the combined genes are in the same orientation and the reading frame is preserved (Bailey et 
al., 2002; Conrad et al., 2010; Harel and Lupski, 2018; Korbel et al., 2007). Balanced 
chromosomal aberrations, such as inversions, could have deleterious effects on gene function 
through direct disruption of genes at breakpoints, or they may cause long-range regulatory 
changes by altering the chromosomal structure. This has also been utilized to discover new 
disease genes (Redin et al., 2017). Compensatory effects are also possible: an asymptomatic 
father of a DiGeorge syndrome patient was detected to carry both a deletion and a duplication 
on the 22q11.2 region, leading to normal gene dosage (Carelle-Calmels et al., 2009). 
 
In some cases, pathogenic CNVs have been detected to encompass non-coding regions, which 
affect gene expression, such as intergenic sequences, non-coding elements within protein-
coding genes, as well as non-coding RNAs, such as microRNAs (miRNA) and long non-coding 
RNAs (Zhang, F. and Lupski, 2015; Szafranski et al., 2013). Structural variation can also alter 
gene dosage by affecting regulatory elements, such as enhancers or repressors, boundary 
elements or the intervening sequences to their targets (Hurles et al., 2008; Gheldof et al., 2013; 
Stankiewicz and Lupski, 2010; Stankiewicz et al., 2005). For example, adopting an enhancer 
or losing a repressor can lead to a gain of function (GOF) effect through regulatory change 
(Redin et al., 2017). Structural variation may also affect gene expression locally or genome-
wide by repositioning a genomic region within the nucleus or by altering the chromatin 
architecture. Perturbation of chromatin loops or topologically associating domains (TADs) can 
affect also genes without CNVs (Zhang, F. and Lupski, 2015; Harel and Lupski, 2018; Gheldof 
et al., 2013; Stankiewicz et al., 2005).  
 
TADs supposedly represent structural scaffolds, where enhancers and promoters interact 
separated by boundary regions, which limit the distance and direction of their operation areas 
(Lupianez et al., 2015). The boundary regions have usually binding sites for specific factors, 
which block interaction between adjacent TADs (Dixon et al., 2012). Changes in the orientation 
or location of these boundary elements can form new separate TADs or fuse them (Lupianez et 
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al., 2015). Misplacement of an enhancer can have tissue- or developmental-stage-specific 
effects (Lupianez et al., 2015; Weischenfeldt et al., 2013). Comparably, intragenic CNVs can 
disrupt the reading frame of a specific gene isoform with effects in a certain developmental 
stage (Newman et al., 2015). Mobile-element insertion by retrotransposition has the potential 
to disrupt or reorder genes and regulatory elements (Masson et al., 2020), but this has not been 
recognized as a major genomic disorder causing factor (Kazazian and Moran, 2017; 
Lappalainen et al., 2019). 

CNVs in STRs or VNTRs tend to have deleterious effects by local repeat expansion, which 
leads to gene product with structural features that disrupt normal cellular processes (Mirkin, 
2007). Alternatively, some are located on regions where the expansion disturbs promoters or 
other elements affecting gene expression (Dashnow et al., 2018; Lappalainen et al., 2019). The 
expansions occur in cis, and the mutations can be dynamic, becoming increasingly unstable 
after a certain threshold (Mirkin, 2007). They can thus diverge from the principles of classical 
genetics of mutations stably transmitting through generations. Increase in repeat length can 
affect disease penetration, severity and/or age of onset, with increasing severity and earlier age 
of onset termed anticipation (Mirkin, 2007). Most expanding repeats are trinucleotide units such 
as polyglutamine and polyalanine mutant protein stretches with deleterious aggregation 
propensity (Mirkin, 2007). 

If replicative repair is completed using homologous segments as templates, or mitotic crossing-
over occurs between homologs or sister chromatids and extends for multiple kilobases, no copy 
number change will occur, but the segment will show loss of heterozygosity (LOH) (Carvalho, 
C. M. et al., 2015; Campbell et al., 2016; Hastings, Lupski et al., 2009). Especially complex
rearrangements and triplications are associated with regions of LOH, or segmental uniparental
disomy (Campbell et al., 2016; Feuk et al., 2006). Uniparental disomy is a non-Mendelian
human disease-causing genetic mechanism based on either an involvement of an imprinted loci
or an exposure of a recessive trait (Spence et al., 1988; Carvalho, C. M. et al., 2015). By
definition, the expression of an imprinted gene is determined by parental origin, and problems
can arise if these gene loci are not inherited from both parents intact (Weischenfeldt et al.,
2013). Alternatively, LOH may unmask a recessive disease variant and result in homozygosity
for that locus with only one parent being a carrier, thus distorting Mendelian expectations
(Carvalho, C. M. et al., 2015). Similarly, deleted regions can unmask otherwise phenotypically
silent recessive alleles (Albers et al., 2012; Harel and Lupski, 2018).

The variable mechanisms for structural variation to affect gene function are illustrated in Figure 
3.
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Figure 3: Effects of structural variants on genes and genomic regions. Generally, structural variation can either 
affect gene structure or gene dosage. The mechanisms include the direct disturbance of genomic elements (genes, 
regulators of gene expression, regulatory units), or alteration in their copy numbers. 

2.1.3.3 Disease causativity 

CNVs have been detected to cause autosomal dominant, recessive, and X-linked or Y-linked 
diseases (Stankiewicz and Lupski, 2002a). Depending on the number of genes affected, 
structural variation can result in a Mendelian disease, a contiguous gene syndrome or a 
chromosomal disorder. The contiguous gene syndromes include Williams–Beuren syndrome 
from a common 1.6 Mb deletion on 7q11.23, DiGeorge syndrome from a 3 Mb or 1.5 Mb 
deletion on 22q11.2, and Smith-Magensis syndrome from a deletion on 17p11.2, with all these 
regions possessing flanking LCRs (Stankiewicz and Lupski, 2002a; Potocki et al., 2003; 
Stankiewicz et al., 2003). CNVs have been associated with diseases in variable categories, such 
as neurodevelopmental disorders including schizophrenia (Stefansson et al., 2008; Stankiewicz 
and Lupski, 2010), autism spectrum disorders (ASDs) (Krumm et al., 2015; Stankiewicz and 
Lupski, 2010), Parkinson’s disease (Singleton et al., 2003), some complex disorders 
(Lappalainen et al., 2019) and various Mendelian disorders (Truty et al., 2019; Pfundt et al., 
2017). CNVs affect also genes with pharmacogenetic implications, such as the genes encoding 
cytochrome P450 enzymes (Meijerman et al., 2007; Santos et al., 2018). Regardless of disease 
category, some 10–11% of Mendelian diseases are estimated to be explained by pathogenic 
CNVs (Clark et al., 2019; Truty et al., 2019). Somatic CNVs are significant factors in 
tumorigenesis of various cancers, such as breast cancer, glioma and lung cancer. Deletions or 
duplications of some cancer related genes in tumor samples can direct treatment decisions and 
help in diagnosis (Kim, H. Y. et al., 2017; Hehir-Kwa et al., 2018). Recurrently amplified 
regions with oncogenes include MYC and GLI2 (Hehir-Kwa et al., 2018). Also germline CNVs 
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have been detected in genes such as BRCA1, MSH2, and TP53 associated with cancer 
disposition syndromes (Hehir-Kwa et al., 2018).  
 
Structural variants associated with complex phenotypes seem to frequently intersect; de novo 
duplications at the 7q11.23 locus are associated both with ASDs and schizophrenia 
(Weischenfeldt et al., 2013; Stankiewicz and Lupski, 2010). Multiple deletions, duplications 
and aneuploidy of chromosome Y have been associated with ASDs characterized by 
neurodevelopmental abnormalities, social impairment, and a restricted range of behaviors and 
interests (Stankiewicz and Lupski, 2010; Krumm et al., 2015). Schizophrenia is a severe 
psychiatric disorder with different combinations of hallucinations, delusions and cognitive 
deficits. It was first associated with microdeletions at 1q21.1, 15q11.2 and 15q13.3 loci, and 
later also with more variable CNVs similar to ASDs (Stankiewicz and Lupski, 2010; Stefansson 
et al., 2008). Parkinson’s disease is a neurodegenerative disorder of the brain, which impairs 
motor functions and speech. Triplications and duplications of the SNCA gene, which encodes 
the main component of the aggregated protein detectable in the disease, Lewy bodies, cause 
Parkinson’s diseases of different severity (Stankiewicz and Lupski, 2010).  
 
CNVs may cause the same disease when surrounding a gene, or different diseases depending 
on CNV location and state (duplication or deletion) (Zhang, F. and Lupski, 2015). For example, 
both deletions and duplications of the gene PLP1 cause the same disease, Pelizaeus-Merzbacher 
X-linked recessive hypomyelinative leukodystrophy (Weischenfeldt et al., 2013). Both 190 kb 
duplications approximately 33 kb upstream and 150 kb duplications 136 kb downstream of 
PLP1 have been associated with spastic paraplegia and axonal neuropathy (Zhang, F. and 
Lupski, 2015). A common mechanism for the latter diseases may be the disruption of a 
boundary element leading to an enhancer being placed next to the gene with a GOF effect 
(Lupianez et al., 2015). On the contrary, deletions and duplications upstream or downstream of 
SOX9 result in various different clinical phenotypes. This suggests that SOX9 is surrounded by 
long-range cis-regulatory elements (Zhang, F. and Lupski, 2015; Stankiewicz et al., 2005). 
Reciprocal deletions and duplications at the same genomic location have also been associated 
with different clinical phenotypes (Carvalho, C. M. and Lupski, 2016; Watson et al., 2014). 
Sometimes they are mirror traits, such as early onset underweight and obesity from the 
duplication and deletion of 16p11.2, or microcephaly and macrocephaly associated with 
deletions and duplications at 1q21 (Weischenfeldt et al., 2013; Watson et al., 2014). On the 
contrary, CMT1A and HNPP are both peripheral neuropathies (with different presentations) 
resulting from deletion and duplication of the whole gene PMP22 (Stankiewicz and Lupski, 
2010). 
 

2.2 Methods for genome variant detection 
Genome-scanning technologies and comparative DNA sequence analysis are the two general 
approaches in studying genome variation (Chaisson, M. J. P. et al., 2019; Goodwin et al., 2016). 
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2.2.1 Karyotyping, FISH and optical mapping 
Disorders involving whole or partial chromosomal abnormalities are detectable by karyotyping 
(Weischenfeldt et al., 2013). In Giemsa banding, Giemsa stained heterochromatin reveals a 
distinct pattern of bands for each chromosome and their form and size (Feuk et al., 2006). 
Spectral karyotyping involves staining of each chromosome differentially with DNA labeling 
probes, which can reveal rearrangements involving different chromosomes (Feuk et al., 2006). 
In fluorescent in situ hybridization (FISH), fluorescently labeled DNA probes are hybridized to 
interphase cells or metaphase chromosomes to detect relative location and presence of the 
targeted sequences (Feuk et al., 2006). Karyotyping allows detection of variation by the scale 
of chromosomal aneuploidies, and translocations and CNVs involving over 5–10 Mb of DNA, 
and FISH with resolution of 500 kb (Carvalho, C. M. and Lupski, 2016; Weischenfeldt et al., 
2013; Alkan et al., 2011).  

FISH is still commonly utilized: as an in situ method it can provide accurate location for 
genomic copies. Advanced imaging and computational methods as well as automatization have 
streamlined and standardized the analysis workflow (Onozato et al., 2019). Nevertheless, only 
a few dozen genetic loci can be inspected with a single FISH assay (Onozato et al., 2019). 
Single-cell sequencing will probably overtake FISH as the standard in situ method when its 
throughput, accuracy and cost-effectiveness have been improved enough (Onozato et al., 2019). 

In optical mapping, certain repeating DNA sequences in the genome are labeled by fluorescent 
markers. After imaging, the sequences can be arranged and aligned, and reference genome is 
usually used to guide the mapping (Goodwin et al., 2016; Alkan et al., 2011). BioNano 
Genomics optical mapping platform produces fragments up to 1 Mb in length and enables the 
detection of commonly elusive variants, such as inversions, novel sequence insertions and 
translocations. The method enables also locating of extra copies of copy number alterations 
(Goodwin et al., 2016; Alkan et al., 2011). However, copy number neutral events with 
breakpoints on centromeres or leading to LOH cannot be detected (Neveling et al., 2020). Since 
the method lacks base-pair level resolution, it is currently used as a low-cost genome-wide 
screening approach or as a complementary method to help build a scaffold for de novo genome 
assembly (Goodwin et al., 2016). Following platform improvements with increased throughput, 
decrease in costs and improved resolution, validation studies for the detection of structural 
variants in clinical settings are emerging (Neveling et al., 2020).  

2.2.2 PCR-related methods 
Multiple PCR-based methods have been developed to inspect genomic structure and variation. 
In digital PCR, the quantity of a single template molecule is measured with the use of 
fluorescently labeled probes and inspection of the amounts of amplification products compared 
to test samples (Vogelstein and Kinzler, 1999). Digital PCR allows investigation of both 
genomic variants and changes in gene expression since both DNA and mRNA can be used as 
source material. Utilization of one DNA molecule as a starting point for each reaction enables 
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allele-specific resolution (Salk et al., 2018). High-throughput applications of digital PCR 
involve distribution of molecules into separate wells, or more commonly into droplets (Weaver 
et al., 2010; Ito et al., 2019). In droplet digital PCR (ddPCR), each sample is partitioned into 
droplets for compartmentalized and multiplexed amplification (Ito et al., 2019; Amr et al., 
2018). This method enables highly accurate quantification of DNA copy number for 
amplifications. Low-frequency mutations and closely related pseudogenes can also be 
differentiated (Ito et al., 2019; Amr et al., 2018; Harel and Lupski, 2018). 

In real-time PCR (or real-time quantitative PCR, qPCR), the PCR reaction was conducted 
originally with gene-specific primers (TaqMan FRET, fluorescence resonance energy transfer), 
where a probe usually labeled with a fluorescent dye is annealed to the PCR product. After 
signal detection, the probe is degraded by the Taq polymerase, allowing product amplification 
to be followed and quantified in real-time (Holland et al., 1991). SYBR Green is a newer and 
cheaper option for probes needed in the TaqMan assay (Ponchel et al., 2003). SYBR Green dye 
binds undiscriminatingly into double-stranded PCR products, allowing a signal representing the 
amount of the product to be monitored after each cycle (Ponchel et al., 2003). Real-time qPCR 
has higher throughput than digital PCR, but provides only the relative amount of target 
molecules and is generally suitable for detecting only single deletions and duplications (Weaver 
et al., 2010; Feuk et al., 2006). qPCR is currently used for genotyping, gene expression analysis, 
CNV assays and pathogen detection (Goodwin et al., 2016). 

In multiplex ligation-dependent probe amplification (MLPA), each probe specific for the target 
sequence consists of two oligonucleotides (Schouten et al., 2002). Exact match in sequence is 
required for them to hybridize to adjacent sites on a target sequence. After this, the halves are 
ligated and only these continuous molecules can be amplificated in PCR, thus discriminating 
also single nucleotide differences. Universal primer sites in the probes enable PCR 
amplification with one primer pair, and one of the primers is labeled with a fluorescent dye to 
enable detection (Figure 4) (Schouten et al., 2002). MLPA provides semi-quantitative 
multiplexing, since each probe can be incorporated with a stuffer sequence. The resulting 
different sized products can be differentiated in gel electrophoresis. Up to 50 targets can be 
investigated in one assay (Schouten et al., 2002; Shen and Wu, 2009; Kerkhof et al., 2017). 
MLPA does not provide real-time information, but the amounts of amplicons generated 
correspond to the proportions of the original templates, similar to ddPCR (Shen and Wu, 2009). 

MRC Holland (Amsterdam, the Netherlands) provides MLPA kits for most Mendelian disease 
genes, but custom probe design may also be needed (Shen and Wu, 2009). Because SNPs and 
secondary structure formation need to be avoided and the probes need to behave similarly in 
the reaction setting, probe design can be complicated (Shen and Wu, 2009). Additionally, as 
for all presented PCR methods, the requirement for probes prevents detection of novel 
sequences. The location or orientation of the amplified regions cannot be resolved either. 
Polymerase errors limit the sensitivity of the method, so repetitive regions or completely 
homologous sequences cannot be targeted (Shen and Wu, 2009; Amr et al., 2018; Kerkhof et 
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al., 2017). The assays are generally cost-effective for a single sample and gene, but only 
moderately scalable for multiple loci and samples (Ito et al., 2019). 

Figure 4: Multiplex ligation-dependent probe amplification (MLPA). Pairs of probes specific to targets A and B 
are hybridized to adjacent sites in DNA, which allows the probes to be ligated into continuous molecules. The 
ligation products are flanked by universal PCR initiation sites and contain stuffer sequences of different lengths. 
After denaturation and PCR, the products can be differentiated by size by gel electrophoresis. 

2.2.3 Array-based hybridization methods 
Comparative genomic hybridization (CGH) was conventionally performed with metaphase 
chromosomes, limiting the resolution to 2–5 Mb (Kallioniemi et al., 1992; Shen and Wu, 2009). 
The basic idea of CGH remains the same regardless of the used target for hybridization and 
source of DNA material (Figure 5). DNA is extracted from a test sample, such as blood or skin, 
and a normal reference DNA is required as well. The samples are labeled differently with two 
fluorescent dyes and after denaturation they are hybridized as single-stranded DNA into a panel 
of DNA targets. Differences in hybridization between the test DNA and the normal reference, 
regions of loss or gain, can be detected as changes in the ratio of the fluorochrome intensities. 
They are captured and quantified with digital imaging systems. Extremely high-copy 
amplifications, such as in cancer, can be detected as a change in the intensity of one color 
(Kallioniemi et al., 1992; Pollack et al., 1999). In signal analysis, the background noise needs 
to be subtracted from the results, and the ratio calculations are normalized across the array. 
Alternatively, a platform-specific reference is used to account for platform-specific artefacts 
and biases (Pollack et al., 1999; de Leeuw et al., 2011).  

Figure 5: Array comparative genomic hybridization. The test and reference DNA are labeled with different 
fluorescent labels and hybridized to target DNA on array. The fluorescence intensities are imaged and analyzed 
for differences, which reveal regions of loss or gain. 

As an advantage of CGH, DNA did not have to originate from cells undergoing division 
(Pollack et al., 1999). Sources for hybridization targets in CGH include genomic clones from 
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bacterial or phage artificial chromosomes (BAC and PAC), cDNA, PCR products and 
oligonucleotides (Feuk et al., 2006). Adaptation of CGH into an array enabled higher resolution, 
easier procedures for sample preparation and analysis, and parallelization into multiple 
inspected genomic loci (Solinas-Toldo et al., 1997). The first microarrays based on cosmids, 
PAC, BAC, or cDNA had an average resolution of 1–1.5 Mb (Pollack et al., 1999; Carvalho, 
B. et al., 2004; Schena et al., 1995). They were designed for pre-known targets with locally
high resolution (> 40 kb) (Pinkel et al., 1998). Compared to the first utilized target molecules,
synthetic oligonucleotides were cheaper and faster to produce and could be flexibly targeted
for any part of the genome (Carvalho, B. et al., 2004).

Array CGH can be used to analyze structural variants, DNA-protein interactions or expression 
levels by measuring gene-specific cDNA (Goodwin et al., 2016). The first large-scale human 
genome CNV prevalence studies were performed with oligonucleotide and BAC-based 
microarrays (Iafrate et al., 2004; Sebat et al., 2004). With these approaches, small variants (< 1 
kb) were largely missed, exact breakpoints were indiscernible and many CNVs were 
overestimated in size (Alkan et al., 2011; Zarrei et al., 2015). Since the CNVs were mostly 
assessed from healthy subjects and lacked resolution for definite breakpoints, inferring the exact 
genomic content and clinical significance for the discovered variants was challenging (Alkan 
et al., 2011). 

SNP array is a variation of the array-based CGH approach. Hybridization signal intensities from 
spotted oligonucleotides on SNP arrays are compared with average values from controls (de 
Leeuw et al., 2011). SNP arrays provide higher resolution than array CGH. They are commonly 
used to identify polymorphisms associated with diseases and phenotypes, and in genome-wide 
association studies (Goodwin et al., 2016; Zhou et al., 2018; Roca et al., 2019). SNP arrays 
have lower signal-to-noise ratio than array CGH, but the method provides also genotype 
information, thus revealing regions of loss of heterozygosity, which could signify a deletion or 
uniparental disomy (Harel and Lupski, 2018; de Leeuw et al., 2011; Alkan et al., 2011). 
Therefore, the population under study needs to be taken into account more closely in the probe 
design for SNP arrays than for array CGH (Alkan et al., 2011). Array CGH and SNP arrays are 
not suitable for detecting the location or orientation of amplificated genomic stretches, absolute 
differences in higher levels of amplification, exact breakpoints at a base-pair level, copy-neutral 
rearrangements or low-level mosaicism (South et al., 2013; Harel and Lupski, 2018; Alkan et 
al., 2011). Completely new inserted sequences not represented in the existing human reference 
genome cannot be detected either (South et al., 2013; Alkan et al., 2011). Generally, deletions 
seem to be easier to detected with these approaches than duplications, especially if they are 
small in size (Zarrei et al., 2015; Alkan et al., 2011).  

Array target designs may be distributed genome-wide evenly, targeted to a certain region of 
interest, or include a combination of these two with varying overall probe distribution and 
resulting local resolutions (South et al., 2013; Sagath et al., 2018). The high-accuracy 
microarrays used routinely in clinical diagnostics (> 100 kb resolution) have a limited resolution 
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to detect smaller CNVs (Redin et al., 2017; Yao et al., 2017). Most accurate off-the-shelf arrays 
can reach > 1 kb resolution but with an average detection limit of 20 kb (Zhou et al., 2018; Roca 
et al., 2019; Whitford et al., 2019; Marchuk et al., 2018). Resolution of 500 bp is achievable 
with highly specific designs - specifically, local increase in the amount of probes - but arrays 
are still not sensitive enough to detect smaller CNVs (Trost et al., 2018). Nevertheless, 
microarray-based CNV analysis remains the first-tier approach in clinical investigations of 
unsolved cases with developmental delay or intellectual disability, autism spectrum disorders, 
multiple congenital anomalies, and cancer (Zhou et al., 2018).  

2.3 Massively parallel sequencing 
In Sanger sequencing, dye-labeled deoxyribonucleotide triphosphates (dNTP) and dideoxy-
modified dNTPs are included in a mix with an appropriate ratio. During the progress of a 
standard PCR, some elongating strands get incorporated with dideoxy-modified dNTPs 
preventing further elongation. The resulting mixture is fractionated by size by gel 
electrophoresis. The terminal base in each strand is identified by laser excitation and spectral 
emission analysis, revealing the DNA sequence (Sanger et al., 1977). Nowadays, Sanger 
sequencing is largely automated (Ambardar et al., 2016). Similarly to the many presented other 
methods, Sanger sequencing is usually limited to small genomic regions and challenging to 
scale or transfer to another loci (Salk et al., 2018).  

Beginning in 2005, release of the first high-throughput sequencing platforms enabled human 
genome sequencing with over 50,000-fold drop in the costs compared to the Human Genome 
Project (Goodwin et al., 2016; Margulies et al., 2005). Other novel approaches for sequencing 
were developed soon after (Quail et al., 2012; Eid et al., 2009; Rothberg et al., 2011; Bentley 
et al., 2008). For a while, “next generation sequencing” was the standard term for these 
sequencing platforms. Some newer platforms, with sequencing of a single DNA template the 
first common factor, were called “third generation sequencers” (Ambardar et al., 2016; Zhao et 
al., 2013; Alkan et al., 2011). However, the release papers describing the first platforms used 
the term massively parallel sequencing (MPS), which is a more descriptive term for these 
methods (Rothberg et al., 2011; Bentley et al., 2008). The current trend is to again use MPS 
and other more descriptive terms for the different sequencing methods. Therefore, the term 
“next generation sequencing” will not be used further.  

The basic definition for MPS is sequencing of multiple DNA templates from the same sample 
in a single run. Since no sequencing approach is flawless in performance yet, each genomic 
location is sequenced multiple times to provide a strong signal against background noise and to 
distinguish variants from errors, thus increasing variant detection sensitivity and accuracy 
(Lappalainen et al., 2019; Ambardar et al., 2016; Goodwin et al., 2016). Sequencing depth, or 
read depth refers to the number of reads, a layer, covering a certain genomic position (Salk et 
al., 2018). A consensus sequence is acquired by aligning sequencing reads and determining the 
most likely base at each position (Goodwin et al., 2016). With whole genome sequencing 
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(WGS), all genomic sequences are targeted for sequencing, while whole exome sequencing 
(WES) is usually limited to the coding part of the genome, the exons in genes. In targeted gene 
panel sequencing, a certain set of genes is targeted for sequencing, and usually only exons 
(Goodwin et al., 2016; Evila et al., 2016).  

For the sequencing step itself, multiple chemistries and platforms have been developed 
(Ambardar et al., 2016; Goodwin et al., 2016; Lappalainen et al., 2019). The succession of more 
longer-lived and popular different sequencing platforms and providers include GS FLX from 
454 Life Sciences/Roche Diagnostics, Genome Analyzer, HiSeq, MiSeq, NextSeq and Novaseq 
from Illumina, SOLiD from ABI, Ion Torrent from Life Technologies, SMRT Sequencing with 
PacBio RS and PacBio RS II from Pacific Biosciences, Nanopore sequencing from Oxford 
Nanopore, Complete Genomics from Beijing Genomics Institute, Qiagen GeneReader, and 
GnuBIO from BioRad (Ambardar et al., 2016; Goodwin et al., 2016; Lappalainen et al., 2019). 
Since the release of the original MPS platforms, huge improvements in sequencing speed and 
decrease in the cost of sequencing have been achieved (Ambardar et al., 2016). For the study 
in this thesis, sequencing was performed with target enrichment with hybridization for targeted 
gene panels or WES, and exclusively Illumina platforms were used. 

2.3.1 Short-read sequencing platforms 
Short-read MPS together with resolving the human reference genome provided faster and more 
comprehensive means to study the genome and genomic variants at a relatively lower cost 
(Bentley et al., 2008). The platforms generally provide reads of dozens to several hundreds of 
nucleotides in length (Salk et al., 2018; Goodwin et al., 2016). The conventional clinical short-
read sequencing approaches include extraction of DNA from samples, DNA quality assessment, 
normalization of DNA concentration, and sequencing library preparation with DNA 
fragmentation to provide overlapping fragments with random distribution. This is followed by 
ligation of sequencing and amplification primers required for the initiation of the sequencing 
reactions, library amplification typically with PCR, and library quality assessment before 
sequencing (Clark et al., 2019; Ma et al., 2019; Salk et al., 2018; Goodwin et al., 2016). The 
template can originate from one DNA strand for single-end sequencing or from both strands to 
provide paired-end reads (Goodwin et al., 2016). 

In targeted approaches, a system of capture or amplification isolates or enriches the targeted 
regions (Hodges et al., 2007; Goodwin et al., 2016). For DNA enrichment by hybridization, 
high-molecular weight DNA is first fragmented, the ends are repaired into blunt ends and 
phosphorylated, and the strands are denatured and captured. The selected fragments are 
enriched with PCR together with ligation of sequencing adapters at the latest in this stage 
(Hodges et al., 2007). Target enrichment by hybridization is more time consuming but generally 
easier to design and more widely used than amplicon-based methods with target isolation based 
on targeted PCR (Salk et al., 2018).  

An index sequence, a DNA nucleotide code, may be attached to all molecules within a DNA 
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sample to allow for multiplexing different samples in a single sequencing run (Schirmer et al., 
2016; Salk et al., 2018). A molecular barcode or unique molecular identifier, UMI, can be added 
to the individual DNA molecules to recognize copies, which originate from the same founder 
molecule in PCR amplification. This enables consensus-based error correction (Salk et al., 
2018). In practice, the molecular barcodes are artificial sequences incorporated into sequencing 
adapters or PCR primers and alternatively or combined with random shearing of the DNA 
molecule ends (Salk et al., 2018). UMI incorporation into one adapter strand is one of the most 
easily implemented and popular approaches for consensus building in sequencing (Salk et al., 
2018). 
 
The DNA template is provided for short-read sequencing as groups of localized monoclonal 
clusters generated through amplification (Hodges et al., 2007). This amplification is generally 
based on PCR approaches: either bead-based with emulsion PCR, where emulsion droplets 
sequester templates during the process, or solid-phase, where templates are bound to a surface 
(Goodwin et al., 2016). In the Illumina bridge amplification, the DNA template is bound to a 
solid surface with a free end, which interacts with a nearby primer. This forms a bridge structure 
and enables PCR to create a complementary strand (Figure 6) (Goodwin et al., 2016; Bentley 
et al., 2008). After amplification, the template is immobilized and ready for sequencing 
reactions carried with fluid reagents streamed and flushed away sequentially (Bentley et al., 
2008). Patterned flow cells increase sequencing throughput by having better spatial resolution, 
which enables higher density for DNA templates while maintaining clonal integrity (Goodwin 
et al., 2016). 

 
Figure 6: Bridge amplification of DNA templates. Primers allowing amplification in both directions are bound to 
a flow cell surface. The DNA templates have adapters attached to both ends, which recognize these primers and 
pair with them forming bridges, which allows template extension by PCR.  
 
Emulsion PCR (emPCR) offers droplet compartments for multiple simultaneous PCR reactions 
without molecule exchange between the droplets (Shao et al., 2011). In bead-based 
amplification, one adapter attached to the template is complimentary to an anchor on the surface 
of a bead, and the other initiates emPCR. Each clonal DNA fragment remains immobilized on 
the same single bead (Figure 7) (Shao et al., 2011). The beads can be enriched for example with 
a magnetic process, after which the beads are usually distributed into wells. The well depth 
restricts the bead amount to one per well (Rothberg et al., 2011). Originally, emPCR was the 
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first novel method for isolating and amplifying DNA fragments in vitro as an alternative to 
subcloning in bacteria (Margulies et al., 2005). Bacterial cloning hosts were intolerant to some 
extreme base-compositions, genes or inverted repeats, introducing eventual sequencing bias 
(Aird et al., 2011).  

Figure 7: Bead-based amplification. Anchors are attached to the surface of beads suspended in emulsion droplets. 
The DNA templates have an adapter, which recognizes an adapter on the bead surface, and a primer to initiate 
PCR. After amplification, templates are removed to leave single-stranded templates, which are distributed into 
wells for sequencing.  

Two general approaches have been applied for short-read sequencing: sequencing by ligation 
and sequencing by synthesis (Goodwin et al., 2016; Ambardar et al., 2016).  

2.3.1.1 Sequencing by ligation 

In sequencing by ligation, an anchor fragment in the probes is complementary to an adapter 
sequence attached to the DNA template, which provides a site for initiating ligation. The other 
part of the probe encodes one base or a base-pair, which ligates to the DNA template and carries 
a detectable signal source, such as a fluorophore (Goodwin et al., 2016; Ambardar et al., 2016). 

In sequencing by oligonucleotide ligation and detection (SOLiD) method by Applied 
Biosystems, dinucleotide probes with fluorophores are utilized with each signal corresponding 
to two bases (Goodwin et al., 2016; Valouev et al., 2008). The library preparation employs 
emPCR on beads, which are covalently bound to a glass plate (Valouev et al., 2008). 
Circularization of the DNA fragments provides a paired-end library, which makes the SOLiD 
platform suitable both for single-end and paired-end sequencing (Valouev et al., 2008). The 
newest SOLiD platforms utilize solid-phase template walking for template amplification, which 
resembles Illumina bridge amplification (Goodwin et al., 2016). The sequencing process 
involves repeated rounds of hybridization and ligation of a primer with a tail of degenerate 
bases, hybridization of a di-base probe labeled with a fluorophore, detection by fluorescence 
imaging, then cleavage of the fluorophore and some of the degenerate part (Figure 8). This 
leaves the probe and a tail in place, allowing identification of two out of every five bases. After 
rounds of extension, all primers are removed and the cycle starts over with an offset anchor in 
the beginning to cover a new section (Goodwin et al., 2016; Valouev et al., 2008).  
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Figure 8: Sequencing by ligation, SOLiD di-base probe approach. In the first round, a universal primer hybridizes 
to the adapter, providing a free end for a di-base probe for ligation. After probe hybridization, the fluorophore 
signal is imaged, fluorophore and a part of the probe is cleaved, and the next di-base probes are provided. After 
the first round, the probe sequence is cleaved off and a universal primer with different offset is provided to allow 
sequencing of the other sections. 

BGI (Beijing Genomics Institute) utilizes solution enrichment with The Complete Genomics 
technology, where double-stranded DNA template is iteratively ligated, circularized and 
cleaved to create a circular template with four adaptors (Goodwin et al., 2016; Drmanac et al., 
2010; Xu et al., 2019). Then, rolling circle amplification is used to produce multiple copies of 
the single-stranded template head-to-tail formed into discrete DNA nanoballs, which can be 
distributed onto a patterned slide (Figure 9) (Goodwin et al., 2016; Drmanac et al., 2010). For 
sequencing, Complete Genomics uses combinatorial probe-anchor ligation (cPAL), or probe-
anchor synthesis (cPAS). cPAL is based on unchained hybridization and ligation technology, 
where degenerate anchors and a probe are used to read bases adjacent to adapter sites at several 
locations of a DNA nanoball template simultaneously (Drmanac et al., 2010). After imaging, 
the probe-anchor complexes are removed and in the subsequent cycles new combinations are 
hybridized, where the known base is included in the probe part (Goodwin et al., 2016; Drmanac 
et al., 2010). Compared to many other MPS sequencing approaches, cPAL has lower reagent 
costs, since the process is not dependent on preceding incorporated nucleotides and tolerates 
low-quality base incorporations, thus also avoiding error accumulation (Drmanac et al., 2010). 
cPAS, polymerase-based cycle sequencing, provides longer reads than cPAL (Fehlmann et al., 
2016). However, in availability cPAL is limited to a service platform for WGS and cPAS 
BGISEQ-500 in mainland China (Goodwin et al., 2016). 

Figure 9: Rolling circle amplification. DNA template is first circularized, and then four different adapters are 
attached. With continuous PCR of the circularized template, a concatemer with multiple DNA templates is 
produced and distributed as nanoballs into a slide with cohesive forces keeping the templates together. 
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Sequencing by ligation techniques used by SOLiD and Complete Genomics systems have 
generally a high accuracy of approximately 99.99% (Goodwin et al., 2016). The greatest 
disadvantage for both of the techniques is the read length, with maximum of 75 bp for SOLiD 
and 28–100 bp for Complete Genomics, limiting their usage especially in genome assembly 
and structural variation detection (Goodwin et al., 2016; Ambardar et al., 2016). Additionally, 
SOLiD has comparably long runtime of several days (Goodwin et al., 2016; Ambardar et al., 
2016). Because of these shortcomings and advances in other sequencing technologies, 
manufacturing of SOLiD has been discontinued (Salk et al., 2018).  

2.3.1.2 Sequencing by synthesis 

In sequencing by synthesis, DNA is synthetized with a DNA polymerase, and a signal 
representing incorporation of each nucleotide into the growing strand can be detected (Goodwin 
et al., 2016; Ambardar et al., 2016). Roche 454 was the first true MPS platform and utilized 
pyrosequencing (Margulies et al., 2005). The platform was seminal as it was released at a time 
when the cost estimation for sequencing a human genome was between $10 and $25 million 
dollars (Margulies et al., 2005). For this platform, the DNA template is prepared with emPCR 
on beads and then loaded into individual wells on a slide, referred as picoliter-scale sequencing 
reactors (Margulies et al., 2005). Four bases are provided and removed sequentially, and 
nucleotide incorporation is detected indirectly by an enzymatic cascade from the release of 
inorganic pyrophosphate with an eventual bioluminescence signal. At homopolymer regions, 
the incorporation of multiple nucleotides results in a proportional increase in the signal 
(Margulies et al., 2005). The instrument provided reads for single-stranded template DNA with 
an eventual read length of 700 bp (Margulies et al., 2005; Goodwin et al., 2016). However, the 
problem of de-synchronization in sequencing results in dominating indel errors and inaccurate 
homopolymer sequencing of more than five identical nucleotides (Margulies et al., 2005; 
Ambardar et al., 2016). Eventually, the sequencing platform did not keep up with other 
technologies with comparatively high sequencing cost and was discontinued in 2016 (Ambardar 
et al., 2016; Goodwin et al., 2016). 

The Ion Torrent platform originated from the idea that DNA sequencing was limited by 
requirements for imaging technology, modified nucleotides and electromagnetic intermediates, 
such as light (Rothberg et al., 2011). The platform implements a method of DNA sequencing 
(called Ion Torrent sequencing or semiconductor sequencing) based on direct sensing of 
hydrogen ion release in template-directed DNA polymerase synthesis. Therefore, no altered 
bases, enzymes or optical detection are needed (Rothberg et al., 2011). The DNA templates are 
prepared with emPCR and binding of sequencing primers and DNA polymerase on the surface 
of beads, which are loaded into proton-sensing wells (Rothberg et al., 2011). In the sequencing 
reaction, the four nucleotides are introduced sequentially, and the pH shift indicative of base 
incorporation is converted to a digital signal by off-chip electronics (Rothberg et al., 2011). The 
change in pH is limitedly proportional to the number of nucleotides incorporated, allowing for 
a limited accuracy with homopolymer lengths (Rothberg et al., 2011). Indel errors dominate in 
Ion Torrent sequencing data with the deletion rate increasing with the homopolymer length 
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(Ambardar et al., 2016; Ross et al., 2013). 

Much like pyrosequencing, Ion Torrent sequencing is based on identification of a signal 
representing incorporation of a nucleotide into the elongating strand. With this approach, each 
of the four nucleotides must be presented separately to ensure only one incorporation event, 
and the nucleotides are not blocked to allow elongation (Goodwin et al., 2016). Ion Torrent 
platform provides relatively long reads of 400 bp similar to pyrosequencing, which is an 
advantage in applications focusing on repetitive or complex DNA (Goodwin et al., 2016). But 
unlike pyrosequencing, Ion Torrent platform has kept up better with yield and economic 
efficiency since the platform uses non-modified bases and a single polymerase enzyme 
(Goodwin et al., 2016; Ambardar et al., 2016). Additionally, Ion Torrent prevails as a relatively 
fast sequencing platform well-suited for point-of-care clinical applications, such as gene-panel 
and transcriptome sequencing and splice site identification (Goodwin et al., 2016).  

Illumina sequencing utilizes cyclic reversible termination similar to Sanger sequencing with 
blocked ribose 3’ hydroxyl group in the incorporated nucleotides preventing elongation (Figure 
10) (Bentley et al., 2008). The basic Illumina protocol involves DNA template preparation with
fragmentation, end-fixing, attachment of adapters, and template denaturation into single-
stranded DNA for annealing to complementary oligonucleotides on a flow cell surface. This is
followed by solid-phase bridge amplification to produce high-density template colonies
(Bentley et al., 2008). The sequencing chemistry involves four reversible terminators with
different fluorophores and 3’-modified ends to avoid over-incorporation (Bentley et al., 2008).
Therefore, all nucleotides can be provided simultaneously in each cycle to incorporate a single
nucleotide into each strand followed by washing of unbound nucleotides and label imaging with
fluorescence microscopy (Bentley et al., 2008). The incorporation is carried out with a modified
DNA polymerase, which improves incorporation of modified nucleotides (Bentley et al., 2008).
After imaging, the fluorescent dye is removed and the 3’ hydroxyl group is regenerated to start
a new cycle (Bentley et al., 2008).

Figure 10: Illumina sequencing with cyclic reversible termination. DNA templates are attached to the surface of a 
flow cell with an adapter in one end and a primer in the other end enabling nucleotide incorporation. The four 
nucleotides are labeled with different fluorophores and can be provided simultaneously. After nucleotide 
incorporation, fluorophore signal is imaged, and then the fluorophore is cleaved to provide a free end for the next 
nucleotide incorporation. 
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Most Illumina platforms use nucleotides labeled with four different fluorophores requiring as 
many different imaging channels, whereas NextSeq, MiniSeq and Novaseq use a two-
fluorophore system, where two bases have one fluorophore (C and T), one has either of them 
(A) and one has no fluorophore. This enables their differentiation with two imaging channels 
and thus faster and cheaper overall sequencing with fewer cycles (Goodwin et al., 2016; Bentley 
et al., 2008; Ambardar et al., 2016). The two-channel system tends to have slightly more errors 
and underperformance for low-diversity regions due to more ambiguous base discrimination. 
This can be compensated for in computational steps (Goodwin et al., 2016). Originally, Illumina 
sequencing provided only a read length of 35 bp, but one of its advantages over the other 
platforms was the ability to provide paired-end reads from the start (Bentley et al., 2008; 
Ambardar et al., 2016). For paired-end sequencing, the template DNA is first converted into 
double-stranded DNA, and then the original strand is removed to provide a template for the 
complementary strand (Bentley et al., 2008). Illumina sequencing is less susceptible to 
homopolymer errors observed with nucleotide addition approaches and provides an accuracy 
of > 99.5% but displays more substitution errors (Goodwin et al., 2016).  
 
Some short-read sequencing platforms aim for certain applications or a comprehensive, concise 
workflow, rather than investing in high throughput and accuracy. Qiagen GeneReader with a 
several-day runtime is focused on cancer gene panels and intended to be a clinical device, 
similar to Illumina MiSeq, but with potentially lower cost per sequencing yield unit (Goodwin 
et al., 2016). This system has QIAcube sample preparation system and the Qiagen Clinical 
Insight variant analysis platform integrated and thus incorporates all steps from sample 
preparation to analysis. The platform uses also labeled nucleotides but without sequential 
incorporation, enabling just high enough accuracy for achieving identification (Goodwin et al., 
2016). GnuBio is a droplet-based DNA sequencing platform, which utilizes microfluidics and 
emulsion technology. A single GnuBio instrument provides a streamlined workflow from 
library preparation to DNA sequencing, and the analysis is conducted inside the same droplets, 
reaction vesicles, decreasing reagent costs (Ambardar et al., 2016). 
 
Illumina platforms have long dominated the market for sequencing instruments (Rieber et al., 
2013; Goodwin et al., 2016). Illumina’s keys to success include refined technology with up to 
300 bp read length, cross-platform compatibility and versatility of platforms in capacity, 
runtime, read structure and read length, from both small low-throughput benchtop units to large 
ultra-high-throughput instruments (Goodwin et al., 2016). Currently, Illumina HiSeq and 
NovaSeq outdo the other approaches in cost, ease of use and accuracy. Consequently, most 
human genetics studies turn to these short-read platforms (Lappalainen et al., 2019). The 
popularity of Illumina platforms in MPS research has raised concerns about systematic errors 
in the sequencing data (Schirmer et al., 2016). In some new approaches, multiple sequencing 
methods with complementary strengths are integrated, involving and providing also longer read 
lengths (Goodwin et al., 2016).  
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2.3.2 Long-read sequencing platforms 
Two general approaches have been developed for producing long sequencing reads: single-
molecule real-time sequencing, and synthetic approaches based on existing short-read 
technologies followed by construction of long reads in silico (Goodwin et al., 2016). Long reads 
from these platforms are generally several kbs to tens of kbs in read length (Salk et al., 2018; 
Goodwin et al., 2016). Compared to prevailing short-read MPS technologies, current true long-
read sequencing platforms provide longer reads but generally with a notably lower raw read 
accuracy, higher costs and lower throughput (Goodwin et al., 2016; Salk et al., 2018; 
Lappalainen et al., 2019). Therefore, either higher read depth or combining with short-read 
information is needed for increasing the accuracy (Madoui et al., 2015). Single-molecule 
approaches lack the step of amplification of DNA into a clonal population, which makes use of 
indices or UMIs unnecessary. Additionally, no pause or chemical cycling is required, which 
enables real-time sequencing (Salk et al., 2018; Goodwin et al., 2016).  

2.3.2.1 Synthetic long-read sequencing 

In synthetic approaches, no actual long reads are generated. During library preparation, 
barcodes are attached through ligation or amplification to each single read, which after 
sequencing with existing short-read sequencers allows computational reassembly into the 
original larger fragment (Goodwin et al., 2016). 10X Genomics has developed GemCode and 
a newly released Chromium platform for pre-sequencing reactions in synthetic long-read 
sequencing (Marks et al., 2019). In these microfluidic instruments, the DNA starting material 
is distributed as up to 100 kb fragments to droplets containing beads, adapters and one unique 
barcode (Marks et al., 2019; Goodwin et al., 2016; Ambardar et al., 2016). The barcoded short-
read libraries can be assembled into original long molecules, linked-reads, after sequencing 
with a standard Illumina short-read platform (Marks et al., 2019). Aligning and stacking linked-
reads from the same loci provides continuous coverage, which can span 50 kb (Marks et al., 
2019; Goodwin et al., 2016). Data output is limited partially by the number of barcodes used. 
Additionally, inefficient partitioning can lead to an excess of DNA fragments within a droplet, 
complicating sequence deconvolution. Together, these lead to ambiguity in positioning reads 
sharing the same barcode (Goodwin et al., 2016). 

Illumina has developed the TruSeq synthetic long-read method (McCoy et al., 2014). With this 
method, pre-sequencing reactions are partitioned to microtiter plate wells containing individual 
barcodes. Thus, the pre-sequencing reactions can be performed without special instruments 
(McCoy et al., 2014). After DNA pooling and sequencing with standard short-read pipelines, 
the data is demultiplexed in silico by barcode sequences to trace the molecules and assemble 
synthetic long-reads (McCoy et al., 2014). This local assembly of short-read data has provided 
read lengths of 1.5–8.5 kb (McCoy et al., 2014). The method has a low error rate of 0.03% per 
base due to inherent consensus build step, which is a lower error rate than for Illumina short 
reads (McCoy et al., 2014).  
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2.3.2.2 Single-molecule real-time sequencing and nanopore sequencing 

The Pacific Biosciences (PacBio) platform is based on 
single-molecule real-time (SMRT) sequencing (Eid et al., 
2009). PacBio utilizes rolling circle templates, where the 
strand-displacing capability of the polymerase and two 
hairpin adapters connecting double-stranded DNA 
templates allow continuous circular sequencing (Eid et al., 
2009; Goodwin et al., 2016). Rolling circle amplification is 
more time-consuming and laborious than amplification on 
a flow cell or bead surface, but linear DNA amplification 
prevents error accumulation as compared to exponential 
DNA amplification (Fehlmann et al., 2016). The rolling 
circle templates can be sequenced in a single run, providing 
a consensus sequence from one single DNA molecule 
source (Eid et al., 2009; Lappalainen et al., 2019). A 
modified DNA polymerase molecule is bound to a single-
stranded DNA template and attached to the bottom of a 
zero-mode waveguide, a transparent picolitre well, along 
with immobilized enzymes (Figure 11). The polymerase 
performs uninterrupted template-directed synthesis with 

each incorporation of the fluorescently labeled nucleotides directly observed as color and 
duration of emitted light (Eid et al., 2009). A phosphodiester bond catalyzed by the polymerase 
releases the fluorophore, leaving natural DNA behind (Eid et al., 2009).  
 
With PacBio, DNA can be sequenced in a native form without cloning or amplification. The 
platform provides typically reads exceeding 50 kb read length, with an average of 10–15 kb 
(Chaisson, M. J. et al., 2015; Goodwin et al., 2016). PacBio has the potential to directly detect 
some DNA changes, such as DNA binding proteins, DNA polymerase inhibitors and base 
methylation (Goodwin et al., 2016; Eid et al., 2009). However, the single pass error rate can be 
as high as 15% with indel errors more prominent (Goodwin et al., 2016; Quail et al., 2012; Eid 
et al., 2009). Inaccurate quantification of the incorporation event intervals presents as deletion 
errors. Disassociation of the nucleotide from the active site prior to phosphodiester bond 
formation or non-incorporated nucleotides remaining in the active site result as insertion errors, 
which is the dominant error for PacBio (Eid et al., 2009; Ambardar et al., 2016; Quail et al., 
2012). A sufficiently high coverage with approximately 99.999% accuracy reached with ten 
reads overcomes this since the errors are randomly distributed (Goodwin et al., 2016; Quail et 
al., 2012; Eid et al., 2009). Read depth as high as 40X has also been used for error correction 
(Chaisson, M. J. et al., 2015). PacBio RSII has been shown to be ideal for full-length transcript 
sequencing, de novo genome assembly and resolving complex long-range genomic structures, 
but the platform has high running costs and a limited throughput (Goodwin et al., 2016; Quail 
et al., 2012; Chaisson, M. J. et al., 2015).  
 

Figure 11: Single-molecule real-time 
(SMRT) sequencing utilized by PacBio 
platforms. DNA polymerase is bound to 
the bottom of a well and performs 
uninterrupted (real-time) template-
directed synthesis. All nucleotides are 
labeled differently with fluorophores 
and provided simultaneously. 
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The first nanopore sequencer platform released by Oxford 
Nanopore Technologies was MinION (Goodwin et al., 2016). 
No secondary signals, such as light, color or pH are followed 
in this sequencing approach. Specifically, DNA composition 
of a native single-stranded DNA molecule is detected directly 
(Kasianowicz et al., 1996). Current and DNA are passed 
through a large biological pore capable of sensing DNA, alpha-
hemolysin. The magnitude and duration of the shifts in voltage 
for the DNA sequence located in the pore represent 
overlapping consecutive k-mers of DNA (sizes range from 3 to 
6 bases) (Figure 12) (Goodwin et al., 2016; Kasianowicz et al., 
1996). The instrument can recognize more than 1000 possible 
k-mers and some modified bases as well, such as 5-
methylcytosine (Goodwin et al., 2016; Jain et al., 2018). A 
leader-hairpin library structure attached during the library 
preparation links two strands of DNA and enables passing both 

through the pore, which generates paired-end reads (Salk et al., 2018; Goodwin et al., 2016). 
An additional leader sequence added in the library preparation interacts with the pore together 
with a motor protein to direct DNA movement (Cherf et al., 2012).  
 

Nanopore has a high raw sequence error rate of over 30% for one read with indel errors 
overrepresented. This is probably attributable to the notable amount of distinct signals 
(Goodwin et al., 2016; Madoui et al., 2015; Ambardar et al., 2016). The platform is also 
inaccurate for homopolymers longer than the k-mer size with difficulties in distinguishing them 
(Goodwin et al., 2016). Additionally, some modified bases pose problems, but improvements 
in the chemistry and base calling algorithms are under development (Goodwin et al., 2016). 
Nevertheless, the USB-based MinION is a small and a relatively low-cost device and can be 
run off a personal computer. This gives it superior portability over other sequencing platforms 
(Goodwin et al., 2016; Madoui et al., 2015). Even cell lysate can be directly sequenced in real-
time with no PCR amplification or chemical labeling steps needed in the library construction 
(Ambardar et al., 2016). Therefore, this platform may have most utility in rapid clinical 
responses and field locations, such as in rapid pathogen profiling (Goodwin et al., 2016). 
Another Nanopore platform, PromethION, can compete in throughput with Illumina HiSeq X 
(Goodwin et al., 2016). Recently, up to 882 kb ultra-long reads have been produced with a 
Nanopore platform, made possible through improvements to the pore, library preparation 
techniques, sequencing speed and software (Jain et al., 2018). Future plans include enabling 
passing of a DNA molecule back and forth through the pore to increase accuracy by more 
rigorous consensus building (Salk et al., 2018). 
 

2.3.3 MPS data error sources and computational data analysis 
Precise MPS data error rates and types vary depending on the sample properties, such as DNA 
damage, the sequencing platform and chemistry as previously described, and the sequencing 

Figure 12: Oxford nanopore 
sequencing. DNA and current are 
fed through alpha-hemolysin with a 
motor protein regulating the 
process. Shifts in voltage signal 
different DNA sequence structures. 
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data analysis protocol (Salk et al., 2018). Sequencing errors have remained approximately 0.1–
1.0% for all short-read sequencing platforms (Ma et al., 2019; Salk et al., 2018; Ambardar et 
al., 2016; Lappalainen et al., 2019). For example, Illumina NovaSeq has a similar error profile 
as compared to older HiSeq platforms (Ma et al., 2019). With coverage bias the reads are non-
uniformly distributed across the targeted genome region (Ross et al., 2013). 

Numerous steps in DNA preparation for sequencing contain error sources. Tissue processing 
and storage, DNA isolation or DNA fragmentation can cause DNA damage and nucleotide 
conversions. The sources include both normal cell processes and environmental exposures, such 
as chemical extraction, heating or clinical sample stabilization methods, such as formalin 
fixation (Salk et al., 2018; Ma et al., 2019). These changes can be alleviated to some extent with 
treatments, which excise or fix the modified bases, but this may decrease amplification 
efficiency on the regions, and repair enzymes themselves can introduce errors (Salk et al., 2018; 
Chen et al., 2017).  

After DNA extraction, DNA fragmentation can be performed with physical or mechanical 
methods, such as ultra-sonication or nebulization with compressed nitrogen or air (Tanaka et 
al., 2020). Ultra-sonication creates even cuts across DNA. This simplifies fragment size control, 
but oxidative damage associated with the treatment can cause base conversions (Tanaka et al., 
2020; Ma et al., 2019; Salk et al., 2018). Several commercial library preparation kits utilize 
restriction enzyme digestion with endonucleases or transposases for DNA fragmentation (Quail 
et al., 2012; Tanaka et al., 2020). Usually, high-fidelity polymerases are used in the 
amplification steps of library preparation, but lower-fidelity polymerases used for repair and A-
tailing may present errors (Salk et al., 2018; Tanaka et al., 2020). Additionally, enzymatic DNA 
fragmentation may produce low-level artefacts with nicks or incomplete cleavage, which leave 
non-blunt ends more prone to damage and copying errors by lower-accuracy polymerases in 
the subsequent steps (Salk et al., 2018). Correcting algorithms could be used to ignore some of 
these artefacts in the sequencing data analysis stage (Tanaka et al., 2020). 

PCR is possibly the most error prone step in sequencing protocols, especially in library 
amplification (Aird et al., 2011). PCR amplification steps may introduce bias with incorporation 
errors, and most notably, GC coverage bias, discussed in depth further (Aird et al., 2011; 
Benjamini and Speed, 2012).  

Target enrichment can introduce sequencing bias affecting eventual target coverage. 
Preferential capture of reference alleles in the hybridization and capture, which has been 
observed, could be mitigated by using alternate allele target probes, but the problem would 
persist for rare variants (Meynert et al., 2014; Sulonen et al., 2011). Longer fragments may be 
captured with higher specificity, and some off-target sequences are usually captured as well 
(Hodges et al., 2007). For regions with less unique genomic alignment, designing probes for 
accurate capture is also challenging (Meynert et al., 2013). In emPCR, the relative frequency 
of templates can be distorted by multiple beads per droplet bias or removal of multitemplated 
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beads (Valouev et al., 2008). False index pairs may be generated during oligonucleotide 
synthesis, template amplification, template colony formation or sequencing (Kircher et al., 
2012). They may arise from spontaneous index swapping, cross-contamination or PCR jumping 
between samples (Kircher et al., 2012). Double-indexing with UMIs in both adapters or 
physical linkage of complementary DNA strands help to identify and exclude sequences with 
mixed indices (Kircher et al., 2012; Salk et al., 2018).  
 
In sequencing by synthesis methods, relative sequencing efficiency can be affected by the usage 
of engineered polymerases and modified bases (Schirmer et al., 2016). Error rates may increase 
towards the ends of the reads because of chemical molecule residues. They may perturb DNA 
polymerase, impair stability of the DNA and hinder substrate recognition and primer extension, 
limiting the possible read length (Schirmer et al., 2016). Interruptions in enzyme function in 
stepwise sequencing systems are thought to be deleterious for sequencing accuracy (Eid et al., 
2009). 

2.3.3.1 GC bias 

If steps with PCR are included in the sample preparation protocol for sequencing, as is usually 
the case, a notable bias originating from differences in GC content has been detected in the 
sequencing coverage (Hodges et al., 2007; Benjamini and Speed, 2012). GC coverage bias, the 
correlation between coverage and GC content, manifests as lower or less uniform coverage on 
both GC-rich and poor regions (below 10% and above 75% GC content) as compared to regions 
with more balanced base composition (Benjamini and Speed, 2012; Quail et al., 2012; Ross et 
al., 2013; Meynert et al., 2014). Therefore, regions with simple repeats, such as long ATAT 
motifs, low complexity repeats, CpG islands and satellites, which tend to have high GC content, 
are usually less well covered (Ross et al., 2013; Meynert et al., 2014; McCoy et al., 2014). The 
degree of this bias varies somewhat for different sequencing platforms (Rieber et al., 2013; 
Quail et al., 2012).  
 
Because the problem is so widespread, it has been closely studied. Regions with higher GC 
content appear to remain tightly annealed as double-stranded DNA in various settings. This 
reduces the amplification efficiency of these regions by affecting the probability of 
fragmentation and by preventing access of primers and probes (Veal et al., 2012; Benjamini 
and Speed, 2012). Partly for this reason, DNA fragmentation is employed to shorten and 
separate stretches of tightly annealing GC-rich elements before amplification and target capture 
(Veal et al., 2012). Denaturing can also be stimulated with enhancers, such as dimethyl 
sulphoxide (DMSO) or single-strand DNA binding proteins (Veal et al., 2012). Additionally, 
PCR protocol optimization with adjustments to the polymerase, temperatures or step times 
enables more complete denaturation of some of the tightly annealed fractions, but usually at the 
expense of the opposite extreme in GC content (Aird et al., 2011; Veal et al., 2012). GC bias 
could also be partly alleviated by embedding the DNA fragments into larger constructs with 
adapters and such to decrease the amount of genomic DNA and GC bias in each sequenced 
stretch (Rieber et al., 2013; Benjamini and Speed, 2012).  
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Avoiding PCR in the library preparation could eliminate some of the GC coverage bias but this 
is challenging with current sequencing methodology (Quail et al., 2012). Depending on the 
protocol, PCR is usually involved in amplicon production, capture steps and pre-capture 
amplification (Ma et al., 2019). Especially amplicon sequencing requires always multiple 
cycles of PCR as a part of the library preparation process (Schirmer et al., 2016). However, GC 
coverage bias is detectable also in WGS data, albeit less than from methods which require more 
amplification steps (Mallawaarachchi et al., 2016). PCR is usually required in WGS to enrich 
fragments carrying adapters on both ends and to avoid needing a large amount of input DNA 
(Aird et al., 2011; Mallawaarachchi et al., 2016). Single-molecule sequencing technologies 
need to improve considerably as well before sequencing without template amplification is 
possible (Salk et al., 2018). 
 
Additional GC bias may be introduced in downstream steps with cluster amplification and 
sequencing by synthesis involving also primer extension by DNA polymerase (Aird et al., 2011; 
Mallawaarachchi et al., 2016). Even a PacBio trial without template amplification in library 
preparation displayed coverage reduction for extremely high GC coverage regions ( > 75%) 
and for lowest GC content regions, probably attributable to dissociation of fragments in adapter 
ligation, which concerns also other technologies (Ross et al., 2013). Additionally, AT-rich 
sequences are under-represented in coverage since they disturb sequencing by ligation (Valouev 
et al., 2008). Therefore, GC coverage bias, which is especially detrimental for variant analysis 
approaches relying on read depth information, such as detection of structural variants discussed 
further, seems to be unavoidable in sequencing data for now. This needs to be taken into account 
by normalization in computational analysis to reveal the original signal (Benjamini and Speed, 
2012). 

2.3.3.2 Sequencing data pre-analysis 

The popularly utilized computational pipeline for MPS short-read sequencing data, Genome 
Analysis Toolkit (GATK) Best Practices workflow, is based on variant detection by comparison 
to reference genome with local assembly (DePristo et al., 2011; McKenna et al., 2010). The 
pipeline is adaptable for multiple sequencing platforms and experimental designs.  
 

Burrows-Wheeler aligner (BWA) and its application BWA-MEM are utilized in most modern 
MPS pipelines to align reads to the human reference genome as the first step of the pipeline 
(Lappalainen et al., 2019; Regier et al., 2018; Trost et al., 2018; Li, Heng, 2013; Li, H. and 
Durbin, 2009). BWA-MEM is based on a similar seed-and-extend approach as the previous 
alignment tool, where the longest exact matches found are extended (Li, Heng, 2013). BWA-
MEM is more advanced than BWA, which was developed for read lengths of less than 50 bp. 
With longer reads (100 bp or more), allowing longer gaps is important to reveal potential 
structural variants and to speed up alignment (Li, Heng, 2013). Many of the sequencing 
platforms support paired-end sequencing, which can be ultimately used to resolve orientation 
and distance between sequences (Bentley et al., 2008; McCoy et al., 2014). This enables higher 
coverage and more accurate read alignment and consensus building, which are especially 
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beneficial in resolving repeats (Bentley et al., 2008; McCoy et al., 2014). 

In the data cleanup, molecular PCR duplicates are eliminated, which can comprise as much as 
5–20% of the original reads. This minimizes issues from the PCR amplification bias and 
improves variant calling (Sulonen et al., 2011; Meynert et al., 2014). Sequencing artefacts, such 
as adapter and primer sequences and low-confidence sequences of insufficient quality can be 
computationally removed to reduce background noise (Salk et al., 2018). Filtering may be used 
to remove also some off-target or unmappable reads attributable to sequencing errors, too many 
non-reference bases, or multiple mapping positions in the genome (Meynert et al., 2013). 
Finally, local realignment on indels is done to improve indel calling, and base qualities are 
recalibrated to eliminate sequencer-specific bias. After these steps, the data is ready for further 
applications in a technology-independent reference file format, Sequence alignment/Map 
(SAM) (DePristo et al., 2011).  

SAM is a format for sequence data compression and storing read alignments against reference 
sequences (Li, H. et al., 2009). The developers of the data format provide also SAMtools for 
data analysis, with various tools for post-processing alignments in the SAM format, such as 
converting between alignment formats, indexing, sorting, merging, variant calling and 
alignment (Li, H. et al., 2009). Binary Alignment/Map format (BAM) is a binary representation 
of SAM with the same information but compressed into a BGZF library. An indexed position-
sorted BAM file allows applications to process specific genomic regions without need to load 
the entire file into memory (Li, H. et al., 2009). Sequencing data file size compromises mostly 
from base qualities (Li, H. et al., 2009). Per base quality score contains information on 
probability that the called base has been sequenced correctly (DePristo et al., 2011). Phred 
quality score, which measures probability of a base being identified erroneously on a 
logarithmic scale, was originally developed for Sanger sequencing and adapted for image-based 
MPS platform outputs (Salk et al., 2018). For example, Illumina sequencing utilizes quality 
value scaled by the phred algorithm, and > Q30 (> 99.99%) base calling accuracy represents 
high quality (Bentley et al., 2008). 

2.3.4 Whole genome, whole exome, targeted gene panels - current views 
Reasons for preferring targeted sequencing with WES or targeted gene panels over WGS 
include (originally notable) difference in costs, and coding sequences being the most 
informative and also most well annotated (Sulonen et al., 2011). Limitation of targets requires 
smaller amount of input DNA and enables more samples to be sequenced with one run (Sulonen 
et al., 2011; Goodwin et al., 2016). Consequently, the main source for the cost difference 
between targeted sequencing and WGS is raw sequencing, but includes also data storage 
requirements and computing time required for data analysis (Meynert et al., 2014). Size is also 
an obstacle for WGS data in transfer speeds for data access and sharing (Regier et al., 2018). 
Especially data from targeted gene panel sequencing require less storage space, are time- and 
cost-effective in analysis and offer higher accuracy for variant detection with deeper coverage 
(Povysil et al., 2017). On the other hand, the cost of sequencing has been reportedly brought 
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down to 1000$US for the whole human genome, increasing its appeal in research and clinics 
(Goodwin et al., 2016; Volk and Kubisch, 2017). Additionally, the informatics challenge for 
data storage and computation requirements for WES and WGS data are being solved with new 
platforms, such as cloud computing resources (Abel et al., 2018; Hehir-Kwa et al., 2018). 
 
With WES, 3’ and 5’ untranslated regions or intronic regions are usually not covered. Targeting 
them might be especially important in studying a complex disease with variation expected in 
other than protein coding regions and when expecting variants affecting splice sites (Sulonen 
et al., 2011; Gulilat et al., 2019; Mallawaarachchi et al., 2016). Additionally, variants missed 
by WES or targeted gene panel sequencing may include commonly unexpected variants, such 
as novel disease genes, non-coding RNA genes, or regions with poor coverage in WES data 
due to technical issues (Lionel et al., 2018). For genes with closely similar pseudogenes or 
homologous regions, designing short probes in WES to capture only the intended targets and 
not their counterparts is challenging, but WGS requires no separate target capture step 
(Mallawaarachchi et al., 2016). WGS prevails also in resolving repetitive regions and revealing 
genomic rearrangements by enabling more accurate read alignment (Mallawaarachchi et al., 
2016; Meynert et al., 2014).  
 
Although WGS has been predicted to replace targeted approaches in MPS studies for years 
(Meynert et al., 2014; Lappalainen et al., 2019; Harel and Lupski, 2018), targeted MPS 
approaches are still popular with their time- and cost-effectiveness (Gulilat et al., 2019). The 
approach of semi-comprehensive WES sometimes called “Mendeliome” covers some 
thousands of genes (4000–6000, for example Illumina TruSight One and the Agilent SureSelect 
Focused Exome) with clinical significance (Pengelly et al., 2020). This approach has been 
applied for diagnosis of some genetically heterogeneous disease groups (Marelli et al., 2016). 
WES has also been implemented with a flexible and popular approach of in silico gene panels, 
where a region or regions of interest are separated from the WES data to be analyzed in a more 
time-effective manner while also avoiding incidental findings (discussed further) (Hehir-Kwa 
et al., 2018; Pfundt et al., 2017). WES is currently more expensive than most targeted gene 
panels, but the virtual panel approach brings down the costs to similar lever to panels and allows 
analyzing unsolved cases further from the same data (Hartley et al., 2018).  
 
WGS is expected to be the end goal for genetic testing in diagnostics. It has been continuously 
predicted that higher costs and requirements for data analysis and storage with WGS will be 
outweighed by diagnostic gain compared to WES (Lionel et al., 2018). Evidently, WGS seems 
to provide higher diagnostic yield than conventional targeted genetic testing especially in 
clinically heterogeneous disorders (Lionel et al., 2018). On the other hand, it has also been 
reported that WGS provides limited advancement over WES in clinical diagnostics (Alfares et 
al., 2018). Nevertheless, WGS is still not the standard first approach test in congenital nor 
oncogenetic testing, and WGS is estimated to remain substantially more expensive for a while 
still than WES or array approaches (Hehir-Kwa et al., 2018; Marchuk et al., 2018).  
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2.4 Variant detection from MPS data and its applications 
Before large-scale methods were available for genomic analysis, a hypothesis of the genetic 
cause for a certain disease or phenotype had to be formulated in order to target the genetic 
inspection to a certain region (Yang et al., 2013). This often led to multiple unsuccessful 
diagnostic tests: chromosomal microarray analysis, DNA methylation studies, single-gene 
sequencing tests, mitochondrial genome sequencing, enzyme analysis and biochemical analytic 
studies, with corresponding costs (Yang et al., 2013). With current MPS, the hypothesis of a 
phenotype can, if needed, be formulated after analyzing the sequence data, which then directs 
the investigation into a certain direction, rather than the other way around (Alkuraya, 2015). 
MPS methods have been used to study genetic variation in humans and animal models in health 
and disease, and increasingly to understand the organization, regulation and function of the 
genome (Goodwin et al., 2016). Since short-read sequencing platforms still dominate in these 
applications, other sequencing technologies with their current and emerging usages will be 
discussed later. 
 
MPS can be used in the analysis of modified bases, such as methyl-seq to inspect methylation 
of bases. Different approaches are based either on capture of the methylated regions, their 
selective digestion, or on modification of the methylated bases to introduce a SNP into the 
sequence (Goodwin et al., 2016). In ChIP-seq, immunoprecipitation is followed by sequencing 
to capture regions of genome covered by inspected entities, such as proteins (Goodwin et al., 
2016). Chromosome conformation capture followed by sequencing enables studying of 
genomic interactions (Dixon et al., 2018). For RNA-seq, mRNA capture is followed by 
complementary DNA (cDNA) synthesis (Ambardar et al., 2016). Different non-coding RNA 
classes can be studied as well, enabling the recognition of new miRNAs and miRNA targets 
(Fehlmann et al., 2016).  
 
Most commonly, MPS methods are utilized for calling variants from the genome. They have 
enabled resolving spatial and temporal genetic heterogeneity in tumors (Salk et al., 2018; 
Turajlic et al., 2019; Garg et al., 2020). CNVs and SNVs in genes encoding drug metabolizing 
enzymes, membrane transporters and drug targets (together called pharmacogenes) 
necessitating altered pharmacotherapy have also been recognized (Gulilat et al., 2019). Most of 
all, MPS methods have been utilized to detect pathogenic variants in Mendelian disorders, and 
also for the study of common diseases based on enrichment of more common variants (Salk et 
al., 2018; Goodwin et al., 2016). Generally, diagnostic yield for rare Mendelian diseases with 
WES and WGS varies between 25 and 50% (Cummings et al., 2017; Ellingford et al., 2016; 
Srivastava et al., 2019). 
 

2.4.1 Variant-calling from MPS data: SNVs and indels 
SNVs and indels are the easiest type of variants to detect from short-read MPS data. Algorithms 
for detecting SNVs and indels compare the sequencing data to the reference genome and detect 
discrepancies (Lappalainen et al., 2019; DePristo et al., 2011). Indels can be detected within a 
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single MPS sequencing read as one defining factor for their size of 50–100 bp (Carvalho, C. M. 
and Lupski, 2016). The sensitivity and specificity of the variant detection can be adjusted: for 
discovering rare variants in Mendelian diseases, sensitivity can be emphasized with a higher 
false positive error rate, while in population study settings specificity can be given more weight 
(DePristo et al., 2011). With more aggressive filtering the risk of excluding true variants 
increases (Salk et al., 2018).  
 
Commonly utilized evaluation metrics for sequencing data quality include mean average 
coverage and the percentage of the targeted sequence covered by at least 20X coverage, with 
approximately 95% threshold regarded sufficient (Charng et al., 2016; Boone et al., 2013; 
Gulilat et al., 2019; Yang et al., 2013). The required mean average coverage has been estimated 
with studies on required read depth with WES and WGS to detect variants. The estimations 
vary and sometimes overlap depending on variant type and scope (Meynert et al., 2014). WGS 
covers usually a higher proportion of targeted bases sufficiently to enable detection of variants 
with lower read depth than WES. This is mostly due to avoiding capture bias and more uniform 
read coverage (Mallawaarachchi et al., 2016; Meynert et al., 2014). One estimation for detecting 
heterozygous SNPs on coding regions with WES is 39–41X average read depth to reach the 
same high 95% detection sensitivity as achieved with 14–18X read depth with WGS (Meynert 
et al., 2014). Typical coverages for standard WES vary between 40 to 100X both in research 
and clinical diagnostic settings (Yang et al., 2013; Gambin, Akdemir et al., 2017; Gulilat et al., 
2019). Current WGS studies usually aim to a read depth of minimum of 20X (Lappalainen et 
al., 2019; Regier et al., 2018). Recently, high sensitivity and specificity of > 99.7% for SNVs 
and > 95% for indels have been reached from MPS data (Regier et al., 2018; Goodwin et al., 
2016; Lappalainen et al., 2019). The detection of low allelic frequency variants requires deeper 
sequencing and specialized data analysis algorithms (Chen et al., 2017). Even low false-
assignment rates can cause problems in studying rare somatic mutations in cancer or for the 
study of mitochondrial heteroplasmy (Kircher et al., 2012).  
 

2.4.2 Variant calling from MPS data: structural variation 
Soon after the first comprehensive CNV studies with array CGH, the utility of MPS in analyzing 
structural variation was hypothesized. MPS provided advantages in detecting balanced variants 
and novel sequence insertions, estimation of absolute copy number, and higher resolution, even 
without a priori knowledge of the variants (Feuk et al., 2006; Mills et al., 2011; Alkan et al., 
2011). Additionally, MPS enabled detection of structural variation together with other variant 
types, thus avoiding the need for other analysis methods and increase in costs (Mallawaarachchi 
et al., 2016). Paired-end sequencing generally enables more accurate detection of genomic 
rearrangements, repetitive sequence elements, gene fusions and novel transcripts (Ambardar et 
al., 2016).  
 
The first part of this review focuses on structural variation detection tools designed for short-
read sequencing data. A plethora of detection programs are currently available but with just a 
few shared algorithmic approaches (Figure 13). 
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Figure 13. Approaches for structural variant detection from MPS data. Read pair method investigates the relative 
location and orientation of read pairs (orange and red arrows). Split read method investigates reads, which fail to 
map or map only partially, split and realign them to reveal variation. Read depth method investigates and compares 
the coverage of genomic regions, and assembly method builds contigs of sequenced data and compares them to 
the reference genome. 

Read pair location and orientation were employed as the first signals representing structural 
variants in MPS data (Korbel et al., 2007; Tuzun et al., 2005). Read pairs located too far indicate 
deletions and too close insertions, tandem duplications and dispersed duplications map read 
pairs to more distant loci, differences in orientation indicate inversions, and successful mapping 
of only one read could indicate a novel insertion (Korbel et al., 2007; Tuzun et al., 2005; Alkan 
et al., 2011). Read pair method cannot provide accurate estimation of copy number, is 
inapplicable to insertions larger than the insert size and cannot resolve low-complexity regions 
(Tuzun et al., 2005; Zhao et al., 2013). Longer insert size enables higher coverage and higher 
overall structural variation detection power, but shorter insert size enables more accurate calling 
of smaller variants (Zhou et al., 2018). Read pair method performance is affected by whether 
reads with multiple mapping positions are discarded or retained – most of all, this defines how 
well the structural variants located in repetitive regions can be analyzed (Zhao et al., 2013). 
Read pair method is thus suitable only for paired-end sequencing data. At the time of developing 
the approach, this was not a limitation with the prevalence of paired-end short-read sequencing 
data, but, as discussed before, some of the emerging sequencing approaches so far produce only 
single-end sequencing data.  

Split read method was first applied to Sanger sequencing to map indels in the human genome 
(Mills et al., 2006). The method is based on read pairs, where one aligns to the reference genome 
and the other fails to map or only partially maps during alignment. The unmapped reads are 
split, and each fragment is realigned independently (Mills et al., 2006; Zhao et al., 2013). 
Stretch of gaps in the unmapped reads indicates deletion, and in the reference genome an 
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insertion (Alkan et al., 2011). Split read method enables detection of small deletions and 
insertions with unprecedented breakpoint resolution and anchors insertions (Alkan et al., 2011). 
The method is only suitable for unique genomic regions and limited in detectable variant size 
by library size more than the read pair method (Zhao et al., 2013). 

Assembly method allows potentially fine-scale discovery of all structural variant types, 
including novel sequences evasive for the previously presented methods, and enables resolving 
of complex genomic regions (Simpson et al., 2009; Li, Y. et al., 2011). For computationally 
feasible true de novo sequence assembly, long and accurate reads surpassing current 
technologies would be required. Therefore, de novo local assembly of short reads to generate 
contigs and their extension by comparison to reference genome is a common approach to 
improve computational efficiency and contig accuracy (Simpson et al., 2009; Alkan et al., 2011; 
Zhao et al., 2013). In its current state, this approach has a possible supportive role in discovering 
novel sequence insertions and improving breakpoint estimation (Alkan et al., 2011; Li, Y. et 
al., 2011). The method is insensitive for structural variants in highly repeated regions, such as 
tandem repeats, because of their tendency to collapse in assembly into one (Alkan et al., 2011; 
Li, Y. et al., 2011).  

Read depth method investigates differences in read depth distribution to discover duplications 
and deletions, and works thus both for single-end and paired-end data, but only for copy number 
variants (CNV) (Yoon et al., 2009). The workflow involves calculation of read depth in regions 
divided into windows, normalization of the reads locally in each window to correct biases 
(mainly GC bias and batch effect), detection of regions with divergent copy number, and 
segmentation to merge adjacent regions with the same copy number into one detection (Zhao 
et al., 2013; Yoon et al., 2009; Teo et al., 2012). The baseline assumption with this method is 
that the sequencing data is uniform in coverage. Reads mapped to a region are assumed to 
follow Poisson distribution with a suitable window size and a high enough read depth 
(originally suggested 100 bp for 30X coverage) (Yoon et al., 2009). Larger window size limits 
precision of breakpoint-calling and detection of smaller CNVs, since the signal originates from 
fewer windows, but the assumption of normal distribution wavers with smaller window sizes 
(Yoon et al., 2009; Zhou et al., 2018). Either predefined or dynamic window sizes are used with 
an attempt to keep the number of reads mapped to each window within a certain threshold (Zhao 
et al., 2013). For segmentation, statistical models such as circular binary segmentation (CBS) 
or Hidden Markov Model (HMM) are commonly utilized (Zhao et al., 2013). CBS was 
originally developed for array CGH to discover segments with the same copy number among 
noisy intensities (Zhao et al., 2013).  

Tools based on read depth evaluation tend to have different study designs enabling analysis of 
either single samples, paired case/control samples or a large set of pooled samples (Kadalayil 
et al., 2015). With comparison to only the reference genome, areas may appear normal on 
regions which are incorrectly mapped in the reference genome or have the same allele. 
Therefore, comparison of read depth between multiple samples was originally recommended to 
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clearly recognize polymorphic events (Yoon et al., 2009). A matched control or analysis within 
a sample set lowers false positive count and allows discovery of smaller events and higher 
statistical power (Zhao et al., 2013). The case-control setting alleviates also the effects of GC 
bias, since it is expected to match between the two samples (Zhao et al., 2013). In the pooled 
data of sample sets, CNVs are usually detected as deviations from the average read count of the 
batch (Kadalayil et al., 2015). With this approach, the sample set should be processed with the 
same sequencing pipeline to minimize technical bias (Jiang et al., 2015). This is a popular 
approach, since normal samples can be often unavailable, incomplete or unmatched.  
 
Compared to other methods, only the read depth method enables the detection of some 
segmental duplications (SDs) and inferring of absolute copy number (Alkan et al., 2009). 
Generally, ambiguously mapping reads in repetitive regions cannot be accurately resolved. On 
the contrary, estimation of coverage for a region with unequivocally mapped reads is possible 
with read depth method, unlike the read pair and split read methods (Alkan et al., 2011; Yoon 
et al., 2009). Discarding ambiguously mapped reads completely may limit analysis to only 
unique regions and increase the amount of false positive deletion detections (Teo et al., 2012). 
Some tools assign these reads randomly to one of the equally possible positions, which enables 
the analysis of repetitive regions. However, this leads to the increase of false positive detections 
and a diluted signal. Soft clustering approaches allow multiple good mappings, and it may be 
the only approach for retaining signals from SDs, which are often enriched in CNVs (Zhao et 
al., 2013; Teo et al., 2012).  
 
The read depth method provides a poor breakpoint resolution (Alkan et al., 2011; Yoon et al., 
2009). Coverage loss from GC bias affects somewhat negatively the other three CNV detection 
methods, since these regions may have insufficient information to discern variants or to enable 
contig assembly. Read depth analysis is inherently the method most affected by GC coverage 
bias (Teo et al., 2012). Balanced rearrangements or novel insertions missing from the reference 
genome are not detectable by the read depth method, and a precise location cannot be provided 
for insertions (Yoon et al., 2009; Zhao et al., 2013). Detection of duplications is less sensitive 
because of smaller relative difference in read depth and thus weaker signal (Teo et al., 2012; 
Marchuk et al., 2018). The read depth method has a persisting size limitation and detects 
accurately only CNVs bigger than 1000 bp in size (Yoon et al., 2009; Trost et al., 2018).  
 
Combining read depth method and paired-end read information in a program owing to their 
complementarity in performance is an old idea (Yoon et al., 2009). The read pair method excels 
at detecting small deletions (< 1 kb) with a high breakpoint resolution, while the read depth 
method detects larger variants better, but is based on a less powerful signal and lacks potential 
to call accurate breakpoints (Tan et al., 2014; Mills et al., 2011). Since both read pair method 
and split read method utilize only position information, exact copy numbers cannot be inferred 
with them (Zhao et al., 2013). Read depth method and read pair method have remained the most 
popular combination in combinatory algorithms (Zhao et al., 2013) and in algorithms overall 
(Zhang, L. et al., 2019). 
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In practice, CNV detection algorithms differ on multiple aspects in addition to their detection 
method, such as programming language and operating system. Popularly used languages 
include R and C/C++, which are convenient for incorporating statistical models and distribution 
across multiple operating systems (Zhao et al., 2013). The programs also have differing memory 
requirements and run times, sometimes with a span from minutes to hours for the same sample 
set (affected mostly by support for parallelized analysis) (Zhang, L. et al., 2019; Tan et al., 
2014; Povysil et al., 2017). For example, the read depth method tends to consume more memory 
in structural variant analysis than the other approaches (Kosugi et al., 2019). The tools based 
on read depth method usually accept BAM and SAM files, and tools inspecting read pairs and 
split reads settle for FASTQ-files, since the latter do not utilize read depth information (Zhao 
et al., 2013). Some programs can also utilize both read depth and SNP zygosity information 
(both BAM and VCF files required): information for B-allele frequency reveals possible 
regions of LOH (Gambin, Akdemir et al., 2017). Genotyping information generally increases 
detection sensitivity and specificity (Kosugi et al., 2019; Teo et al., 2012).  

The tools are usually developed for a specific setting, such as for detecting rare or common 
variation (Alkan et al., 2011), detecting CNVs especially on duplicated and complex genomic 
regions (Alkan et al., 2009) or detecting small homo- or hemizygous deletions (Gambin, 
Akdemir et al., 2017). The programs can also be specified for the detection of germline or 
somatic structural variation, for specific sequencing data type, or for sample batch or control-
sample comparison settings. The programs can also have different modes for different study 
settings available, such as an option for a virtual gene panel included in the CNV calling 
program (Zhang, L. et al., 2019; Povysil et al., 2017). Most of the tools are designed for 
hybridization sequencing data with smoother coverage, but some have been designed for 
amplicon enriched sequencing data as well (Talevich, E. et al., 2016).  

All CNV detection tools are mostly standalone distributions rather than available to be run 
online (Zhao et al., 2013). Only a few tools have both code and graphical user interface versions 
available for users without programming experience (Povysil et al., 2017). Therefore, most of 
the tools require at least moderate programming skills to install the required packages and 
execute commands (Roca et al., 2019). The existing algorithms have also been modified or 
combined, which has been enabled by the policy of freely available source codes (Samarakoon 
et al., 2014). 

2.4.2.1 Structural variants and the different short-read sequencing data sources 

Discontinuous sequence data in WES and targeted gene panel sequencing approaches prevents 
the capture of most CNV breakpoints as they land mostly in introns, which limits the resolution 
of these CNVs (Kadalayil et al., 2015). In practice, this leaves read depth method as the only 
possible approach and limits the detections to the CNV class of structural variation. Therefore, 
even if breakpoints are located in exons, their accurate detection is challenging because of the 
inherent limitations of the read depth method (Truty et al., 2019). Overall, discovering and 
genotyping CNVs from WES data with read depth method is more challenging than from WGS 
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data, with more uniform coverage as the key difference (Tan et al., 2014). GC content affects 
exome capture, amplification by PCR and efficiency of sequencing and skews read depth 
distribution more in WES than WGS data (Kadalayil et al., 2015). Therefore, deep and uniform 
coverage is generally required for accurate CNV detection from WES data, with average 
coverages in CNV detection studies varying between 60X and 90X (Kerkhof et al., 2017; Yao 
et al., 2017; Sadedin et al., 2018; Marchuk et al., 2018), but also 350X has been used with 
targeted gene panels (Truty et al., 2019).  

Structural variants are common in cancer genomes (Turajlic et al., 2019). Challenges for 
identifying somatic CNVs in cancer include tumor heterogeneity, complexity and 
contamination from normal tissue. Cancer genome may have changes in ploidy, which 
compromises comparison to reference and estimation of absolute copy number (Hehir-Kwa et 
al., 2018; Whitford et al., 2019; Eijkelenboom et al., 2019). Inferring the correct copy number 
is more difficult for increased multiplications, which are also more common in cancer (Turajlic 
et al., 2019). Resolving the breakpoints and structure of complex rearrangements, such as in 
chromothripsis, is generally very challenging with short-read sequencing technologies (Hehir-
Kwa et al., 2018). The programs specified for somatic CNV detection utilize often both read 
depth and B allele frequency information to detect CNVs and regions of LOH more accurately, 
and take possible tumor impurity into account (Liu, X. et al., 2018). These tools require usually 
a tumor-control sample pair for analysis to reach better accuracy (Kim, H. Y. et al., 2017; 
Kadalayil et al., 2015), and higher average read depth is generally required for calling CNVs 
from tumor samples (100–300X) depending on normal tissue contamination (Liu, X. et al., 
2018). 

The sensitivity of CNV calling from WES data for clinically relevant germline CNVs with at 
least three exons has been estimated to be very high, 96% (Gambin, Akdemir et al., 2017), and 
even a detection sensitivity of 100% and specificity of 99.8% has been reached for gene panels 
(Kerkhof et al., 2017; Ellingford et al., 2017). On the other hand, less than ideal sensitivity of 
86.5% and specificity of 78% has also been demonstrated (Gambin, Akdemir et al., 2017). 
Current consensus is that CNV analysis from WES data provides notably lower sensitivity 
compared to SNVs and indels (Hehir-Kwa et al., 2018).  

Initially, algorithms based on analyzing read depth were more frequent due to WGS still being 
rare (Zhao et al., 2013). Currently, it is estimated that only 5–10% of structural variants can be 
detected solely by read depth analysis from short-read sequencing data, even with WGS data 
(Lappalainen et al., 2019). Nevertheless, read depth methods are still popular for WGS data by 
being conceptually the simplest to use and by superiority in detecting large CNVs (the minimum 
limit of > 1 kb persisting), which are more likely to have clinical significance (Trost et al., 
2018).  

The increase of WGS studies has led to the development of new tools for analyzing structural 
variation from WGS data with other methods than read depth (Zhang, L. et al., 2019). WGS 
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data provides multiple sources of evidence to detect structural variants: relative read depth, read 
pair location and split reads spanning the breakpoints (Mallawaarachchi et al., 2016). 
Breakpoint analysis enables detection of smaller events and copy number balanced variants 
compared to WES data (Neerman et al., 2019). Generally, read pair methods display the most 
balanced sensitivity and specificity for analyzing different structural variant classes from WGS 
data (Whitford et al., 2019). The combination of read depth and read pair analysis software for 
CNV analysis from WGS data is common (Zhou et al., 2018). WGS data provided 96% clinical 
sensitivity for detecting pathogenic structural variants in a recent study (Neerman et al., 2019).  
 
Only structural variants with distinct breakpoints (approximately 75%) can be detected from 
short-read sequencing data, thus generally excluding mobile element insertions, short tandem 
repeats, SDs (such as MHC clusters), balanced translocations in non-uniquely mappable areas, 
and multi-allelic CNVs (Lappalainen et al., 2019; Abel et al., 2018; Zhou et al., 2018; Lionel 
et al., 2018; Neerman et al., 2019). Also inversions tend to be flanked by highly identical 
sequence stretches, making their alignment and identification challenging from short-read 
sequencing data (Chaisson, M. J. P. et al., 2019). Approximately 7–8% of the balanced 
chromosomal rearrangement breakpoints undetectable from short-read sequencing data are 
located near centromere heterochromatic regions or within SDs (Redin et al., 2017). Moreover, 
the different algorithms have less concordance in detecting duplications from WGS data (which 
will be discussed more further), so these remain more difficult to detect (Trost et al., 2018).  
 
Transposable elements can exhibit high sequence identity, high copy number or complex 
genomic arrangements, making their detection by short-read sequencing challenging (McCoy 
et al., 2014). Highest mapping scores for reads with primarily repeat content are usually 
obtained from the longest repeat locus with the same repeat unit in the reference genome, which 
may not be the original source of the expansion stretch (Dashnow et al., 2018). Some tools have 
been developed for the specific detection of STRs and VNTRs (Dashnow et al., 2018; Bakhtiari 
et al., 2018), mobile element and viral element insertions from short-read MPS data, but 
comprehensive studies for these variant types are limited (Lappalainen et al., 2019; Kosugi et 
al., 2019). Regardless of these advances, repeat expansions detectable in MPS data are still 
being examined manually to reach accurate detection results (Gulilat et al., 2019). Some of the 
diseases caused by repeat expansions are genetically heterogeneous and would thus benefit 
from a comprehensive genomic test (Dashnow et al., 2018).  

2.4.2.2 Lack of call concordance, sensitivity and specificity, and solutions 

Early on, it was recognized that some structural variant types are uniquely detected by different 
detection approaches (Alkan et al., 2011). For example, different programs and program 
combinations have been shown to be more accurate in calling variants of specific state 
(deletions or duplications) or size (Tan et al., 2014; Zhang, L. et al., 2019; Kosugi et al., 2019). 
Furthermore, poor concordance has been observed with structural variants detected by different 
tools in multiple studies. The programs suffer from low sensitivity and specificity, generally 
with a trade-off between the two (Yao et al., 2017; Samarakoon et al., 2014; Rajagopalan et al., 
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2020; Povysil et al., 2017; Neerman et al., 2019; Kadalayil et al., 2015; Whitford et al., 2019; 
Tan et al., 2014; Chaisson, M. J. P. et al., 2019; Regier et al., 2018).  
 
Combining results from algorithms with the same detection method increases specificity 
(Kosugi et al., 2019), whereas combining results from two similarly designed and well 
performing programs does not improve overall sensitivity (Whitford et al., 2019). By contrast, 
combining algorithms with different CNV calling methods has been demonstrated to increase 
both sensitivity and specificity (Kosugi et al., 2019). Program comparison studies are becoming 
more comprehensive both for WGS and WES settings and usually also include evaluations of 
different program combinations. For example, in some latest studies 10 to 69 programs have 
been evaluated in a single study (Zhang, L. et al., 2019; Kosugi et al., 2019; Roca et al., 2019; 
Trost et al., 2018). In most of them, the conclusive recommendation has been to use more than 
one tool regardless of the study setting (Sadedin et al., 2018). In one systematic study, the best 
detection accuracy was achieved with a combination of nine tools (Roca et al., 2019). This 
approach may be restricted in practicality by increasing computing time and costs, and by the 
requirement for additional complex steps of merging variant calls into a consensus set 
(Lappalainen et al., 2019; Trost et al., 2018). Tools for combining CNV calls are not commonly 
available and the process also lacks consensus: criteria of 50–80% overlap with and without 
requirement for reciprocality have been used (Hwang et al., 2015; Zarrei et al., 2015; Trost et 
al., 2018; Kosugi et al., 2019; Zhang, L. et al., 2019). 
 
Tool performance estimations differ greatly between studies, which further complicates tool 
performance evaluation (Sadedin et al., 2018). One of the reasons may be in conducting the 
comparison studies in different settings without optimization of parameters (Sadedin et al., 
2018). Variation in sequencing data metrics could also explain some of the discrepancies in 
these studies (Kadalayil et al., 2015). Evidently, in multiple evaluation studies only the default 
parameters of the programs have been utilized (Tan et al., 2014; Yao et al., 2017; Hwang et al., 
2015; Zhang, L. et al., 2019; Trost et al., 2018; Roca et al., 2019). As an example, some 
algorithms are optimized for a certain read depth or read length as default, with parameter 
adjustments recommended to be done according to the data (Zhang, L. et al., 2019; Povysil et 
al., 2017).  
 
As an additional explanation for the discrepancies, standard protocols and quality control 
measures for analyzing MPS data for structural variants have long been missing (Teo et al., 
2012). The evaluation settings often involve varying sets of self-produced real and simulated 
sequencing samples and structural variants (Kosugi et al., 2019; Liu, X. et al., 2018; Roca et 
al., 2019; Sedlazeck et al., 2018; Neerman et al., 2019). Some studies have also used non-
transferrable evaluation metrics, such as positive predictive value, which is dependent on CNV 
prevalence and cannot be transferred from one disease setting to another (Kadalayil et al., 
2015). Especially WES and targeted gene panel sequencing data with inherently varied settings 
are still lacking high quality reference samples and a gold standard CNV set (Rajagopalan et 
al., 2020; Roca et al., 2019). An ideal reference sample or a sample set would contain numerous 
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known variants with a variety of types and sizes preferably processed with the same platform 
and protocols as test samples. The latter would be especially important for read depth methods 
with more significant sequencing batch effects (Rajagopalan et al., 2020). But because of 
challenges in meeting the presented requirements, CNV detections are often validated with 
complementary methods, such as arrays, which could distort the validation results due to their 
own platform specific biases (Yao et al., 2017; Kadalayil et al., 2015; de Ligt et al., 2013).  
 
Nevertheless, some programs have been included in multiple validation studies and are more 
commonly used than others, such as ExomeDepth for WES data (Plagnol et al., 2012). It was 
developed almost a decade ago but is still considered one of the most sensitive CNV detection 
algorithms (Rajagopalan et al., 2020; Hehir-Kwa et al., 2018). Copy Number Inference From 
Exome Reads (CoNIFER) (Krumm et al., 2012) was the first program developed to detect rare 
CNVs. CoNIFER has still relatively high specificity and it has been used as the gold standard 
in some recent comparisons (Hehir-Kwa et al., 2018; Yao et al., 2017). EXome hidden Markov 
Model (XHMM) (Fromer et al., 2012) provides useful quality scores both for CNV detections 
and the detected breakpoints separately and was used to build the ExAC CNV database 
(Ruderfer et al., 2016). The program for comparing the performances of CNV detection tools, 
Ximmer, contains CoNIFER, XHMM, ExomeDepth, CODEX and cn.MOPS, which are 
thought to be commonly used and reliable tools (Sadedin et al., 2018). 
 
For WGS settings, more reference samples are available from public collections or single 
studies (Neerman et al., 2019). The so-called Genome in a Bottle samples with structural 
variants called from WGS data have also become available (Neerman et al., 2019; Trost et al., 
2018). One of the most widely used and information rich reference sample to test structural 
variant calling has lately been the NA12878. This sample has genome data provided from 
different platforms, such as Illumina HiSeq and PacBio RS, parental samples available, and 
DGV, NCBI dbVar and GIAB provided structural variant sets (databases discussed further) 
(Neerman et al., 2019; Trost et al., 2018; Kosugi et al., 2019; Sedlazeck et al., 2018; Zhang, L. 
et al., 2019). However, some duplications and inversions have been found to be missing from 
the original call sets (Kosugi et al., 2019; Whitford et al., 2019), and they also include some 
apparent false positive detections (Zhang, L. et al., 2019). Therefore, even this sample and its 
variant call sets have been considered to lack in quality (Neerman et al., 2019).  
 
In addition to differences in tool validation protocols, the workflows for detecting the actual 
structural variation vary with no common consensus or best practices pipeline available (Trost 
et al., 2018). For example, the most cited algorithm for structural variation calling from WGS 
data has only < 12% of total citations (Trost et al., 2018). Furthermore, different MPS pipelines 
seem to lead to differences especially in structural variant call sets (Regier et al., 2018). 

2.4.2.3 Emerging MPS approaches and detection of structural variants 

Longer read length allows sequencing of complex repetitive regions or structural 
rearrangements since they can be covered with a single continuous read and assembled locally 
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(Salk et al., 2018; Goodwin et al., 2016). Long reads from both emerging long-read sequencing 
technologies and linked-read approaches can correct for amplification biases and mapping 
errors. This strengthens statistical power and sensitivity of variant detection with read depth 
method, increases detectable size of CNVs for split read method and improves assembly quality 
(Zhao et al., 2013; Hehir-Kwa et al., 2018). Evidently, compared to a PCR-free setting, WGS 
data from PCR-based libraries had less uniform read depth, which increased false positive 
structural variant detections (Trost et al., 2018). Long-read sequencing provides higher 
breakpoint resolution even for inversions, complex insertions and long tandem repeats, which 
are the most difficult variant types to detect with short reads (Hehir-Kwa et al., 2018; Chaisson, 
M. J. et al., 2015). Genotyping with long-read information for structural variants detected from
short-read sequencing data also improves call accuracy (Audano et al., 2019). RNA sequencing
(RNA-seq) provides further insight on some genomic regions or variants elusive for DNA
sequencing, as will be discussed further. Although separate tools or existing tools with updates
are being developed for structural variant detection from RNA-seq data, the tools have not been
widely validated yet and are not in routine use (Talevich, Eric and Shain, 2018; Serin Harmanci
et al., 2020).

High costs owing to high read depth required to cover for high error rate and low throughput 
limit the general use of long-read sequencing methods (Kosugi et al., 2019; Hehir-Kwa et al., 
2018; Sedlazeck et al., 2018). Additionally, meeting the strict sample requirements for high 
molecular weight DNA for long-read sequencing technologies is challenging in many settings 
(Hehir-Kwa et al., 2018). Nevertheless, some algorithms have already been developed for 
structural variant calling from long-read and linked-read sequencing data (Sedlazeck et al., 
2018; Kosugi et al., 2019; Hehir-Kwa et al., 2018). Recent novel structural variant discoveries 
from long-read data compared to short-read data approaches have mostly been small in size 
(500 bp on average) and more often insertions (Audano et al., 2019; Chaisson, M. J. et al., 
2015). The programs have especially resolved complex CNVs with nested structures 
(Sedlazeck et al., 2018). Novel structural variants have also been found on regions with extreme 
GC content (Audano et al., 2019), and the increase in read length improves inferring bi- and 
multiallelic variants and multi-site variants (Campbell et al., 2016).  

Long reads have enabled more accurate discrimination of pseudogenes and detection of repeat 
expansions, repeat associated structural variants and CNVs in polymorphic regions, such as the 
HLA locus (Hehir-Kwa et al., 2018; Chaisson, M. J. P. et al., 2019). Successful analysis of 
repetitive genomic regions for structural variants has increased the estimation of structural 
variant prevalence per genome over six-fold, from 4442 to 27,662 (Abel et al., 2018; Chaisson, 
M. J. P. et al., 2019). However, long-read sequencing technologies provide an excess of false
positive small deletions (Nanopore), insertions, and duplications (PacBio), the majority of
which are located in homopolymers or other simple repeats (Chaisson, M. J. et al., 2015;
Sedlazeck et al., 2018; Dashnow et al., 2018). Although long reads can span whole repeat loci
with higher probability, inferring the repeat unit count accurately is challenging because of an
excess of these indel errors. This is somewhat alleviated in cases of notable differences in the
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lengths of normal and pathogenic repeat unit counts (Dashnow et al., 2018; Bakhtiari et al., 
2018).  
 
Structural variant detection from short-read MPS data is today common in clinical research 
settings. Analysis of structural variants tends to add several hours to library preparation and 
software steps (Clark et al., 2019), but increases the diagnostic yield even in patient cohorts 
with multiple preceding non-conclusive diagnostic tests. Nevertheless, array approaches (SNP 
array and array CGH) have persistently been suggested to remain as the first-choice gold 
standard method for CNV detection in clinical diagnostic settings, with CNV detection from 
MPS data suggested to be used in initial screening (Yao et al., 2017; Marchuk et al., 2018). 
CNVs detected from MPS data are recommended to be verified before reporting (Eijkelenboom 
et al., 2019; Rajagopalan et al., 2020). Evidently, CNV detections from MPS data are still being 
validated with varying complementary methods, such as MLPA (Austin-Tse et al., 2018; 
Marchuk et al., 2018; Pfundt et al., 2017; Truty et al., 2019), PCR (Truty et al., 2019; Gambin, 
Akdemir et al., 2017), qPCR (Marchuk et al., 2018), ddPCR (Austin-Tse et al., 2018), Sanger 
sequencing (Charng et al., 2016; Truty et al., 2019), array CGH (Charng et al., 2016; Gambin, 
Akdemir et al., 2017; Austin-Tse et al., 2018; Samarakoon et al., 2014; Pfundt et al., 2017; 
Truty et al., 2019) or even FISH (Marchuk et al., 2018).  
 
In the latest studies, more clinically relevant CNVs have been discovered with WGS compared 
to arrays (Trost et al., 2018; Zhou et al., 2018). Generally, array approaches have lower 
resolution for small CNVs and for determining exact breakpoints compared to detection of 
structural variants from MPS data (Kosugi et al., 2019; Rajagopalan et al., 2020). CNV analysis 
from low-coverage WGS data has lower costs compared to the current higher density arrays 
(Zhou et al., 2018). Sequencing with a targeted gene panel provides approximately 70% cost 
reduction compared to Sanger sequencing and MLPA approaches and significantly shorter turn-
around time with similar diagnostic yield (Kerkhof et al., 2017). However, evaluating WES and 
WGS approaches in performance over older methods is not straightforward, since they are often 
the last-straw test, not first-tier, with pathogenic variants depleted from the patient cohorts 
(Lionel et al., 2018). The aim of the clinical validation of CNV detection from MPS data is to 
eventually avoid a need for complementary techniques, which increases costs and work-load in 
the diagnostic workflow (Kerkhof et al., 2017). 
 

2.4.3 Variant annotation 
Apart from advancements in variant detection methods, the most prominent bottleneck in 
diagnostic MPS approaches is the inability to interpret much of the variation (Harel and Lupski, 
2018). Without accurate diagnosis, potential treatments or the risk of recurrence cannot be 
identified, and prognosis cannot be provided (Yang et al., 2013). Therefore, accurate 
assessment of clinical significance of discovered genetic variants, annotation, is of utmost 
importance to the patients, their relatives and the healthcare system. The proposed annotation 
guidelines for diagnostic MPS differ for somatic variants and germline variants (Matthijs et al., 
2016; Li, M. M. et al., 2017; Richards et al., 2015; Riggs et al., 2019). The American College 
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of Medical Genetics and Genomics (ACMG) has defined the now widely-used classification 
terms of pathogenic, likely pathogenic, variant of uncertain significance (VUS), likely benign 
and benign to describe variants in Mendelian disease genes (Richards et al., 2015). Numerous 
criteria need to be evaluated before annotating the variants with any of these statuses. 
 
The common consensus is that the most informative resources for prioritizing variants are 
variant-disease and gene-phenotype associations, population frequency and information on 
segregation (Neerman et al., 2019; Richards et al., 2015). Variant population frequency 
databases include for example NHLBI Exome Sequencing Project (ESP), dbSNP, 1000 
Genomes, ExAC and gnomAD. These databases are either disease specific, such as ESP for 
heart, lung and blood disorders, or contain variants from putatively healthy individuals (Li, M. 
M. et al., 2017). ExAC provides exonic variant information from 60,000 individuals (Lek et al., 
2016). The most comprehensive database of these, gnomAD, contains variants from over 
125,700 exomes and 15,700 genomes spanning multiple ancestries (Karczewski et al., 2020).  
 
Deleterious variants are often rare due to purifying selection. Thus, allele frequency in the 
general population can be used to predict potential phenotypic effects and clinical significance 
(Lappalainen et al., 2019). However, no agreed-on cutoff exists for classification of variation 
as polymorphic and thus probably benign. Most commonly, rare variation is defined to have a 
minor-allele frequency (MAF) of < 1%, common variation has a MAF of > 5%, and low-
frequency variants fall in between. Ultra-rare variants refer often to singleton variants identified 
in only one person in a large study, but they may be described also with an arbitrary frequency 
of MAF < 0.01% (Li, M. M. et al., 2017; Lappalainen et al., 2019; Abel et al., 2018). Most 
identified variants are ultra-rare, but most (> 95%) variation in an individual is common. These 
are ancient polymorphisms which have arisen early in human development and present now in 
all major ancestry groups (Lappalainen et al., 2019). However, the databases with supposedly 
only non-deleterious variants are known to contain some pathogenic variants with e.g. 
incomplete penetrance or late manifesting phenotypes (Richards et al., 2015; Neerman et al., 
2019). For example, some variants in neuromuscular disorders cause a mild, possibly late-onset 
dominant disease, while carriers of variants for recessive disease are often normal 
phenotypically (Laing, 2012). Utilizing ethnically matched MAFs is recommended (Li, M. M. 
et al., 2017), but most current databases are European-centric and would need increased 
ancestral diversity (Karczewski et al., 2020; Sirugo et al., 2019). For example, one study 
revealed a rare pathogenic variant in combination with different functional common alleles 
(leading to a surpassed pathogenic threshold) depending on the patient ethnicity (Wu et al., 
2015). 
 
Germline variant databases include for example Human Gene Mutation Database (HGMD) and 
ClinVar. HGMD collects variant annotations in the published literature (Richards et al., 2015). 
DECIPHER is a molecular cytogenic database, which links genomic microarray data with 
phenotypes (Richards et al., 2015; Firth et al., 2009). ClinVar provides information on clinical 
and phenotypic significance of rare germline variants from pathogenic to benign and the 
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relevant clinical and experimental evidence (Landrum et al., 2014; Richards et al., 2015). The 
Online Mendelian Inheritance in Man (OMIM) database describes comprehensively Mendelian 
genes and genetic conditions with examples of disease-associated genetic variants (Richards et 
al., 2015; Amberger et al., 2015). Somatic databases, such as My Cancer Genome and 
COSMIC, list the prevalence of variants across different cancer types (Li, M. M. et al., 2017). 
Many of the presented databases contain also relevant literature for reference (Li, M. M. et al., 
2017). Some of the databases are disease or gene-specific (Richards et al., 2015).  
 
Some problems have been recognized with the disease variant databases: as many as 25% of 
variants listed as pathogenic may be either sequencing errors, common polymorphisms, or 
remain singular cases with no further evidence of pathogenicity (Volk and Kubisch, 2017). The 
disease and gene-specific databases may also contain incorrectly associated variants (Wenger 
et al., 2017; Richards et al., 2015). For example, the same affected individuals or families may 
be reported in multiple different studies leading to false increase in variant frequency (Richards 
et al., 2015). Most of all, the variant databases are in need of standardization to increase their 
clarity and usability (Richards et al., 2015). This will most likely involve fixed encoding for 
patient phenotypes and measuring the relevance of variants for a phenotype in a standardized 
manner (Wenger et al., 2017). 
 
In cases of novel or rare variants, which have not been incorporated into databases, in silico 
prediction programs can illuminate variant effect on gene function. Commonly used predictive 
software include SIFT, PolyPhen2, CADD and MutationTaster (Richards et al., 2015). These 
tools are based either on predicting the effects of single variants or on the calculation of 
hypothetical scores for every base change. Especially the latter enables annotation of novel 
SNVs (Ganel et al., 2017). Variant effect on transcript and protein level is often determined in 
two categories: whether the variant is deleterious to protein function or structure, or whether it 
affects splicing (Richards et al., 2015). Since the tools generally demonstrate only moderate 
specificity and tend to overestimate the deleteriousness of variants, their predictions are not 
recommended to be used as the only source of evidence for clinical significance (Li, M. M. et 
al., 2017). 
 
Additional tools include variant tolerance estimation scores for genes. ExAC genetic 
intolerance constraint is based on comparison of predicted rare variation per genes and the 
observed variation, with depletion interpreted as intolerance. The probability of being LOF 
intolerant (pLI) score is significant for all known haploinsufficient genes (Lek et al., 2016). 
More recently, a loss-of-function score, loss-of-function observed/expected upper bound 
fraction (LOEUF) with low LOEUF scores indicating genes depleted for pLOF variation, was 
calculated from the combination of individual datasets from both gnomAD and ExAC 
(Karczewski et al., 2020). These scores can help to evaluate effects of a knockout on a gene, 
since these events are too frequent in different populations to be unequivocally deleterious 
(Alkuraya, 2015). A second knockout event or a milder genetic modifier may be required for a 
deleterious effect to present, complicating the analysis of these variants (Wu et al., 2015). 
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Discovery and inspection of novel genetic variants just on genomic DNA level may not be 
enough to enable conclusive determination of their clinical significance. RNA sequencing 
(RNA-seq) provides functional information on transcriptional perturbations and helps the 
inspection of large genes, which statistically harbor multiple putatively pathogenic variants 
(Cummings et al., 2017; Richards et al., 2015). RNA-seq can both help to validate discovered 
variants for clinical significance and enable the discovery of perturbations unidentifiable from 
genomic DNA sequencing data alone (Cummings et al., 2017). Additionally, expression levels 
can be quantified, and alternatively spliced isoforms can be detected. These may reveal 
regulatory alterations by variants in the promoter or in deep intronic regions (Volk and Kubisch, 
2017). Both exonic and intronic variants can lead to exon skipping or exon extension, and either 
generate new splice sites or activate cryptic weaker splice sites (Cummings et al., 2017). Source 
material from the diseased tissue is generally required for RNA-seq, but some tissues are 
difficult to access (Cummings et al., 2017). In these cases, functional studies could be conducted 
with protein studies, and by animal models (Laing, 2012).  

The most relevant of the presented information sources have been gathered into a widely 
utilized tool, ANNOVAR. Annotate variation (ANNOVAR) assists in annotation and filtration 
of SNVs and indels by examining their functional effect according to gene-based and region-
based datasets and by comparison to variant databases for frequency filtration (Wang, K. et al., 
2010). For example, synonymous and non-frameshift variants are often first excluded to 
provide a list of more potentially causative variants (Wang, K. et al., 2010). A variant can be 
rated higher in significance evaluation if it occurs in a gene in which mutations have been 
previously reported to cause the same disease as in the examined patient (Yang et al., 2013). 
Rare and deep intronic variants recently detected from WGS data remain challenging to 
interpret since the first comprehensive WGS variant databases have been just released (Volk 
and Kubisch, 2017; Austin-Tse et al., 2018). Regulatory or compensatory non-coding variation 
may explain phenotypic variability associated with the same pathogenic variants in different 
individuals, and these variants are currently scarcely documented (Zhang, F. and Lupski, 2015). 
On the other hand, patient phenotype description may be incomplete with some aspects not 
recorded or emerged yet, which confounds the diagnostic efforts (Wenger et al., 2017). In these 
cases, genetic studies on the family members could be informative. 

Trio analysis, typically with an affected child and healthy parents, can be used to identify de 
novo variants, phase and prioritize variants, and analyze segregation (Wenger et al., 2017). 
Phasing information helps deduce whether potentially pathogenic variants are in cis or in trans 
to interpret their allele-specific impact on gene expression (Marks et al., 2019; Richards et al., 
2015). Closely related individuals, such as siblings, are expected to share many genetic variants. 
Therefore, in dominant disease cases examining distantly related affected family members may 
be more informative (Gorokhova et al., 2015). For recessive disorders, examining the parents 
is informative, since both are expected to carry one pathogenic mutation (Gorokhova et al., 
2015). A theoretical pitfall in these studies is that the segregating variant thought to be 
pathogenic could be in linkage disequilibrium with the true pathogenic variant (Richards et al., 
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2015). Pathogenic variants with incomplete penetrance or variable expressivity are problematic 
for reporting since predicting their phenotypic consequences in the patient or their family 
members is challenging (Marchuk et al., 2018). 
 
Incidental findings can be medically actionable conditions unrelated to the indication for 
testing, which might necessitate treatment or surveillance for the patient and their relatives. 
They may also alternatively involve autosomal recessive carrier status genes or 
pharmacogenetic findings (Yang et al., 2013; Green et al., 2013). ACMG has published 
recommendations for reporting incidental findings and estimate that 1% of cases will have such 
a finding (Green et al., 2013). Currently, the ACMG list for reportable incidental findings 
includes 59 genes (Kalia et al., 2017). 
 
Regardless of comprehensive genetic tests, some patients remain without pathogenic genetic 
findings. In these cases, the disease could have non-genetic etiology, or the causative variant 
could be present in mosaic quantities challenging to detect (Marchuk et al., 2018). Some 
diseases are multifactorial; for example, compound inheritance of minor effect variants may be 
required to decrease the gene dosage beyond a certain threshold for deleterious effect to 
manifest (Weischenfeldt et al., 2013; Wu et al., 2015). Environmental factors could also 
influence disease presentation (Weischenfeldt et al., 2013), and penetrance can vary between 
populations with alternative risk haplotypes depending on ancestry (Rosenfeld et al., 2013; Wu 
et al., 2015).  
 
Increasing knowledge and evolving phenotype may alter or add to the diagnosis of some 
patients (Yang et al., 2013). Approximately 10–11% new diagnoses have been reached with 
reanalysis of either WGS or WES data (Costain et al., 2018; Wenger et al., 2017). No clear 
agreement or recommendation has been made on the timing for this (Richards et al., 2015). 
Some studies have suggested periodic reanalysis of genomic data every 1–3 years, or sooner if 
the phenotype evolves (Costain et al., 2018; Wenger et al., 2017). Approximately 250 new 
gene-disease associations are being reported annually in OMIM and 9200 new variant-disease 
associations in HGMD (Wenger et al., 2017). However, a gap of years may precede the update 
of relevant databases after publication of the primary literature (Wenger et al., 2017). This 
necessitates long-term data storage in diagnostic centers. Alternatively, decreasing costs of 
sequencing and advancements in sequencing technology may make re-sequencing of DNA the 
more attractive option in the future (Costain et al., 2018).  
 
Regardless of recommended best practices, human genetics still lacks clearly defined 
instructions that would be utilized widely and unequivocally in comprehensive analysis of MPS 
data. This would allow for unequivocal and robust comparison of sequencing data and results 
from different diagnostic groups (Campbell et al., 2016). This shortcoming concerns especially 
the more recently recognized variant types for which both the initial analysis and annotation 
methods and databases are still under development, such as CNVs and large-scale genomic 
rearrangements (Campbell et al., 2016). 
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2.4.3.1 Special aspects with CNV annotation 

Fewer guidelines have been proposed for detection and reporting of CNVs than for SNVs and 
indels (Eijkelenboom et al., 2019). Therefore, interpretation of CNVs has been more 
ambiguous. Although the genome contains far less CNVs than SNVs or indels, 70% of 
individuals have at least one rare CNV in a gene, and a mean of four to ten genes altered by 
structural variants (Abel et al., 2018; Ruderfer et al., 2016; Collins et al., 2020). This prevents 
using frequency as the only criterion for differentiating pathogenic CNVs. In one study, all 
deletion events were interpreted as disruptive (Pfundt et al., 2017), while homozygous deletions 
unassociated with disease have been detected in genes tolerant to LOF variants (Gambin, 
Akdemir et al., 2017). Just recently, ACMG has provided recommendations for CNV clinical 
significance interpretation. With this, CNV classification was upgraded to the same five-tier 
system as for other variants (Riggs et al., 2019; Abou Tayoun et al., 2018). This part of the 
literature review will walk through that workflow and the available resources for adhering to 
them.  

Generally, the new recommendations seem to consider still a relatively narrow spectrum of 
CNVs in Mendelian dominant disease genes (Riggs et al., 2019). The first part of the workflow 
inspects gene content of the affected genomic region and certain annotations for those genes. 
CNVs with no gene content are estimated to be likely benign. However, CNVs on gene-
deficient regions can be deleterious through effects on regulatory functions (Szafranski et al., 
2013). The workflow involves then scoring of CNVs by amount of genes encompassed by the 
variant, with significance given for gene counts of over 25 for deletions and 35 for duplications 
(Riggs et al., 2019). In the next step, evaluation of CNV pathogenicity is strongly based on 
curated HI scores and triplosensitivity (TS) scores provided by The Clinical Genome Resource 
(ClinGen) Dosage Sensitivity Map catalog for each gene (Riggs et al., 2012). Whole gene 
deletions are considered most probably pathogenic if the gene has a LOF mechanism, while 
whole gene duplications are considered generally benign unless the gene has a validated TS 
score (Riggs et al., 2019). Evidently, duplications spanning a whole gene have been detected to 
be less likely pathogenic (Truty et al., 2019). However, neither of these scores are yet 
comprehensively available for all the genes in The ClinGen Dosage Sensitivity Map catalog, 
which is updated daily (Riggs et al., 2019).  

Bioinformatically calculated constraint metric of genic intolerance score (pLI) has been 
calculated separately for CNVs in genes according to prevalence of rare CNVs in the ExAC 
CNV database (Ruderfer et al., 2016). Additionally, a similar new score has been calculated for 
the gnomAD CNV set (pLOF), but the workflow does not take this into account (Collins et al., 
2020). Rather, in addition to pLI, the LOEUF scores based on gnomAD SNVs and indels 
(Karczewski et al., 2020) as well as the older HI index (Huang et al., 2010) are considered to 
have predictive value for genes. Estimation for pathogenicity is increased only for deletions 
encompassing the haploinsufficient genes marked by these scores, since the scores are not 
designed to describe the effect of increased dosage (Riggs et al., 2019). The theoretical 
oversight here is that only the effect of deletions was originally evaluated in calculating these 
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scores, whereas CNVs can have LOF effect also by other means, as described earlier (Huang et 
al., 2010). CNVs can also lead to a GOF disease causing mechanism, although apparently very 
rarely (Truty et al., 2019). These tolerance scores are not based on WGS data or variants in 
other than coding regions and thus provide no information for non-coding regions (Abel et al., 
2018).  
 
In the next step of the workflow, the probable effect of CNV on gene structure integrity is 
inspected. The pathogenicity scoring differs for CNVs encompassing the whole gene, partially 
the gene with either 3’ or 5’ end involved, and for completely intragenic CNVs. Intragenic 
CNVs and CNVs overlapping the 5’ end get higher scores (Riggs et al., 2019). Partial gene 
duplications involving the terminal coding exon are often non-deleterious because a functional 
copy of the gene with intact structure is preserved (Riggs et al., 2019; Truty et al., 2019). On 
the other hand, duplications completely within a gene can be deleterious. Most intragenic CNVs 
seem to encompass only internal exons (Truty et al., 2019). Therefore, an additional part of the 
workflow for intragenic CNVs (Abou Tayoun et al., 2018) is likely needed in many of the cases. 
According to these guidelines, pathogenicity of intragenic CNVs is determined by whether the 
reading frame is disrupted (Abou Tayoun et al., 2018). Duplicated copies in tandem (as most 
are) are considered less likely pathogenic than those interspersed from the above presented 
reason (Abou Tayoun et al., 2018). CNV effects on the reading frame are difficult to infer 
without detailed information on breakpoints and gene structure, as is available for dystrophin 
(DMD) (Bladen et al., 2015). The alternative of functional or RNA sequencing studies may 
provide too much workload for routine diagnostic settings. This tends to leave variants with 
status of VUS if their effect on the reading frame is unclear (Truty et al., 2019).  
 
Inferring breakpoints is more challenging for duplications than deletions; the additional copies 
could display different orientation or location compared to the original, and bioinformatics tools 
may even drop these unambiguous detections (Mills et al., 2011; Newman et al., 2015; 
Campbell et al., 2016). In a recent study more than half of the duplications were considered 
VUS (Truty et al., 2019). Duplications can also form fusion genes with various possible 
consequences, which is not considered in the workflow (Newman et al., 2015). The workflow 
concerns only CNVs with change in copy number, while especially WGS has enabled the 
detection of balanced chromosomal aberrations (Redin et al., 2017). Detection of the exact 
genes and regions their breakpoints disrupt would be important to deduce the functional effect 
for these variants (Redin et al., 2017). Complex structural variants (approximately 5% of cases) 
have multiple or intertwined breakpoints, complicating the interpretation of their structure and 
clinical significance (Lappalainen et al., 2019). Therefore, precise breakpoint level analysis and 
information on exact location and orientation would be needed to enable the interpretation of 
the genetic consequences of many types of CNVs, but difficult to achieve with current methods 
(Conrad et al., 2010; Newman et al., 2015). Even for structural variants detected from WGS 
data many breakpoints (28% in one dataset) were not successfully mapped to single-base 
resolution (Abel et al., 2018). 
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The workflow does not consider or comment on the possibility of higher amplification of 
CNVs. Triplications of the same disease region may cause more severe phenotype (Liu, P. et 
al., 2014). The exact degree of amplification may be of specific diagnostic importance also in 
cancer associated genes. For example, a threshold of 10 copies of MET gene has been used for 
tyrosine kinase inhibitor treatment to be initiated (Eijkelenboom et al., 2019). Compensatory 
effect is also possible, as discussed previously for an asymptomatic father of a DiGeorge 
syndrome patient (Carelle-Calmels et al., 2009). This may be one of the mechanisms explaining 
incomplete penetrance. Recurrent CNVs with identical breakpoints have been associated with 
incomplete penetrance and variable clinical expressivity even within families (Newman et al., 
2015; Rosenfeld et al., 2013; Stefansson et al., 2008). However, in the DiGeorge case the 
offspring has 100% risk of unbalanced outcome. Therefore, this finding would have 
significance in genetic counseling.  
 
In the next steps of the workflow, detailed information on a straightforward gene-phenotype 
relationship would provide stronger indication for pathogenicity. Therefore, the workflow 
appears less suitable for disorders with high genetic and phenotypic heterogeneity (Riggs et al., 
2019). At least 3–4 verified segregations in an affected family are considered significant proof 
towards pathogenicity (Riggs et al., 2019). Thus, small studies involving commonly only trios 
would not provide enough segregations. De novo CNVs are considered to be more likely 
pathogenic, if the status is verified (Watson et al., 2014; Riggs et al., 2019). 
 
In the last step, CNVs are inspected for overlap with established benign CNVs, which is a strong 
indicator against pathogenicity (Riggs et al., 2019). Supposedly benign CNVs in the human 
genome, mostly from studies in healthy individuals with microarray and MPS methods, have 
been provided by the 1000 Genomes Project, DECIPHER, ExAC, and Database of Genomic 
Variants (DGV) (Ruderfer et al., 2016; 1000 Genomes Project Consortium et al., 2015; Firth et 
al., 2009; MacDonald et al., 2014). The most comprehensive database, gnomAD, has nearly 
435,000 structural variant calls from almost 15,000 WGS samples (Collins et al., 2020). 
However, structural variants and larger indels are generally underrepresented in the current 
variant databases, and their diversity in ancestry groups is more limited than for other variants 
(Lappalainen et al., 2019). GnomAD includes structural variants from only 170 samples 
representing subpopulations, and 46% of the studied individuals are of European ancestry 
(Collins et al., 2020). Non-coding variation is not generally represented in these databases, 
while pathogenic non-coding CNVs have been also recognized (Szafranski et al., 2013).  
 
The older CNV databases integrate detections originating from array CGH, Sanger sequencing 
and targeted short-read MPS studies, while in the newer databases detections originate from 
short-read and long-read WES and WGS studies (Zarrei et al., 2015; Karczewski et al., 2020). 
CNV detection with older platforms, such as BAC CGH, tends to overestimate CNV sizes due 
to lower resolution, and the smallest variants are missed (Zarrei et al., 2015). Therefore, Zarrei 
and colleagues provided a curated CNV map for DGV, the first comprehensive CNV database 
(Zarrei et al., 2015). Many of the filtered CNVs were singleton detections and extremely rare, 
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possibly false positive or late onset pathogenic variants, which are common problems for 
databases (Zarrei et al., 2015). Deletions tend to be easier to detect with any platform and are 
probably overrepresented in the databases (Hwang et al., 2015; Zarrei et al., 2015). Lack of 
exact coordinates for the structural variants in some databases makes their utilization 
systematically in annotation challenging (Neerman et al., 2019). Exact solving of breakpoint 
junctions (which is becoming more feasible with some emerging sequencing technologies) 
could consolidate common CNVs. They tend to appear different in databases due to usage of 
variable CNV detection platforms and inaccurate breakpoint detection with current methods 
(Newman et al., 2015). Just recently, the first studies with structural variant detection from 
long-read sequencing data including various nationalities and even subpopulations such as the 
Finnish have been conducted, but these sets are not yet widely available (Audano et al., 2019).  
 
A population frequency of MAF > 1% is accepted also for CNVs as a threshold for common 
variation (Riggs et al., 2019). MAFs of 2% and 0.5% have been used as well, so the policy is 
more variable for CNVs than SNVs and indels (Neerman et al., 2019; Collins et al., 2020). 
However, the workflow does not provide exact technical recommendations for comparison of 
CNVs to databases. Comparison of CNVs is not as unequivocal as for SNVs and indels. 
Deletions have a more straightforward genomic structure and their comparison to databases is 
thus easier (Newman et al., 2015). Overlap requirements of 50% to 80%, either reciprocal or 
non-reciprocal, have been utilized in the different CNV detection studies discussed previously 
(Neerman et al., 2019; Hwang et al., 2015; Kosugi et al., 2019; Tan et al., 2014; Trost et al., 
2018; Zhang, L. et al., 2019). These differences complicate comparison. Also possible different 
effects of deletions and duplications need to be considered, which necessitates differentiation 
for the state in the databases and database searches (Liu, P. et al., 2014). 
 
Non-recurrent rearrangements have scattered breakpoint locations but usually a recognizable 
minimal overlapping region conferring the similar phenotypes (Carvalho, C. M. and Lupski, 
2016; Lupianez et al., 2015). Nevertheless, the prevalence of unique rearrangements in disease-
affected individuals makes the interpretation of their clinical effect more difficult (Carvalho, C. 
M. and Lupski, 2016; Rice and McLysaght, 2017). Then again, patients with overlapping 
phenotypes and non-identical breakpoints in CNVs can help delineate genomic regions 
causative for phenotypes (Weischenfeldt et al., 2013). Some patients were first recognized and 
classified based on a finding of a common overlapping genetic lesion rather than clinical 
features (Szafranski et al., 2013; Watson et al., 2014). This represents also a transition from 
phenotype-first approach to genotype-first approach. 
 
Additional aspects of CNVs missing from the workflow need to be considered in certain 
settings. The ACMG recommendations for reporting incidental findings do not take into 
account disorders commonly caused by repeat expansions or CNVs as the primary cause (Green 
et al., 2013). Approximately 0.15% of cases in studies with different cohorts seem to have a 
CNV finding in a gene from the ACMG incidental findings gene list (Pfundt et al., 2017; Collins 
et al., 2020). As a second aspect, biallelic CNVs may cause disease through homozygous 
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deletions, which is more probable in consanguineous populations, or contribute to pathogenesis 
via compound heterozygosity (Harel and Lupski, 2018; Boone et al., 2013; Pfundt et al., 2017). 
CNVs can also present with SNVs or indels in compound heterozygosity, necessitating 
combination of different types of variant detection methods and detection results for a 
conclusive genetic diagnosis (Charng et al., 2016). Each gene associated with a recessive 
disease may have different frequency of CNVs and SNVs, with an average of 13.5 times more 
SNVs than CNVs (Boone et al., 2013). Alternatively, in one study a structural variant was 
missed since two SNVs were detected first, which would have been enough to explain the 
phenotype (Neerman et al., 2019). This exemplifies how the analysis always has to be 
comprehensive in order to reveal all variants affecting the phenotype or conferring carrier 
status. Depending on the disease cohort, it is estimated that 4–6% of cases could be compound 
heterozygotes for pathogenic mutations in different genes leading to multiple diagnoses (Lionel 
et al., 2018; Yang et al., 2013).  

Heterozygous CNV encompassing multiple genes can confer carrier status for multiple 
recessive conditions, sometimes combinatory complex syndromes, in contrast to carrier point 
mutations (Boone et al., 2013). A single heterozygous CNV may be causative if the genes it 
affects are part of the same pathway, which increases the mutational load on the functional level 
(Boone et al., 2013). Structural variants encompassing several genes are thought to exert their 
pathogenic effect largely through this effect on gene dosage rather than by positional effects 
(Weischenfeldt et al., 2013). Even when not associated with disease-causing alleles, structural 
variation affects the number of total alleles in a study. The resulting distortion to significance 
calculations is comparable to a change in sample size (Schuster-Bockler et al., 2010). Therefore, 
structural variants make interpretation of SNVs in possible compound heterozygosity more 
difficult by influencing relative SNV frequencies (Turajlic et al., 2019).  

Considering current CNV annotation programs, ANNOVAR can annotate previously reported 
CNVs and highlights overlapping genes but does not provide pathogenicity estimations on the 
genomic level (Ganel et al., 2017). Only rudimentary prediction tools are available for structural 
variants, such as SVScore, which aggregates SNP pathogenicity scores per base (Ganel et al., 
2017). Some programs for CNV annotation were developed only for specific diagnostic 
settings. Anaconda is a tool integrating both detection and annotation of somatic CNVs in tumor 
WES data (Gao et al., 2017). Biofilter is an annotation tool, which groups CNV detections by 
biological pathways utilizing databases with genes, pathways and protein families (Kim, D. et 
al., 2016). The tool also differentiates between genes with surplus of rare or common CNVs 
and allows mainly CNV enrichment analysis. Most of the free programs are not up-to-date with 
the most recent CNV population databases (Samarakoon et al., 2016), whereas the most 
competent CNV annotation programs tend to be integrated into commercial diagnostic MPS 
pipelines (Neerman et al., 2019; Lassuthova et al., 2016). 

2.4.4 Future directions for variant detection and annotation 
Short-read WGS is estimated to become the standard in diagnostic screening (Collins et al., 
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2020). With existing widely used tools (GATK), approximately only 72% of the genome can 
be scanned effectively from short-read WGS data. More specifically, these are the unique 
genomic regions (Regier et al., 2018; Goodwin et al., 2016; Lappalainen et al., 2019). Genomic 
regions prone to misalignment with short-read sequencing data include segmental duplications 
and high-copy repeats, which provide highly discordant SNV and indel calls (Regier et al., 
2018). This problem is probably not solvable with improvements in data analysis and 
algorithms, but increase in read length and involving intronic sequences could enable more 
accurate alignment (Lappalainen et al., 2019).  
 
The utility of Nanopore has been demonstrated for genome de novo assembly (Madoui et al., 
2015) and phasing highly similar MHC haplotypes (Jain et al., 2018). Both Nanopore and 
PacBio long reads have enabled addition of novel sequence to the human reference genome. 
These sequences have mostly consisted of short and long tandem repeats (Chaisson, M. J. et 
al., 2015; Jain et al., 2018). Since typical target enrichment approaches are unsuitable for 
Nanopore sequencing, completely novel applications involving CRISPR-Cas9 enrichment or 
enabling selective sequencing of targets in real-time are being developed, which increase the 
specificity of the platform and enable more accurate variant calls (Kovaka et al., 2020). The 
per-base error rates of these platforms are still high, which limits their usage especially in SNP 
and indel calling (Lappalainen et al., 2019; Hehir-Kwa et al., 2018). Additionally, no 
applications have yet been developed in long-read sequencing to measure transcript levels. By 
contrast, transcriptomic structures and novel splice isoforms can be recognized with higher 
resolution since entire mRNA transcripts can be covered by a single read (Goodwin et al., 
2016). 
 
Combining sequencing data from different platforms in variant calling has already been 
generally proposed to increase variant calling specificity by covering for platform specific 
errors and biases (Rieber et al., 2013; Ross et al., 2013). Recently, inaccurate long reads 
(Nanopore) have been used to phase and thus to increase specificity of SNPs called with more 
accurate short reads (Illumina) (Jain et al., 2018; Turajlic et al., 2019). Also linked reads have 
been used to reconstruct haplotypes and to identify complex structural variation and balanced 
events (Marks et al., 2019). However, these synthetic long reads have brought only modest 
improvements to reference-based variant detection and have so far been limited to specific 
regions and variant types (Marks et al., 2019; Lappalainen et al., 2019). 
 
It is estimated that with long-read sequencing 10% of the genome is still inaccessible for 
structural variant analysis. These involve mostly large and complex regions, which would 
require even longer reads to span them, together with improvements in computational tools for 
assembly (Audano et al., 2019). In a previous study, stretches of segmental duplications and 
inversions longer than the read length of 20 kb remained unresolved (Chaisson, M. J. et al., 
2015). Therefore, it is estimated that a combination of both variant calling algorithms and 
genome analysis platforms is needed to capture all variation (Chaisson, M. J. P. et al., 2019; 
Collins et al., 2020). In contrast to sequencing based methods, optical mapping can capture 
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repetitive and unknown sequences but has a low resolution of 1 kb. Algorithms for calling 
variants from this data are also still in development (Hehir-Kwa et al., 2018). Nevertheless, in 
one recent study short-read and long-read sequencing, synthetic long-read sequencing and 
optical mapping were used together to increase structural variant detection sensitivity and to 
cross-validate findings (Chaisson, M. J. P. et al., 2019). In a study for somatic variation, 
complex structural variants were resolved and phased by combining high-throughput 
chromosome conformation capture, optical mapping and WGS (Dixon et al., 2018). 
 
Some emerging sequencing-based applications require more comprehensive validation before 
a wide-spread adaptation for clinical usage (Salk et al., 2018). Methods involving identical 
barcoding of all molecules from single cells with flow sorting or droplet compartmentalization 
are becoming more common both for DNA and RNA applications. The combination of high-
throughput compartmentalization and ultra-long-read single-molecule sequencing will enable 
WGS for large populations of single cells (Salk et al., 2018). Single-cell sequencing would be 
particularly informative in cancer studies since contamination from stromal cells could be 
avoided, and the measurement of genotype and phenotype from the same cell would be possible 
(Turajlic et al., 2019). Sequencing of cell-free DNA of tumor origin in liquid biopsy samples is 
a promising non-invasive longitudinal approach for determining genetic makeup of a tumor and 
monitoring for response to treatment (Salk et al., 2018; Turajlic et al., 2019). Likewise, fetal 
DNA in the mother’s blood can be collected in a non-invasive prenatal testing for MPS analysis 
(Salk et al., 2018).  
 
As a drawback, most current genome analysis methods and the ones in development are based 
on comparison to the reference genome. The current human reference genome is a mosaic, and 
no canonical human reference genome with the most common haplotypes is yet available 
(Audano et al., 2019). Regardless of sequencing platform, alignment of reads tends to be 
inaccurate in regions of high genomic diversity, such as MHC locus, KIR genes and DYP2D6 
(Lappalainen et al., 2019). The detection of a CNV in all long-read sequenced subjects indicates 
that the current reference genome carries a minor allele or an error at this location (Audano et 
al., 2019). Increased human reference sequence accuracy would improve mapping and thus 
enable more accurate variant discovery (Audano et al., 2019). Sequencing pipelines are moving 
towards using the GRCh38 version of the reference genome (Regier et al., 2018). This enhanced 
version has closed gaps, localized some orphan sequences and includes multiple alternative loci 
(Hehir-Kwa et al., 2018). Nevertheless, the older GRCh37 version is still widely in use in 
various research centers and databases (Regier et al., 2018).  
 
Rapid diagnostic workflows are needed for some severe diseases, where diagnosis can affect 
treatment and alter outcome. These include some metabolic diseases, aggressive cancer or 
infections (Clark et al., 2019; Goodwin et al., 2016). Ineffectiveness of optimization of the steps 
from sample receipt to output of genomic variants has revealed variant interpretation as the 
bottleneck for speed gain in the workflow (Clark et al., 2019). Nevertheless, diagnostic 
workflow with WGS, automated phenotyping and variant interpretation has been accomplished 
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in less than a day (Clark et al., 2019). However, the current attempts for automatic variant 
interpretation have run into trouble with variants with conflicting interpretations in variant 
databases (Clark et al., 2019). Clinical and phenotypic information needs to be standardized 
across all of the variant, disease and gene databases to increase their accuracy and usability 
(Weischenfeldt et al., 2013). Universal structured phenotypic features, such as International 
Classification of Diseases (ICD) codes or diagnosis-related group (DRG) codes are still too 
sparse and unspecific for clinical phenotype description (Clark et al., 2019). Human Phenotype 
Ontology (HPO) terms with a hierarchical reference vocabulary have demonstrated better 
variability (Clark et al., 2019). Automated extraction of HPO terms from unstructured text has 
been promisingly even more accurate than manual interpretation (Clark et al., 2019). 

In the near future, supervised autonomous systems may become an effective first-tier diagnostic 
approach and leave more time to concentrate on unsolved and difficult cases (Clark et al., 2019). 
Automated systems could also be used to reanalyze unsolved cases periodically, as previously 
discussed, and to standardize analysis pipelines. Machine learning approaches have been a 
promising development for in silico prediction programs for variants and their genomic effects, 
such as some previously elusive intronic variants and their effects on splicing (Lappalainen et 
al., 2019; Jaganathan et al., 2019). As opposed to the comprehensive automated variant analysis 
systems, the significance of gene-specific annotation guidelines (as compared to the ACMG 
guidelines) has been recently realized in increasing the amount of significant variant annotation 
results (Rivera-Muñoz et al., 2018). For some genes, the ACMG guidelines can be too generic: 
for example, the variant effect prediction tools can be misleading for very large and complex 
genes (Savarese et al., 2020). Both individual research groups and multi-institutional 
workgroups, such as the Clinical Genome Resource variant curation panels, are developing new 
gene and disease-level variant interpretation recommendations (Rivera-Muñoz et al., 2018; 
Savarese et al., 2020). 

As stated earlier, differences and batch effects between MPS studies with different workflows 
are a problem when comparing variant calls with public databases and between studies 
(Lappalainen et al., 2019). A common pipeline would enable aggregate joint calling of variants 
from increased sample size and increase statistical power (Regier et al., 2018). The current best 
practices pipelines may be at a turning point. Regardless of the original supposed flexibility of 
the programs, BAM format has been unable to handle the newly available ultra-long reads. 
SAM or CRAM formats together with a separate long-read specialized aligner have been 
utilized to decrease computing times and RAM requirements (Jain et al., 2018; Sedlazeck et al., 
2018). Therefore, current pipelines should be updated for new data types (long reads), file 
formats and tools, if they become widely used and approved (Regier et al., 2018). However, the 
trend seems to be that mainly commercial providers have enough resources to develop validated 
comprehensive pipelines with variant detection, filtering and annotation included (Neerman et 
al., 2019; Lassuthova et al., 2016). Technically, these pipelines have the potential to become 
gold standard approaches, but in practice they are not as easily available as BWA and GATK 
have been. Especially in the annotation of structural variants, internal restricted databases from 
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these providers are used to evaluate overlap with normal and pathogenic variants, the latter of 
which are scarcely available in public databases (Neerman et al., 2019; Lassuthova et al., 2016). 
These are both progressive and worrying developments, since data-sharing is important to 
facilitate future discovery of novel disease-causing variants and genes.  
 

2.5 Genetic diagnosis of neuromuscular disorders 
Neuromuscular disorders (NMDs) are one of the most heterogeneous group of disorders both 
clinically and genetically. Most are genetic in origin, and the Gene Table of Neuromuscular 
Disorders has over 1000 listed diseases and 587 different genes identified so far (Bonne et al., 
2018) (http://www.musclegenetable.fr/index.html). NMDs are currently categorized into 16 
main groups with different forms of muscular dystrophies (two), myopathies (five), myotonic 
syndromes, ion channel muscle diseases, malignant hyperthermia, congenital myasthenic 
syndromes, motor neuron diseases, hereditary ataxias, paraplegias, motor and sensory 
neuropathies and other neuromuscular disorders (Table 1).  
 
Table 1. Neuromuscular disorders as categorized in The Gene Table of Neuromuscular Disorders. 

1. Muscular 
dystrophies 

5. Other 
myopathies 

9. Metabolic 
myopathies 

13. Hereditary ataxias 

2. Congenital 
muscular 
dystrophies 

6. Myotonic 
syndromes 

10. Hereditary 
cardiomyopathies 

14. Hereditary motor 
and sensory 
neuropathies 

3. Congenital 
myopathies 

7. Ion channel 
muscle diseases 

11. Congenital 
myasthenic syndromes 

15. Hereditary 
paraplegias 

4. Distal 
myopathies 

8. Malignant 
hyperthermia 

12. Motor neuron 
diseases 

16. Other 
neuromuscular 
disorders 

 
NMDs affect primarily the peripheral nervous system, muscle tissue or neuromuscular 
junctions by damaging development, function or survival of their cellular components 
(Efthymiou et al., 2016; Ankala et al., 2015). Diseases affecting predominantly muscles include 
myopathies, dystrophies, ion channel diseases and malignant hyperthermia (Efthymiou et al., 
2016; Vasli and Laporte, 2013). Diseases affecting primarily nerves include Charcot-Marie 
Tooth disease (CMT), motor neuron disease and hereditary spastic paraplegia, which frequently 
are present in combinations. Myasthenic syndromes affect neuromuscular junctions, which can 
be both pre- and postsynaptic (Efthymiou et al., 2016; Vasli and Laporte, 2013). However, 
myogenic disorders can also affect the innervating nerves as they progress, and some genes 
have functions both in muscle and nerve, leading to a mixed phenotype (Laing, 2012). All of 
the separate diseases are rare and often severe; they can lead to muscle weakness and wasting, 
cramps, numbness and respiratory and cardiac involvement (Vasli and Laporte, 2013). In most 
cases, NMDs are caused by genetic defects with autosomal recessive or dominant or X-linked 
inheritance, and some are caused by mitochondrial DNA defects (Laing, 2012).  
 
Muscular dystrophies vary in prevalence, age of onset, severity, spectrum of affected muscles, 
and other features (Laing, 2012). Duchenne muscular dystrophy (DMD) is the most common 
inherited muscle disease in childhood, leads to severe comprehensive muscle weakness and 
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wasting, and has a prevalence of 8/100,000 (Carter et al., 2018). For adults, the most common 
forms are myotonic dystrophies with muscle wasting and myotonia, and facioscapulohumeral 
dystrophies (FSHD), with prevalence of 11/100,000 and 3/100,000 (Carter et al., 2018). Limb-
girdle-muscular dystrophies (LGMDs) can present either in early childhood, adolescence or 
later in adulthood (Carter et al., 2018). Currently, four forms of autosomal dominant LGMDs 
(LGMDD1-D4) and 25 types of autosomal recessive (LGMDR1-R25) have been recognized. 
LGMD subtypes are variable in their age of onset, progression and severity. LGMDs lead to 
progressive and predominantly proximal muscle weakness (Straub et al., 2018).  

DMD is an X-linked degenerative muscle disease affecting approximately 1 in 5000 males 
(Shieh, 2018). It is caused by mutations in the DMD gene, which encodes a sarcolemmal protein 
dystrophin. Large deletions (affecting more than one exon) can be found in 68% of the patients, 
with exons 45 and 55 being the most often involved. In the rest of the cases, 11% have large 
duplications and 3–11% have other mutation types (Bladen et al., 2015). Most (93%) of the 
CNVs affecting exons follow the reading frame hypothesis: preservation of the reading frame 
results in a milder Becker muscular dystrophy (BMD) phenotype (Bladen et al., 2015).The 
UMD/TREAT-NMD DMD database displays variants recorded in DMD and reading frame 
effect predictions for all possible duplications and deletions (http://umd.be/TREAT_DMD/, 
(Bladen et al., 2015)). Emerging treatment approaches for DMD include gene therapy with 
minidystrophin gene delivery or synthetic antisense oligonucleotides for exon skipping, which 
would restore the reading frame. Both aim to retain partial protein function (Shieh, 2018).  

The prevalence of congenital muscular dystrophy varies globally, with Ullrich congenital 
muscular dystrophy (UMD) the most common form among them (Carter et al., 2018). 
Congenital myopathies are characterized by hypotonia (muscle weakness) at birth or in the first 
year of life (Nishikawa et al., 2017). They are traditionally subdivided into different categories 
based on histopathology findings, such as nemaline myopathy, central core disease and 
centronuclear myotubular myopathy (Nishikawa et al., 2017; Sewry et al., 2019). Metabolic 
myopathies can display clinically heterogeneous symptoms, such as muscle weakness, exercise 
intolerance or rhabdomyolysis (Nishikawa et al., 2017). They can be caused by defects in 
enzymes in glycogen or lipid energy metabolism, or by mitochondrial abnormalities affecting 
the energy delivery (Nishikawa et al., 2017).  

Inherited peripheral neuropathies (IPNs) are the most common inherited neurological disorders 
(Cutrupi et al., 2018). Over 1000 mutations in more than 90 genes have been associated to IPNs 
(Cutrupi et al., 2018; Lassuthova et al., 2016). Onset is typically in the later childhood, but IPNs 
include also congenital and late onset adult forms (Antoniadi et al., 2015). The symptoms 
manifest classically as progressive symmetric wasting and weakness of distal limb muscles, 
mild to moderate loss of sensory function, areflexia in the upper and lower limbs, and foot 
deformities (Dohrn et al., 2017). IPNs are classified by clinical phenotype, inheritance mode, 
age of onset, electrophysiological studies and causal mutation (Antoniadi et al., 2015). IPNs 
can be broadly divided into three subtypes; they affect either motor nerves with pure motor 
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involvement (distal hereditary motor neuropathy, dHMN), sensory nerves with neuropathic 
pain and/or autonomous symptoms (hereditary sensory and autonomic neuropathy, HSAN), or 
both (hereditary motor and sensory neuropathy, or Charcot-Marie Tooth disease, CMT) 
(Bacquet et al., 2018; Hartley et al., 2018). IPNs include also hereditary neuropathy with a 
liability to pressure palsy (HNPP), and congenital hypomyelinating neuropathy (CHN) (Nam 
et al., 2016).  
 
Hereditary motor and sensory neuropathy, or CMT is one of the main IPN subtypes with a 
prevalence of 1/2500 (Bacquet et al., 2018). It has high genetic and phenotypic heterogeneity 
(Antoniadi et al., 2015). CMT is divided into additional subtypes of either demyelinating (type 
I) or axonal (type II), and the inheritance can be autosomal dominant, autosomal recessive or 
X-linked (Antoniadi et al., 2015). In CMT type I, loss of myelination of the peripheral nerves 
leads to loss in nerve conduction velocity. In CMT type II, axonal loss in peripheral nerve fibers 
leads to decreased motor and sensory nerve action potentials (Bacquet et al., 2018). Patients 
can also present with both symptoms and thus have an intermediate form of CMT. Clinically, 
most patients develop distal motor and sensory weakness (Bacquet et al., 2018). CMT1A is the 
most common IPN, and it is caused by a 1.5 Mb duplication of PMP22, as discussed earlier. 
PMP22 duplication accounts for 70–80% of CMT1 cases and 50% of all CMT cases (Pehlivan 
et al., 2016; Cutrupi et al., 2018). 
 
NMDs without genetic causes, or acquired muscle disorders, include idiopathic immune-
mediated myopathies. They can be categorized into necrotizing autoimmune myopathy, 
inclusion body myositis, dermatomyositis, polymyositis and nonspecific myositis (Milone, 
2017). These diseases are characterized by muscle weakness, elevated creatine kinase levels 
and myopathic findings (Milone, 2017). Sporadic inclusion body myositis (sIBM) is the most 
common acquired muscle disease presenting in later age (over 50 years) (Needham and 
Mastaglia, 2016). It is separated from the other inflammatory myopathies by rimmed vacuolar 
myopathy, selective and often asymmetric muscle weakness and wasting, and by slowly 
progressive clinical course (Needham and Mastaglia, 2016). The pathogenic basis of sIBM is 
thought to involve both an inflammatory and a degenerative process (Milone, 2017). Perceived 
variability in prevalence has been thought to originate from differences in population 
frequencies of the HLA-DRB1*03:01 allele, which is strongly associated with the disease 
(Needham and Mastaglia, 2016; Johari et al., 2017). Pathogenesis of sIBM is complex and 
likely multi-factorial, with increasing evidence for polygenic susceptibility of HLA and non-
HLA gene involvement (Needham and Mastaglia, 2016; Johari et al., 2017). 
 

2.5.1 Challenges in diagnosing NMDs and pre-MPS approaches  
NMDs are an exemplary group of rare diseases with often unspecific symptoms, variable 
phenotypes, incomplete family history and regionally centered expertise (Dohrn et al., 2017). 
The diagnosis is especially challenging in early disease stage when a classical differentiating 
phenotype has not yet developed fully. On the other hand, some cases become challenging to 
distinguish in advanced stages, such as electrophysiological differentiation of demyelinating 
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and axonal neuropathy (Dohrn et al., 2017). Since many of the myopathies are late-onset, parent 
samples are often unavailable (Gorokhova et al., 2015). The mode of inheritance is challenging 
to decide with small families or without family history (Efthymiou et al., 2016). Altogether, 
with most disease subtypes patients will undergo multiple invasive and expensive tests (Ankala 
et al., 2015; Marelli et al., 2016).  
 
Since NMDs are highly phenotypically heterogenic, molecular diagnosis is the gold standard 
for their diagnosis (Laing, 2012; Dohrn et al., 2017). Accurate molecular genetic diagnosis 
allows for prognosis, genetic counseling and development of therapeutic trials (Carter et al., 
2018). Difficulties for molecular diagnosis of NMDs include genetic heterogeneity; multiple 
genes can be associated with a disease, and multiple diseases with one gene (Antoniadi et al., 
2015). Mutations in a single gene can lead to different phenotypes with different modes of 
inheritance (Antoniadi et al., 2015). Furthermore, the age of onset, severity, progression and 
prognosis can vary for patients even with the same genetic defect (Carter et al., 2018). Thus, a 
mutation segregating in one family can be associated with phenotypically varying disorders, 
such as with a DYSF mutation causing either LGMD or distal myopathy (Illarioshkin et al., 
2000). Neuromuscular disorders have also high prevalence of de novo events, making their 
diagnosis and estimation of prevalence even more difficult (Chae et al., 2015).  
 
Often, genes to be tested can be narrowed down with protein staining by immunohistochemistry 
and immunoblotting (Ankala et al., 2015). Genes can also be chosen according to genotype-
phenotype correlation (Bacquet et al., 2018). Originally, combination of multiple techniques 
including Sanger sequencing, MLPA and other PCR-based approaches, and array CGH were 
utilized to inspect genes for different types of mutations (Efthymiou et al., 2016). However, 
heterogenic and unspecific clinical and histopathological features in the initial stages of many 
of the disorders complicated this candidate gene search (Vasli and Laporte, 2013). DMD and 
BMD are the few diseases with a distinct disease gene and high diagnostic yield from a single 
molecular genetic test (Chae et al., 2015). Additionally, variants in four genes, PMP22, GJB1, 
MFN2 and MPZ, explain approximately 90% of common CMT subtypes (DiVincenzo et al., 
2014).  
 
Genes and proteins associated with NMDs involve some of the largest humans have; many are 
building blocks essential for muscles (Laing, 2012). These giant muscle genes include TTN, 
NEB, RYR1 and DMD (Vasli and Laporte, 2013). NEB has 183 exons and multiple differently 
spliced isoforms (Donner et al., 2004). Mutations in NEB are the most common cause for 
recessive nemaline myopathy (Pelin et al., 1999). Most of these mutations have been detected 
in compound heterozygosity (Lehtokari et al., 2014). Altogether 12 disease genes are currently 
known to cause nemaline myopathy (Sewry et al., 2019). DMD is genomically the largest 
human gene with 79 exons, some of the largest introns and a total span of 2.3 Mb (Koenig et 
al., 1987). However, TTN has the largest coding sequence, produces the largest human protein 
and has 363 exons in its longest isoform (Savarese et al., 2016; Vasli and Laporte, 2013). TTN 
has been associated with various cardiomyopathies and skeletal muscle diseases. These include 
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late-onset autosomal dominant tibial muscular dystrophy (TMD), limb-girdle-muscular 
dystrophy type R10 (LGMDR10), hereditary myopathy with early respiratory failure (HMERF) 
and congenital centronuclear myopathy (CNM) (Savarese et al., 2016). Dominant late onset 
disease and young or early adult onset recessive disease are caused by mutations in different 
specific exons of the gene (Savarese et al., 2016). For example, TMD is a mild adult-onset distal 
myopathy with autosomal inheritance (Udd et al., 1993). A dominant founder mutation in the 
Finnish population, FINmaj, is an 11 bp insertion-deletion variant and responsible for relatively 
high prevalence of 2/10,000 of TMD in Finland (Udd et al., 1993; Hackman et al., 2002).  
 
Originally, inspection of these large genes required multiple Sanger sequencing runs, which 
was costly (Laing, 2012). Alternatively, the genes were not fully screened (Vasli and Laporte, 
2013). For example, the approach of multiplex PCR was targeted to only certain hotspot exons 
of DMD (Vasli and Laporte, 2013). Especially TTN with its 363 exons was rarely screened 
completely with Sanger sequencing (Gorokhova et al., 2015), although phenotypic variability 
of muscular dystrophies caused by TTN mutations has been explained in some cases with 
findings of additional, modifying TTN mutations (Evila et al., 2014).  
 

2.5.2 Advancements in diagnosis of NMDs with MPS approaches 
WES was originally recommended for patients with nonspecific or unusual disease 
presentations, or with genetically heterogeneous diseases (Yang et al., 2013). Thus, MPS 
analysis is beneficial for many of the NMD categories (Nigro and Piluso, 2012). CMT was one 
of the first disease groups for which comprehensive analysis by MPS approaches was used 
(Laing, 2012). MPS is advantageous also for dystrophinopathies since DMD is a large gene 
with a wide spectrum of point mutations and CNVs recognized (Bladen et al., 2015). Compared 
to gene-by-gene screening, MPS approaches have provided increases of 2- or 3-fold in 
diagnostic yield for NMDs (Bacquet et al., 2018; Ankala et al., 2015). Overall, MPS approaches 
have enabled effective, cost-and time-saving diagnosis in many NMD subgroups (Bacquet et 
al., 2018; Ankala et al., 2015; Cordoba et al., 2018; Nam et al., 2016; Dohrn et al., 2017; 
Antoniadi et al., 2015). Early diagnosis before onset or worsening of clinical phenotype may 
enable treatment of later complications and trials for intervention rather than treating of patients 
with already significant disease progression (Alkuraya, 2015). 
 
With MPS approaches, novel disease-causing mutations have been found in patients who had 
waited for diagnosis for more than a decade (Vasli and Laporte, 2013). MPS approaches have 
enabled discovery of multiple new NMD disease genes. First such discoveries were made with 
MPS as a follow-up approach after a region of interest had been defined with genome-wide 
linkage studies (Nigro and Piluso, 2012; Gorokhova et al., 2015). Patients with matching 
clinical findings have been sequenced together to screen multiple genes simultaneously and to 
find the common genetic cause (Nigro and Piluso, 2012; Gorokhova et al., 2015). Genes from 
mitochondrial components can be inspected as well and MPS approaches have brought more 
insight into genetics of mitochondrial disorders (Chae et al., 2015; Efthymiou et al., 2016). MPS 
studies have also corrected wrong initial diagnoses in diseases with closely similar phenotypes 
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and unexpected genetic findings (Dohrn et al., 2017). Incomplete or misleading clinical 
information or misclassified mode of inheritance can prevent initial correctly aimed pre-MPS 
gene screening, and hence discovery of pathogenic variants by MPS also in diseases with 
distinct prioritized single genes (Lassuthova et al., 2016).  
 
MPS studies have widened phenotypic spectrum for known disease genes (Hartley et al., 2018). 
In a study cohort of neuropathies, the causative gene was not primarily associated with inherited 
peripheral neuropathy in 10% of the diagnosed cases (Antoniadi et al., 2015). New allelic 
diseases have been discovered especially for large genes, such as TTN, MYH7 an RYR1 
(Gorokhova et al., 2015). In fact, routine sequencing of the entire TTN gene in research and 
diagnostics was impossible preceding emergence of MPS techniques (Savarese et al., 2016). 
Due to the size of the gene and previous neglect in whole gene analysis, TTN variants identified 
in MPS studies have rarely been previously characterized (Savarese et al., 2016). This has led 
to a troublesome situation; mutations in TTN have been ignored in diagnostics and research 
because many of them are scarcely annotated (Gorokhova et al., 2015). Nevertheless, some of 
the most recent phenotype additions for genetic defects in TTN were discovered through MPS 
studies (Gorokhova et al., 2015).  
 
By enabling comprehensive investigation of pathogenic variants, MPS approaches have 
revealed cases of simultaneous presentation with two rare muscle disorders. One such case was 
a combination of BMD caused by a DMD deletion, and rippling muscle disease caused by a 
CAV3 mutation (Hiraide et al., 2019). In cohorts involving neuropathies and myopathies, 2–5% 
of the patients have been commonly found with a pathogenic variant in more than one gene, 
leading to complex phenotypes (Posey et al., 2017; Antoniadi et al., 2015). Mixtures of different 
phenotypes may be erroneously interpreted as a new clinical entity or a phenotypic expansion 
for one disease (Volk and Kubisch, 2017; Karaca et al., 2018). Pathogenic variants can also be 
overlooked if the first finding explains the phenotype partially (Gorokhova et al., 2015). 
However, finding multiple genetic variants has implications for recurrence risk and genetic 
counseling, in addition to allowing more accurate prognosis and treatment (Antoniadi et al., 
2015). Pathogenic variants in more than one disease gene can also explain phenotypic variation 
within families (Karaca et al., 2018). 
 
Targeted gene panels have been a common approach for clinical diagnostics of NMDs. They 
include typically dozens to hundreds of genes and either for specific NMD subtypes or for 
NMDs generally (Evila et al., 2016; Kitamura et al., 2016; Chae et al., 2015; Bacquet et al., 
2018; Antoniadi et al., 2015; Savarese et al., 2016; Nam et al., 2016; Lassuthova et al., 2016; 
Nishikawa et al., 2017; Zenagui et al., 2018). This targeted approach allows for strong 
optimization of coverage on relevant targets (Dohrn et al., 2017). Incidental findings can also 
be avoided, which in NMDs may include certain heart conditions and malignant hyperthermia, 
even on gene panels (Gorokhova et al., 2015). One drawback is the rapid discovery of new 
disease genes, which necessitates continuous update of the panels (Volk and Kubisch, 2017; 
Zenagui et al., 2018). For example, in a WES study with a NMD cohort many of the causative 
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defects were discovered in genes recognized during the last 10 years, which may not be 
represented in gene panels (Waldrop et al., 2019). However, many of the gene panels are 
already designed with inclusion of candidate genes, alleviating this drawback (Lassuthova et 
al., 2016; Evila et al., 2016). During one study for IPNs, the panel was redesigned according to 
emerging knowledge during the course of the study, and the added genes explained 10% of 
cases (Lassuthova et al., 2016). 
 
Utility of RNA sequencing has been demonstrated also for NMDs. In a cohort with rare muscle 
disorders, RNA-seq provided a diagnostic yield of 35% (Cummings et al., 2017). Splice-site 
disrupting mutations were validated and deep intronic variants were revealed to create novel 
splice sites or activate alternate cryptic splice sites (Cummings et al., 2017). Additionally, a 
splice site affecting mutation was identified in an exon, which was not adequately covered in 
WES data (Cummings et al., 2017). However, a majority of the commonly disrupted NMD 
genes are not expressed in high quantities in blood or fibroblasts, which necessitates often 
invasive sampling of the affected tissues (Cummings et al., 2017; Volk and Kubisch, 2017). 
For IPNs, obtaining the disease relevant tissue is impossible (Cutrupi et al., 2018), while muscle 
biopsy is one of the easier tissue sources (Volk and Kubisch, 2017). However, muscle biopsies 
may be contaminated by skin or fat, which could originate also from late-stage degenerative 
muscle pathology (Cummings et al., 2017). 
 
Diagnostic yield for NMD patients with targeted gene panel or WES has remained 
approximately 40% (between 26% and 48%) (Vasli and Laporte, 2013; Waldrop et al., 2019; 
Kitamura et al., 2016; Chae et al., 2015; Bacquet et al., 2018; Cordoba et al., 2018; Antoniadi 
et al., 2015; Punetha et al., 2016; Marelli et al., 2016; Savarese et al., 2016; Lassuthova et al., 
2016; Nam et al., 2016). The diagnostic rate has generally been higher in homogeneous groups 
and cohorts carefully pre-selected for muscle symptoms (Chae et al., 2015). Originally, MPS 
studies were rarely used as the first-tier diagnostic test, which also affects the achievable 
diagnostic yield (Gorokhova et al., 2015; Volk and Kubisch, 2017). In a rare comparison study 
with utilization of four different targeted gene panels (for muscular dystrophy, congenital 
myopathy, congenital myasthenic syndrome, metabolic myopathy and myopathy with protein 
aggregations/rimmed vacuoles), the highest diagnostic yield of 46% was achieved for muscular 
dystrophies (Nishikawa et al., 2017). WGS approaches have not yet been utilized in routine 
clinical diagnostics of NMDs (Efthymiou et al., 2016). 
 
MPS studies tend to provide multiple variants of uncertain significance. In the case of NMDs, 
deciphering clinical significance for these requires often interdisciplinary collaboration with 
clinicians and neuropathologists in addition to the molecular geneticists (Bacquet et al., 2018). 
Precise phenotyping with clinical, electrophysiological and sometimes histopathological 
patterns is usually required to verify diagnosis and separate disorders with phenotypic 
heterogeneity (Dohrn et al., 2017). Functional studies can include biochemical analysis of 
mutated protein from muscle biopsy, protein assays, splicing assay and animal models 
(Gorokhova et al., 2015). Albeit commonly too laborious for routine clinical diagnostics, these 
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studies will also be essential to increase knowledge on the pathogenesis of the diseases (Vasli 
and Laporte, 2013). 
 

2.5.3 Detection of CNVs in NMDs with MPS approaches 
Preceding MPS approaches, array CGH has been used to detect CNVs in NMD genes (Vasli 
and Laporte, 2013). Currently, more comprehensive arrays are being designed for NMD genes, 
revealing causative CNVs in genes such as SGCG and LAMA2 (Piluso et al., 2011; Sagath et 
al., 2018; Giugliano et al., 2018). Originally, it was thought that MPS had not enough potential 
for detecting CNVs (Laing, 2012). In many of the older MPS studies for NMDs, no CNV 
analysis was performed, neither from MPS data nor with complementary methods (Kitamura et 
al., 2016; Chae et al., 2015; Evila et al., 2016; Nishikawa et al., 2017). In some studies, CNVs 
have been detected with complementary methods, such as MLPA (Dohrn et al., 2017; 
DiVincenzo et al., 2014) or array CGH (Pehlivan et al., 2016; Ankala et al., 2015). Recently, 
CNV analysis from MPS data has been included more routinely in many of the studies, using 
generally much evaluated programs such as ExomeDepth (Bacquet et al., 2018), CoNIFER 
(Pfundt et al., 2017) or XHMM (Hiraide et al., 2019). 
 
In a study with multiple disorder groups, CNVs were found to be pronounced as disease causing 
entities especially in neurological diseases. This included CMT, neuropathies, muscular 
dystrophy, neuromuscular disorders and spastic paraplegia, and more specifically genes SMN1, 
PMP22 and DMD (Truty et al., 2019). Deletions and duplications of PMP22 are one of the first 
CNVs which were actively inspected from MPS data (Antoniadi et al., 2015; Nam et al., 2016). 
Generally, CMTs are explained by PMP22 duplications in 43–57% of the cases and by PMP22 
deletions in 22–27% of the cases (DiVincenzo et al., 2014; Lassuthova et al., 2016). Atypical 
CNVs involving only parts of PMP22 have also been reported (Cutrupi et al., 2018) and rarely 
(< 3% of cases) CNVs outside PMP22 have been found as causative for CMT (Pehlivan et al., 
2016). A separate tool has been developed to screen for the many CNVs of DMD from MPS 
data, with detection on exon-level a requisite for correct diagnosis and a qualification for some 
therapeutic trials (Kozareva et al., 2018). 
 
Pathogenic deletions and duplications in SPAST explain 8–41% of autosomal dominant spastic 
paraplegia 4 (SPG4) cases (Boone et al., 2014). SPG4 is characterized by spasticity and 
progressive weakness in lower limbs (Boone et al., 2014). SPAST has Alu-rich genomic 
architecture, which predisposes the region to different genomic rearrangements (Boone et al., 
2014). Both deletions and duplications in SPAST have been reported to affect various exons 
and most often the final or the first (Boone et al., 2014). Some deletions which span beyond 
SPAST to nearby genes are predicted to form novel chimeric genes (Boone et al., 2014). This 
could for example explain a family with co-segregation of spastic paraplegia and dementia 
(Boone et al., 2014).  
 
Variant types challenging to detect from MPS data and involved in NMDs involve repeat 
expansions and copy number changes in highly homologous genes and repeated regions (Volk 



Review of the Literature 

84 

and Kubisch, 2017; Zenagui et al., 2018). Both TTN and NEB harbor a so-called triplicate repeat 
region with repetitive blocks of exons: TTN between exons 172 and 198 with nine exon units, 
and NEB between exons 82 and 105 with eight exon units (Bang et al., 2001; Kiiski, K. et al., 
2016). Copy number changes affecting more than one repeat block (i.e. triplicate repeat copy 
number of 4/6 or 8/6 or more) in the same allele on NEB have been detected to be deleterious 
(Kiiski, K. et al., 2016), but similar findings have not yet been made for TTN.  

Myotonic dystrophy 1 (DM1) and some spinocerebellar ataxias are caused by trinucleotide 
repeat expansions and myotonic dystrophy 2 by a tetranucleotide repeat expansion (Mirkin, 
2007; Volk and Kubisch, 2017). In myotonic dystrophies, the size of the expansion correlates 
with the severity of the disease and through further repeat expansion in the generation leads to 
anticipation in DM1 (Laing, 2012; Tsilfidis et al., 1992). Normally, the CTG repeat in DMPK 
associated with DM1 consists of 5 to 27 copies, but affected individuals can have from 50 
copies in a mild disease form to several kb of repeat in more severe cases (Brook et al., 1992). 
Repeat retraction in the D4Z4 microsatellite causes FSHD type 1, and a hexanucleotide repeat 
expansion in C90rf72 causes amyotrophic lateral sclerosis (ALS) (Volk and Kubisch, 2017). 
Single gene testing by PCR-based fragment length evaluation or other PCR approaches are the 
standard methods for these cases (Volk and Kubisch, 2017). MPS-based approaches can 
potentially replace these techniques, but generally technological, bioinformatic and cost-
effectiveness issues need to be solved first (Volk and Kubisch, 2017). Especially long-read 
sequencing or synthetic long reads may resolve these challenging to detect variants, as 
previously discussed. Nevertheless, some repeat expansion defects can be detected already from 
short-read MPS data, as demonstrated in a cohort of ataxia patients (Marelli et al., 2016; 
Dashnow et al., 2018).  

Different forms of autosomal recessive proximal spinal muscular atrophy are caused by a 
homozygous deletion of SMN1 (Lefebvre et al., 1995). SMN2 is a closely related pseudogene 
for SMN1 but with a critical C>T change in exon 7, which impairs the function of an exonic 
splicing enhancer and reduces the amount of functional full-length SMN2 transcript (Lorson et 
al., 1999). Homozygous deletion of SMN1 is the dominant disease cause, but also smaller 
variants, such as SNVs or indels, and partial gene conversions producing SMN1/SMN2 hybrid 
genes have been detected (Lorson et al., 1999; Feng et al., 2017). Increased copy number of 
SMN2 provides partial functionality and affects the severity of the disease resulting from loss 
of SMN1; two copies of SMN2 lead to presentation as SMA type I and four copies to SMA III 
(Lefebvre et al., 1995). MLPA has been used to differentiate these two genes, but MPS 
approaches are emerging (Feng et al., 2017). A fast and comprehensive analysis method would 
be needed to achieve early diagnosis to initiate a newly approved treatment in time for 
maximized response. This first approved treatment is based on increasing the amount of 
functional SMN2 transcript by preventing exon skipping with antisense oligonucleotide 
administration (Mercuri et al., 2018).  
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3 AIMS OF THE STUDY 
 
The aim of this study was to develop an accurate and standardized copy number variant (CNV) 
detection and annotation method for targeted gene panel and whole exome sequenced data. The 
developed method was utilized to increase the diagnostic yield in a cohort of patients with 
neuromuscular disorders. The prevalence of CNVs was evaluated in the genes associated with 
neuromuscular disorders. 
 
The specific objectives in each of the subprojects were: 
 

I. Validation of a CNV analysis program combination based on complementary detection 
sensitivity and specificity to attain highly sensitive CNV detections. Evaluation of 
sensitivity and specificity of the CNV detections and the accuracy of the detected 
regions by verification with complementary methods of either array comparative 
genomic hybridization, PCR or multiplex ligation-dependent probe amplification. 
Development of additional scripts to differentiate difficult to analyze regions: 
homologous genes SMN1/SMN2 and NEB triplicate repeat region. 
 

II. Improving the specificity of the CNV detection approach by developing a logistic 
regression model to differentiate detections predicted to be true positive. A set of in 
silico CNVs was generated into sequenced samples to train and test the model. Positive 
control samples and validated CNV detections from the preceding subproject were 
utilized in model validation. 
 

III. Development of a comprehensive annotation pipeline for CNV detections by utilizing 
and expanding an existing program cnvScan. The most recent CNV population 
databases were included and an in-house CNV database was constructed to enable 
filtration of results by frequency for clinical significance evaluation. 
 

IV. Validation of the developed pipeline for CNV detection sensitivity, predictive model 
performance and CNV annotation for WES samples.
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4 MATERIALS AND METHODS 
4.1 Sequencing data preparation 
4.1.1 Subjects 
DNA was extracted from peripheral blood samples from patients with neuromuscular disorders 
or their unaffected relatives. 2359 samples were received and sequenced with the targeted gene 
panel MYOcap (described below). The sample set included also 16 unaffected relatives and 55 
DNA samples sent as CNV control samples by foreign collaborators (clinicians and 
researchers). The control samples included 24 samples with a known previously validated CNV 
(positive control samples) and 31 samples with certain genes verified to not contain CNVs 
(negative control samples). For MNDcap, 942 samples were received, one of which was an 
unaffected relative, and two had a known CNV (positive control samples). For WES, 262 
samples were received for sequencing, 22 of which were from unaffected relatives and 85 of 
which were from sIBM patients. Written informed consent was collected from patients or their 
representatives. Samples were obtained according to the Declaration of Helsinki, and the study 
was approved by the Coordinating Ethics Committee of the Hospital District of Helsinki and 
Uusimaa (HUS 195/13/03/00/2011 §32). Samples received in collaboration were received as 
extracted DNA samples. 

4.1.2 Targeted gene panels and sequencing 
In this study, six versions of the customized gene panel called MYOcap and three versions of 
MNDcap were utilized (Evila et al., 2016). The gene panels included exonic regions, UTRs and 
+/- 15 bp intronic regions for genes and candidate genes related to myopathies (MYOcap) and 
neuropathies (MNDcap). MYOcap covered also certain specific intronic regions known to 
contain some well-known causative variants. In addition, the MYOcap v.6 panel covered the 
whole TTN gene with intronic probes included. The latest versions of the panels contain 
sequences of 341 (MYOcap) and 301 (MNDcap) genes (Supplemental Table 1 and Table 2 for 
gene lists for all the panel versions). 

DNA target capture, enrichment and sequencing for the targeted gene panels were performed 
either at FIMM (Institute for Molecular Medicine Finland, Helsinki, Finland), FuGU 
(Biomedicum Functional Genomics Unit, Helsinki, Finland), or Oxford Genomics Centre 
(Oxford Genomics Centre, Oxford, UK) (Table 2). Hybridization-based target capture was 
performed with different versions of a custom-designed SeqCap EZ Choice Library (Roche 
Sequencing, Pleasanton, USA). Sequencing was performed with the Illumina HiSeq 1500–
4000, MiSeq or Novaseq platform (Illumina Inc., San Diego, CA) to 150 bp, 100 bp or 75 bp 
paired-end read lengths. The achieved average target read depths varied from 110X to > 1000X. 
MYOcap sequencing was performed with batches of 17 to 160 samples with an average of 58 
samples per run. 25 samples were sequenced twice, totalling 2384 MYOcap sequenced samples. 
With MNDcap, a total of 948 samples were sequenced in batches of 18 to 96 samples with an 
average of 43 samples per run, and six samples were sequenced twice. Additionally, 25 samples
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were sequenced both in MYOcap and MNDcap. 

Table 2: Target set version and sequencing information for the targeted gene panels MYOcap and 
MNDcap. 

Panel 
version 

Genes 
in panel Batches Samples 

Provider(s) and 
platform(s): number of 

batches 

Average achieved 
read depth* and 

read length 
MYOcap 
v.1

218 2 96 FIMM HiSeq1500: 2   110X | 100 bp 

MYOcap 
v.2

238 7 337 FIMM HiSeq1500: 1   130X | 100 bp 
FuGu MiSeq: 2   150X | 75 bp 
Oxford HiSeq2000: 4   560X | 100 bp 

MYOcap 
v.3

315 12 716 FIMM HiSeq2500: 1   140X | 100 bp 
Oxford HiSeq4000: 11   650X | 75 bp 

MYOcap 
v.4

300 8 384 Oxford HiSeq4000: 8   700X | 75 bp 

MYOcap 
v.5

332 10 464 Oxford HiSeq4000: 10   580X | 75 bp 

MYOcap 
v.6

349 5 387 Oxford HiSeq4000: 3 
   NovaSeq: 2 

  470X | 75 bp 
1010X | 150 bp 

MNDcap 
v.1

278 1 24 Oxford HiSeq1500: 1   230X | 100 bp 

MNDcap 
v.2

278 7 352 FIMM HiSeq2500: 5   220X | 100 bp 
Oxford HiSeq4000: 2   670X | 75 bp 

MNDcap 
v.3

302 14 572 Oxford HiSeq4000: 11 
  Novaseq: 3 

  660X | 75 bp 
1060X | 150 bp 

*Average achieved read depth has been rounded to nearest 10.

4.1.3 Whole exome sequencing 
DNA samples were processed and whole exome sequenced either at FIMM, FuGu, ATLAS 
(ATLAS Biolabs, Berlin, Germany), BGI (Beijing Genomics Institute Copenhagen, Denmark), 
GATC (now part of Eurofins Genomics, Ebersberg, Germany) or Blueprint Genetics (Blueprint 
Genetics, Espoo, Finland). The target capture kits and sequencing protocols (with paired-end 
read lengths and average read depths) are listed in Table 3. Providers for the targets used for 
WES included Agilent Technologies (Agilent Technologies, CA, USA), Axeq Technologies 
(Axeq Technologies Inc., MD, USA), Roche and Illumina. Like for the targeted gene panels, 
only different Illumina platforms (HiSeq 1500–4000, NextSeq, Novaseq) were utilized for 
sequencing. A total of 262 samples were sequenced with 29 samples on average per run, 
including two samples sequenced twice. Additionally, 114 samples sequenced with MYOcap 
and 17 samples sequenced with MNDcap were also whole exome sequenced. 
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Table 3: Sequencing information for WES batches. 

Target kit Samples Provider and 
sequencing platform 

Average achieved 
read depth* 

Read 
length 

Agilent SureSelect v2 30 BGI HiSeq 1500 80X 90 bp 
Agilent SureSelectXT 
v6 28 GATC HiSeq 1500 30X 125 bp 

Agilent SureSelectXT 
v6 19 BGI HiSeq 4000 50X 100 bp 

NimbleGen 
MedExome 62 FIMM HiSeq 2500 140X 100 bp 

NimbleGen 
MedExome 24 FIMM Novaseq 150X 100 bp 

Axeq TruSeq exome 21 FuGU NextSeq 80X 75 bp 
NimbleGen v2.0 27 FIMM HiSeq 1500 50X 90 bp 
Nimblegen SeqCap 
EZ Exome v2 28 Atlas HiSeq 1500 100X 100 bp 

BpG+xgen-exome-
research-panel 23 Blueprint Genetics 

Novaseq 280X 150 bp 

*Average achieved read depth has been rounded to nearest 10.

4.1.4 Sequencing data pre-analysis 
Data pre-processing into BAM files starting from FASTQ files was performed according to the 
Genome Analysis Toolkit (GATK) (Broad Institute, Cambridge, MA) best practices basic 
protocol (DePristo et al., 2011; Van der Auwera et al., 2013; McKenna et al., 2010). Namely, 
reads were aligned to the Human Reference Genome version GRCh37/hg19 with Burrows-
Wheeler aligner (version 0.7.10, 0.7.12, 0.7.15, or 0.7.17)(Li, H. and Durbin, 2009), duplicated 
reads were removed with Picard tools (version 1.119 or 2.18.10, Broad Institute, Cambridge, 
MA), misaligned reads were realigned around indels with SAMtools (version 1.2, Genome 
Research Ltd., Cambridge, UK (Li, H. et al., 2009)), and finally base quality recalibration was 
done with GATK (version 3.3, 3.7 or 4.1.0.0). The tool versions (Table 4) for this part of the 
workflow and others discussed further were varied because the time scale for sample 
acquisition, sequencing and analysis spanned from 2012 for the oldest WES batch until the 
latest batches sequenced and analysed in 2019. 

Table 4: Program version and source information. Different bioinformatics tools used in this study, 
versions used and their internet reservoirs at the time of writing this thesis, 03/2020. 
Program Versions Web source (as of 03/2020) 
Burrows-Wheeler 
aligner / BWA 

0.7.10, 0.7.12, 
0.7.15, 0.7.17 

http://bio-bwa.sourceforge.net/ 

Picard tools 1.119, 2.13.2, 
2.18.10 

http://broadinstitute.github.io/picard 

SAMtools 1.2, 1.4 https://github.com/samtools/samtools 
Genome 
Analysis Toolkit / 
GATK 

3.3, 3.7, 
4.1.0.0 

http://www.broadinstitute.org/gatk/ 
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CoNIFER 0.2.2 http://conifer.sourceforge.net/download.html 
XHMM 1.1 https://atgu.mgh.harvard.edu/xhmm/download.shtml 
ExomeDepth 1.1.10, 1.1.12 https://cran.r-

project.org/web/packages/ExomeDepth/index.html 
CODEX 1.10.0, 1.12.0 https://www.bioconductor.org/packages/release/bioc/html/

CODEX.html 
CNVkit 0.8.5 https://cnvkit.readthedocs.io/en/stable/ 
SavvyCNV 1.0* https://github.com/rdemolgen/SavvySuite 
BEDtools  2.26.0 https://bedtools.readthedocs.io/en/latest/ 
cnvScan 1.0 https://github.com/PubuduSaneth/cnvScan 
CoverView 1.4.4 https://github.com/RahmanTeamDevelopment/CoverView 
ExomeCQA 1.0* http://exomecqa.sourceforge.net 

*Program version was not specified by the developers. 
 
Control samples for WES validation were received from Blueprint Genetics as ready-aligned 
BAM files. A commercial “sentieon-genomics-201711.01” pipeline based on GATK best 
practices was used for all the sequencing data preparation steps, with no specific details 
available. 
 

4.2 CNV calling programs and pipeline 
Multiple studies with program development and comparisons were evaluated to decide on the 
best approach for CNV calling from targeted gene panel and WES data (Table 5). The pre-set 
properties of the study setting, which restricted program selection, were both the aim to detect 
rare germline variants and the lack of normal control samples for comparison (de Ligt et al., 
2013; Tan et al., 2014). For example, GATK recently provided a CNV calling tool, but it 
requires a panel of normal samples for normalization and thus was unsuitable for this setting 
(Hehir-Kwa et al., 2018). According to comparison studies, different programs seemed to 
provide complementary variant calls in specificity, sensitivity and variant types, and the use of 
multiple programs was recommended to achieve most comprehensive results. Therefore, we 
selected four programs, which were designed to detect rare CNVs from a sample batch without 
controls. The programs CoNIFER, XHMM, ExomeDepth and CODEX were selected based on 
the following criteria and resources comparing the four programs to each other or against other 
programs:  
 
Table 5: Conclusions from comparison studies involving CoNIFER, XHMM, ExomeDepth and/or 
CODEX. 

Program CNV calling 
sensitivity/specificity CNV size* CNV state 

(del/dup) 
ExomeDepth High sensitivity, low 

specificity (Hwang et al., 
2015), (Samarakoon et al., 
2014), (Tan et al., 2014), 
(Roca et al., 2019) 
 

Small (Hwang et al., 
2015), (Kadalayil et al., 
2015), (Tan et al., 
2014)  

Bias to deletions 
(Hwang et al., 
2015), (Tan et al., 
2014) 
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XHMM Higher specificity than 
sensitivity (Yao et al., 2017) 
 

Mostly big (Yao et al., 
2017), (Samarakoon et 
al., 2014)  

Balanced (Tan et 
al., 2014) 

CoNIFER High specificity, low 
sensitivity (Samarakoon et 
al., 2014), (de Ligt et al., 
2013), (Sadedin et al., 2018) 

Only big (Tan et al., 
2014), (de Ligt et al., 
2013), (Yao et al., 
2017), (Samarakoon et 
al., 2014) 

Bias to 
duplications (Tan 
et al., 2014) 

CODEX Balanced (Jiang et al., 
2015), (Sadedin et al., 2018) 

Balanced (Jiang et al., 
2015), (Gambin, 
Akdemir et al., 2017), 
(Kim, H. Y. et al., 2017) 

Bias to deletions 
(Roca et al., 
2019) 

*small CNV affects fewer than three exons here, del = deletion, dup = duplication 
 
Some other programs published later during this study were evaluated as well for gene panel 
sequencing data. CNVkit and SavvyCNV seemed to provide additional complementarity and 
algorithmic approaches compared to the four programs discussed first. For example, both utilize 
information from off-target reads (Talevich, E. et al., 2016; Laver et al., 2019). However, the 
initial four programs remained our choice in the further steps. 
 

4.2.1 Program descriptions and utilized parameters 

4.2.1.1 CoNIFER 

Copy Number Inference From Exome Reads (CoNIFER) (Krumm et al., 2012) is written 
entirely in Python. The workflow involves first transformation of reads into per kilobase per 
million mapped reads (RPKM) for input BAM files (all the other programs start from BAM 
files as well). This step normalizes the read count for targets against the total read coverage in 
a sample. This normalization corrects for low sample coverage and enables more linear 
comparison of samples in a batch. CoNIFER uses singular value decomposition (SVD) to 
correct for systematic biases and filter common variation to transform RPKMs into 
standardized Z-scores. Singular values are plotted into a “screeplot” to identify experimental 
noise and to aid in choosing of the SVD value (an inflection point in the plot) for component 
removal. The final corrected SVD-ZRPKM values represent normalized copy numbers for each 
exon in a sample. The program cannot be utilized to detect aneuploidies, but rare variants on 
chromosome X can be detected. Therefore, males and females can be analysed together in one 
batch. CoNIFER is designed to identify CNV calls from at least three consecutive exons and 
requires at least eight samples in a batch to run. In several comparisons, CoNIFER seems to 
achieve a high specificity, but on the cost of a reduced sensitivity (Table 5). Additionally, the 
detected CNVs seem to be overly large (Kadalayil et al., 2015; Krumm et al., 2012).  
 
Here, CoNIFER version 0.2.2 was used with default settings for all samples in a batch analysed 
together, since the program normalizes differences in chromosome X for males and females. 
The SVD value was chosen for each batch according to the screeplot, as instructed by the 
developers. A lower SVD value was selected in unclear cases to reach higher sensitivity.  
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4.2.1.2 XHMM  

EXome hidden Markov model (XHMM) (Fromer et al., 2012) is written in C++ and R. First, 
BAM coverage is calculated with GATK Depth-of-Coverage, and then principal-component 
analysis (PCA) is used for noise reduction and normalization. In a pre-normalization step, some 
outliers are filtered out, such as targets with extreme GC content (< 0.1 or > 0.9), and targets 
with diverging coverage. This step homogenizes the sample set prior to PCA analysis. The 
developers recommend adjusting the thresholds for filtration in this step according to the study 
setting. PCA removes high-variance components originating mainly from batch effects and 
population-related effects rather than being related to read depth change. The default for PCA 
is derived from a calculation of 0.7/sample amount. The normalized data is then used to train 
and run a hidden Markov model (HMM) to discover CNVs. The model takes into account the 
parameters for exome-wide CNV rate and exon target length distribution and distances. The 
developers recommend at least 50 samples to be analysed in a batch. XHMM reports Phred-
scaled detection specific scores with QScore (a global quality threshold) for the whole CNV 
detections and for each break point. XHMM annotates general CNV state compared to reference 
without differentiation of homozygous deletions or duplications. 
 
In this study, XHMM version 1.1 was used, and more lenient settings were selected for targeted 
gene panel sequenced samples compared to default settings. Namely, sequencing data from 
targeted gene panels surpassed the default thresholds with higher average read depth and greater 
standard variation between samples. These thresholds for the pre-filtering step were adjusted 
as follows: maximum target size (maxTargetSize) to 10,000, maximum mean target read depth 
(maxMeanTargetRD) to 1500, maximum mean sample RD (maxMeanSampleRD) to 1000, 
maximum standard deviation sample RD (maxSdSampleRD) to 350, and maximum SD target 
RD (maxSdTargetRD) to 80. The exome-wide CNV rate was also increased from 1e-8 to 1e-3. 
For WES samples, the default exome-wide CNV rate 1e-8 was used, and parameters for the 
pre-filtering step were closer to the default values: maxTargetSize 10,000, minMeanTargetRD 
10, maxMeanTargetRD 1100, minMeanSampleRD 10, maxMeanSampleRD 1000, 
maxSdSampleRD 350 and maxSdTargetRD 30. Females and males were analysed separately 
in each batch as recommended by the program developers. This division by gender was done 
also for the rest of the programs. For MYOcap, this produced female batches of eight to 33 
samples with an average of 17 samples per analysis, and male batches of five to 76 samples 
with an average of 28 samples per analysis. For MNDcap, female analysis batches were sized 
from eight to 33 samples with an average of 17 samples, and male batches from nine to 63 
samples with an average of 26 samples. For WES, the numbers were for female batches three 
to 33 samples with an average of 13 samples, and for male batches five to 29 samples with an 
average of 15 samples. 
 
The normalization methods utilized by CoNIFER and XHMM are based on Gaussian noise 
structure estimation. These methods, SVD and PCA, seem to effectively eliminate the strongest 
components from the read depth signal in order to remove noise and reveal rare variation. 
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However, the methods require large enough sample batches to avoid false negative detections 
from exclusion of real signals as batch effect (Tan et al., 2014). 

4.2.1.3 ExomeDepth 

ExomeDepth (Plagnol et al., 2012) is written in R. The developers argue that Poisson and 
binomial distributions fit WES data inadequately, so instead a beta-binomial model is used for 
coverage estimation. ExomeDepth builds an internal optimized aggregate control sample set to 
maximize detection power. Variance can be limited by increasing the number of samples in the 
reference set, but if the samples included are less correlated, then bias increases. The optimum 
reference set size was tested to be 10, which is also indicative for the required sample batch 
size in the analysis. After building the reference set, the program provides a likelihood value 
for the state of each exon and combines these values with an HMM across multiple exons to 
provide read count ratio at exon level. ExomeDepth calculates the detection quality score by 
Bayes Factor, a likelihood ratio for CNV versus normal copy number state. The program has 
the potential to detect very small deletions of one or two exons. The output contains a ratio for 
the expected and detected read depth, which allows the detection of copy number changes 
beyond heterozygous variants. ExomeDepth seems to require high read depth and high 
correlation between the samples (Kadalayil et al., 2015). It also tends to over-segmentate 
detections into multiple parts more than other programs (Hwang et al., 2015).  

Here, ExomeDepth version 1.1.10 or 1.1.12 was used with default parameters both for targeted 
gene panel sequenced and WES samples. This is because ExomeDepth seems to achieve high 
sensitivity and surpass other tools in various settings already with default parameters (Sadedin 
et al., 2018). The developers recommend that samples with < 0.97 correlation to the reference 
sample set should be removed from analysis, but we did not follow this, since according to 
control sample CNV detections some samples with significant results would have been 
excluded. 

4.2.1.4 CODEX 

COpy number Detection by EXome sequencing (CODEX) (Jiang et al., 2015) is written in R 
and uses Poisson log-linear decomposition and Poisson likelihood-based segmentation to model 
the read depth data. This approach is claimed to resolve especially high variance in read depth 
between exons better than other models. Preceding read count modelling, the program executes 
a quality-filtering step for mappability, exon size and minimum coverage. The normalization 
step with log-linear decomposition removes bias originating from extreme GC content, exon 
length differences and technical artefacts from capture and amplification. The tool utilizes a 
Poisson likelihood-based circular binary segmentation algorithm to detect differences in copy 
numbers. CODEX annotates CNV detections with a simple quality score of lratio: likelihood 
ratio of CNV versus copy neutral event. 

CODEX version 1.10.0 or 1.12.0 was used in this study. For the targeted gene panel sequenced 
samples, the tool version with integer mode and segmentation by target, and maximum K value 
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of nine was used. For WES samples, segmentation was done by chromosome, and maximum 
K value was set to eight. In both settings, the selected coverage threshold of 20 to 4000 differed 
from the default. For two batches (one male sample set in MYOcap and one female sample set 
in WES) with the number of samples less than the K value, the K value was decreased (to 
minimum of five).  
 
The general workflow for all the algorithms is described in Figure 14. 

Figure 14: General workflow for CNV detection with the read depth method. Sample file(s) and a file with 
sequencing targets are needed, and some programs utilize also the reference genome. After read depth calculation 
and normalization steps, different segmentation algorithms can be used to make the final CNV calls. (Figure 
created by Salla Välipakka with diagrams.net.) 
 

4.2.2 Algorithm for SMN1/SMN2 differentiation 
Due to the clinically significant SMN1 gene having a highly similar pseudogene, copy number 
for SMN1 was estimated with a different and more specific approach for all the MNDcap 
sequenced samples. Based on the mathematical model in the paper by Feng et al. (Feng et al., 
2017), a new algorithm was constructed. For each sample in a batch of samples, the read depth 
was calculated exactly at the two exonic nucleotides, which differ between SMN1 and SMN2: 
exon 7 c.840 chr5:70247773 with C for SMN1 and corresponding chr5:69372353 with T for 
SMN2 (the functionally significant nucleotide change as described previously), and exon 8 
c.233 chr5:70248501 with G for SMN1 and chr5:69373081 with A for SMN2. All the genomic 
coordinates here and later adhere to the Human Reference Genome version GRCh37/hg19. The 
following pipeline was used separately for both c.840 and c.233 calculations. 
 
Samples with SMN1 to SMN2 ratio between 0.8 and 1.2 according to the ratio of the c.840/c.233 
nucleotide counts from the previous step were grouped together to identify the median sample, 
which is expected to represent a case with exactly two copies of both SMN1 and SMN2. Then 
the average read depth for each exon in SMN1 and SMN2 was calculated for all the samples. 
These exon coverages were then normalized with the average coverage from the median 
samples. For deciding the final SMN1 and SMN2 copy numbers for each sample, the following 
formula was used: 
 
n1 = rd1/(rd1+rd2)*Σc/χc*4 
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where rd1 and rd2 are the read depths of the c.840/c.233 nucleotide at SMN1 and SMN2 (or 
SMN2 and SMN1 when calculating copy number for SMN2), Σc is the combined exon 7/exon 8 
coverage of SMN1 and SMN2 for the sample, and χc is the median of all the calculated Σc in 
the analysed samples. Here, copy number results from the c.840 calculation were given priority 
if in disagreement with c.233. In case of a result with indication of SMN1 copy number 0, the 
sample bam file was inspected visually with the Integrative Genetics Viewer (IGV, Broad 
Institute, Cambridge, MA) (Thorvaldsdottir et al., 2013). In ambiguous cases, a 
pseudoreference approach was attempted with concealing of SMN2 from the reference genome 
to force alignment only into the SMN1 locus. 
 

4.2.3 Algorithm for NEB triplicate region differentiation 
A similar approach as above for SMN1/SMN2 genes was attempted for copy number calculation 
in the triplicate repeat region of NEB. NEB has eight repeating exons in three units (TRI): TRI1 
ex 82–89, TRI2 ex 90–97, and TRI3 ex 98–105 (Kiiski, K. et al., 2016). The copy number for 
each triplicate unit was estimated based on single nucleotide positions with differing nucleotide 
in the corresponding exon in other repeat units (Table 6). None of the nucleotide positions differ 
between all the triplicate units, but some nucleotides are unique for a repeat unit, thus enabling 
their differentiation. 
 
Table 6: Genomic locations and changes for nucleotides with differences between NEB triplicate units.  

TRI 
unit 

Genomic 
location Change 

Genomic 
location Change 

Genomic 
location Change 

TRI1 chr2:152463200 A>G chr2:152460241 T>C   
TRI2 chr2:152448640 G>A chr2:152448563 C>T chr2:152447862 C>T 
TRI3 chr2:152435919 A>G     

TRI = Triplicate 
 

4.2.4 CNV analysis from mitochondrial DNA 
CNV analysis was attempted from mitochondrial DNA (mtDNA) with the four described CNV 
analysis programs, and CNVkit version 0.8.5 (Talevich, E. et al., 2016). CNVkit has a mode 
originally designed for tumor samples for calling CNVs from samples with contamination from 
a genetically differing source. In a training batch of mtDNA sequenced samples, two samples 
had a known single large deletion, sized 2 kb and 7.5 kb, with a heteroplasmy rate of 40%. 
Three samples had multiple smaller deletions. The first four tools were utilized with settings as 
presented, and CODEX was additionally utilized with the “fraction” mode designed for 
detection of somatic CNVs in cancer from heterogeneous samples. CNVkit was utilized with 
the mode for tumor samples, and different rates for expected tumor/normal contamination were 
given as input parameter. The tumor sample modes with CNVkit and CODEX were expected 
to compensate for sample heteroplasmy bias with mtDNA. 
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4.3 CNV control samples 
4.3.1 Control samples for the targeted gene panels  
Our CNV analysis method was validated (for other than SMN1/SMN2 genes) with a 
heterogeneous sample set with known and previously characterized CNVs in 24 samples (Table 
7). The samples were received from other research groups in collaboration. The control samples 
were sequenced together with patient samples in the MYOcap batches and analysed with the 
same sequencing data pre-analysis and CNV analysis pipelines. 
 
Table 7: Known and previously characterized CNVs in positive control samples. The CNV is presented 
as previously published, and the publication is listed if available. 

CNV 
type Gene Targets CNV as previously published Published 

previously in 
Het 
del 
  
  
  
  
  
  
  
  
  
  
  
  

CAPN3 ex 2–8 DEL het chr15 5' breakpoint boundary 
40439563–40463933 3' breakpoint 
boundary 40472217–40473795 

(Piluso et al., 2011) 

CSRP3 ex 4–7 het del: exons 4–7 and 3'UTR (Giugliano et al., 
2018) 

DMD ex 44 - - 
DMD ex 47–52  - - 
LAMA2 ex 13–14 del: exons 13–14 (Giugliano et al., 

2018) 
LAMA2 ex 13–37 DEL Het chr6 5' breakpoint boundary 

129555720–129612876 3' breakpoint 
boundary 129756115–129764002 

(Piluso et al., 2011) 

MTM1 large 
deletion 
with MTM1 

min deletion region: chrX: 149591931–
149841591; max deletion region: chrX: 
149526823–149844072 

(Savarese et al., 
2016) 

MYPN ex 4–7 het del: MYPN exons 3–5 (Giugliano et al., 
2018) 

NEB ex 14–81 chr2:g.(152454645_152456955)_(152
554712_152561404)del (GRCh37) 

(Kiiski, K. J. et al., 
2019) 

NEB ex 43–45 del ex 43–45 (Lehtokari et al., 
2014) 

SGCD ex 1 het del: first coding exon (Giugliano et al., 
2018) 

SGCG ex 7 del: exon 7 (Giugliano et al., 
2018) 

SGCG 

large 
deletion 
with SGCG 

DEL Het chr13 5' breakpoint boundary 
21593561–22464962 3' breakpoint 
boundary 23788143–23962786 

(Piluso et al., 2011) 

Hom 
del 

SGCB ex 6 hom del: last 12 codons in exon 6 
and 3’ UTR (U) 

(Giugliano et al., 
2018) 

Hemiz 
del 
  

DMD ex 5–7 - - 
DMD ex 45–47 - - 
DMD ex 45–49 hem del: exons 45–49 (U) (Giugliano et al., 

2018) 
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Het 
dup 
  
  
  
  

DMD ex 45–49 - - 
DMD ex 2-7  - - 
DMD ex 1 - - 
LAMA2 ex 5–12 dup: exons 5–12  (Giugliano et al., 

2018) 
LAMA2 ex 21–55 dup: exons 21–55 (Giugliano et al., 

2018) 
NEB ex 72–81 - - 

Hom 
dup 

NEB ex 72–81  - - 
 

del = deletion, het = heterozygous, hom = homozygous, hem = hemizygous, dup = duplication 
 

4.3.2 Initial CNV detections and CNV verifications 
Batches with the CNV control samples were analysed to evaluate the initial CNV detection 
sensitivity and performance of the programs with this setting. Additional interesting or 
potentially clinically significant CNV findings (according to patient phenotype and familial 
segregation) were verified. The CNV verifications and segregation studies were performed 
when possible with suitable methods including MLPA (10 samples), array CGH (14 samples), 
and PCR (14 samples, followed by successful Sanger sequencing for solving exact breakpoints 
for four of these samples). MLPA verifications and array CGH were performed elsewhere by 
collaborators. CNV detections from these verifications, both true positive and false positive 
detections, were included in the development of a logistic regression model both as target 
regions for in silico CNVs, and as validation detections for model validation. 
 
For PCR, primers were designed using Primer3 v4.0.0 (primer3.ut.ee) (Koressaar and Remm, 
2007; Untergasser et al., 2012) (Supplemental Table 3 for primer designs). The primers were 
either designed into first exons expected to be deleted and last exons expected to be retained to 
reveal hemi- and homozygous deletions on exon-level, or to produce shorter amplification 
products with heterozygous deletion compared to normal samples. PCR was performed using 
DreamTaq DNA Polymerase (Thermo Fisher Scientific, Waltham, MA) and a touchdown PCR 
program. The program included an initial denaturing step at +95 °C for 5 min, followed by four 
cycles of three repetitions of denaturation at +95 °C for 30 s, annealing at +67 °C (decreased 
by 3 °C after each three repetitions) for 30 s, and elongation at +72 °C for 1 min, so 12 cycles 
in total. The remaining 25 cycles had an annealing temperature of +55 °C with denaturation 
and elongation as above, and lastly 10 min of extra elongation at +72 °C. The products were 
run and purified from agarose gel, and Sanger sequencing was attempted to capture CNV 
breakpoints accurately.  
 
Array verifications were performed with custom-made array CGHs, either on a 8×60k NM-
CGH array (Kiiski, K. et al., 2013) with eight genes (one sample), or on a 4×180k array (Sagath 
et al., 2018) with 87 genes (13 samples), which were also included in MYOcap. The Cytosure 
Software v.4.6.85 (Hg19) (Oxford Gene Technology Ltd) was used for the graphic analysis and 
visual inspection of the data, and a minimum of five probes was used as a threshold to make a 
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call (Sagath et al., 2018). 

The kit used for MLPA was SALSA MLPA P034 and P035 DMD kit (MRC-Holland, 
Amsterdam, NL). The analysis was performed according to the manufacturer's protocol 
(Giugliano et al., 2018). 

4.4 Improving CNV detection accuracy: predictive model 
Because low specificity was perceived in the CNV detection results, a logistic regression model 
was developed to filter CNV detection results according to true positive prediction. As 
discussed in the introduction, in silico generated CNVs have been utilized in previous 
approaches to validate methods and tools. Only deletions have been usually simulated since 
they are more simple to generate, and the simulation of duplications and inversions with 
synthesized reads is not thought to comparably well correspond to real genome data (Ellingford 
et al., 2017; Kosugi et al., 2019; Sadedin et al., 2018). Fewer tools are available for generating 
simulated reads representing WES data as opposed to WGS data, and also to generate CNVs 
into the data rather than SNVs or indels (Roca et al., 2019). Furthermore, it has been questioned 
whether simulated reads resemble real sequencing data enough, especially with specific 
sequencing designs, such as targeted gene panels (Ellingford et al., 2017; Kadalayil et al., 2015). 
Therefore, we took a “keep-it-as-real-as-possible” approach for generating simulated CNVs 
since the amount of real CNV detections at our disposal was not enough for training a statistic 
model. 

Fifteen male and female samples without significant number of CNV detections were selected 
from the MYOcap v.4 gene panel sequenced samples. These samples were re-analysed for 
CNVs in separate batches (females and males separately) to gain a list of original CNV 
detections. Since small CNVs are the most challenging to detect, most of the generated in silico 
CNVs were one-exon or two-to-four exons in size (Marchuk et al., 2018). Both deletions and 
duplications were generated, but without synthetized reads.  

4.4.1 Targets for in silico CNVs 
GRCh37 (hg19) known canonical transcripts for UCSC genes (University of California, Santa 
Cruz, http://genome.ucsc.edu and http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database, 
last accessed June 28, 2017) were intersected with the MYOcap v.4 target set using BEDtools 
intersect (version 2.26.0). The output file included 5219 exons in 297 genes. 

A set of random target regions, 3900 for one-exon CNVs and 5400 for two-to-four-exon CNVs, 
was generated with exact exon borders from the intersect target file. The same target sets were 
used both for deletions and duplications. Single-exon targets were at least two exons apart, and 
two-to-four-exon targets were at least five exons apart with otherwise random distribution 
except for chromosome X, which was included only for females to generate only heterozygous 
CNVs. The longer target regions could span genes, which segmented some of them into one-



Materials and Methods 

98 
 

exon target regions. The CNVs were distributed five per sample involving only one target set 
and either deletions or duplications, generating four types of sample sets (with single-exon or 
two-to-four-exon deletions or duplications). The generation of multiple in silico CNVs into a 
sample as opposed to one has been recognized as a sensible and computationally more efficient 
approach, since even in targeted gene panel sequenced samples detecting more than one rare 
CNV is not unusual (Sadedin et al., 2018; Kerkhof et al., 2017). The fifth sample set included 
heterozygous in silico CNVs (one per sample) generated according to the coordinates of the 
real CNVs presented in the control sample CNV table, or some of the verified CNVs. This set 
included 114 deletions and 20 duplications of different lengths in different genes.  
 

4.4.2 In silico CNV generation workflow 
For the generation of deletions, reads from the region intended to be deleted were separated 
from the original BAM file with BEDtools intersect into a new separate BAM file. Another 
BAM file was generated with the reads from this region removed. The read count in the first 
BAM file was decreased by 50% using the Picard tool DownsampleSam (version 2.13.2 or 
2.18.10). The downsampled reads were combined with the second BAM file (with the 
downsampled region “emptied” from reads) using the Picard tool MergeSamFiles. For 
duplications, two BAM files were paired according to similar average read depth. From the 
donator BAM file, reads were extracted with BEDtools intersect from the region intended to be 
duplicated. The read count was then decreased with the Picard tool DownsampleSam in a way 
that an amount corresponding to a 50% addition of reads to the receiver file was preserved. The 
downsampled reads were then merged with the Picard tool MergeSamFiles with the receiver 
BAM file adding reads to the target region. The duplication of reads within a single BAM file 
would have resulted in exclusion of these reads as PCR duplicates in further analysis. The 
workflow was common for both deletions and duplications from this point, with read groups 
for the merged files replaced with the Picard tool AddOrReplaceReadGroups to remove notions 
from two separate original file names. Finally, all the generated BAM files were sorted and 
indexed with SAMtools (version 1.4) (illustrated outline for in silico CNV generation: 
Manuscript II Figure 1).  
 

4.4.3 Analysis of in silico CNV detection sensitivity 
CNV detection results from the four programs were converted into BED format and intersected 
with BEDtools intersect (as in the following steps) with the in silico CNV target regions to 
separate unspecific detections. The detections matching the original CNVs in the samples were 
removed to reveal the true false positive (FP) detections. CNV detection sensitivity for the in 
silico CNV targets was inspected on exon level with different overlap thresholds, from a 
minimum of 1 bp overlap up to 99% nonreciprocal overlap. With 99% nonreciprocal overlap, 
an exon in the CNV had to be covered by the detected CNV with at least 99% overlap on a base 
pair level.  
 
Before sensitivity evaluation, both the specific and unspecific CNV detections by all four 
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programs were intersected with all program combinations. Since BEDtools intersect lists 
overlaps for only one pair at a time, an additional script was written to combine these into a 
single CNV detection depicting each CNV detected by one to four programs. The overlap 
requirement was set to 1 bp, rather than commonly used 50%. This was to avoid excluding calls 
owing to detection inaccuracies: the programs have different tendencies to over-segment CNV 
detections, and they provide sometimes differing size estimations for CNVs. Some CNV 
detections consisted of multiple parts due to different matches in over-segmented detections, 
and these separate matches were deciphered as “CNV detection units”. The intersected four-
way CNV detections were used in the sensitivity evaluation. 
 
The effect of CNV mosaicism on detection sensitivity was also tested with additional 150 one-
exon and 150 two-to-four-exon in silico deletions and duplications. These were distributed five 
per sample into the 30 test samples largely with the previously described procedure. However, 
the percentage was adjusted with the Picard tool DownsampleSam to cut reads for deletions 
with percentages of 50%, 40%, 30%, 20%, and 10% to represent a pure heterozygous deletion 
for comparison and different degrees of mosaicism. Similarly, reads for duplications were 
increased with percentages of 10% to 50%, with the end of the spectrum representing a pure 
heterozygous duplication. The detection sensitivity was calculated on exon level with a 
minimum overlap requirement of 1 bp.  
 

4.4.4 Logistic regression model: training and validation 
The specific and unspecific in silico CNV detections with 1 bp overlap requirement were 
combined and converted into comma-separated values (.csv). The minimal overlap category 
was selected because it was estimated to represent CNV detections and detection evaluation 
from true samples most closely. The CNV detection units were distributed randomly into five 
training and test sets for cross-validation, with 80% of the variants in each training set and 20% 
in each testing set. The effects of various CNV detection features were evaluated for each CNV 
detection unit in different combinations as variables in a logistic regression model for 
differentiating true positive (TP) detections from FP detections. CoNIFER detections were 
converted into a binary format (1 = detected, 0 = not detected, feature 1) and for the other three 
programs, both a CNV detection-specific score (features 2 to 4) and a median score in the in-
house CNV detection database from MYOcap samples (at the time with CNVs from 1956 
samples) were included (features 5 to 7). The number of targets (exons) and detection length in 
base pairs were included both in the prioritized detection order of CODEX > ExomeDepth > 
XHMM > CoNIFER (in accordance to previous estimations for the program accuracies in 
breakpoint detection) and as a mean from all program detections (features 8 to 9 for targets and 
10 to 11 for length). State (deletion or duplication) was included as feature 12.  
 
Firstly, 15 model versions with different combinations of CNV specific scores (features 1–4) 
were tested. Then, additional features 8 to 12 were added as variables to the best models from 
the first stage and tested in five model versions. Lastly, seven model versions were tested with 
CNV detection specific scores switched to in-house median CNV scores (features 5 to 7). 
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Multicollinearity between variables was avoided with calculation of the variance inflation 
factor, a measure of inflation in variance of the estimated regression coefficient attributable to 
correlation among variables in a model. Variance inflation factor was required to be less than 
two for every variable in any model version for the model to be valid (Lin, 2008). 

The model performances were evaluated with the area under the receiver operating 
characteristic curve (AUC), calculated with a method for cross-validated estimates (LeDell et 
al., 2015). The best models with AUCs > 0.90 were validated with real CNV detections, 
consisting of the control sample CNVs and newly validated CNVs. This was 66 positive control 
samples and 8 samples with false positive CNV detection in total. Each sample had only one 
CNV, but some were divided into multiple CNV detection due to over-segmentation and thus 
more CNV detection combinations between the different programs. Therefore, prediction 
results were evaluated in two different categories: 66 CNVs matching the number of samples 
and 74 CNV detections with eight additional CNV detection units from CNVs on five samples. 
True positive rate [TP/(TP + FN)] (or sensitivity), true negative rate (or specificity) [TN/(TN + 
FP)] and overall accuracy [(TP + TN)/(TP + TN + FN +FP)] were calculated for the validation 
tests, as has been done in previous studies (Zhang, L. et al., 2019). The threshold for TP/FP 
status prediction was set separately for each different model version to maximize accuracy in 
each setting. 95% CIs were calculated for overall accuracy measurements with the exact 
Clopper-Pearson method. All statistical calculations were performed with R version 3.4.3 (The 
R Foundation). 

4.4.5 Control samples for WES validation 
The CNV detection method and predictive model were validated with WES samples with 
known CNVs. Samples received from Blueprint Genetics for this purpose had been targeted 
and enriched with either “xgen exome research panel probes with custom additions” targeting 
the whole exome (designated as “WES”, with three batches and 83 samples altogether) or 
“mendelome probes” targeted for 6399 clinically significant genes (designated as 
“mendelome”, with three batches and 130 samples altogether). The samples were sequenced to 
150 bp paired-end read depth with Illumina Novaseq with acquired average read depth of 220X 
for WES batches and 190X for mendelome batches. The sample set included 27 samples from 
Coriell Institute CNVPANEL01 set with microdeletions and/or microduplications, more than 
one in some of the samples. These samples were included in one of the WES batches with 24 
heterozygous microdeletions, 11 heterozygous microduplications and four homozygous 
microduplications. The average size for the 24 deletions was 11.3 Mb ± 6.5 Mb (95% CI), and 
for the 15 duplications 17.2 Mb ± 13.9 Mb. 24 of the Coriell samples were also distributed into 
the three mendelome batches, including 21 heterozygous deletions, 10 heterozygous 
duplications and three homozygous duplications. For the 21 deletions, the average size was 9.6 
Mb ± 5.7 Mb and for the 13 duplications 16.2 Mb ± 15.7 Mb. 

CNVs for the other validation samples (106 in mendelome batches and 56 in WES batches) had 
been verified previously at Blueprint Genetics with CNVkit or an in-house developed CNV 
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detection algorithm (unpublished). The sample CNVs have not been published accurately but 
are illustrated with relevant properties in Table 8. The accuracy for the CNV detections was 
evaluated on exon level for the listed CNVs, since for most of them the expected CNV was 
provided with exon-level accuracy. 

Table 8: Sizes and states of control CNVs in Blueprint Genetics samples, without Coriell Institute 
samples. 

Mendelome State one 
exon 

2–4 
exons 

5–10 
exons 

> 10 exons /
whole gene

multiple 
genes 

Deletion Homozygous 5 5 
Heterozygous 20 31 11 8 7 

Duplication Homozygous 1 
Heterozygous 1 1 4 6 6 

WES 
Deletion Homozygous 5 3 1 1 

Heterozygous 21 19 2 
Duplication Homozygous 1 

Heterozygous 1 1 1 

4.6 CNV annotation 
For CNV annotation, the program cnvScan was used as a base-line tool (Samarakoon et al., 
2016). The program provides annotations in four general categories: CNV information, such as 
size, state and genes included, functional information based on the location of the CNV (such 
as on regions of segmental duplications) and genes included in the CNV (such as 
haploinsufficiency score), population frequency according to CNV databases, and disease-gene 
association information. However, since the program was published already in 2016 and has 
not received updates, it lacks updated databases and some databases completely. Generally, 
including multiple common CNV population databases is recommended since if a variant is 
found in multiple subjects in different studies, it is probably more true and not a study-specific 
repetitive artefact (Zarrei et al., 2015). Moreover, the CNVs were originally compared to 
variants in databases only with 100% overlap requirement. Therefore, we updated cnvScan 
(Table 9) by adding more databases (Table 10 for references and web sources) and three 
different overlap degrees with the bedtools intersect: 1 bp, 50% reciprocal and 90% reciprocal 
requirements. The prediction of true positive/false positive from the logistic regression model 
was added as well. 

The CNV population frequency database annotations were modified to contain information in 
the format of population frequency, if information for studied populations and size of studied 
cohorts was included. The databases for ExAC and DECIPHER CNVs were not originally in 
this format, as compared to the formats offered by default by gnomAD and 1000g CNV 
databases. The DGV CNV databases could not be updated with this information. All databases 
provided deletions and duplications separately, and database matches were evaluated separately 
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for these for each CNV, since a duplication and a deletion in the same location could have 
different effects and frequencies (Riggs et al., 2019). In-house CNV detection frequency 
evaluation was included to allow tracking of detected variants and to provide consistent variant 
annotations, as has been recommended for variant reporting (Li, M. M. et al., 2017). In-house 
variant databases are also estimated to reveal especially false positive calls originating from 
technical bias (Li, M. M. et al., 2017). The in-house CNV databases were built separately for 
each of the sequencing data types (MYOcap, MNDcap, WES). The in-house CNV databases 
contained only CNVs evaluated to be true with the model. 
 
Table 9: Updated and newly included databases in cnvScan, and the criteria used for database 
comparison. 

Data Original database Updated database Match 
criteria 

UCSC exons  - UCSC_exons_modif_canoni
cal_withchr.bed 

1 bp 

in-house CNV 
database 

- detected variants per 
program, BED  

three-tier 

refGene annotation - refGene.txt.gz 25-Nov-2018 1 bp 
GENCODE 
annotation 

havana_or_ensembl_genc
ode.v19.annotation.gtf 

- gene 

UCSC segmental 
duplications 

- genomicSuperDups two-tier  

PhastCon 
elements 

phastConsElements100wa
y 

- gene 

Haploinsufficiency 
index 

Dataset_S2 HI_Predictions_Version3 gene 

Residual variation 
intolerance score  

SCORES_n12_4NR_v16M
ay15 

RVIS_Unpublished_ExACv2
_March2017 

gene 

gnomAD gene LOF 
intolerance 

- gnomad.v2.1.1.lof_metrics.b
y_gene 

gene 

ExAC gene scores 
for CNV 
intolerance 

- release0.3.1-cnv-exac-final-
cnv.gene.scores071316filter
ed.bed  

gene 

UCSC CpG islands - cpgIslandExtUnmasked two-tier 
UCSC conserved 
TF binding sites 

- tfbsConsSites.txt two-tier 

UCSC Conserved 
mammalian miRNA 
target sites 

- targetScanS two-tier 

Sanger high 
resolution CNVs 

conrad.et.al.2010_Validate
d_CNVEs_v5_4Release 

removed, included in DGV  

DGV CNVs GRCh37_hg19_variants_2
014-10-16 

GRCh37_hg19_variants_20
16-05-15 

three-tier 

curated high quality 
DGV Inclusive map 

s9 Inclusive.Gain+Loss.hg19.20
15-02-03 

three-tier 

curated high quality s10 Stringent.Gain+Loss.hg19.2 three-tier 
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DGV Stringent map 015-02-03 
ExAC CNVs by 
population 

- exac-final.autosome-1pct-
sq60-qc-prot-
coding.cnvDUPDEL.bed 

three-tier 

gnomAD CNVs by 
population 

- gnomad_v2_sv.sites.bed  three-tier 

DECIPHER normal 
population CNVs 

- population_cnv.txt three-tier 

1000 Genomes 
CNVs by 
population 

union.2010_06.deletions.sit
es 

ALL.wgs.mergedSV.v8.2013
0502.svs.genotypes 

three-tier 

OMIM morbid map  morbidmap_formatted_only
HGNC.txt 

morbidmap.txt 07112017 gene 

DECIPHER 
developmental 
disorder CNVs 

cnvScan_DDG2P_freeze_
with_gencode19_genomic_
coordinates_20141118 

cnvScan_DDG2P_freeze_wi
th_gencode19_genomic_coo
rdinates_20171107.txt 

gene 

ClinVar HGVS 
variants 

clinvar_20150106 clinvar_20170905 gene 

DisGeNET gene-
disease 
annotations 

- all_gene_disease_associatio
ns.tsv 

gene 

With three-tier comparison 1bp, 50% reciprocal and 90% reciprocal overlap requirements were used, and with 
two-tier only 50% and 90% reciprocal overlap requirements. 
 
Table 10: References and web sources for the data utilized in cnvScan, as of 03/2020.  
Data Reference Web source (as of 03/2020) 
UCSC exons (Church et al., 2011) 

 
http://hgdownload.cse.ucsc.edu/goldenPath/hg
19/database/ 

refGene annotation (Church et al., 2011) 
 

http://hgdownload.cse.ucsc.edu/goldenPath/hg
19/database/ 

GENCODE (Harrow et al., 2012) https://www.gencodegenes.org/human/release
s.html 

UCSC segmental 
duplications 

(Church et al., 2011) 
 

http://hgdownload.cse.ucsc.edu/goldenPath/hg
19/database/ 

PhastCon elements (Siepel et al., 2005) http://hgdownload.cse.ucsc.edu/goldenPath/hg
19/phastCons100way/ 

Haploinsufficiency 
index 

(Firth et al., 2009) https://decipher.sanger.ac.uk/about#download
s/data 

Residual variation 
intolerance score  

(Petrovski et al., 
2013) 

http://genic-intolerance.org 

gnomAD gene LOF 
intolerance 

(Karczewski et al., 
2020) 

https://gnomad.broadinstitute.org/downloads  

ExAC gene scores 
for CNV intolerance 

(Lek et al., 2016) https://console.cloud.google.com/storage/brow
ser/gnomad-
public/legacy/exacv1_downloads/release0.3.1/
cnv/ 

UCSC CpG islands (Church et al., 2011) 
 

http://hgdownload.cse.ucsc.edu/goldenPath/hg
19/database/ 
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UCSC conserved TF 
binding sites 

(Church et al., 2011) 
 

http://hgdownload.cse.ucsc.edu/goldenPath/hg
19/database/ 

UCSC Conserved 
mammalian miRNA 
target sites 

(Church et al., 2011) http://hgdownload.cse.ucsc.edu/goldenPath/hg
19/database/ 

DGV CNVs (MacDonald et al., 
2014) 

http://dgv.tcag.ca/dgv/app/downloads?ref=GR
Ch37/hg19 

curated high quality 
DGV Inclusive map 

(Zarrei et al., 2015) http://dgv.tcag.ca/dgv/app/downloads?ref=GR
Ch37/hg19 

curated high quality 
DGV Stringent map 

(Zarrei et al., 2015) http://dgv.tcag.ca/dgv/app/downloads?ref=GR
Ch37/hg19 

ExAC CNVs by 
population 

(Lek et al., 2016) https://console.cloud.google.com/storage/brow
ser/gnomad-
public/legacy/exacv1_downloads/release0.3.1/
cnv/ 

gnomAD CNVs by 
population 

(Collins et al., 2020) https://gnomad.broadinstitute.org/downloads 

DECIPHER normal 
population CNVs 

(Firth et al., 2009) 
 

https://decipher.sanger.ac.uk/about#download
s/data 

1000 Genomes 
CNVs 

(1000 Genomes 
Project Consortium et 
al., 2015) 

http://www.internationalgenome.org/phase-3-
structural-variant-dataset/ 

OMIM morbid map  (Amberger et al., 
2015) 

https://www.omim.org/downloads/ 

DECIPHER 
developmental 
disorder CNVs 

(Firth et al., 2009) 
 

https://decipher.sanger.ac.uk/about#download
s/data 

ClinVar HGVS 
variants 

(Landrum et al., 2014) https://www.ncbi.nlm.nih.gov/variation/docs/Cli
nVar_vcf_files/ 

DisGeNET gene-
disease annotations 

***https://doi.org/10.1
093/nar/gkw943 

http://www.disgenet.org/downloads 

*** Disclaimer by DisGeNET: “DisGeNET is a derivative database that integrates gene-disease associations from 
several public expert curated data sources and text-mining derived associations. We would like to acknowledge 
all the data sources from where the data are derived: https://doi.org/10.1093/nar/gkw943” 
 
The CNV detections were filtered into rare detections for further inspection according to 
frequency both in the in-house CNV database and in the population CNV databases. For the 
population databases, a recommended cutoff of 1% (Richards et al., 2015) was utilized in the 
90% reciprocal overlap category, taking into account match in CNV state. In the DECIPHER 
CNV database, frequencies were only considered in large enough datasets with at least 100 
subjects studied. In the in-house CNV database, maximum allowed frequency in the 90% 
overlap category was 1%, and 5% in the 50% reciprocal overlap category for previously 
detected CNVs of same state. CNV was labeled unique, if it was not detected in any other 
sample in the in-house database in any frequency, and not detected with 90% overlap in 
population databases. 
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For the filtered CNV detections in WES samples, OMIM, DECIPHER, and DisGeNET 
annotations for gene-disease connections were evaluated to prioritize genes according to 
putative disease-causing potential for neuromuscular disorders. Additionally, the WES CNV 
detections were annotated with gene-disease connections from the 2019 version of the Gene 
Table of Neuromuscular Disorders (http://www.musclegenetable.fr) to reveal possible CNVs 
in known disease genes. Genes expressed in skeletal muscle and genes with paralogs associated 
with suitable phenotypes were also prioritized. Incidental findings were not evaluated. If no 
interesting CNVs were found among the true predicted CNVs in cases with affected family 
members sequenced, then also the false predicted detections were evaluated for common CNVs. 
Sporadic IBM (sIBM) samples sequenced with WES were evaluated separately: the frequency 
of CNVs detected in sIBM patients was compared with findings in other WES samples. 
Differences in target set designs in different WES batches were taken into account.  
 
For initially evaluating clinical significance of the filtered and rare CNVs, the most recent 
ACMG recommendations for CNV significance evaluation were utilized (Riggs et al., 2019; 
Abou Tayoun et al., 2018). Information from The ClinGen Dosage Sensitivity map catalog 
(Riggs et al., 2012) for evidence supporting or refuting dosage sensitivity of genes was accepted 
only with sufficient evidence with a score of 3 as recommended. Intragenic deletions and 
duplications were evaluated within established haploinsufficient genes according to separate 
PVS1 rules (Abou Tayoun et al., 2018). ExAC pLI score and DECIPERH HI index (included 
in cnvScan) were used with the suggested thresholds of simultaneous pLI > 0.9 and gnomAD 
upper bound of confidence interval < 0.35, and DECIPHER HI index of < 10% to obtain a 
positive HI predictor score (Riggs et al., 2019). The results from this evaluation workflow were 
used as additional information but not the only decision supporting source, since the ClinGen 
Dosage Sensitivity map catalog is still under construction. Additionally, the workflow is 
unsuitable for genes with mainly recessive disease mechanisms and for disorders with wide 
phenotypic and genetic heterogeneity, and the recommendations have not been widely validated 
in practice. Therefore, the underlying pathogenicity of the detected CNVs was substantiated by 
type of mutation, mode of inheritance and matching phenotype. The sequencing data was 
evaluated for SNVs and indels as well to reveal cases of possible compound heterozygosity. 
 
For clinically significant CNVs detected from MPS data, HGVS nomenclature with gene name, 
transcript and exons involved are presented in the results, as recommended (Riggs et al., 2019), 
but for many the breakpoints could not be solved accurately within the scope of this study. The 
longest known transcript was selected for variant presentations as suggested (Richards et al., 
2015). Variants were reported according to (possible) pathogenicity whether they cause disease 
or not, such as in carriers (Richards et al., 2015). Location information for the CNVs (regions 
of segmental duplications, TF binding site etc.) were used only as additional information and 
not as ranking criteria, since they were not included in the newest recommendations with 
notable weight for decision-making. For CNVs in the gene DMD, The UMD/TREAT-NMD 
DMD database (http://umd.be/TREAT_DMD/ (Bladen et al., 2015)) was utilized to verify 
patient phenotype match (DMD versus BMD) with the expected read-frame effect of the CNV. 
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4.7 Effects of read depth and uniformity on CNV detection
Since the WES batches differed more on technical implementations than MYOcap and 
MNDcap batches, effects of read depth and read uniformity on CNV detection statistics were 
evaluated. The first WES batch (BGI HiSeq 1500) was excluded due to failed ExomeDepth 
analysis and thus non-comparable CNV prediction results. The inspected metrics included 
number of detected CNVs, false positive and true positive predicted CNVs, rare and unique 
CNVs on average per sample in each batch, and standard deviations and variances for these. 
The calculations were normalized with the number of targeted bases in each target set. Read 
depths for each base in each sample were calculated with CoverView (version 1.4.4) (Munz et 
al., 2018). Coverage uniformity metric (UE) was calculated with ExomeCQA (version not 
specified) (Wang, Q. et al., 2017) using CoverView calculations as input. The UE calculation 
is based on the number, height and width of coverage peaks in target regions. UE of 5 was 
considered as a threshold for low uniformity, and target coverage of less than 0.2 as described 
by ExomeCQA was considered low coverage. Correlation between the above mentioned CNV 
statistics and percentage of targets with low coverage, low uniformity, targets with either, 
targets with both, and the measure of percentage of bases covered by at least 20X in a batch 
was calculated using Pearson’s correlation coefficient. All statistical calculations were 
performed with R version 3.4.3 (The R Foundation).
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5 RESULTS 
5.1 Program performances 
The four programs detected CNVs with similar size and state (deletion or duplication) 
distribution from the samples sequenced with the targeted gene panels or WES (Figure 15 sizes 
and 16 states). 

Figure 15: Size distributions of the CNVs detected from MYOcap (15a), MNDcap (15b) and WES (15c) samples 
by the four programs by percentage of detections in each size category. CoNIFER detects larger CNVs (> 100 kb), 
and ExomeDepth mostly smaller (< 1kb), with XHMM and CODEX having a more balanced size distribution. (All 
the figures in the Results are created by Salla Välipakka with Microsoft Office Excel unless otherwise stated.) 

On average, CoNIFER detected from the targeted gene panel sequenced samples mostly larger 
CNVs of over 100 kb in size (30–65% of detections), while ExomeDepth detected mostly 
smaller CNVs of < 1 kb (50%). From WES samples, all the programs had a more balanced 
CNV detection size distribution, with a cumulative 55–75% of detections for all programs from 
variants sized 1–10 kb and 10–100 kb. With closer inspection of one MNDcap and a MYOcap 
batch, approximately 2% of CNV detections were over-segmented into multiple CNV detection 
units in both. Over-segmentation into smaller parts was displayed the most by ExomeDepth (in 
66% of the over-segmented detections), then CODEX (in 44%), and to some extent by XHMM 
(in 7%).

15 b 15 a 

15 c 
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Figure 16: State distributions of CNVs detected from MYOcap (16a), MNDcap (16b) and WES (16c) samples by 
the four programs. ExomeDepth detected more deletions, while CoNIFER, XHMM and CODEX detected more 
duplications, and ExomeDepth and XHMM had the most balanced distributions. Del = deletion, dup = duplication. 

The state distributions were more uniform across the different sequencing data sets. 
ExomeDepth detected more deletions (approximately 53% of all detections) and the other three 
programs detected more duplications: CoNIFER 58%, XHMM 53% and CODEX 54% of all 
detections. XHMM and ExomeDepth had the most balanced distribution of deletions and 
duplications detected. 

5.1.1 Other CNV detection programs 
The other tested programs, CNVkit and SavvyCNV, were used first with default settings and 
then with the recommended settings for targeted gene panel sequencing data. Either way, they 
failed to detect the few positive control sample CNVs which were tested and clearly detected 
by the other four programs. Therefore, these programs were not utilized further, and the initial 
four programs remained our choice due to their reliability, as discussed in the introduction. 
Most of the programs received updates from their developers during this study, and allowed for 
adjusting of parameters, thus providing advantageous flexibility. 

5.1.2 Detection of CNVs in positive control samples 
All the positive control sample CNVs were detected, and a total sensitivity of 100% was reached 
(Table 11). Most of the CNVs from the control samples were detected by more than one 
program (N1 = 3, N2 = 3 N3 = 14, N4 = 4). 17 out of 24 control sample CNVs (71%) were 
detected exactly as detected before on exon level (which was the accuracy of the known CNV 
for most of the samples), and an additional four were detected with one or two exon divergence. 

16 a 16 b

16 c
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In three cases, the divergence was larger. However, the initial information for two of these 
control sample CNVs, for two wide deletions involving SGCG and MTM1, was inaccurate 
and/or the CNV covered more than the gene included in MYOcap. 
 
For regions detected by more than one program, the single detection region was decided for 
these and other samples by utilizing the breakpoints with highest evidence. Regions detected 
by CoNIFER were not considered due to the program’s known tendency to exaggerate CNV 
sizes. In the simplest cases, all of the other three programs agreed on the region (usually with a 
slight 1 bp difference in breakpoints). This was the case for seven of the positive control sample 
CNV detections. Alternatively, the region similarly detected by two programs was used, either 
when only two programs had detected the region or if only two programs agreed on the region. 
The pair of CODEX and ExomeDepth agreeing on the region was the basis for the detected 
region for six of the 24 positive control samples. If all detected regions were completely 
different, then the detection by CODEX was prioritized (in three of the samples). This was 
based on previous observations that CODEX has less tendency to over-segmentate or 
overestimate the detected CNV compared to the other programs here. If some breakpoints 
appeared in more than one detection while no whole regions matched, then the breakpoints with 
the most evidence were utilized. In practice, in a case of detections from XHMM, ExomeDepth 
and CODEX with breakpoints of chrX:32841412–32841504, chrX:32827610–32841504 and 
chrX:32827609–32862977, the most confident region for the detection was estimated to be 
chrX:32827610–32841504. This approach was also used to combine CNV detections into one 
region if over-segmented. Some common approaches such as using average detected region or 
the minimal common region were thus not used. Coordinates were selected only if they were 
concretely among detections. 
 
Table 11: Detected positive control CNVs, and differences to the original detection.  

CNV 
type Gene Orig. 

detection 
N
P 

Detected 
region 

Detected 
exons Diff. Transcript 

Het 
del 
  
  
  
  
  
  
  
  
  
  
  
  

CAPN3 ex 2–8 4 chr15:42676666
–42686546 

ex 2–8   NM_000070 

CSRP3 ex 4–7 3 chr11:19203577
–19209851 

ex 4–7  NM_003476 

DMD ex 44 3 chrX:32173487–
32235180 

ex 44  NM_004006 

DMD ex 47–52  4 chrX:31747748–
31950344 

ex 46–52  + 1 
exon 

NM_004006 

LAMA2 ex 13–14 1 chr6:129571259
–129588364 

ex 13–16  + 2 
exons 

NM_000426 

LAMA2 ex 13–37 3 chr6:129571258
–129714400 

ex 13–37  NM_000426 

MTM1 ex 1–15/ 
WG 

3 chrX:149764949
–149828957 

ex 3–13 - 4 
exons 

NM_000252 

MYPN ex 4–7 3 chr10:69902698
–69909882 

ex 4–7  NM_001256267 
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NEB ex 14–81 4 chr2:152466322
–152554162 

ex 14–81  NM_001271208 

NEB ex 43–45 2 chr2:152520062
–152521377 

ex 43–45  NM_001271208 

SGCD ex 1 2 chr5:155756518
–155771687 

ex 1–2 + 1 
exon 

NM_000337 

SGCG ex 7 1 chr13:23894777
–23894899 

ex 7  NM_000231 

SGCG/
SACS 

wide 
deletion 

3 chr13:23853498
–24007867 

SACS WG 
& SGCG ex 
5–8 

- 4 
exons 

SACS: 
NM_014363 
SGCG: 
NM_000231  

Hom 
del 

SGCB ex 6 
(last) 

1 chr4:52886863–
52890326 

ex 6  NM_000232 

Hemiz 
del 
  
  

DMD ex 5–7 3 chrX:32827610–
32841504 

ex 5–7  NM_004006 

DMD ex 45–47 3 chrX:31947713–
31986631 

ex 45–47  NM_004006 

DMD ex 45–49 3 chrX:31854835–
31986631 

ex 45–49  NM_004006 

Het 
dup 
  
  
  
  
  

DMD ex 45–49 3 chrX:31854837–
31986631 

ex 45–49  NM_004006 

DMD ex 2–7  3 chrX:32827610–
33038340 

ex 2–7   NM_004006 

DMD ex 1 3 chrX:33038237–
33357726 

ex 1   NM_004006 

LAMA2 ex 5–12 3 chr6:129468100
–129513998 

ex 6–12 - 1 
exon 

NM_000426 

LAMA2 ex 21–55 4 chr6:129618830
–129802584 

ex 21–55   NM_000426 

NEB ex 72–81 2 chr2:152466323
–152477540 

ex 72–81  NM_001271208 

Hom 
dup 

NEB  ex 72–
81  

3 chr2:152448548
–152477540 

ex 72–95 + 14 
exons 

NM_001271208 

Orig. = Original, NP = Number of programs, Diff. = Difference in detected exons, Het = heterozygous, Hom = 
homozygous, Hemiz = hemizygous, del = deletion, dup = duplication, WG = whole gene 
 
None of the four main programs called known CNVs from mtDNA samples. CNVkit provided 
calls only if the excepted tumor/normal contamination parameter was set to correspond the 
known mtDNA CNV heteroplasmy. 
 

5.1.3 Negative control samples 
No CNVs were detected in the 31 negative control samples in regions previously checked to 
not contain CNVs. A specificity of 100% was thus achieved. 
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5.2 Verified novel CNVs 
36 CNVs detected by our CNV detection pipeline from targeted gene panel sequencing data 
were verified true positive (Table 12, the heterozygous TTN ex 34–41 deletion and the 
homozygous SGCD ex 1–4 deletion are illustrated against normal samples with CoNIFER and 
IGV in Manuscript I Figure 1). Additionally, five detected heterozygous whole gene deletions 
or duplications of the gene PMP22 were well-known structural rearrangements and matched 
the patient phenotypes: CMT1 with duplication, HNPP with deletion. These patients had no 
other explaining genetic findings from previous studies. Therefore, these CNVs were 
considered true positive detections without need for validation. This was also the case for a 
compound heterozygous SACS deletion in a patient with spastic paraplegia. The clinically 
significant CNV detections will be discussed in depth further. Eight CNV detections were 
verified to be false positive. Therefore, the training set included 34 true positive and eight false 
positive CNV detections. 
 
33 out of the 36 true positive CNVs (92%) were accurately detected from MPS data. Two CNVs 
were detected with one exon inaccuracy in detection compared to the validated region. One 
CNV (in the TTN TRI region) was verified with array CGH to be much larger. Most of the 
CNVs were detected from MYOcap sequenced samples. Only the PMP22 and SACS CNVs 
were detected from MNDcap sequenced samples. Two of the detected CNVs were segmented 
into multiple detections: a large MYOM1/MYL12A/MYL12B duplication into three parts and a 
large NEB deletion into four parts. Some of the validated CNVs (TIA1 and CMYA5 deletions) 
were originally detected after the logistic regression model had been developed, so they were 
not included in the development of the model. Therefore, these validations provided 34 true 
positive CNV detections and eight false positive CNV detections for in silico CNV target design 
and model validation. 
 
Table 12: CNVs verified to be true by array CGH, PCR (and Sanger sequencing) or MLPA, or by a 
diagnostic match. Most were included as true positive (TP) or false positive (FP) detections in the model 
target design and validation, but two detections were verified to be true after the model had been already 
developed (Other). 

 Gene CNV 
type 

N
P 

Detected 
region Exons Tr. Method Verified 

region 
Diff

. 
T
P  
  
  
  
  
  
  
  
  
  

CACNA
1A 

del 
het 

3 chr19:1332504
7–13325422 

ex 39–
40 

NM_001
127221 

PCR  ex 39–40   

CACNA
1A 

del 
het 

2 chr19:1332504
7–13325422 

ex 39–
40 

NM_001
127221 

PCR ex 39–40   

CAPN3 del 
hom 

2 chr15:4267666
6–42686546 

ex 2–8  NM_000
070 

PCR ex 2–8    

COL6A1 del 
het 

2 chr21:4740418
4–47404383 

ex 3 NM_001
848 

PCR & 
Sanger 

chr21:47403136
–47406296 

  

COL6A3 dup 
het 

3 chr2:23832259
6–238323018 

ex 1 NM_004
369 

4x180k 
aCGH 

Chr2:g.(23831810
5_238322413)_(2
38346871_23844
0079)gain 
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COL6A3 del 
het 

4 chr2:23825070
8–238255208 

ex 32–
37 

NM_004
369 

PCR & 
Sanger 

chr2:238250123
–238255853

DMD del 
hemiz 

4 chrX:3164578
9–31986631 

ex 45–
55 

NM_004
006 

PCR ex 45–55 

DMD del 
het 

3 chrX:3245635
8–32459431 

ex 28–
29 

NM_004
006 

MLPA ex 28–29 

DMD del 
hemiz 

4 chrX:3164579
1–32053724 

ex 45–
55 

NM_004
006 

MLPA ex 45–55 

DMD del 
hemiz 

3 chrX:3189330
5–32053724 

ex 45–
48 

NM_004
006 

PCR ex 45–48 

DMD del 
het 

3 chrX:3230564
6–32408298 

ex 31–
43 

NM_004
006 

MLPA ex 31–43 

DMD del 
hemiz 

3 chrX:3230564
6–32328393 

ex 42–
43 

NM_004
006 

PCR ex 42–43 

DMD del 
hemiz 

4 chrX:3164579
0–31986631 

ex 45–
55 

NM_004
006 

PCR ex 45–55 

DMD del 
hemiz 

2 chrX:3194771
3–32053724 

ex 45–
47 

NM_004
006 

MLPA ex 45–47 

DMD del 
het 

4 chrX:3114475
8–31285069 

ex 63–
78 

NM_004
006 

4x180k 
aCGH 

ChrX:g.(30843289
_31086990)_(313
13100_31327408)
loss 

+ 1
ex

DMD del 
hemiz 

2 chrX:3194771
3–32053724 

ex 45–
47 

NM_004
006 

MLPA ex 45–47 

LDHB del 
het 

4 chr12:2180728
8–21810905 

ex 1–2 NM_002
300 

4x180k 
aCGH 

Chr12:g.(2180362
4_21806090)_(21
811051_ 
21812528)loss 

LMOD3 dup 
het 

4 chr3:69156024
–69172183

ex 1–3 
(WG) 

NM_198
271 

8x60k 
aCGH 

Chr3:g.(68897827
_69131170)_(696
97959–
70536679)gain 

MYH7 dup 
het 

4 chr14:2388194
6–23889049 

ex 28–
40 

NM_000
257 

4x180k 
aCGH 

Chr14:g.(2385998
6_23859988)_(23
889063_2388944
3)gain 

MYL5 dup 
het 

4 chr4:671712–
673807 

ex 1–4 NM_002
477 

4x180k 
aCGH 

Chr4:g.(652966_6
54105)_(673829_
674004)gain 

MYOM1 del 
het 

3 chr18:3075414
–3075791

ex 35–
36 

NM_003
803 

PCR & 
Sanger 

chr18:3074986–
3076258 

MYOM1 del 
het 

4 chr18:3075414
–3075791

ex 35–
36 

NM_003
803 

PCR & 
Sanger 

chr18:3074986–
3076258 

MYOM1
/MYL12
A/MYL1
2B 

dup 
het 

4
* 

chr18:3164276
–3278282

ex 1–
10/WG
/WG 

NM_003
803/NM
_00647
1/NM_0
011449
45 

4x180k 
aCGH 

Chr18:g.(3155151
_3155985)_(3653
512_3815684)gai
n 

NEB del 
het 

4
* 

chr2:15243220
8–152567053 

ex 11–
107 

NM_001
271208 

4x180k 
aCGH 

Chr2:g.(15242732
6_152427830)_(1
52567183_15256
7194)loss 
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PYGM dup 
het 

4 chr11:6451386
1–64528187 

WG NM_005
609 

4x180k 
aCGH 

Chr11:g.(6415590
8_64440343)_(64
553037_6475892
8)gain 

SGCD del 
hom 

3 chr5:15575375
6–156016334 

ex 1–4 NM_000
337 

PCR ex 1–4 

TTN dup 
het 

4 chr2:17952240
5–179523526 

ex 
183–
189 

NM_001
267550 

4x180k 
aCGH 

Chr2:g.(17951679
9_179516833)_(1
79528289_ 
179528492)gain 

- 27
ex

TTN del 
het 

4 chr2:17963110
7–179635402 

ex 35–
41 

NM_001
267550 

4x180k 
aCGH 

Chr2:g.(17963040
3_179630386)_(1
79636145–
179636177)loss 

- 1
ex

PMP22 dup 
het 

3 chr17:1513391
8–15168655 

WG NM_000
304 

Diag. 
match 

PMP22 dup 
het 

3 chr17:1513391
8–15168655 

WG NM_000
304 

Diag. 
match 

PMP22 dup 
het 

3 chr17:1513391
8–15168655 

WG NM_000
304 

Diag. 
match 

PMP22 del 
het 

3 chr17:1513391
8–15168655 

WG NM_000
304 

Diag. 
match 

PMP22 del 
het 

4 chr17:1513391
8–15168655 

WG NM_000
304 

Diag. 
match 

SACS del 
het 

3 chr13:2390293
3–24007869 

WG NM_014
363 

Diag. 
match 

F
P  

ANO5 del 
het 

2 chr11:2229763
9–22301311 

ex 21–
22 

NM_213
599 

MLPA false positive 

ANO5 del 
het 

2 chr11:2223280
9–22249132 

ex 3–7 NM_213
599 

MLPA false positive 

ANO5 del 
het 

2 chr11:2222535
0–22257822 

ex 3–8 NM_213
599 

4x180k 
aCGH 

false positive 

DMD del 
hemiz 

2 chrX:3245929
7–32472949 

ex 26–
28 

NM_004
006 

PCR false positive 

DMD dup 
het 

1 chrX:3164579
1–31986631 

ex 45–
55 

NM_004
006 

MLPA false positive 

DMD dup 
het 

2 chrX:3194771
3–31986631 

ex 45–
47 

NM_004
006 

MLPA false positive 

DMD del 
hemiz 

2 chrX:3245929
6–32466755 

ex 27–
28 

NM_004
006 

PCR false positive 

DMD del 
hemiz 

2 chrX:3239862
6–32404582 

ex 32–
33 

NM_004
006 

MLPA false positive 

O
t
h
e
r 

TIA1 del 
het 

4 chr2:70451556
–70456450

ex 4–7 NM_022
173 

4x180k 
aCGH 

chr2:g.(70450056
–70456538)loss 

CMYA5 del 
het 

4 chr5:79086794
–79089433

ex 11–
12 

NM_153
610 

4x180k 
aCGH 

chr5:g.(79086749
–79089354)loss 

NP = Number of programs, Tr. = Transcript, Diff. = difference, TP = true positive, FP = false positive, del = 
deletion, dup = duplication, het = heterozygous, hom = homozygous, hemiz = hemizygous, WG = whole gene, 
aCGH = array CGH, Diag. match = diagnostic match, * = detected as over-segmented into multiple parts 
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5.2.1 Accuracy of detection compared to array CGH 
The region detected for the CNVs by our pipeline from MPS data was on average 109.1–298.8 
kb smaller (95% CI ± 154.5 kb and ± 414.2 kb) than the region detected by array CGH by 
minimum and maximum array CGH coordinates. When limiting the inspection to array CGH 
detections with only the inspected gene (since the array CGH designs included probes for some 
surrounding genes not included in the targeted gene panels), the detected regions were on 
average 21.2–81.3 kb smaller (95% CI ± 35.7 kb and ± 148.9 kb). The most similar region was 
detected to have a 1.5 kb difference (TTN ex 35–41 deletion with -1 exon difference) and the 
largest had a 222.5–480.5 kb difference (DMD ex 63–78 deletion with +1 exon difference). 
 

5.3 Sensitivity test with in silico CNVs 
CNV detection sensitivity was calculated separately for small (one-exon and two-to-four-exon) 
in silico deletions, duplications, and the set of different sized CNVs with different overlap 
criteria (the complete table: Manuscript II Table 2). The combination of CNV in silico 
detections from all the programs provided the highest sensitivity in all in silico CNV categories. 
The sensitivity results surpassed other program combinations and detections from any one 
program alone (Table 13). Of the programs alone, ExomeDepth had the highest sensitivity for 
the small in silico CNVs (one-exon and two-to-four exon CNVs), but CODEX surpassed it for 
the larger CNVs based on real CNV detections. In overall sensitivity for all in silico CNV sizes, 
ExomeDepth was the most sensitive, then CODEX, and then XHMM and CoNIFER. Almost 
all programs detected deletions with higher sensitivity than duplications in each category, but 
CODEX was an exception with better sensitivity for one-exon duplications than deletions. 
 
Table 13: In silico CNV detection sensitivities for the programs with 1 bp overlap requirement. 
Programs One-exon Two-to-four-exon Large 
CoNIFER 1.1–4.8% 77.5–87.5% 51.2% 
XHMM 10.5–61.5% 13.2–60.9% 47.2% 
ExomeDepth 70.0–92.3% 83.9–96.9% 54.6% 
CODEX 30.0–38.7% 83.1–84.7% 56.5% 
All 78.3–97.8% 98.5–99.7% 97.2% 

For most of the intervals the higher number displayed is for deletions, except for CODEX in one-exon detections 
with higher sensitivity for duplications (bold text highlight). For large CNVs the sensitivity is combined into one 
average. 
 
All different program combinations surpassed the detection sensitivity by single programs in 
the category of large CNVs: the CNV detection sensitivity was increased to at least 71.8%. 
However, if detections by ExomeDepth were not included in the combination, the program 
alone surpassed the combinations in some of the in silico CNV categories. Therefore, the 
program combinations which surpassed the individual programs in sensitivity in all categories 
were all the pairs with ExomeDepth included, and all the trios with ExomeDepth. The highest 
sensitivity in all of the in silico CNV categories was reached with combination of CNV 
detection results from all the four programs. They provided together 78.3% and 97.8% 
sensitivity for one-exon duplications and deletions, respectively, 98.5% and 99.7% sensitivity 
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for two-to-four-exon duplications and deletions, and 97.2% sensitivity for large CNVs with the 
1 bp overlap requirement. The sensitivities remained similar until 98% reciprocal overlap 
requirement: some of the values decreased slightly with 77.6% sensitivity reached for single-
exon duplications and 97.1% sensitivity for large CNVs. This in silico CNV dataset provided 
9514 small deletions, 9032 small duplications and 131 large CNV detections (18,677 
combined) for training the model, and altogether 3892 different types of unspecific CNV 
detections. 
 

5.3.1 Mosaicism sensitivity test with in silico CNVs 
A smaller batch of in silico CNVs was used to test the sensitivity of detecting CNVs in mosaic 
ratios with the programs individually and with detections combined from all four programs 
(complete table: Manuscript II Supplementary table 4). In the combined results from all four 
programs with 1 bp overlap requirement (Table 14), mosaicism of 40% decreased the detection 
sensitivity mostly for one-exon CNVs compared to heterozygous CNVs. The detection 
sensitivity at 40% mosaicism was from 85% to close to 100% for deletions and 59–97% for 
duplications. Detection sensitivity for two-to-four-exon duplications decreased more notably to 
83.7% with 30% mosaicism, and for two-to-four-exon deletions the greater drop in sensitivity 
to 77.2% was perceived with 20% mosaicism. A relatively high sensitivity of 97.5% was 
retained for two-to-four exon deletions at 30% mosaicism. 
The detection sensitivities of the individual programs were affected by mosaicism to different 
degree with different CNV types. With one-exon CNVs, the most affected by mosaicism were 
CoNIFER and CODEX since their CNV detection sensitivity was almost zero with 30% 
mosaicism. CoNIFER and XHMM were the only programs with some CNV detections with 
10% mosaicism in the two-to-four exon CNV category. Especially XHMM provided a 
relatively high sensitivity of 31.3% for two-to-four exon duplications and sensitivity of 8.7% 
for deletions. Detection sensitivity of ExomeDepth dropped to zero in all categories at 20% 
mosaicism.  
 
Table 14: Effect of mosaicism on detection sensitivity of in silico CNVs at 1 bp overlap requirement 
with detections combined from four programs. 

CNV type 50% (het) 
Degree of mosaicism 

40% 30% 20% 10% 
one-exon del 99.3% 85.3% 58.0% 17.3% 1.3% 
2–4 exon del 100.0% 99.8% 97.5% 77.2% 17.9% 
one-exon dup 78.7% 58.7% 23.3% 17.3% 2.0% 
2–4 exon dup 98.9% 97.1% 83.7% 55.9% 31.5% 

del = deletion, dup = duplication, het = heterozygous 
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5.4 Logistic regression model training and validation 
Eight of the tested models with different program combinations with features 1–4 (the program 
specific CNV detection scores) reached at least AUC of 0.90 (Manuscript II Figure 2). Six of 
these were different combinations with ExomeDepth. Two additional well-performing models 
were the combination of CODEX and XHMM, and a combination of all the programs except 
ExomeDepth. The lowest acquired AUC of 0.68 was for XHMM alone. The best combinations 
with AUC of 0.96 were the combination of all four programs, and the combination with all the 
programs expect CoNIFER.  
 
Inclusion of other features as variables in the models was restricted by multicollinearity only 
for CNV detection specific score and in-house median CNV detection score for the same 
program. Therefore, features 2 and 5, 3 and 6, and 4 and 7 were mutually exclusive pairs. The 
utilization of median CNV detection scores did not improve the best models beyond AUC of 
0.96 compared to CNV detection specific scores. With inclusion of other features, only target 
count by prioritization increased AUC marginally to 0.97. All possible combinations of the 
additional features were not tested, since adding them together increased the AUC also to 0.97, 
and excluding target by prioritization decreased it to 0.96, so this was estimated to be the only 
variable with some additional value. Standard deviation for the different iterations in each 
model test varied between 0.001 and 0.006.  
 

5.4.1 Validation of the models with targeted gene panel sequenced real 
samples 
The highest overall accuracy both for real CNV detections and CNV detection units from 
samples sequenced with MYOcap or MNDcap was achieved with the predictive model with 
only the CNV detection specific scores as variables (four variables out of the 12 possible) 
(comprehensive table: Manuscript II Table 3). This model provided a sensitivity of 96.6%, 
specificity of 87.5% and accuracy of 95.5% (95% CI 87.3–99.1%) for CNV detections, and 
accuracy of 95.9% (95% CI 88.6–99.2%) for CNV detection units. Some of the other predictive 
models achieved either the same sensitivity or specificity as the best model, but not the same 
overall accuracy. The model with median CNV detection scores as variables provided a slightly 
higher sensitivity of 98.3% for CNV detections, but the specificity was notably lower (62.5%), 
decreasing the overall accuracy. Generally, inclusion of other features in addition to the CNV 
detection specific scores decreased the overall accuracy. 
 
The best accuracy for the best model was achieved with a threshold of 0.95 for the CNV 
detections to be predicted true. This threshold was applied for all the MYOcap and MNDcap 
sequenced samples, and for the WES samples initially. The true CNVs persistently predicted to 
be false positive were a homozygous deletion of the last exon of SGCB and a two-exon 
heterozygous deletion in LAMA2. 
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5.4.2 Validation of the model for WES samples 
Validation results were evaluated separately for Coriell-samples with microdeletions and 
microduplications (39 CNVs in the WES batches and 34 in the mendelome batches), and other 
samples (56 CNVs in the WES batches and 106 in the mendelome batches) with generally 
smaller CNVs (listed in Methods in Table 8). 

5.4.2.1 Coriell-samples 

On average, microdeletions and duplications in Coriell-samples were highly over-segmented 
and detected in five CNV detection units in both WES and mendelome batches. In the WES 
sample set, this corresponded to one CNV detection unit per every 2.8 Mb, and for the 
mendelome sample set one detection unit for each 5.3 Mb encompassed by the CNV. The true 
detected regions were inferred and combined from these units as described before (the most 
confident breakpoints were selected). In the WES sample set, the average size difference 
(compared to original information) for detected regions was smaller with an average of 0.52 
Mb (95% CI ± 0.4 Mb), and for the mendelome sample set larger with an average of 1.6 Mb 
(95% CI ± 3.2 Mb).  
 
From the mendelome sample set, three CNVs from the Coriell samples were not detected 
(91.2% sensitivity), and from the detected all (100%) were correctly predicted to be true. All 
the Coriell sample CNVs which were not detected had a remark of “ambiguous" in the Coriell 
dataset, so it is uncertain whether these CNVs really exist. In the WES sample set, all the 
Coriell-sample CNVs were detected (100% sensitivity) and all but one were predicted true 
(97.4% sensitivity for predictions). 

5.4.2.2 Other CNV control samples 

In the mendelome sample set with Coriell-samples excluded (106 CNVs left), all CNVs were 
detected (100% sensitivity). Initially, 25 of the detections were predicted to be false (76.4% 
sensitivity for predictions). A clear cutoff was seen in the prediction values, and a new threshold 
was set to 0.70 for these and other WES samples further. The amount of CNVs predicted to be 
true increased from 14 on average per sample to 26 on average per sample with this increase of 
threshold. Twelve CNV detections were still erroneously predicted to be false, providing a 
sensitivity of 88.7% (94 samples) for true positive predictions. From these, all except two CNVs 
(97.9%) were detected accurately on exon level; they had a one-exon divergence compared to 
original information (Table 15).  
 
When excluding one-exon deletions and duplications, from the 80 CNVs left all but six would 
have been predicted true (92.5% sensitivity for predictions). For the CNVs with at least three 
exons (N = 56), 100% sensitivity was achieved both for the detection sensitivity and 
predictions.  
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Table 15: CNV detection and prediction results for the mendelome samples with Coriell-samples 
excluded.  

Mendelome CNV 
type 1 exon 2–4 exons 5–10 exons > 10 exons /

whole gene
Multiple 
genes 

Deletion Hom 5 ->(p) 3 5 
Het 20 ->(p) 10 31 11 ->(a) 10 8 7 

Duplication Hom 1 
Het 1 1 4  6 ->(a) 5 6 

Hom = homozygous, Het = heterozygous. ->(p) = decrease in the amount of correctly detected and predicted CNVs 
due to erroneous false positive prediction, ->(a) = decrease due to inaccuracy in detected region on exon level. 
CNVs in the categories with no arrows were detected and predicted to be true accurately. 

In the WES sample set, six of the control sample CNVs (total 56 without Coriell-samples) were 
not detected at all (89.3% sensitivity for detections). 33 of the detected CNVs were predicted 
to be true (66 % sensitivity) after the increase of the threshold. This also increased the amount 
of CNVs predicted to be true from 107 on average per sample to 182 on average. With exclusion 
of one-exon deletions and duplications from the set (originally 48.2% of the CNVs, now 29 
left), 26 of the CNVs were detected (89.7% sensitivity) and all but two of these were predicted 
to be true (92.3% sensitivity for predictions). From CNVs with at least three exons (19 samples), 
all but one was detected (94.7% sensitivity), and 100% of the CNV detections were predicted 
correctly to be true. 

From the whole WES sample set, CNVs were detected accurately on exon level in 29 of the 
true predicted samples (87.9%), and with maximum of one exon divergence in 32 of the samples 
(97%) (Table 16).  

Table 16: CNV detection and prediction results for WES samples with Coriell-samples excluded. 

WES 1 exon 2–4 exons 5–10 exons > 10 exons /
whole gene

multiple 
genes 

Deletion Hom 5 ->(p) 2 -
>(a) 1 

3 ->(a) 2 1 1 

Het 21 ->(d) 18 
->(p) 6 

19 ->(d) 17 
 ->(p) 15 

2 ->(d) 1 
->(a) 0 

Duplication Hom 1 
Het 1 1 1 

Hom = homozygous, Het = heterozygous. Decrease in sample number after the arrow ->(d) corresponds to CNVs 
not detected at all, after arrow ->(p) if not predicted true, and after arrow ->(a) if CNVs were not detected in the 
samples correctly at exon level accuracy. CNVs in categories with no arrows were detected and predicted to be 
true accurately. 

The Blueprint Genetics sample sets contained altogether 235 CNVs to evaluate. The total 
detection sensitivity was 96.2% with 226 detected CNVs (if exon level accuracy is not given 
penalty). Of these, 196 were predicted correctly to be true, providing a sensitivity of 86.7%. 
For CNVs with at least three exons (N = 148), the detection sensitivity was 97.3% (144 CNVs), 
and all but one of the predictions were correct, which provided a prediction sensitivity of 99.3%. 
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5.5 CNVs with implementation of the predictive model and 
frequency filtration 
CNV detection here and later refers to intersected CNV detection results. They have been 
obtained by intersecting CNV detections from the four programs in all combinations with a 
minimum of 1 bp overlap, as described in the methods. Multiple detections could be included 
for some single CNVs due to over-segmentation. On average, ten CNVs were detected per 
MYOcap sequenced sample, eight of which were false predicted and two true predicted. 
Filtering for rare variants with cnvScan according to frequency in the CNV databases was 
applied after this first filtration. For MYOcap sequenced samples rare, true predicted CNVs 
were discovered on average 0.29 per sample. The filtering steps (model prediction and 
frequency) preserved 2.8% of the initial MYOcap CNV detections. On average, five CNVs 
were detected per sample from MNDcap sequenced samples: one was predicted to be true and 
four false. With filtering for rare variants, 0.26 rare true predicted CNVs were discovered on 
average per MNDcap sequenced sample. 4.8% of the initial MNDcap CNV detections were 
preserved after the filtering steps.  
 
The effect of lowering the prediction threshold for WES samples was evaluated as a separate 
study. After filtering for rare variants by frequency in the in-house database (built from the 
mendelome sample set CNV detections) and in CNV population databases, on average four 
potentially clinically significant and true predicted CNVs were left with the old threshold and 
seven with the new per mendelome sample. For WES samples, the CNV amount after frequency 
filtration for rare and true predicted CNVs was 11 with the old threshold and 27 with the new 
on average per sample. The latter values were estimated to be similar for the WES samples in 
other batches (not received from Blueprint Genetics for pipeline validation study) but were not 
evaluated separately. For these other WES samples, 312 CNVs were detected in a sample on 
average, 119 of which were predicted to be true positive detections. In the prediction statistics, 
the CNV detection results from the first WES batch were excluded due to failed ExomeDepth 
analysis and non-comparable CNV prediction results. After filtration for rare detections, 41 
CNVs were left on average per sample, corresponding to 13.4% of the initial CNV detections. 
 
Average prediction scores by the three programs are presented in Table 17 for true predictions 
and false predictions for CNVs in MYOcap, MNDcap and WES sequencing data sets. For 
XHMM, the total average score for true positive predicted CNV detections was approximately 
78.9 and for false positive predicted CNV detections 53.4. The corresponding numbers were 
87.4 and 13.3 for ExomeDepth, and 229.9 and 63.6 for CODEX. 
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Table 17: Average scores by XHMM, ExomeDepth and CODEX for true and false predicted CNV 
detections.  

Program 
True predicted CNVs False predicted CNVs 

MYOcap MNDcap Exome MYOcap MNDcap Exome 
XHMM 74.3 78.9 83.6 56.1 58.5 45.4 
ExomeDepth 98.6 121.4 42.3 17.4 13.0 9.4 
CODEX 196.9 378.0 114.9 22.2 16.0 25.4 

 
Most of the polymorphic CNVs (not retained in the rare CNV detections after frequency 
filtrations) detected and predicted to be true in the MYOcap sequenced samples were on TTN, 
NEB and TNXB, each explaining 12–40% of the common detections and 65% together. Most 
of the polymorphic CNV detections in the MNDcap sequenced samples were in the genes 
SMN1/SMN2, LOC283683/NIPA1, MAPT and MTMR2, explaining individually 10–28% of the 
polymorphic detections and 79% together. For WES samples, the following genes or gene 
groups (gene body followed by star) explained each 1–5.8% of the true predicted 
polymorphisms, and 32.8% together: 
MUC*, IGHV*, NBPF*, GOLGA6*, CCZ1, LRRC37A, AMY1A+AMY1B, POTEB, TBC1D3, 
OR2A1, SPATA31A, AHNAK2, POTEG, PRAMEF, NPIPL1, TRIM49, CLEC18, NUTM2, 
FAM90A7, SIRPB1, NXF2. 
 
The program CNV detections overlapped separately for true and false predicted in different 
sample sequencing sets are described in a set of Venn-diagrams (Figures 17, 18 and 19) Most 
of the false positive predicted CNVs were detections by single programs, with ExomeDepth 
providing approximately 8x more false predicted detections for the targeted gene panel 
sequenced samples and 18x more for WES samples than any other program. CNV detections 
by ExomeDepth explained 55.5%, 73.7% and 81.9% of the false positive predicted CNVs in 
the sample sequencing sets. For MYOcap and MNDcap sample sets (with higher predictive 
model threshold), no detections only by CoNIFER, XHMM or by both programs were predicted 
to be true, and the same was true in WES samples for detections only by CoNIFER. For targeted 
gene panels, detections by single programs were predicted to be true more often than for WES 
samples, explaining 29.6% and 41.9% of the true predicted results in MNDcap and MYOcap, 
and 23.3% of the true predicted results in WES. ExomeDepth provided the most true predicted 
CNVs among the single programs, and these were mostly explained by small polymorphic CNV 
detections, which were discussed above. CNVs detected by multiple different program 
combinations were predicted to be true in each of the sequencing sets. Detections by the 
combination of ExomeDepth and CODEX or the three programs without CoNIFER explained 
54.6% of the true predicted CNVs in WES batches and 38.0% in MNDcap batches. In MYOcap 
batches, 38.4% of the true predicted CNVs were detected with the pairing of ExomeDepth and 
either CODEX or XHMM. Overall, few CNV detections by more than two programs were 
predicted false in each of the sequencing sets. 
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Figure 17: Number of false predicted (left) and true predicted (right) MYOcap CNV detections overlapped 
between the four programs. (All the Venn-diagrams in Figures 17-19 are made by Salla Välipakka and generated 
with InteractiVenn (Heberle et al., 2015).) 

 
Figure 18: Number of false predicted (left) and true predicted (right) MNDcap CNV detections overlapped 
between the four programs. 

 
Figure 19: Number of false predicted (left) and true predicted (right) WES CNV detections overlapped between 
the four programs. 
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In MYOcap and MNDcap sequenced samples, the median CNV detections predicted to be true 
were slightly larger than the false predicted. CNV size was measured in base pairs with 
prioritization method, which was described for the logistic regression model variables. The 
same size difference was perceived for rare versus polymorphic CNVs in MNDcap batches, 
both for true predicted and false predicted detections. In MYOcap batches the rare false 
predicted CNV detections were similarly larger than polymorphic, but true predicted rare 
detections were slightly smaller than the polymorphic CNV detections (Figure 20). In the WES 
batches, the median size difference was more notable between true and false predicted CNVs 
but with same direction as for the targeted gene panels. The size differences for rare and 
polymorphic CNVs were smaller than for the targeted gene panels but displayed similar trends 
to MYOcap CNV detections (figure not displayed, but similar to MYOcap). 

Figure 20: Variability in sizes for CNVs in MYOcap (left) and MNDcap (right) in base pairs in a logarithmic scale 
for CNVs predicted to be true, false, rare and polymorphic (poly).  
  

5.6 Evaluation of CNVs for clinical significance and solved cases 
39 patients sequenced in MYOcap, MNDcap and/or WES were solved with a clinically 
significant CNV finding (Table 18). This included 33 single cases and six patients in three 
families. In eight cases including one family with three patients (F1a-c, S4, S15, S16, S30, F3a), 
the CNV was found in compound heterozygosity with another variant in the same gene, 
manifesting as a recessive disease. In one of these cases (F3), segregation in an affected family 
member (F3b, not MYOcap sequenced and not included in solved cases) was verified with PCR 
and Sanger sequencing (description in Manuscript I, pedigree Figure 2). In one case (S14), the 
patient was revealed to have a combination of two genetic diseases, which presented as a 
peculiar phenotype (described more in detail in Manuscript I). In 18 cases, a likely pathogenic 
CNV was detected, one with a possible compound heterozygosity mechanism (SL5). This 
brings possibly solved patient cases to 57. In five cases a heterozygous CNV was detected, 
which would likely be causative if in homozygous state or in compound heterozygosity with 
another variant. In three of the familial cases (F1-F3), the CNV was detected to segregate with 
the phenotype in the family. For one of the families with a likely pathogenic finding (FL1), an 
additional patient case with a similar phenotype but unrelated to the other patients was found 
to have the same variant (PGAP1 deletion, FL1a and FL1b and SL7). In the rest of the cases 
(single cases), the CNV had been previously reported to be causative for the disease (DMD and 
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PMP22) or matched the patient phenotype with no other explaining genetic findings in the 
patient. 

Table 18: CNVs with clinical significance and solved patient cases. 
Families/ 

single 
cases 

Gene CNV 
type 

CNV 
zyg Exons Tr. Seq. Other 

variants 
Phenotype 

P F1: F1a, 
F1b, 
F1c* 

CACNA
1A 

del het ex 39–
40 

NM_001
127221 

MYO CACNA1A 
c.3604_3606
del^

episodic 
ataxia 

S1 CAPN3 del hom ex 2–8 NM_000
070 

MYO LGMD 

S2 COL6A1 del het ex 3 NM_001
848 

MYO Laminopathy 

S3* COL6A1 del het ex 9–
13 

NM_001
848 

MYO Episodic 
ataxia 

S4 COL6A3 del het ex 32–
37 

NM_004
369 

MYO COL6A3 
p.E1386K^

UMD 

S5 DMD del het ex 31–
43 

NM_004
006 

MYO Manifesting 
DMD carrier 

S6 DMD del hemiz ex 42–
43 

NM_004
006 

MYO DMD 

S7, S8 DMD del hemiz ex 45–
47 

NM_004
006 

MYO BMD 

S9* DMD dup het ex 45–
47 

NM_004
006 

MYO BMD 

S10 DMD del hemiz ex 45–
48 

NM_004
006 

MYO BMD 

S11* DMD del hemiz ex 45–
49 

NM_004
006 

MYO BMD 

S12, 
S13 

DMD del hemiz ex 45–
55 

NM_004
006 

MYO BMD 

S14 DMD del hemiz ex 45–
55 

NM_004
006 

MYO TTN finmaj 
het 

TMD + BMD 

S15* GNE del het ex 2 NM_005
476 

MYO GNE indel̂  Distal 
myopathy 

S16* LPIN1 del het ex 18–
19 

NM_145
693 

MYO LPIN1 
c.2159T>C:p
.L720P^ 

Metabolic 
myopathy 

S17 NEB del het ex 11–
107 

NM_001
271208 

MYO
/WE
S 

NEM 

S18-
S24* 

PMP22 dup het ex 1–
5/W 

NM_000
304 

MND CMT1 

S25-
S29* 

PMP22 del het ex 1–
5/W 

NM_000
304 

MND HNPP 

S30 SACS del het ex 1–
10/W 

NM_014
363 

MND SACS 
c.6827T>C
p.L2276P^ 

HSP 

F2: F2a, 
F2b 

SGCD del hom ex 1–4 NM_000
337 

MYO 
/WE
S 

LGMD 
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S31* SGCG del het ex 4–7 NM_000
231 

MYO  Pathogenic, 
final dg 
unknown  

S32* SPAST del het ex 1 NM_014
946 

MND  SPG 

S33* SPAST  del het ex 1–
17/W 

NM_014
946 

MND  SPG 

F3: F3a, 
(F3b) 

TTN del het ex 34–
41 

NM_001
267550 

MYO TTN indel^ TMD  

L
P 
  
  
  
  
  
  
  
  
  
  
  
  
  
  

SL1* AARS del het ex 5–9 NM_014
946 

MND   Neurogenic 
atrophy 

SL2* AR dup het ex 1 NM_000
044 

MND  SBMA-like 

SL3*, 
SL4* 

DHTKD
1 

del het ex 2 NM_018
706 

MND  MND 

SL5* IGHMB
P2 

del het ex 3–4 NM_002
180 

MND IGHMBP2 
p.C496X^ 

5q-neg SMA 

SL6* OPTN dup het ex 3–4 NM_001
008211 

MND  ALS 

FL1: 
F1a*, 
F1b*, 
SL7* 

PGAP1 del het ex 16–
17 

NM_024
989 

MND  dSMA 

SL8-11* SMN1 del / 
conv. 

hom ex 8 NM_000
344 

MND  dSMA, lower 
motor neuron 
disease 

SL12* SPAST dup het ex 1–2 NM_014
946 

MND  SPG 

SL13* SPAST del het ex 17 
(last) 

NM_014
946 

MND  SPG 

SL14*, 
SL15* 

SPG7 dup het ex 4 NM_003
119 

MND  SPG 

SL16 TIA1 del het ex 4–7 NM_022
173 

MYO  WDM 

SL17* FBXO32 del het ex 1–7 NM_058
229 

MYO  recessive LP 

SL18* LDHB del het ex 1–2 NM_002
300 

MYO  recessive LP 

SL19* POMT1 dup het ex 13–
17 

NM_001
136113 

MYO  recessive LP 

SL20* CLCN1 del het ex 17–
22 

NM_000
083 

MYO  recessive LP 

SL21* GLE1 del het ex 4–9 NM_001
003722 

MYO   recessive LP 

P=pathogenic, LP=likely pathogenic, Tr. = transcript, Seq. = sequencing method, zyg = zygosity, del = deletion, 
dup = duplication, MYO = MYOcap, MND = MNDcap, conv. = conversion, het = heterozygous, hom = 
homozygous, hemiz = hemizygous, dg = diagnosis, LGMD = limb-girdle muscular dystrophy, UMD = Ullrich 
muscular dystrophy, DMD = Duchenne muscular dystrophy, BMD = Becker muscular dystrophy, TMD = tibial 
muscular dystrophy, NEM = nemaline myopathy, CMT1 = Charcot-Marie-Tooth disease type 1, HNPP = 
hereditary neuropathy with liability to pressure palsies, HSP = hereditary spastic ataxia, SPG = spastic paraplegia, 
dSMA = distal spinal muscular atrophy, MND = motor neuron disease, ALS = amyotrophic lateral sclerosis, WDM 
= Welander distal myopathy, * = CNV not verified with additional method. Case in parenthesis not MPS analysed 
and not involved in diagnostic yield calculations, ^ variants heterozygous and in trans with the identified CNV. 
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The diagnostic yield from the targeted gene panel sequenced samples was estimated according 
to 1037 samples sequenced in MYOcap: 11 of the samples were positive or negative controls, 
8 were unaffected relatives, 294 were solved with findings of another variant types (SNVs and 
indels, 28.6% of cases) and 20 (1.9% of cases) were solved with CNV findings, including the 
highly likely pathogenic and verified TIA1 finding. This provided an additional diagnostic yield 
of 2.7% with CNV analysis (20 of previously unsolved 730 cases). The rest of the samples from 
the MYOcap batches and the MNDcap batches were not included in these calculations due to 
ongoing diagnostic efforts. Among all the unsolved cases in MYOcap (910) and MNDcap 
(895), five CNVs from five patients were designated VUS in MNDcap (0.6% of unsolved 
cases), and altogether 42 CNVs in MYOcap from 37 patients (4.1% of unsolved cases).  
 
Some rare but not unique CNV detections from the MNDcap sequenced samples included a 
partial duplication of the gene ATM (N = 8), partial deletion of ATXN1 (N = 4), different partial 
or whole gene duplications of PRPH (N = 7), and partial deletions of SCN1A (N = 5). In the 
MYOcap sequenced samples, similar detections were a partial deletion of the gene MYOM1 (N 
= 11), partial deletion of CLN3 (N = 11), partial deletion of ZBTB8B (N= 9), and partial 
duplication of MGME1 (N = 8). All of these CNVs were detected in different samples with 
almost the same breakpoints and with no phenotypic similarities between the cases. The 
MYOM1 deletion was seen with 90% overlap in the ExAC CNV database with 0.1% frequency 
in the Finnish population. The others were not detected in the CNV population databases either 
at 90% or 50% overlap. The partial CLN3 deletion of approximately 300 bps spanning exon 8 
and partially 9 (NM_001042432) has not been recognized as a disease causing mutation (Mirza 
et al., 2019). For now, these findings were designated as likely not pathogenic for the patients, 
and variants of unknown significance. 
 
The diagnostic yield for WES samples with sIBM samples excluded was 1.9% taking into 
account only the verified pathogenic variants. The amount of potentially interesting CNVs 
according to frequency and gene function was calculated separately for singleton cases (N = 
62) and familial cases (N = 26, different combinations of cases with sequenced affected or 
unaffected relatives with total of 64 samples). Altogether, 211 CNVs were considered as 
potentially interesting for singletons, providing eventually 28 CNVs designated as VUS in 19 
different samples, while the rest were evaluated as not interesting for further evaluation for the 
patient according to lack of putative phenotypic match to gene function. For the familial cases, 
80 CNVs were evaluated as interesting, and 13 of these were eventually designated as VUS 
involving 16 patients in different families, and the rest were designated as probably not 
putatively matching for the patients. Altogether, 34% of the unsolved patients in WES were 
detected to have at least one CNV designated as VUS. 1369 unique CNVs were detected from 
the samples altogether. 
 
The two clinically significant CNVs detected from WES samples, a large heterozygous NEB 
deletion (chr2:152432208–152567053, ex 11–107) and a homozygous deletion in SGCG 
(chr5:155753756–156016334, ex 1–4), were detected from samples included also in the 
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MYOcap batches. Additionally, one affected relative was detected to have the same SGCG 
deletion in WES. Therefore, these served as validation samples for the CNV detection from 
WES samples, but also corresponded to 2.1% increase in yield with three of original 140 
unsolved WES patients solved. No CNVs with higher representation in sIBM patients compared 
to other WES patients were perceived, and no overrepresentation of separate CNV detections 
in a gene or genes was either detected. 
 

5.6.1 Experimental CNV evaluation with the novel ACMG recommendations 
The rare and true predicted CNVs detected in the MYOcap and MNDcap sequenced samples 
were experimentally evaluated according to the new criteria recommended by ACMG for 
CNVs. For MYOcap, rare CNVs were detected in 73 different genes. For 15 of these genes, a 
haploinsufficiency (HI) prediction was provided, for 10 genes a triplosensitivity (TS) 
prediction, and for eight genes both of the predictions from the ClinGen catalog. Additionally, 
five of the genes were predicted to be haploinsufficient according to the accepted HI predictors, 
gnomAD pLI score and DECIPHER HI index. One was DMD, which had already HI 
information provided from the ClinGen catalog. In MNDcap, 77 different genes had rare CNV 
detections. Nine of these had a HI prediction and 16 a TS prediction from the ClinGen catalog, 
and 10 had both. Additional seven genes were predicted to be haploinsufficient by the two HI 
predictors. Two of these genes had also HI and TS scores from the ClinGen catalog: AR and 
SPAST. For all the single cases, the inheritance was unknown or was assumed to be de novo 
occurrence. In the evaluation workflow, the following evidence were used: 
 
1) Gene content. For all detections 1A “Contains protein-coding or other known functionally 
important elements” was selected. The significance score was not affected by this selection. 
 
2) Overlap with established/predicted TS/HI regions. For most of the detected CNVs, the 
section 2) had to be skipped. They had no information available from ClinGen or by the two HI 
predictors for the affected gene. CNVs affected 11 MYOcap genes and 13 MNDcap genes with 
the annotation of autosomal recessive gene, so this section was skipped also for them.  
 
The genes with HI prediction available were mostly detected with a partial intragenic deletion 
or duplication (CACNA1A and DMD in MYOcap, and SCN1A in MNDcap) leading to evidence 
2E. In MNDcap, duplications in CACNA1A, AR and SPAST covered partially the beginning of 
the gene (evidence 2K), PMP22 deletions and duplications the whole gene (evidence 2A), and 
three different SPAST deletions were discovered covering the whole gene (2A). One of them 
involved the beginning of the gene (2C1), and one partially the end (2D4). For the partial 
intragenic deletions, the reading frame was expected to be preserved (since no exact information 
was available), and the altered region was expected to be critical for protein function, giving 
evidence PVS1_Strong. For the partial intragenic duplications, the copies were presumed to be 
in tandem (according to likelihood), and no information on effect on reading frame or NMD 
were available, which provided a N/A score. Some of the genes with deletions had HI predictors 
surpassing the set threshold, giving them evidence 2H.  
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3) Gene number. All deletions contained less than 25 genes and all duplications less than 35,
leading to evidence 3A for all cases.

4) Detailed evaluation of genomic content. Only for the CNVs affecting DMD or PMP22 the
evidence 4A “The reported phenotype is highly specific and relatively unique to the gene or
genomic region” was used, and with assumption of de novo. For all the others, the evidence 4C
“the reported phenotype is consistent with the gene/genomic region, but not highly specific
and/or with high genetic heterogeneity, expected de novo” or 4E “Reported proband has a
highly specific phenotype consistent with the gene/genomic region, but the inheritance of the
variant is unknown” or 4D “the reported phenotype is NOT consistent with the gene/genomic
region or not consistent in general” were used, but the selection was mostly arbitrary due to the
heterogenic nature of neuromuscular disorders in general. For familial cases, the lowest
segregation category 4F was used. Additionally, evidence 4M “Statistically significant increase
amongst observations in cases (with a consistent, non-specific phenotype or unknown
phenotype) compared to controls” were used for all the evaluated CNVs according to common
database frequency filtrations.

5) Evaluation of Inheritance/patient history. In this category, for all of the single cases the
evidence 5G “Inheritance information is unavailable or uninformative. The patient phenotype
is non-specific but is consistent with what has been described in similar cases” was selected
since all of the patients are evaluated to have some neuromuscular disorder.

With this evaluation workflow, CNVs evaluated to be pathogenic (all achieving the maximum 
score of 1.0) would have included the CACNA1A deletion in family 1 with route 1A 2E 3A 
4C/4E 4M, DMD deletions in patients S5-S14 (S9 with DMD duplication excluded) with route 
1A 2E 2H 3A 4A 4M 5G, PMP22 deletions and duplications in patients S18-S29 with route 1A 
2A 3A 4A 4M 5G (providing the highest score, if calculated beyond 1.0), and all of the SPAST 
deletions with the different routes 1A 2A/2C1/2D4 3A 4C/4E 4M 5G. In total, 27 patient cases 
were evaluated to carry a pathogenic CNV. The SPAST duplication could be given either the 
score of 0.95 or 1.0, with threshold of pathogenicity at 0.98, by choosing between a value of 
0.10 or 0.15 for the evidence 5G from the suggested interval. Two of the SPAST cases were 
evaluated to be eventually pathogenic and two likely pathogenic in our patient cohort.  

For all the other CNVs, scores between 0.3 and 0.65 were reached, resulting as evaluation as 
variant of uncertain significance. The most common score of 0.50 was reached for the 
individual cases with skipping of step 2) with route 1A, 3A, 4C/4E, 4M, 5G. With families, a 
score of 0.55 was achieved with route 1A, 3A, 4C/4E, 4F, 4M. Alternatively, if the phenotype 
was estimated to fit more evidence 4D, the 4C/4E score was replaced with 4D and the scores 
were 0.3 or 0.35 in the cases described above. If the predictors gave a significant HI evaluation 
for deletions, the score was 0.65 with the route 1A, 2H, 3A, 4C/4E, 4M, 5G. For example, 
section 2 was skipped for CNVs in the genes CAPN3 and SGCG predicted to cause recessive 
diseases, but the patients here had homozygous deletions, and thus the identified CNVs were 



Results 

128 

designated as pathogenic. In six additional cases, the pathogenicity of the CNV was mediated 
by compound heterozygosity with another variant on the same gene, which was not considered 
in the interpretation workflow. 

5.6.2 NEB TRI region analysis results 
In the MYOcap sequenced samples, 14 were detected to have divergent NEB TRI region CNV 
detections compared to others in the in-house CNV database. These were attempted to verify 
with array CGH (4x180k). One case was solved with a verified 8/6 TRI copy number, which is 
clinically significant and matched the patient’s distal-proximal myopathy with heavy nemaline 
rod pathology (Kiiski, K. et al., 2016). This patient is included in the diagnostic yield 
calculations. Two cases had a verified 4/6 TRI copy number, which would be causative if in 
cis, but the phenotypes did not match nebulin pathology (Kiiski, K. et al., 2016). Four of the 
cases had an ambiguous array CGH result between TRI copy numbers of 7/6 and 8/6, with no 
conclusive result. Four of the cases had a clinically non-significant TRI copy number of 5/6, 
and three had a copy number of 6/6, which is normal (Kiiski, K. et al., 2016). The algorithm for 
differentiating the copy number of the NEB TRI repeat blocks from sequencing data did not 
provide rational results comparable to the verified NEB TRI region CNVs. Furthermore, no 
sample received the expected normal result of copy number estimation of two for each repeat 
block, so this analysis was not considered a successful approach. 

5.6.3 SMN1/2 analysis results 
Most of the samples sequenced with MNDcap had a SMN1/SMN2 count of 2/2 or 2/1 (Table 
19). Two positive control samples were correctly verified to have a SMN1/SMN2 count of 0/3. 
Additional three samples were verified to have the same SMN1/SMN2 0/3 count, and two 
samples a 0/4 count. Seven detections of status 0/0 originated from samples with low average 
read depth (samples with failed sequencing). Detections of higher number of SMN1 copies than 
four were rare. Copy number counts such as 4/2 tended to originate from samples with higher 
read depth than on average in their respective batches: in a batch with 63 samples six out of the 
10 samples with the highest coverage in the batch had a SMN1 copy number count of ≥3. These 
counts were not verified further and converted (for example to 2/1), since they appeared to not 
be clinically significant divergences in either case. 

 Table 19: SMN1/SMN2 copy number counts for MNDcap samples. 
Number of 
samples SMN1/SMN2 Number of 

samples SMN1/SMN2 

1 2/4, 4/3, >4/0, >4/2, >4/3, >4/4 17 3/0 
2 0/4, 1/4, 4/1 22 2/3 
3 3/4, 4/4 29 3/2 
4 1/3 41 1/1 
5 0/3, 1/0, 4/0 52 2/0 
6 1/2 75 3/1 
9 4/2 262 2/1 
16 3/3 374 2/2 
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All of the SMN1 copy number 0 detections were investigated in IGV. None of the new 0/4 or 
0/3 detections had the whole SMN1 gene deleted. However, these cases seemed to have a drop 
in coverage in the clinically significant exon 7 of SMN1 (Figure 21).  

Figure 21: Local drop in coverage of exon 7 of SMN1 as visualized with IGV, the bottom sample as control. 

Additionally, the corresponding region in SMN2 appeared to have been doubled in coverage 
compared to the rest of the gene. As an investigation approach, SMN2 from the reference 
genome was covered preventing alignment and the reads then re-aligned. According to the 
known nucleotide mismatches in the intron 6 (chr5:70247724G>A) and exon 7 
(chr5:70247773C>T) (Figure 22), all of the reads had the sequence of SMN2. A partial 
conversion was hypothesized to have occurred for the exon 7, which is a known event for the 
SMN1/SMN2 homologous genes, and has a potential clinical significance, as described before. 

Figure 22: All reads re-aligned to SMN1 in a potential SMN1 exon 7 conversion case as visualized with IGV. 
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5.7 Sequencing data quality and CNV detection accuracy 
5.7.1 Inspection of sample and batch quality with false negative CNVs 
For the CNVs not detected at all or detected but predicted erroneously false positive, batch, 
sample and region quality were inspected compared to samples/batches/regions with successful 
CNV detections and predictions. The evaluated metrics were total read depth and coverage 
uniformity calculated with CoverView and ExomeCQA, respectively. No apparent differences 
were detected in sample quality, batch quality or region quality. Interquartile range (IQR) was 
also evaluated as a metric to calculate read depth uniformity and enable comparison between 
samples and batches. However, all the samples in an evaluated batch had an IQR higher than 
15, which has been defined as a threshold for high IQR for samples by Trost and colleagues 
(Trost et al., 2018). Therefore, this metric was not evaluated to be descriptive enough, or 
reliably assignable with an appropriate threshold without further validation steps.  

5.7.2 Correlation of read depth and coverage uniformity to CNV detections 
Only a few of the tested CNV detection statistics demonstrated statistically significant 
correlation with some of the tested batch read depth and coverage metrics (Table 20). The CNV 
statistics with significance were amount of false predicted CNVs and true predicted CNVs on 
average per sample in a batch, and the standard deviations in these within the batches. The most 
significant (with a threshold of p-value < 0.05) correlation of -0.90 was detected between the 
amount of false positive CNV predictions and the ratio of targets with either low coverage or 
low uniformity with a p-value of 1.27e-05. The measure of % of bases covered by a minimum 
of 20X in the batch had the second strongest correlation with 0.86 and a p-value of 6.83e-05. 
All the batch metrics were correlated to some degree with the amount of false CNV predictions. 
Ratio of targets with either low coverage or low uniformity and the % 20X measurement had 
somewhat significant correlations with some of the other CNV statistics with p-values between 
0.01 and 0.04. The hypothesis that the batch read depth and the coverage uniformity affect the 
amount of putatively clinically significant and/or unique CNV detections was not confirmed 
with this evaluation. 

Table 20: Significant correlations (above) and p-values (below). 
Correlations LOWeither LOWc LOWU LOWcU covmin20 

nmeanFalses -0.90 -0.61 -0.63 -0.81 0.86 
nmeanTrues -0.56 -0.44 -0.35 -0.50 0.70 
nsdFalses -0.56 -0.41 -0.39 -0.48 0.56 
nsdTrues -0.57 -0.42 -0.39 -0.51 0.54 

p-values LOWeither LOWc LOWU LOWcU covmin20 
nmeanFalses 1.27E-05 0.02 0.02 0.0004 6.83E-05 
nmeanTrues 0.04 0.12 0.22 0.07 0.01 
nsdFalses 0.04 0.15 0.16 0.08 0.04 
nsdTrues 0.03 0.14 0.17 0.06 0.05 

LOWeither = ratio of targets with low coverage or low uniformity, c = coverage, U = uniformity, covmin20 = % 
of bases in the batch covered by minimum of 20X. Significant p-values of < 0.05 with bold text. 
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6 DISCUSSION 
Massively parallel sequencing (MPS) approaches have been widely used in the diagnostic 
efforts for different disease groups to increase the yield of genetic diagnoses (Ellingford et al., 
2016; Garg et al., 2020; Srivastava et al., 2019). However, CNV detection from MPS data has 
been less common, since no best practices pipelines are available, and different settings require 
the use of different CNV detection tools. The individual tools have been reported to have low 
sensitivity and specificity, which prevent their routine use in a diagnostic setting. In 
neuromuscular disorders, multiple recurrent causative CNVs have been recognized, such as the 
reciprocal deletion and duplication of the gene PMP22, and several CNVs in the gene DMD 
(Truty et al., 2019; Bladen et al., 2015; Giugliano et al., 2018). Generally, neurologic disorders 
are estimated to have CNVs more represented as genetic causes compared to some other disease 
groups (Truty et al., 2019).  

Here, we set to develop a CNV detection pipeline both for the targeted gene panel sequencing 
data and WES data in our disease cohort of neuromuscular disorders. We successfully evaluated 
the performances of the programs and validated a program combination with high CNV 
detection sensitivity. A predictive model was developed to increase CNV detection specificity 
and decrease the workload in the bottleneck step of variant effect interpretation. CNV 
annotation with an existing tool was improved and updated to include the most up-to-date 
information on CNV clinical significance interpretation available. The diagnostic yield was 
successfully increased in our patient cohort, along with increase in insight into CNV analysis 
from the genes associated with neuromuscular disorders. 

6.1 Technical aspects 
The performance of the utilized programs was generally as expected and documented in earlier 
comparable studies (de Ligt et al., 2013; Gambin, Yuan et al., 2017; Hwang et al., 2015; Kim, 
H. Y. et al., 2017; Kadalayil et al., 2015; Roca et al., 2019; Sadedin et al., 2018; Samarakoon 
et al., 2014; Tan et al., 2014; Yao et al., 2017). CNVs sized 1–100 kb seemed to be the most 
common, as has been reported in other short-read MPS population CNV studies (Zarrei et al., 
2015; Conrad et al., 2010). CoNIFER detected mostly larger sized CNVs, while ExomeDepth 
detected more CNVs of smaller size. By closer inspection this appeared to be partly explained 
by ExomeDepth over-segmentating single CNV detections into multiple smaller parts. One 
explanation for this behavior is that uneven spacing of exons in WES data could lead to over-
segmentation (de Ligt et al., 2013). However, the number of over-segmentation events was 
rather low, involving approximately 2% of CNV detections. CODEX and XHMM were also 
involved in some over-segmentation events. Therefore, the CNV size distribution in the 
detections could not be explained only by the differences in the over-segmentation frequency. 
In the state distribution, ExomeDepth had a bias for deletions, CoNIFER, XHMM and CODEX 
for duplications, and XHMM and ExomeDepth had the most balanced distribution. Since the 
genome contains more duplications than deletions, CoNIFER and CODEX may in fact have
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the least biased and most reliable detections concerning CNV state distribution. On the other 
hand, deletions are of greater clinical interest, meaning that a bias in detections, if they are true, 
should not be considered a problem in a diagnostic setting. 

Rare (< 1% frequency in databases) CNVs were in most cases detected to be larger in size than 
polymorphic, which has also been previously reported (Collins et al., 2020). True predicted 
CNV detections were generally larger in size than the false predicted detections. This was 
somewhat surprising, since CNV size as a variable did not significantly affect the performance 
of the predictive logistic regression model. Eventually, CNV detection specific scores by the 
programs were the only variables in the predictive model that provided the most accurate 
results. These scores were expected to be affected by the different CNV properties (state, size) 
included as features in other model versions. Based on previous comparison studies, an intuitive 
hypothesis was that higher scores would be achieved for large deletions than the small 
duplications in the order of ease of detection. However, in contrast to these expectations, no 
multicollinearity was observed between most of the tested variables, which enabled the testing 
of more varied model versions.  

Most of the CNVs predicted to be false positive were detected uniquely by single programs, 
and unique detections by ExomeDepth are overrepresented in this group. This is an expected 
result, since ExomeDepth is the most sensitive of the programs, but also produces more false 
positive CNV detections. Partially, this observation validates the predictive model for 
differentiating false positive detections from true positive detections correctly. In one study, 
ExomeDepth had an average Bayes factor of 45.1 for true positive detections from WES 
samples (Ellingford et al., 2017), which closely corresponds to our result 42.3 for WES samples 
with the predictive model. This is an additional level of validation for the model selected for 
further use. On the contrary, CoNIFER is supposed to provide highly specific CNV detections, 
but none of the CNVs detected uniquely by CoNIFER were predicted to be true. CoNIFER 
detections were given an arbitrary binary scale in the predictive model, while for the other 
programs the provided quality scores for CNV detections were utilized, which may affect these 
results. Additionally, in this study lenient SVD-values were used for CoNIFER to increase 
sensitivity, which may have decreased the inherent specificity of the program.  

As stated, ExomeDepth lacked in specificity compared to the other programs in this study, 
which has been repeated also in other studies. In previous studies, the accuracy of ExomeDepth 
has been increased with pre-modification of data by removing exons with low mappability prior 
to CNV calling (Rajagopalan et al., 2020). This decreased the false positive rate for 
ExomeDepth while retaining a high sensitivity (Rajagopalan et al., 2020). However, the 
removed regions roughly corresponded to retaining only unique regions (Rajagopalan et al., 
2020). In another study, ExomeDepth sensitivity was increased by restricting the analysis to 
non-polymorphic genomic regions (Marchuk et al., 2018). These solutions have not been as 
automatized or statistically verified as our approach with the logistic regression model. Our 
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model should not a priori exclude the CNVs based on sequencing quality or region 
repetitiveness, but this must be verified. 

According to our CNV detection results in the negative control samples, a specificity of 100% 
was reached. However, this was not a rational approach for measuring the specificity of the 
method considering the amount of false positive CNV detections in verification attempts. The 
first CNVs to be verified were selected among those that had been detected by more than one 
program. As observed with the variants verified to be false positive, this was not an accurate 
enough approach for filtering for true positive variants. Nevertheless, this approach has been 
used in the more recent papers: in one study CNVs were evaluated true if detected by at least 
three tools with no score evaluation or statistic models used (Roca et al., 2019). In the light of 
the results of our study, this approach is problematic. In another study, a rudimentary algorithm 
was used, which scored CNV detections similarly by the number of programs which had 
detected them. In that study, none of the combinations surpassed the individually most accurate 
algorithm, and also loss in sensitivity was detected (Trost et al., 2018). The results in our study 
are clearly different with increased CNV detection sensitivity by most of the program 
combinations. These results will be further discussed. 

The preceding observations led to the development of the predictive logistic regression model. 
Not enough samples had been verified with true positive or false positive CNV detections to 
train any statistical model reliably for evaluation of the results. Therefore, in silico CNVs were 
utilized. This is not a new approach, but the exact method we used here has not been utilized in 
other settings to our knowledge. Adequate statistical power was achieved when the in silico 
CNV detections provided 18,677 true positive and 3,892 false positive (unspecific) detections 
for the model training. The highest achieved AUC of 0.97 for these in silico CNVs also 
predicted well the model accuracy for true CNV detections, reaching an accuracy of 96%. 
Therefore, the concerns that in silico CNVs may inadequately represent real data were avoided 
in this study. This was likely owing to the use of reads from real sequenced samples, and the 
generation of both deletions and duplications (Ellingford et al., 2017; Kadalayil et al., 2015). 
This approach, although laborious design-wise and computationally, provided the training set 
with similar properties to the real sample data. 

Sensitivity evaluations with the in silico CNVs provided additional information on the 
performance of the programs. ExomeDepth was the most sensitive for the smaller CNVs, as 
expected. Interestingly, CODEX surpassed it for larger CNVs, although ExomeDepth has been 
previously reported to have the highest sensitivity also for these CNV types. The sensitivity of 
the individual programs to detect the large CNVs was surprisingly low even at the most lenient 
1 bp overlap requirement: 56.5% for the best performing program CODEX. These programs 
have also been used individually, such as XHMM for building the whole ExAC CNV database 
(Ruderfer et al., 2016). Although the specificity of the detections was increased through 
comparison to array CGH detections, this raises the question whether the sensitivity was 
adequate for a population level CNV representation. In the novel CNV database of gnomAD, 



Discussion 

134 

four programs were used for CNV detection from sequencing data (Collins et al., 2020). This 
should provide a more comprehensive CNV database according to our study and current 
common consensus. In our study, combining detections from any of the programs increased the 
detection sensitivity at least to 71.8%. The minimum sensitivity of 97% achieved for most of 
the in silico CNV categories with detections combined from all four programs was very high, 
dropping more notably only for one-exon duplications. One-exon CNVs are the most difficult 
to detect with current read depth methods from MPS data (Marchuk et al., 2018). Thus, the 
achieved 97.8% sensitivity for one-exon deletions was higher than expected, mainly due to the 
high sensitivity provided by ExomeDepth. CODEX increased the sensitivity for one-exon 
duplications to a moderate clinical sensitivity of 78.3%.  

The effect of mosaicism tested with in silico CNVs was surprisingly variable for the different 
programs depending on the CNV size and state. Generally, XHMM seemed to be the least 
affected by mosaicism, and ExomeDepth and CODEX were the most affected. 
Complementarity in this setting in program performances has not been demonstrated previously 
to our knowledge. However, the test set included only certain cutoffs for the degree of 
mosaicism, a smaller in silico CNV sample batch and only one or two-to-four exon CNVs, since 
mosaicism is not a common genetic mechanism in our patient cohort. Nevertheless, the test 
should be expanded with more variable CNV types and a continuous distribution of the degree 
of mosaicism to allow proper evaluation of a threshold for CNV detection. Based on our study, 
the threshold will probably vary for different CNV types. With 40%, mosaicism one-exon 
deletions could be detected with over 85% sensitivity, whereas one-exon duplications were 
detected with less than 60% sensitivity.  

The average read depth and uniformity of coverage in sequencing batches were shown to not 
have significant correlation with most of the CNV metrics evaluated in WES batches. Most of 
all, the amount of rare or unique CNV detections per sample was not affected, as was 
hypothesized to originate from read depth fluctuations with low coverage uniformity. However, 
these could be “hidden” in the false positive predicted CNVs, the amount of which per sample 
achieved the most consistently high and significant correlations. This was also an expected 
result, since low average read depth and low coverage uniformity should increase the amount 
of false positive CNV detections due to technical bias. Surprisingly, low uniformity had a 
comparable effect to low read depth, although uniformity has been estimated more important 
for CNV analysis from sequencing read depth (Kerkhof et al., 2017). The number of targets 
with decrease in either showed the highest and most significant correlation with the amount of 
false positive predicted CNVs. Almost as high correlations were achieved with the traditionally 
utilized measure of % of bases covered by minimum of 20X, so this would be a simple and 
informative measure also in the future. However, for deciding proper thresholds for sequencing 
data for accurate CNV detection, the same samples should be studied with different coverages, 
and more samples would be needed with CNVs liable for false negative result.  

CNVs were detected with high accuracy from each sequencing data set (MYOcap, MNDcap, 
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WES) both in the positive control samples and in the verified novel cases. The varying technical 
implementations for sequencing in the different batches did not seem to affect the CNV 
detection accuracy. As previously demonstrated in a study by Kosugi and colleagues, the read 
length and insert size did not greatly affect CNV calling accuracy (Kosugi et al., 2019). With 
the targeted gene panels, 100% sensitivity was reached for CNV detections, 71% of which with 
exon-level accuracy for the variants with available data on exon-level breakpoints. The decrease 
in sensitivity with exon-level threshold could be problematic in some settings, such as for CNVs 
in the gene DMD with diagnostic implications. In our cases, the inaccuracies would not have 
affected the putative diagnoses, since all true hemizygous DMD deletions were detected 
accurately. However, need for additional verification and/or improvement in detection accuracy 
should be considered. 

For the WES validation samples, a sensitivity of 100% was reached for the mendelome 
validation samples and 95% for the WES sample CNVs with at least three exons. These 
percentages are high enough for a clinical setting. However, with smaller CNVs included, the 
sensitivities are notably lower and differ also between the two WES validation sample types. 
In one previous study, with ExomeDepth alone, a sensitivity of 87% has been reached for CNVs 
smaller than four exons, and an overall sensitivity 96% from WES data (Rajagopalan et al., 
2020). In the mendelome samples, these values were surpassed with the four-program 
combination, but the results were similar for the WES samples. Some of the inaccurate CNV 
detections or samples with no CNVs detected could be explained by the affected genes having 
a highly homologous pseudogene, such as STRC. An undetected seven-exon deletion was 
supposedly located in a gene with a similar homology issue, IKBKG.  

The samples and batches with false negative control CNV detections could be evaluated for 
properties affecting the CNV detection sensitivity. Most of the undetected or incorrectly false 
predicted positive control CNVs from WES data and targeted gene panel data were single exon 
heterozygous deletions. This is the most challenging CNV type to detect and also most often 
involved in false positive detections, making deciphering these CNV detections challenging 
(Marelli et al., 2016; Zenagui et al., 2018). Many of these (6/35 in the WES samples and 1/2 in 
the MYOcap samples) affected only the first exon of the gene. Accordingly, false negative 
detections for CNVs from WES data have been observed to be enriched in both the last and 
first exons, which are often GC-rich and thus challenging to sequence and analyze accurately 
(Rajagopalan et al., 2020; Zenagui et al., 2018). These small CNVs were persistently predicted 
to be false positive detections both in WES data and targeted gene panel sequencing data. They 
appeared to have low program scores and were thus probably liable to be discarded as false 
detections, although CNV size was supposedly not a significant factor in the predictive model. 
In a previous study, one-exon deletions were not identified with high intra-sample variation and 
insufficient coverage for exons and nucleotides (Ellingford et al., 2017). This matches the 
theory that detecting differences based on one data point with one-exon CNVs allows for little 
experimental background noise (de Ligt et al., 2013). This could also be the explaining factor 
for the missed CNVs being mostly small. However, single sample quality metrics have been 



Discussion 

136 

also thought to be less informative in estimating performance in CNV detection with the read 
depth method compared to correlation across the samples in the batch (Plagnol et al., 2012). 

The first tests we performed for batch/sample/region read depth and coverage uniformity and 
CNV detection sensitivity were not informative. For our sample set, the only notable common 
factor for batches with higher CNV detection and prediction sensitivity was the number of genes 
in target sets. The mendelome and targeted gene panels had less genes targeted (gene panels < 
350 genes, mendelome < 6500 genes) than “real” WES batches. Intuitively, this could provide 
inherently more uniform distribution of reads. However, the measurement for evaluating 
coverage uniformity utilized here did not capture this relation, or the inspected variables were 
not affected by it. In a previous study, high variation in read depth across the sample pool 
decreased the detection accuracies of ExomeDepth, CoNIFER and XHMM (Samarakoon et al., 
2014), but multiple ways to measure coverage uniformity exist. In the same study, small size 
of the sample batch impaired the program performances as well. However, in our study the 
samples with false negative CNV detections were included in batches of average size, which 
should be within the recommendations for the programs. LAMA2 and SGCB are some of the 
genes, which have been detected to have potentially too low coverage (less than 20X) for variant 
detection in targeted MPS studies (Ankala et al., 2015), which could be filled in with Sanger 
sequencing. However, the batches where the control CNVs in these genes with false negative 
detection results were included did not display low coverage for these genes, and the samples 
with the CNVs also had high-quality sequencing results with > 99% 20X coverage. 

The eventual performance of the predictive model with 96% overall accuracy for targeted gene 
panels is good enough for a diagnostic setting. For WES samples, the prediction sensitivity 
varied between 66% and 100% depending on CNV type and sequencing scale, which 
necessitates checking the unfiltered results in cases of no findings. In one WES familial case, 
affected siblings, this additional evaluation of unfiltered CNV detections provided a CNV 
finding designated as VUS, which awaits further clarification for clinical significance. The 
workload in variant interpretation was relatively unaffected by these occasional evaluations. 
However, some (mostly small, < 3 exons) control sample CNVs from WES samples were 
completely missed, highlighting that care needs to be taken in evaluating WES samples as 
negative for CNV findings. 

Although the average sizes of microdeletion and duplication samples included in the 
mendelome and WES sample sets were similar, the differences in detected CNV sizes compared 
to the original information were clearly larger in the mendelome set. CNV detections in the 
mendelome set were generally more accurate on exon level for other validation samples. One 
affecting factor may be that the Coriell-samples were distributed into all three batches with 
other samples, which increased variability between the samples. On the other hand, the CNV 
detections in Coriell-samples were more over-segmented in the WES set compared to the 
mendelome set, which may be explained by less uniform data. In conclusion, these CNV 
detection methods cannot provide accurate breakpoints for microdeletions and duplications. 
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The original breakpoint information for the samples could also be inaccurate. Anyway, these 
tools have the potential to screen for these larger structural variants. 

The window-based read depth estimation has been considered to be unsuitable for detecting 
aneuploidies (Trost et al., 2018). Nevertheless, potential aneuploidies for chromosome X with 
XXX for females were detected in our cohort, and chromosome X triplications have been 
detected also in other studies (Kerkhof et al., 2017). The chromosome X triplications were 
detected in eight MYOcap sequenced patients, corresponding to a frequency of 0.6%, which is 
higher than the expected 1/1000 for females (Mayo Clinic, www.mayoclinic.org). Some of 
these could be mosaic cases or false positive detections. These would need to be verified with 
a complementary method before further clinical evaluation for manifestations. In addition, 
some cryptic large partial chromosome X deletions and duplications, which could refer to 
Turner syndrome (X0) or Klinefelter syndrome (XXY) were observed.  

The few additional tested CNV detection tools (CNVkit, SavvyCNV) failed to detect positive 
control CNVs, which were clearly detected by the four programs used here. We did not succeed 
in employing some of the other programs (DECoN, DeviCNV) due to lack of documentation 
and probable platform incompatibilities, which is also a common problem (Bakhtiari et al., 
2018). Additionally, CNVkit has been reported to have an unpredictable performance, such as 
decrease of sensitivity with increase of sequencing read depth (Roca et al., 2019).  

None of the four main programs detected CNVs from mtDNA samples, or the CNV analysis 
was unsuccessful. CNVkit with a mode for analyzing tumor samples was successful for two of 
the control samples containing a single known deletion only after providing the expected CNV 
heteroplasmy degree as a parameter. Providing other heteroplasmy degrees led to variable CNV 
detection results; consequently, the method would be inaccurate for blind samples. An 
additional reason for the inaccurate and unsuccessful analyses could be that the target set had 
to be designed with an arbitrary distribution of intervals to cover the mtDNA genomic region. 
This does not correspond to the original capture with overlapping probes, which was not 
accepted by the programs as a target file. On the other hand, the same approach of arbitrary 
distribution was utilized for the TTN gene target region covered completely (i.e. UTRs, introns 
and exons) in the latest MYOcap version, and the CNV analysis was successful according to 
accurate detection of one known heterozygous deletion. The most relevant differences could be 
in the genomic properties of mtDNA compared to genomic DNA, and the resulting inability of 
these CNV analysis programs to measure and normalize read depth for this part of the genome. 
In a previous study, a notably higher coverage of 1000X was required for the CNV detection 
with mtDNA heteroplasmy (Kerkhof et al., 2017). 

Two of the CNV calls detected from MPS data would not have surpassed the threshold for 
detection on array CGH. They were verified manually with inspection of the regions expected 
to be involved in CNVs. These were the deletion on MYL5 sized 2.1 kb and deletion on CMYA5 
sized 2.6 kb. This can be explained by the difference in potential between the two methods to 
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detect small CNVs (Trost et al., 2018). Another observation from the verifications with array 
CGH was that two of the CNV detections with the largest exon count divergences compared to 
the verified region were both duplications in genes with repeat regions involved, TTN and NEB. 
The explaining factors could be both that duplications are more difficult and less accurate to 
detect from sequencing data, and the properties of the specific repeat regions involved, as will 
be discussed further. One DMD detection showed the highest difference in base pairs, which 
could be explained by the large introns of DMD. 

Approximately half of the rare NEB TRI region CNV detections selected for verification 
produced a too ambiguous result on array CGH to enable verification of the actual TRI copy 
number. Overall, the NEB TRI copy number analysis independently from MPS data did not 
work. For the differentiation algorithm prerequisite there were possibly not enough differences 
between the triplicate blocks for distinguishing them. The alignment of reads could also be 
more biased than for SMN1 and SMN2, for which the algorithm seemed to work. In fact, no 
single one location has a different nucleotide in all the repeats between the repeat blocks. 
Therefore, attempts to differentiate could provide statistically less reliable results, even if the 
reads were originally aligned correctly. Similarly, the algorithmic approach was unsuitable for 
TTN even for a trial, because the exons of the replication blocks lacked enough differentiating 
nucleotides.  

6.2 Clinical interpretation 
The predictive model and filtering for rare CNVs lowered the workload for the clinical 
significance interpretation step notably, most clearly for the WES samples. Comparison to the 
in-house CNV database was also essential for evaluating the putative clinical significance. 
Some CNV detections could be excluded by having a too high frequency in the in-house 
database, even if they were not included in the common CNV databases. CNVs shared 
exclusively by the affected patients in the same family were straightforward to detect with the 
in-house CNV database. Extensive clinical phenotype comparison of similarities between 
patients revealed one group with an identical rare CNV detection, which was designated as 
likely pathogenic. On the other hand, completely different clinical presentations excluded some 
CNVs as unlikely clinically significant for those patients. However, such CNVs could be 
pathogenic for a recessive mode of inheritance of other diseases, as listed in the results for some 
cases. These CNV detections will remain in the in-house CNV database for further significance 
evaluation and frequency calculations, which has been unattainable from the common CNV 
population databases. 

Analyzing CNV database matches with different overlap requirements was more informative 
compared to opting for only one overlap degree, both in the in-house CNV database and in 
population CNV databases. This usually allowed straightforward exclusion of CNV detections 
on genes with multiple (polymorphic) detections, since high frequency in overlap was visible 
in all categories. Completely unique CNVs were revealed with the 1 bp overlap requirement. 
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Utilizing the 90% overlap requirement rather than 100% revealed the detections, which were 
the same on genomic level, but with slight differences in the detected breakpoints. This 
originates from the inherent lack of breakpoint resolution of the read depth methods for CNV 
analysis from MPS data. Additionally, the target design was modified for different batches and 
this could affect breakpoint accuracy as well. The 50% overlap category enabled the detection 
of a novel large NEB CNV as compared to the previously detected large NEB deletion in one 
of the positive control samples: the 90% reciprocal overlap requirement would have been too 
strict since the two large NEB deletions had a large size difference despite being on the same 
region.  

Most of the patients in our cohort were Finnish. According to recommendations, comparisons 
to population frequency databases should be preferentially ethnically matched (Richards et al., 
2015). However, the CNV database from gnomAD does not contain CNV findings in the 
Finnish population separately, and the category of “Other” includes less than 200 samples 
(Collins et al., 2020). A YARS2 deletion seen in a few of the MYOcap and WES samples was 
considered rare according to our in-house database, and it was not found at all in gnomAD or 
many of the other databases but had a frequency of 0.03% with 90% reciprocal overlap in the 
ExAC-FIN CNV set. Similarly, a MYOM1 deletion seen in 12 MYOcap sequenced samples had 
a frequency of 0.1% with 90% reciprocal overlap in ExAC-FIN. Therefore, the most 
comprehensive CNV database so far, gnomAD, was not as useful as ExAC for filtering CNV 
detection results for frequency in a cohort with mainly Finnish patients. That is also why an 
internal database was used, which is generally useful for populations with a separate genetic 
makeup. This neglect for special genetic characteristics of some populations or subpopulations 
in databases is a commonly recognized problem (Sirugo et al., 2019). In the new 
recommendations for CNV interpretation, CNVs without high enough frequency to be 
considered polymorphisms (> 1%) but observed frequently in the general population can be 
categorized either as VUS or likely benign, which is a confusing contradiction (Riggs et al., 
2019). For now, these detections were considered VUS and are awaiting further inspection for 
frequency in the in-house database as more samples are sequenced. 

Multiple CNVs were detected in the same region or in the same gene in different samples 
without apparent effects on phenotype. Many of these could also be found in general databases. 
Although all the utilized programs have been developed to detect rare variation, these were 
considered to be polymorphisms. These CNV detections were probably not filtered out by the 
programs because they were not observed on every sample in the batch. Many of them were 
seen in the same gene but with different breakpoints. In the WES data, many of these 
polymorphic genes are already well known from previous large-scale CNV sequencing studies 
such as the amylase alpha 1a and alpha 2a locus (AMY1A, AMY2A) (Iafrate et al., 2004). This 
also applies to some rapidly evolving gene families such as LRRC37, GOLGA and NBPF 
(Alkan et al., 2009), and gene families with variable amino-acid stretches such as ZNF, NBPF, 
and mucins (Audano et al., 2019). The detection results could be directly filtered to exclude 
these recurrent events in the future, especially in genes with no probable relations to 
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neuromuscular disorders. However, some of the detections in these genes were rare according 
to database frequencies (< 1%), which made their effect more difficult to decipher. This could 
partially be a problem in the accuracy of read alignment and therefore these could be false 
positive detections, as with the SMN1 and SMN2 detections or the CNVs on TTN TRI and NEB 
TRI regions. False positive CNV detections have also been recently discovered to be enriched 
on segmental duplications or other repetitive regions (Rajagopalan et al., 2020).  

TTN TRI region CNV detections were overrepresented in MYOcap compared to the NEB TRI 
region CNV detections, although the regions are genomically highly similar with locally 
repeating groups of blocks. Grouping of the few rarer TTN TRI region CNV detections did not 
reveal any clinical phenotype similarities between the patients, and thus it is unlikely that these 
CNVs have clinical significance for these patients in the cohort. The TTN TRI region may be 
more polymorphic with benign variation than the NEB TRI region. It is also possible that the 
reference genome is not correctly constructed in this region, which leads to alignment issues, 
providing an error source already at the data pre-preparation stage (Zenagui et al., 2018). 
Therefore, many of these TTN TRI CNV detections could be false positive. The CNV detection 
with the highest inaccuracy on exon-level compared to the verified region in array CGH was a 
CNV involving the TTN TRI region. This highly unspecific detection from the MPS data 
strengthens the hypothesis that the original problem could be caused by inaccurate initial read 
alignment and reference genome. The same could partially explain another observed large 
difference with a NEB duplication involving partially the NEB TRI region. We will move on to 
use the GRCh38 version soon as is the general trend and appropriate. This version could have 
a more accurate TTN TRI region and therefore decrease the amount of false positive detections. 

6.3 CNV detection in a diagnostic setting 
A final diagnosis was successfully achieved for several patients in this study. In many of the 
cases with affected family members included in the study, the clinically significant CNV was 
detected in a relatively straightforward manner by comparison within the in-house CNV 
database. This included the siblings with a homozygous partial SGCD deletion, and the family 
with a partial CACNA1A deletion. The CNV detection was conclusively validated by verifying 
correct segregation in the family members. Many of the other cases had recurrent, well-known 
and comprehensively documented causative CNVs. This category included the duplications and 
deletions of the whole PMP22 gene detected in multiple patients in MNDcap sequenced 
samples and causing CMT1A and HNPP, respectively. Several DMD deletions and one 
duplication were detected in MYOcap samples, in addition to the ones detected in the positive 
control samples. All of the hemizygous DMD deletions were detected with exon-level accuracy, 
which is essential for achieving the correct diagnosis in dystrophinopathies, as was notified in 
the new ACMG CNV interpretation recommendations (Riggs et al., 2019). According to those 
same recommendations, CNVs with well-documented clinical features and significance 
replicated across multiple independent studies are classified pathogenic. CNVs producing a full 
extra copy of a gene are often benign unless pre-associated with a triplosensitive disorder as 
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with PMP22 (Riggs et al., 2019). Therefore, many of these cases would have been classified 
pathogenic also according to the new CNV interpretation workflow. In some previous studies, 
only whole gene deletions and duplications have been screened from MPS data because of their 
significance in neuromuscular disorders (Antoniadi et al., 2015). However, according to our 
results, this can exclude clinically significant CNVs of smaller scale in many patients. 

One interesting “double-trouble” case with two genetic diseases caused by pathogenic variants 
in two different genes was identified. Pathogenic variants in more than one gene leading to a 
complex phenotype have been detected also in other cohorts with neuromuscular disorders 
(Antoniadi et al., 2015; Hiraide et al., 2019). Since these events have been rarely described, the 
different frequencies of such events between disease cohorts have not been comprehensively 
evaluated. However, when considering the number of genes involved and how heterogeneous 
neuromuscular disorders are, it could be hypothesised that these “double-trouble” patient cases 
exist more among cohorts of neuromuscular disorders (Posey et al., 2017). Because 
neuromuscular phenotypes are highly heterogeneous, these cases may be wrongly designated 
as new diseases or as extended phenotypes of described diseases when the second genetic defect 
is missed (Antoniadi et al., 2015). In some other disease cohorts, CNVs have had a significant 
role in correcting incomplete diagnoses “made too early” (Posey et al., 2017). The increasing 
documentation of such cases from MPS studies should stress the importance of evaluating all 
genetic findings in a patient, instead of just relying on the first pathogenic variant. 

CNVs are a known pathogenic mechanism in the gene SPAST, and statistically half of the CNVs 
detected in SPAST span beyond the gene (Boone et al., 2014). Since our targeted gene panel 
does not encompass the genes flanking SPAST, we cannot be certain whether the four CNVs 
detected in SPAST in this study encompass more than the gene, but this is possible since none 
of the CNVs were clearly only intragenic. The genes flanking SPAST beyond the 5’ breakpoint 
are inverted in orientation compared to SPAST, but several directly oriented genes are located 
after the 3’ breakpoint. Thus, deletions extending beyond the 3’ end can potentially lead to 
formation of fusion genes (Boone et al., 2014). Other approaches such as RNA-sequencing 
would be needed to reveal fusion transcripts. 

For most of the rare (and presumed pathogenic) CNVs detected, the ACMG CNV interpretation 
workflow would have given a score corresponding to VUS. The main determining factor in the 
annotation of CNVs as pathogenic seemed to be the availability of a validated 
triplosensitivity/haploinsufficiency (TS/HI) prediction score from the ClinGen Dosage 
Sensitivity map catalog, and the inclusion of familial samples. However, the availability of the 
TS/HI prediction had more weight, and also in the workflow it is stated that CNVs in genes 
with no knowledge on dosage sensitivity are mostly likely VUS (Riggs et al., 2019). The list of 
genes with TS/HI information is updated daily (Riggs et al., 2019). According to the new 
interpretation workflow, CNVs with unclear effect on the reading frame in a gene are also most 
likely VUS (Riggs et al., 2019). Comprehensive maps for the effects of all possible CNVs on 
the reading frame are missing for most genes. Such a map is available for DMD with the 
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UMD/TREAT-NMD DMD database (Bladen et al., 2015). Evaluation of a CNV effect to this 
extent on the functional level would require additional studies, such as mRNA sequencing or 
protein studies, which are not feasible in a routine diagnostic setting (Giugliano et al., 2018), 
and require expert centres for full evaluation. For the novel large intragenic NEB deletion 
detected in this study, this was possible, and protein studies by Western Blotting revealed a 
truncated product. These results await further inspection and verification of exact clinical 
significance in collaboration with other groups studying the patient case.  

The new CNV interpretation recommendations have been mostly designed for CNVs in genes 
causing dominant disorders with distinct phenotypes, which is less usual for the heterogeneous 
NMDs. In conclusion, both the HI/TS database and these recommendations represent our 
current knowledge on CNVs and their effects on the genomic level. The recommendations will 
be probably updated to consider more widely different types of disorder groups in the future. 
For example, if a patient has a phenotype consistent with the described phenotype for the 
specific observed CNV, this is designated to have supporting pathogenicity evidence, but no 
comprehensive databases for disease causing CNVs exist yet (Riggs et al., 2019). 

Some of the CNVs designated as VUS in this study have been detected in a few patients with 
similar phenotypes, but their clinical significance could not be confirmed. According to general 
instructions, variants in multiple unrelated patients with the same phenotype and absence in 
controls is only a moderate level of evidence for pathogenicity (Richards et al., 2015). 
Segregation studies are planned for some of these cases to possibly verify the significance of 
these CNVs. In the few single cases with a unique CNV detection and a more definite gene-
phenotype connection, the causal relationship of the CNV had more confidence. In the 
remaining cases without possibility for segregation studies or too few affected patients, the final 
results have to await second-tier tests. These include mRNA studies, which could reveal the 
effect of the CNV on the transcript level (Cummings et al., 2017). 

The separate algorithm developed (and based on algorithm in (Feng et al., 2017)) for detecting 
SMN1/SMN2 copy numbers as a part of this study and CNV detection pipeline provided 
independent detection results in our MPS setting. The algorithm had a high accuracy and 
specificity, up to 100% in high-quality samples. However, only two positive control samples 
were tested indicating that this validation is yet inconclusive. In five of the newly detected 
samples with SMN1 copy number 0 and SMN2 copy number 3 or 4, a SMN1 exon 7 conversion 
to SMN2 seems to have occurred. This detection result and its clinical significance has yet to 
be validated. The five patients have a similar phenotype, but an additional validation method 
would be needed. Different possibilities will be discussed together with methods suggested for 
NEB TRI and TTN TRI region copy number validation. 

The increase in the diagnostic yield was 1.9%. for both targeted gene panel and WES cohorts 
in this study. This is well in line with previous studies with 1.6–2% increase in diagnostic yield 
reported with CNV analysis from WES data in cohorts with various disorders (Pfundt et al., 
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2017; Marchuk et al., 2018). In a partially matching targeted gene panel sequenced patient 
cohort of mostly CMT types I and II and distal hereditary motor neuropathy, 1% of the 
diagnoses involved CNVs (Bacquet et al., 2018). As in our setting, MPS has been the last 
method used on a lengthy diagnostic route in other studies as well, which may explain the 
similarity in the diagnostic yield (Pfundt et al., 2017; Marchuk et al., 2018). This may be the 
reason for the difference compared to the general estimation of 10% of disorders being 
explained by CNVs (Truty et al., 2019). However, the comparison of diagnostic yield between 
studies is not straightforward. This result can be calculated in our study as 1.9% or 2.7% 
depending on whether the whole cohort or just the originally unsolved cases are taken into 
account, which is also the case with the presented studies. 

In 0.6–4.1% of our targeted gene panel sequenced patient cases CNVs designated as VUS were 
found, all in known disease genes or potential candidate genes. This is somewhat lower but 
similar compared to previous studies with > 3% of such findings in the studied cohort (Marchuk 
et al., 2018). A notably higher percentage (34%) of patients in WES were designated with a 
rare CNV VUS finding. These were designated based on different criteria with prioritization of 
genes with putatively relevant gene function and expression in skeletal muscle for the 
myopathic patients, but these genes have not yet been associated with NMDs. Verifying the 
clinical significance of these findings would require comprehensive additional work such as 
functional studies and modeling in animals (Nigro and Piluso, 2012). 

In the sIBM patient group, no putative monogenetic causes were found. One unlikely reason 
for this could be that if all the samples share the same variant, the finding could be filtered from 
the results, which is a previously discussed problem (Yao et al., 2017). ExomeDepth chooses 
controls arbitrarily based on a close match with average read depth, and in a previous study it 
was noticed that if only one sample was used as a control and that included a rare CNV, then 
that CNV was not detected in the test samples (Povysil et al., 2017). Overall, fewer tools are 
available for detecting common CNVs from WES data (Zhao et al., 2013), but a variant like 
this would probably already have been detected in previous studies for sIBM cohorts (Needham 
and Mastaglia, 2016). It is hypothesized that sIBM could be a multi-factorial disease (Needham 
and Mastaglia, 2016). The approach of evaluating CNV detections from sIBM patients against 
CNVs from other patients theoretically resembles a GWAS study, but not nearly enough 
samples were included for enough statistical power. Some of the seemingly enriched variation 
was just attributable to different WES target sets.  

6.4 Concluding remarks and future prospects 
WES includes more potentially significant candidate genes. Accordingly, many more CNVs 
designated as VUS were detected from WES samples compared to MNDcap or MYOcap 
sequenced samples. As discussed previously, evaluating the effects for CNVs according to 
genomic information is less straightforward compared to SNVs and indels. Neuromuscular 
disorders are individually rare, difficult to diagnose accurately and genetically very 
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heterogeneous. Finding patients without a familial disease having the same phenotype and with 
the same genetic defect to increase certainty for variant pathogenicity or to designate a new 
disease gene is thus challenging (Charng et al., 2016; Gorokhova et al., 2015). In our cohort, 
many of the samples in WES represented single cases, or siblings. Inclusion of parents or 
additional family members has increased the diagnostic yield in WES and WGS MPS studies; 
the traditional trio WES can reduce the number of candidate variants around 10-fold compared 
to single cases (Volk and Kubisch, 2017). In a previous study with sporadic cases, the diagnostic 
rate was 18%, and in families with recurrence 26% (Hartley et al., 2018). Currently, we are 
awaiting information on additional samples from relatives in many patient cases. The diagnostic 
route is thus moving forward for these patients and will hopefully end with a final genetic 
diagnosis. Functional studies, RNA sequencing or studies in animal models could be attempted 
in some other cases to evaluate the effects of the VUS CNVs.  

For a more efficient CNV detection filtration the gene level annotation could be improved, 
which would be especially important for novel CNV detections in possible candidate genes. 
The more recent workflows for structural variant annotation have intersected the affected genes 
with known pathogenic small sequence changes (Neerman et al., 2019). Our pipeline did not 
automatically integrate information on SNVs and indels detected from the patient sequencing 
data. Combining these with the CNV findings, as in some other studies and tools, would 
streamline the pipeline and prevent missing possible compound heterozygosity cases more 
effectively (Neerman et al., 2019; Geoffroy et al., 2018).  

In this study, the breakpoints were resolved only on exon level for most of the pathogenic 
CNVs, which was enough to clarify their clinical significance and for reporting (Riggs et al., 
2019). But if recommendations change, their reporting may require solving the exact 
breakpoints. Detecting the exact breakpoints would also provide additional information for 
evaluating the clinical significance, but for now this requires complementary methods such as 
PCR and Sanger sequencing (Giugliano et al., 2018). Manual checking in IGV could be utilized 
more routinely to detect read coverage cutoffs representing breakpoints. However, this would 
probably not provide relevant results in most of the cases, since the breakpoints are most often 
in introns and thus not covered in WES or targeted gene panel sequencing data (Zenagui et al., 
2018). One TTN deletion was an exception (variant of unknown significance for now) as the 
intronic regions were included in the target set for that MYOcap batch. Adding intronic 
sequences into a capture kit in order to increase accuracy on breakpoint resolution is currently 
hardly ever used. According to our result from this one sample, the improvement in breakpoint 
resolution is promising. At the same time, detections from TTN TRI region increased 
exponentially, and it remains to be resolved whether these are true and more accurate calls, or 
just false positives for an unknown reason. 

For the recommended submission of validated CNVs (Richards et al., 2015) to most databases 
such as ClinVar, the exact breakpoints need to be resolved. However, the current lack of disease 
specific databases for CNVs should also be overcome. With the increasing amount of MPS 



Discussion 

145 

studies and CNV detections in NMDs, such a database would clearly increase our knowledge 
on CNV prevalence and clinical significance in NMDs, even without breakpoint information. 
For NMDs, the collaboration of TREAT-NMD (Bushby et al., 2009) has been established to 
provide patient registries and biobanks, shared tools and expertise, and standardized mutation 
data among other resources. One major outcome has been the TREAT-NMD DMD Global 
database (Bladen et al., 2015) described and utilized in this study, and hopefully it is just the 
first of many.  

Some patients had no explaining genetic findings despite excessive search for CNVs, SNVs 
and indels. An apparent “second hit” seems to be missing for some of them. These could also 
be coincidental carriers for one heterozygous recessive disease variant, and the phenotype may 
be due to a defect in another still unknown gene. Searching for another causative variant in 
another gene is unintuitive, but some diseases with digenic inheritance have been recognized 
also in neuromuscular disorders (Lee, Y. et al., 2018). However, recognizing novel digenic 
disease mechanisms and verification of pathogenicity for the variants would likely require 
larger patient cohorts and functional studies. The tools for evaluating sequencing data for this 
disease model are still under development (Renaux et al., 2019). The disease mechanism could 
also be non-genetic, and some diseases may have a multifactorial etiology, as has been proposed 
for sIBM. 

WGS has not been performed for most of the unsolved cases in our cohort. The genetic cause 
could thus well be something intronic, in the non-coding sequences, or in regions less covered 
by traditional short-read WES. Repeat expansions cannot either be detected reliably from WES 
or targeted gene panel data with current methods. WGS could also provide better breakpoint 
resolution. Along with WGS data, the CNV annotation step would need to be upgraded to take 
into account the new information sources and possible new disease mechanisms, such as TAD 
rearrangements. For example, TAD and promoter location information are already being 
included in the newest annotation tools designed for structural variants detected from WGS data 
(Geoffroy et al., 2018). 

Most research groups will probably move on to WGS at some point. So far, we have sequenced 
only a handful of samples (< 10) with WGS which is too few to attempt validation of CNV 
analysis. However, using WGS data is not always straightforward; in one study a high 30X 
coverage, evaluation of split reads, read pairs and read depth all together were required for the 
identification of structural variants to base pair resolution (Neerman et al., 2019). Thus, a 
combination of read depth and read pair tools, either separately or with a script which inherently 
utilizes both approaches, could probably be utilized. Using more than one tool has also been 
recommended for WGS data in recent studies (Trost et al., 2018; Collins et al., 2020). 
According to the latest tool comparison papers, LUMPY and Manta seem to be a promising 
combination (Regier et al., 2018). Delly and especially LUMPY have been popular and trusted 
for CNV calling from WGS, and the latter was suggested to be included in a future best practices 
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pipeline for WGS data (Regier et al., 2018; Zhang, L. et al., 2019; Abel et al., 2018; Dixon et 
al., 2018).  

Additional tools would be needed to detect some variation types, such as repeat expansions. 
STR expansions in different genes in ataxia patients have been already detected from WGS data 
(Dashnow et al., 2018; Marelli et al., 2016). As described above, adjustments in the sequencing 
protocol and analysis tools would be probably needed to enable detection of mtDNA CNVs 
associated with some NMDs. New tools and approaches are constantly developed, and at some 
point, a recommended good practices pipeline will be generated. The first comprehensive 
databases for variants detected from WGS have been just released (Collins et al., 2020). 
However, they are still short in reporting CNVs, as was shown with the ExAC versus gnomAD 
comparison.  

With lower sequencing costs, the next approach is likely to start utilizing WES and extract 
MYOcap and MNDcap targets as virtual gene panels from WES data to avoid increased 
workload and incidental findings. CNVs could be theoretically analyzed also in the virtual gene 
panel setting with this program combination as they performed well separately both for targeted 
gene panel sequenced samples and WES samples. In our setting of Mendelian neuromuscular 
diseases, we do not expect mosaicism to be a main genetic disease-causing mechanism, but 
some unsolved cases may nevertheless have mosaic variants and detecting them may become 
challenging with lower read depth. Even in the (simulated) MYOcap samples, the limit for 
detecting CNVs in mosaic quantities was rather low, especially for duplications, an observation 
to keep in mind in unsolved cases.  

WES samples were evaluated with the same predictive model as was trained for the targeted 
gene panel sequencing data. The threshold for prediction had to be decreased to account for 
lower CNV detection scores from WES with lower average read depth. The model could 
potentially perform with higher accuracy if it was trained separately with in silico CNV 
generation into WES samples. As an example, a tool to detect VNTR expansions had to be 
trained with simulated reads for the two used sequencing data types separately: short-read and 
PacBio (Bakhtiari et al., 2018). This could be challenging with the approach we used, since 
WES samples have notably more CNV detections. Our WES sequencing data were produced 
with more variable target sets, sequencing platforms and technical specifications than the 
different MYOcap and MNDcap sequencing batches. Therefore, the sequencing platform and 
provider would have to be conformed first, because training a model for one setting may not 
work identically in a different setting. In one study with tiling probes by Agilent, overlapping 
probes by NimbleGen, and gapped probes by Illumina, inconsistent coverage was revealed 
between batches, which prevented combining them for CNV calling (Wang, Q. et al., 2017). 
Although high sensitivity and specificity were achieved with the current predictive model using 
logistic regression, also other statistical approaches such as random forest might be valuable 
(Pounraja et al., 2019). 
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We developed a promising method for differentiating copy numbers of SMN1 and SMN2 from 
MPS data, but the CNVs on NEB TRI and especially TTN TRI region remained elusive with 
the same approach. Additionally, some of the NEB TRI CNV detections remained unresolved 
after array CGH. An approach with pseudoreference genome could be possible to force 
alignment into correct regions. One approach by Dashnow and colleagues for detecting STR 
expansions involves utilization of specifically designed decoy reference genome stretches 
(Dashnow et al., 2018). These decoy chromosomes cover all possible versions of 1–6 bp repeat 
blocks and thus enable mapping of even novel repeat expansion alleles. This provides a more 
accurate initial setting for detecting variable repeat unit lengths (Dashnow et al., 2018). In 
another study, a pseudoreference was built for the TTN triplicate region, forcing reads to align 
to one repeat block, and hexaploidy variant calling revealed a significant SNV in the TRI region 
(Cummings et al., 2017). A homologous region was resolved with a four-allele normalization 
method taking into account the number of pseudogene copies (Kerkhof et al., 2017). However, 
MLPA or PCR were needed to determine whether the variant was located in the gene or in a 
pseudogene. These approaches of forcing all the reads from the repetitive regions into one 
location would probably produce data impossible to evaluate with the current CNV analysis 
tools. Most likely, an additional algorithm and comparison to normal samples would be needed, 
as with the SMN1/SMN2 algorithm. However, finding enough subjects in each sequencing batch 
with reliably normal copy number count in the TTN TRI and NEB TRI region could be 
challenging. WGS and long-read sequencing may eventually clarify some of these regions with 
frequent probably false positive CNV detections by allowing more accurate initial read 
alignment for CNV analysis and enabling multiple algorithmic approaches. 

Among the complementary verification methods for unspecific CNV detections from MPS 
data, ddPCR has been tested. This method could be used to resolve pseudogenes with extremely 
high similarity (STRC has a > 99% similar pseudogene) (Amr et al., 2018). The regions were 
differentiated by inclusion of unique nucleotides into probe design with TaqMan chemistry 
(Amr et al., 2018). This is in theory a similar approach to our successful SMN1/SMN2 
differentiation algorithm but would be more challenging in the TTN TRI and NEB TRI regions 
with less clearly differentiating nucleotides. Probably, both exons and introns should be 
targeted to increase accuracy (Shen and Wu, 2009). One possibility for inspecting high 
homology regions is to design longer capture probes for more accurate hybridization-based 
target enrichment (Gulilat et al., 2019). Long-range sequencing would also work in this 
verification, but it is still not scalable, simple or cost-effective (Amr et al., 2018). A method 
with ddPCR to differentiate both NEB TRI and TTN TRI is under development in a 
collaborative group, and the samples with putatively interesting findings will be submitted for 
this analysis to gain further insight.  

Although the NEB TRI CNV detections from MPS data were inaccurate, they were successfully 
verified to be diverging and significant in some cases. Therefore, screening from MPS data 
could be used to select additional confirmatory testing only for possibly positive detections. In 
some cases, CNV deviations of more than one in block number were clinically non-significant. 
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The likely explaining mechanism is that the copy number changes occurred in repeat blocks on 
different alleles, resulting in a one-copy change on each, which apparently is not deleterious 
(Kiiski, K. et al., 2016), but this was not verified with an additional method. Array CGH cannot 
differentiate the amount of the copies for the alleles, so ddPCR would also bring more insight 
into this (Kiiski, K. et al., 2016). Only MYOcap sequencing provided the material for NEB TRI 
comparison. It provides higher average read depth and stronger signal compared to WES 
samples. The in-house CNV database was large enough with MYOcap samples to compare 
CNV detections and to detect divergent NEB TRI changes. These can now be compared with 
future CNV detections since NEB TRI CNVs are important in NMD cohorts, as was shown for 
the one patient with a clinically significant NEB TRI 8/6 finding.



149 

7 CONCLUSIONS 
In this study, the diagnostic bioinformatics workflow for targeted gene panel and WES 
sequencing data for CNV detection has been optimized. 

Objective I 
As proven in this study, the setup for accurate CNV detection requires the combined use of 
more than one program for CNV analysis. This was validated with CNV positive and negative 
control samples and by verification of newly detected CNVs and in silico generated CNVs, as 
was the aim of the objective I. 
Objective II 
Besides the combined CNV detections, the optimization of the detection pipeline requires 
thorough evaluation of the results for true positive detections using a statistical model in a 
standardized manner to avoid bias and to increase accuracy. As was the aim with the objective 
II, a predictive logistic regression model was successfully developed and validated to 
differentiate detections with true positive prediction for this purpose. The detection sensitivity 
was high for CNVs of more than three exons, and even one exon CNVs could be detected with 
high enough accuracy. The predictive model also decreased the workload in CNV annotation. 
Objective III 
CNV annotation with cnvScan was improved with the inclusion of the recently published 
population CNV databases and other resources, and with different scopes for comparing CNVs 
to databases. With a frequency filtration in our in-house CNV database and population 
databases, the number of variants left for the clinical significance evaluation was further 
decreased. This simplified the diagnostic process, as was the aim of the object III. 
Objective IV 
The CNV detection and annotation pipeline was also validated for WES samples with slight 
modifications to reach adequate detection accuracy, as was the aim of the objective IV. 

The eventual diagnostic yield for both sequencing data types corresponded well to results from 
previous studies. Additionally, regions of moderate homology were successfully differentiated 
from the MPS data with an additional script used for SMN1 and SMN2. However, in order to 
achieve the ultimate aim: to accept CNV detections without additional verification, the current 
method needs more validation with true samples with CNVs. A separate method was also 
needed for the validation of CNV detections from the NEB TRI region. Nevertheless, true 
variations in the copy number of the repeats in the NEB TRI region could be validated based 
on initial screening from the MPS data. Therefore, the validated NEB TRI detections in these 
samples could be used as background data when screening short-read sequencing data for novel 
detections in this region in the future. However, to increase the total diagnostic yield of CNV 
analysis, accuracy of CNV detections and to expand the analysis to include structural variants, 
additional sequencing data sources and methods will be required, such as WGS, long-read 
sequencing, RNA sequencing, and ddPCR.
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SUPPLEMENTAL TABLES 
Supplemental table 1: Genes in MYOcap targeted gene panel versions. For the versions after MYOcap 
v.1, only the newly added genes are displayed.
MYOcap v.1 v.2 v.3 v.4 v.5 v.6
ABHD5 KCNJ2 PABPN1 AIFM1 ACTN2 ADSSL1 ACAD9 ATP2A2 
ACADS KCNQ1 PALB ALG13 C10orf2 ALDOA ACADM INTS11 
ACADVL KLHL9 PDLIM3 ALG14 CASQ1 AMPD1 B4GAT1 MICU1 
ACTA1 KY PDLIM5 ALG2 CASQ2 TBCE CAMSAP1 MMP8 
ACTN3 LAMA2 PDLIM7 B3GALNT2 CELF2 B3GNT2 CAMSAP2 MSTO1 
ACVR1 LAMP1 PFKM B4GALNT1 HSPB2 BVES CAVIN1 MYO18B 
AGL LAMP2 PGAM2 BICD2 GYG1 CHCHD10 CUL3 PIP4P1 
ANO5 LARGE PGK1 C20ORF72 HNRNPA1 CLN3 DNAJB2 PIP4P2 
ATP2A1 LDB3 PGM1 CELF1 HNRNPA2B1 DNMT3B DNAJC19 POPDC3 
B3GNT1 LDHA PLEC1 COL12A1 HNRPDL ESRRG DNAJC5 SARS2 
BAG3 LDHB PLEKHG4 DCST2 HSPB1 FAT1 DOK7 SLC25A32 
BIN1 LIFR PLN DOLK HSPB3 GAPDH FAM111B SLC52A1 
CACNA1A LMNA PNPLA2 DPAGT1 HSPB6 GGPS1 FLAD1 SLC52A2 
CACNA1S MATR3 POMGNT1 DPM1 HSPG2 HACD1 FYCO1 SLC52A3 
CAPN3 MBNL1 POMT1 ECEL1 LMOD3 HINT3 GOLGA2 TANGO2 
CAV3 MBNL2 POMT2 EXOSC3 LPIN1 HNRNPDL HADHA ZNF33A 
CFL2 MBNL3 PRKAG2 FBN2 SIL1 KCNJ18 HADHB 
CHKB MEGF10 PTRF GATM ORAI1 KCNJ5 INPP5K 
CKM MSTN PYGM GMPPB POMGNT2 KLC1 JAG1 
CLCN1 MTM1 RYR1 GNB4 PUS1 KLHL40 LTBP4 
CMYA5 MTMR14 SCN4A GOSR2 SGCE KLHL41 OPTN 
CNBP MURF1 SEPN1 GSN SLC25A4 LARGE1 PIEZO1 
CNTN1 MURF2 SGCA HEXB SOD1 MB PIEZO2 
COL6A1 MYBPC2 SGCB HK1 SPEG MGME1 POGLUT1 
COL6A2 MYBPC3 SGCD HSPB8 SPTB NALCN PYROXD1 
COL6A3 MYH1 SGCG ITPR1 TK2 PHKA1 SELENON 
CPT2 MYH2 SLC22A5 KBTBD10 XIRP1 PNPLA8 SLC25A42 
CRYAB MYH3 SLC25A20 KBTBD5 XIRP2 POMK SPTAN1 
CSRP3 MYH4 SOX10 LAMB1 YARS2 PREPL SPTBN5 
CUGBP1 MYH7 SQSTM1 LIMS2 RRM2B TAZ 
DAG1 MYH8 SRF MARS SACS TMEM126B 
DES MYL1 SYNE1 MYBPC1 SBDS TP53INP2 
DHPR MYL10 SYNE2 NEFL SLC4A1 TRIP4 
DMD MYL12A SYNE3 PDK3 SLC7A10 TWNK 
DMPK MYL12B SYNPO2 PLEC SMPX ZAK 
DNAJB6 MYL2 TCAP PLEKHG5 SPP1 ZBTB8B 
DNM2 MYL3 TIA1 POLG SRPK3 ASCC2 
DPM2 MYL4 TMEM43 PTPLA SUCLA2 
DPM3 MYL5 TMEM5 QDPR TARDBP 
DUX4 MYL6 TMOD3 RBCK1 TPI1 
DYSF MYL6B TNNC1 SBF1 
EMD MYL7 TNNC2 SGK196 
ENO3 MYL9 TNNI1 SLC5A2 
ETFA MYLIP TNNI2 SMCHD1 
ETFB MYLK TNNI3 STAC3 
ETFDH MYLK2 TNNT1 STIM1 
FBXO32 MYLK3 TNNT3 STIM2 
FHL1 MYLK4 TPM1 TFG 
FHL2 MYLPF TPM2 TIAL1 
FKRP MYOM1 TPM3 TMEM55A 
FKTN MYOM2 TRIM32 TMEM55B 
FLNC MYOM3 TTN TNPO3 
GAA MYOT VCP TNXB 
GBE1 MYOZ1 VMA21 TOR1AIP1 
GNE MYOZ2 TPP1 
GTDC2 MYOZ3 TRAPPC1 
GYS1 MYPN TRAPPC11 
ISCU NBR1 TRIM54 
ISPD NEB TRIM55 
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ITGA7 NEBL TRIM63 
KBTBD13 NTRK1 TTR 
KCNE1 OBSCN UBA1 
KCNE3 OBSL1 VRK1 

Supplemental table 2: Genes in MNDcap targeted gene panel versions. For the versions after MNDcap 
v.1, only the newly added genes are displayed (only v.3 got additions).
MNDcap v.1 v.3
AAAS ATXN8OS EWSR1 INF2 NOTCH3 SCN4A TNNI2 ADCY6 
AARS AVIL EXOSC3 ITPR1 NT5C2 SCN9A TNNT3 ADGRG6 
AARSD1 BEAN1 FA2H KARS NTRK1 SEPT9 TOR1A CACNA1B 
ABCA1 BICD2 FAM134B KCNA1 OPA1 SETX TPM2 CAVIN1 
ABCD1 BSCL2 FARSA KCNC3 PDK3 SFN TRIM2 CAVIN4 
ABHD12 C10orf2 FBLN5 KIAA0196 PEX1 SGCE TRPV4 CNTNAP1 
ADCK3 C12orf65 FGD4 KIF1A PEX7 SH3TC2 TSFM COL13A1 
AFG3L2 C9orf72 FGF14 KIF1B PFN1 SIGMAR1 TTBK2 COQ8A 
AGRN CACNA1A FIG4 KIF1C PGAP1 SIL1 TTPA ELP1 
AHNAK CACNA1S FLRT1 KIF21A PHB SLC12A6 TTR GBE1 
AIFM1 CACNB4 FUS KIF5A PHOX2A SLC1A3 TUBA8 GLDN 
ALDH3A2 CCT5 FXN L1CAM PHYH SLC25A20 TUBB3 GMPPB 
ALG14 CD59 GALC LAMB2 PIP5K1C SLC25A4 TYMP KCNJ18 
ALG2 CHAT GAN LITAF PLEKHG5 SLC25A5 UBA1 MAGEL2 
ALS2 CHCHD10 GARS LMNA PLP1 SLC33A1 UBQLN1 MME 
AMPD2 CHMP2B GBA2 LRSAM1 PMM2 SLC52A1 UBQLN2 MRE11 
ANG CHRNA1 GDAP1 MAPT PMP22 SLC52A2 USP8 MYH14 
ANO10 CHRNB1 GFPT1 MARS PNPLA6 SLC52A3 VAMP1 MYO9A 
AP4B1 CHRND GJB1 MATR3 POLG SLC5A7 VAPB PLEC 
AP4E1 CHRNE GJB3 MED25 POLG2 SMN1 VARS PREPL 
AP4M1 CHRNG GJC2 MFF PPP2R2B SOD1 VCP RETREG1 
AP5Z1 COLQ GLA MFN2 PRKCG SOX10 VPS37A SAFB 
APOA1 CTDP1 GLE1 MICAL1 PRPH SPAST VRK1 SCN11A 
APTX CYP7B1 GNB4 MPV17 PRPS1 SPG11 WDR48 SLC18A3 
AR DAO GRN MPZ PRRT2 SPG20 WNK1 SMN2 
ARHGEF10 DCTN1 HARS MRE11A PRX SPG21 YARS SNAP25 
ARL6IP1 DDHD2 HEXA MTMR2 PTRF SPG7 ZFR SPART 
ARSA DHTKD1 HEXB MTPAP QARS SPTBN2 ZFYVE26 SPART-AS1 
ARSI DNAJB2 HINT1 MTTP RAB3GAP2 SPTLC1 ZFYVE27 TIA1 
ASAH1 DNM1L HK1 MURC RAB7A SPTLC2 TWNK 
ATL1 DNM2 HNRNPA1 MUSK RAPSN SQSTM1 UNC13A 
ATM DNMT1 HOXD10 MYH3 REEP1 SUCLA2 WARS 
ATP1A2 DOK7 HSPB1 MYH8 RRM2B SYNE1 WASHC5 
ATP2B3 DPAGT1 HSPB3 NARS RTN2 TAF15 
ATP7A DYNC1H1 HSPB8 NDRG1 SACS TARDBP 
ATXN1 EGR2 HSPD1 NEFH SARS TBP 
ATXN10 ENTPD1 IARS NEFL SBF1 TDP1 
ATXN2 ERBB3 IFRD1 NGF SBF2 TECPR2 
ATXN3 ERLIN1 IGHMBP2 NIPA1 SCN10A TFG 
ATXN7 ERLIN2 IKBKAP NOP56 SCN1A TK2 

Supplemental table 3: PCR primers. Tm calculated with the Primer3 calculator. 
Primer Primer sequence Tm (°C) 
CACNA1A int40_F 5’ CCTTCCAATTCCACGCAGAACTG 3’ 62.21 
CACNA1A int38_R 5’ GTGAGCTATGTTTGTGCCACGG 3’ 62.32 
CAPN3 ex1_F 5’ GACCTTCTGATGGGCTTTCA 3’ 57.50 
CAPN3 ex1_R 5’ CTCTCCTCCCTGCTTCACAC 3’ 59.75 
CAPN3 ex2_F 5’ ACTCCGTCTCAAAAAAATACCT 3’ 56.20 
CAPN3 ex2_R 5’ ATTGTCCCTTTACCTCCTGG 3’ 58.0 
CAPN3 ex8_F 5’ CCCCAGCACACTTGTGATTA 3’ 57.80 
CAPN3 ex8_R 5’ ATCCTTCCTTTCCAGCCAAT 3’ 56.77 
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* = primer from the LoVD database (https://www.lovd.nl/) 

CAPN3 ex9_F 5’ CCTGCTTCCTTAATTCCTCCATTTT 3’ 63.80 
CAPN3 ex9_R 5’ CTCTTCCCCACCCTTACCCTTCT 3’ 64.90 
COL6A1 int8_F 5’ TCCTGCTCCTCCCATGTGTTG 3’ 62.07 
COL6A1 int13_R 5’ AGTGGGTAAACTGAGGCCAATCA 3’ 61.85 
COL6A3 ex38_F 5’ ATGGGTCGATGTTGCAGATGTCT 3’ 62.26 
COL6A3 ex31_R 5’ GGTGAACCTGGGCTAAATGGAAC 3’ 61.68 
DMD ex41_F 5’ AGTTGAGTCTTCGAAACTGAGCA 3’ 60.28 
DMD ex41_R 5’ GGCCCTGTATTGGTTTTGCTCAA 3’ 61.88 
DMD ex42_F 5’ CCATGTGAAAGTCAAAATGCCATCA 3’ 60.80 
DMD ex42_R 5’ ATCACTCATGTCTCACAAGCCCT 3’ 61.65 
DMD ex43_F 5’ ACCCTTGTCGGTCCTTGTACATT 3’ 61.83 
DMD ex43_R 5’ CAACAAAGCTCAGGTCGGATTGA 3’ 61.36 
DMD ex44_F 5’ TTTCCATCACCCTTCAGAACCTG 3’ 60.50 
DMD ex44_R 5’ TGAGAAATGGCGGCGTTTTCATT 3’ 62.17 
DMD ex45_F 5’ TGCCTTTCACCCTGCTTATAATCT 3’ 60.08 
DMD ex45_R 5’ TTGGGAAGCCTGAATCTGCG 3’ 60.68 
DMD ex46_F 5’ CAATGTTATCTGCTTCCTCCAACCA 3’ 61.33 
DMD ex46_R 5’ TTTGTGTCCCAGTTTGCATTAACAA 3’ 60.34 
DMD ex48_F 5’ CCCTACCTTAACGTCAAATGGTCC 3’ 61.16 
DMD ex48_R 5’ CCAGAGCTTTACCTGAGAAACAAGG 3’ 61.54 
DMD ex49_F 5’ GCAAATGTACAACAGGGGAAGCA 3’ 61.87 
DMD ex49_R 5’ GCAGTTCAAGCTAAACAACCGGA 3’ 61.85 
DMD ex55_F 5’ CGGAAATGCCTGACTTACTTGCC 3’ 62.27 
DMD ex55_R 5’ CGAGAGGCTGCTTTGGAAGAAAC 3’ 62.20 
DMD ex56_F 5’ ATGTGAGATACCAGTTACTTGTGCT 3’ 60.05 
DMD ex56_R 5’ TCCGATGATGCAGTCCTGTTACA 3’ 61.69 
MYOM1 post-ex36R 5’ CCACTCGGACAAAGAAGCTGAAT 3’ 61.11 
MYOM1 pre-ex35F 5’ CTTGTCCCACTTGCCTTTCATCC 3’ 61.93 
SGCD ex1_F 5’ GCTGTGTGGAGAATGGCTGAAAA3’ 61.86 
SGCD ex1_R 5’ GACTGCTTTGAAACCGTACTCCG 3’ 61.94 
SGCD ex5_F 5’ CCCCTTGGAGAGTTGTAATG 3’* 55.42 
SGCD ex6_F 5’ GATGAGACTAATGGTGTTTT 3’* 50.73 
SGCD ex6_R 5’ AAAATGTACACAGTAGCATC 3’* 51.18 
TTN del_F 5’ TAGGGAATGCTGGCGATATGGTT 3’ 61.84 
TTN del_R 5’ TCTCCAAGCCACTCACAGATCAG 3’ 61.94 
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