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1  | INTRODUC TION

Species populations are now more isolated and declining as a con-
sequence of climate change and fragmentation and degradation 

of their habitats which also lead to erosion of mass biodiversity 
(Bosso et  al.,  2018; Haddad et al., 2015; Lindenmayer, Franklin, 
& Fischer, 2006; Zambrano et  al.,  2019). The influences of hab-
itat spatial and ecological quality and alteration on species loss, 
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Abstract
Across a large mountain area of the western Swiss Alps, we used occurrence data 
(presence-only points) of bird species to find suitable modelling solutions and build 
reliable distribution maps to deal with biodiversity and conservation necessities of 
bird species at finer scales. We have performed a multi-scale method of modelling, 
which uses distance, climatic, and focal variables at different scales (neighboring 
window sizes), to estimate the efficient scale of each environmental predictor and 
enhance our knowledge on how birds interact with their complex environment. To 
identify the best radius for each focal variable and the most efficient impact scale 
of each predictor, we have fitted univariate models per species. In the last step, the 
final set of variables were subsequently employed to build ensemble of small models 
(ESMs) at a fine spatial resolution of 100 m and generate species distribution maps as 
tools of conservation. We could build useful habitat suitability models for the three 
groups of species in the national red list. Our results indicate that, in general, the 
most important variables were in the group of bioclimatic variables including “Bio11” 
(Mean Temperature of Coldest Quarter), and “Bio 4” (Temperature Seasonality), then 
in the focal variables including “Forest”, “Orchard”, and “Agriculture area” as potential 
foraging, feeding and nesting sites. Our distribution maps are useful for identifying 
the most threatened species and their habitat and also for improving conservation ef-
fort to locate bird hotspots. It is a powerful strategy to improve the ecological under-
standing of the distribution of bird species in a dynamic heterogeneous environment.
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isolation, recolonization, and movement have been widely ac-
knowledged (e.g. Andrén, 1994; Collinge,  1998; Imbeau, Drapeau, 
& Mönkkönen, 2003; Wiens, 2002a, 2002b; Zambrano et al., 2019). 
In this context, landscape compositions and arrangements of natu-
ral areas, such as mountains, and knowledge of the interaction be-
tween species and their environment play a key role in population 
persistence and biodiversity conservation (Austin, 2002; Guisan & 
Thuiller, 2005; Scridel et al., 2018; Zambrano et al., 2019).

This could be achieved with modelling tools, such as species 
distribution models (SDMs), that facilitate conservation decisions 
in spatially complex landscapes (Guisan & Thuiller,  2005; Guisan 
et  al.,  2013; Habibzadeh & Ludwig, 2019). SDMs are statistical 
methods for assessing species' ecological requirements and pre-
dicting geographical distribution in space and time on the basis of 
the correlations of environmental variables and species occurrences 
(Austin, 2007; Hirzel, Lay, Helfer, Randin, & Guisan, 2006; Naimi & 
Araújo,  2016). When using SDMs, it is critical and problematic to 
identify the appropriate scale within which environmental variables 
affect the distribution of species and most SDMs fall short to in-
corporate environmental and land use variables at different spatial 
scales (Fournier, Barbet-Massin, Rome, & Courchamp, 2017; Guisan 
& Thuiller, 2005; Mackey & Lindenmayer, 2001; Vicente et al., 2014). 
Most SDM studies rarely support the role of the best scale (the op-
timal range of spatial scales affecting distribution patterns of mobile 
organisms) of effects of focal predictors (that sum up information on 
the surrounding landscape within the focal cell; see Bellamy, Scott, 
& Altringham, 2013; Fournier et al., 2017; Guisan & Thuiller, 2005) 
on highly mobile organisms like bird species in complex landscapes 
(Chase et al., 2018; Guisan & Thuiller, 2005). SDMs usually consider a 
single predictor at a single spatial scale that is restricted to the extent 
of the sampling and the grain size and does not sufficiently address 
scale dependencies (Chase et al., 2018; Fournier et al., 2017; Hamer 
& Hill, 2000; Vicente et al., 2014). But the specific value of a single 
cell is not sufficient where we need several landscape elements, such 
as distance to resources, land structures, and land cover variables 
to incorporate spatial context and neighborhood and address the 
complexity of the ecological niche of the mobile species (Fournier 
et al., 2017; Guisan & Thuiller, 2005; Jaberg & Guisan, 2001; Rainho 
& Palmeirim, 2011; Scherrer, Christe, & Guisan, 2019).

Compared to plants, bird species pose more modelling problems 
at high spatial resolutions since it demands to take into account 
the effect of different spatial scales on a highly mobile group such 
as birds (Fournier et  al.,  2017; Guisan & Thuiller,  2005; Scherrer 
et al., 2019). In addition, research into feeding and nesting require-
ments for many bird species at multiple spatial scales still remains 
inadequate, and most of the recent studies tend to use a fixed spa-
tial scale (Fournier et  al.,  2017; Jaberg & Guisan,  2001; Scherrer 
et al., 2019). Thus, it is important to develop an efficient framework, 
for bird species distribution, to assess the effect of focal predic-
tors and compile information on the neighboring landscape within 
a focal cell at an appropriate scale (e.g., habitat selection in a proper 
scale; Bellamy et  al.,  2013; Bellier, Certain, Planque, Monestiez, 
& Bretagnolle,  2010; Bucklin et  al.,  2015; Fournier et  al.,  2017; 

Guisan & Thuiller,  2005; Revermann, Schmid, Zbinden, Spaar, & 
Schröder, 2012). Such a multi-scale modelling method provides in-
formation on species distribution, identifies different requirements 
of bird species within foraging, nesting, and breeding range (Fournier 
et al., 2017; Guisan & Thuiller, 2005; Pearson, Dawson, & Liu, 2004; 
Vicente et al., 2014), and contributes to finer-scale identification and 
planning of biodiversity and protected areas (Fournier et al., 2017; 
Razgour, Hanmer, & Jones, 2011; Vicente et al., 2014).

One major step forward of this study is the systematic assess-
ment of the best scale within which the landscape (mainly land cover 
and land use), distance, topographic, and climatic predictors of bird 
habitat suitability are the most influential. This multi-scale approach 
which involves linking focal variables with predicting power of en-
sembles of small models (ESMs) enables us to consider complexities 
in localization of birds as highly mobile species, especially in moun-
tainous ecosystems with a great topographic ruggedness, which 
poses the significant modeling challenge of neighborhood analysis 
(Bellamy et al., 2013; Scherrer et al., 2019). These developments on 
the spatial modelling should improve our capacity to use models to 
assist bird monitoring and management in space and time, and ulti-
mately help to identify priority bird conservation areas.

In this study, we employed the occurrence data of bird species 
to find efficient modelling solutions and build reliable distribution 
maps for biodiversity and conservation necessities at finer scales. 
In order to identify the efficient scale of each environmental pre-
dictor, we have performed a multi-scale modelling method and used 
focal variables at different scales. We defined 12 neighboring win-
dow sizes (0.1-5 km) to explore the effect of species-specific scales 
of influence of each variable, and then we fitted univariate models 
to identify the best radius for each focal variable (land cover and 
land use) for each species and the most efficient scale of influence of 
each predictor. We then employed the final set of variables obtained 
from the previous stage to build ESMs at a fine spatial resolution of 
100 m and generate species distribution maps as a monitoring tool 
of habitat suitability.

F I G U R E  1   The Mute Swan (Cygnus olor) is an introduced 
breeding bird to Switzerland (Sattler et al., 2015)
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The key issues in this research are the following: (a) an analysis 
of the role of the best scale (size of neighborhood) of effects of focal 
predictors (land cover and land use) at local (topographic and mi-
cro-climatic) scale in bird species distribution across a complex land-
scape, and (b) providing potential and optimized distribution maps 
as a monitoring tool of habitat suitability and biodiversity conserva-
tion planning. This study followed a similar approach, carried out by 
Scherrer et al.  (2019) to bat species, but we have expanded its ca-
pacity to include a diverse group of species (not just rare and cryptic 
species) and take into account the consequences of climate change 
and major anthropogenic disruptions in the landscape on bird spe-
cies distribution for biodiversity planning purposes (Figure 1).

2  | MATERIAL S AND METHODS

2.1 | Study area and species data

The study area, the western Swiss Alps of Vaud (46°10 to 46°30′N; 
6°50′ to 7°10′E; Figure 2), has been a site of high importance for 
interdisciplinary and transdisciplinary research at the University of 
Lausanne since 2013 and is now transferred to the Interdisciplinary 
Center for Mountain Studies (CIRM; http://recha​lp.unil.ch). It in-
cludes an area of ca. 700 km2 and elevation gradient extending from 
Geneva's lake at 372 m to the Pointe des Diablerets at 3,210 m a.s.l. 
(Descombes, Vittoz, Guisan, & Pellissier, 2017; Scherrer et al., 2019) 
and it is affected by significant human activity: dense population and 
intensive farming in the Rhône Valley, tourism and leisure activities 
and more extensive farming in subalpine regions that makes up a 

mosaic of meadows, pastures, and forest and woodland patches (see 
http://recha​lp.unil.ch; Pellissier et al., 2012; Randin, Jaccard, Vittoz, 
Yoccoz, & Guisan, 2009; Scherrer et al., 2019).

The bird data are provided by the Swiss Ornithological Institute 
(Monitoring Häufige Brutvögel [MHB]; Schmid, Zbinden, & 
Keller, 2004) started in 1999 and performed annually (for more in-
formation on the survey see https://www.vogel​warte.ch/de/proje​
kte/monit​oring​/monit​oring​-haeuf​ige-brutv​oegel), Swiss Breeding 
Bird Atlas 2013–2016 (Knaus et  al.,  2018; see https://www.vogel​
warte.ch/en/proje​cts/monit​oring​/swiss​-breed​ing-bird-atlas), and 
Swiss Biodiversity Monitoring [BDM] an ongoing biodiversity mon-
itoring programme including birds species richness since 2001 
that are updated annually, for monitoring the population of the 
most common species in terms of trends and changes of range 
size. Surveys and monitoring methods use those of the Sempach's 
Common Breeding Bird Survey (MHB) of the Swiss Ornithological 
Institute (BDM Coordination Office, 2014) that are explained in de-
tails in the following paragraphs (more details on http://www.biodi​
versi​tymon​itori​ng.ch/en/backg​round.html). These data are obtained 
from a systematic sampling (27,961 sampling points) of 267 quadrats, 
each covers 1-km2, located as grids across Switzerland (39 quadrats 
are located in our study area). The data are collected three times in 
breeding seasons (15 April–15 July), and twice for quadrats that are 
located above the timberline at the elevation around 2,000 m. Each 
survey takes 3–4 hr along a 4-6 km transect route where breeding 
birds are marked through visual observations or acoustic contacting 
(Kéry & Royle, 2009; Royle, Kéry, Gautier, & Schmid, 2007). A set of 
91 bird species are used in this study with 67 species known as least 
concerned (LC), 11 species as near threatened (NT), 12 species as 

F I G U R E  2   Study area and sampling 
points
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vulnerable (VU), and 1 as endangered (EN) based on the national red 
list (Figure 3). This classification could allow us to apply the research 
approach to a wide range of bird species from rare to poorly sampled 
ones. We only considered birds with a sample size greater than 20 
presence records (>20 presence) as species with fewer presence re-
cords, due to errors connected with very small sample size, are not 
deemed appropriate for modeling (Thuiller, Lavorel, & Araújo, 2005).

2.2 | Environmental data

Environmental data were derived from different sources, used for 
generating gridded environmental variables at 100 m spatial reso-
lution and manipulated in ARCGIS 10.2 (Environmental System 
Research Institute, Inc.) or in R 3.3 (R Core team, 2016). We selected 
15 environmental variables from various sources (Table 1) assumed 
ecologically meaningful and influential on mobile species like birds 
(Jaberg & Guisan,  2001). These include two climatic variables 
(Bio4 = Temperature Seasonality and Bio11 = Mean Temperature 
of Coldest Quarter), one topographic (slope), four distance vari-
ables (Euclidean distance to nearest lake, river, road, and residen-
tial area), the normalized difference vegetation index (NDVI; Rouse, 
Haas, Schell, & Deering, 1973), and canopy height mean. In addi-
tion, we defined a classification of six land cover and NDVI, each 
class measured within each pixel with varying 12 size (scales), i.e. 
within 12 neighboring windows of increasing radius size around 
each pixel (100, 200, 300, 400, 500, 1,000, 1,500, 2,000, 2,500, 
3,000, 4,000 and 5,000 m; i.e. focal analyses—hereafter ‘focal vari-
ables’; Progin, 2018, Scherrer et al., 2019). Correlation coefficients 
were calculated for environmental variables, with the application of 
the Spearman's correlation coefficients (Spearman correlation <0.7; 
Dormann et al., 2013), to include the variables that are not highly 
correlated (Bellamy et al., 2013; Progin, 2018; Scherrer et al., 2019). 
There are more details on environmental variables in Table 1 and 
Table S1.

2.3 | Species distribution modelling

2.3.1 | Univariate models

For improving our understanding of the ecological connection be-
tween bird species and their complex environment, all bird species 
were grouped, based on their preferred habitat and settlements 
areas, into 7 groups including Alpine Habitat, Farmland and Forest 
Edge, Deciduous forest, Coniferous forest, Mixed Forest, and Water 
habitats (wetlands, lakes, rivers and streams; Bellamy et  al.,  2013; 
Herzog et al., 2005; Razgour et al., 2011; Figure 4).

For each species, we fitted univariate SDMs (Bellamy et al., 2013; 
Graf, Bollmann, Suter, & Bugmann,  2005; Progin, 2018; Scherrer 
et  al.,  2019) using a generalized linear model (GLM) technique to 
identify the best radius (size of the moving windows) for each focal 
variable. We used the biomod2 package to fit the models (Breiner, 
Guisan, Bergamini, & Nobis, 2015; Guisan, Edwards, & Hastie, 2002; 
Thuiller et al., 2016) in R v3.3 (R Core Team, 2016). For each focal 
variable, we run univariate models at the 12 neighboring window 
sizes (i.e. radius). Each model was run 10 times with 5 replicates of 
pseudo-absence records with the size of 5,000, 50 runs in total, 
and at each run, 70% of the records were randomly selected to 
train the model, and the remaining 30% were used to evaluate the 
models. We used the area under the curve (AUC) of the receiver 
operating characteristic (ROC) plot (Fielding & Bell, 1997; Scherrer 
et al., 2019), which is the most frequently used metric in SDMs, to 
evaluate the models (Katz & Zellmer, 2018; Mohammadi, Ebrahimi, 
Moghadam, & Bosso, 2019; Scherrer et al., 2019). The pseudo-ab-
sences were weighted equally to the presence (prevalence of 0.5; 
Ferrier, Drielsma, Manion, & Watson, 2002; Progin, 2018; Scherrer 
et al., 2019; Thuiller et al., 2016) as unbalanced prevalence reduce 
the accuracy of the models (Guisan, Thuiller, & Zimmermann, 2017). 
For each species, the best window radius size (i.e. scale) for each 
land-cover variable was selected using the performance of the 
GLMs, measured by AUC, that was averaged for a better presenta-
tion of all bird data across all species, and run in different habitats. 
We selected the best scale (i.e. window size) for focal variables based 
on the highest AUC score, and all the variables with the highest AUC 
were selected and used later in the final model (multivariate models).

2.3.2 | Ensemble of small models

The ESMs was built in the "ecospat" package (Di Cola et al., 2017) 
and "biomod2" (Thuiller et  al.,  2016) in R 3.3 software (R Core 
Team, 2016) out of a large series of variables with just two variables 
as predictors (ESM; Breiner et al., 2015; Breiner, Nobis, Bergamini, & 
Guisan, 2018; Habibzadeh & Ludwig, 2019). We have used the birds’ 
occurrence data (presence-only points) as the response variable and 
the final set of selected variables per species obtained from univari-
ate models (previous stage) as predictors.

Two widely used modelling techniques, Generalized Additive Model 
(GAM) and Multiple Adaptive Regression Splines (MARS), showed 

F I G U R E  3   The number of species in each category of the Red 
List status. Species that were threatened, least concerned (LC), near 
threatened (NT), and vulnerable (VU)
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powerful performance in fitting nonlinear and complex relationships 
between species (Leathwick, Rowe, Richardson, Elith, & Hastie, 2005; 
Mateo, Felicísimo, & Muñoz, 2010). All models were calibrated with 
presence only data combined with 10,000 randomly selected pseu-
do-absence records (Breiner et al., 2015; Thuiller et al., 2016; Wisz & 
Guisan, 2009). Pseudo-absence records were weighted to ensure an 
overall prevalence of 0.5 (i.e. giving equal weight to the presences and 
pseudo-absences records (Progin, 2018; Scherrer et al., 2019; Thuiller 
et al., 2016). For each species, this process was repeated 10 times with 
each of 10 pseudo-absence sets, 70% of the data were used for train-
ing and the other 30% for evaluating models (Araújo, Pearson, Thuiller, 
& Erhard, 2005; Muñoz & Felicísimo, 2004) with different evaluation 
metrics. Over the last years, there have been remarkable discussions 
about finding the best indices for evaluating models. Therefore, we used 
several indices such as area under the receiver operating characteristic 

curve (AUC), that is commonly used but recently criticized (Fernandes, 
Scherrer, & Guisan, 2019; Jiménez-Valverde, 2012), the true skills sta-
tistic (TSS; Allouche, Tsoar, & Kadmon, 2006; Fernandes et al., 2019), 
Cohen's Kappa Statistic (KAPPA; Cohen, 1960; Fernandes et al., 2019), 
continues Boyce Index (CBI) recently developed as the most reliable 
metric for evaluating presence only data (Hirzel et al., 2006; Progin, 
2018), and Somers'D metric (a re-scaled version of the AUC that 
ranged between −1 and +1 (Breiner et al., 2015; Fernandes et al., 2019).

A fundamental tenet of ESMs, for each species, is to build bi-
variate small models with all possible combinations of two en-
vironmental variables as predictors that results in 105 models 
defined by (n2  −  n)/2, where n refers to the number of variables 
(Progin, 2018; Scherrer et  al.,  2019). Each of the 105 small bivar-
iate models were weighted by Somers'D as a performing parame-
ter D = 2 ×  (AUC − 0.5) that varies between −1 and +1 and gives 

Category Name
Description—Each layer is at a 
100 M resolution Source

Climatic Bio 4 Temperature seasonality Swisstopo OFT

Bio 11 Mean temperature of Coldest 
Quarter

Swisstopo OFT

Topographic Slope Slope inferred from a digital 
elevation model at a 25 m 
resolution. Aggregate to 100 m 
resolution

Swisstopo OFT

Euclidean distance Distoroad Euclidean distance between the 
closet road and the center of 
the cell

Vector25 OFT

Distozonhabit Euclidean distance between the 
closet residential area and the 
center of the cell

Vector25 OFT

Distolake Euclidean distance between the 
closet lake and the center of 
the cell

Vector25 OFT

Disriver Euclidean distance between the 
closet river and the center of 
the cell

Vector25 OFT

Others Canoheight_
med

Average of canopy height at a 
100 m resolution, calculating 
from a 1 m resolution raster

Swisstopo OFT

NDVI_focal Mean of normalized difference 
vegetation index at different 
focal scale

Swisstopo OFT

Land cover Agriculture 
area

Proportion of agriculture area at 
different focal scale

Geostat OFS

Forest Proportion of forest at different 
focal scale

Geostat OFS

Hedge Proportion of hedge at different 
focal scale

Geostat OFS

LAKE Proportion of lake at different 
focal scale

Geostat OFS

Orchard Proportion of orchard at 
different focal scale

Geostat OFS

Swamp Proportion of swamp at 
different focal scale

Geostat OFS

TA B L E  1   Environmental variables. 
Description and name of each 
environmental variable used in the 
modelling process. The data were either 
provided by the OFS (Federal Office 
of Statistics) or OFT (Federal Office 
of Transports). For a more detailed 
description of the variables, please refer 
to Supporting Information
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higher weight to models that perform well (Breiner et  al.,  2015, 
2018; Breiner, Guisan, Nobis, & Bergamini,  2017; Fernandes 
et al., 2019; Habibzadeh & Ludwig, 2019; Nielsen, Johnson, Heard, 
& Boyce, 2005; Progin, 2018; Scherrer et al., 2019). Then an ensem-
ble forecast (Araújo & New, 2007) was generated by combining and 
averaging all small models for each modelling technique (ESMGAM, 
ESMMARS; Habibzadeh & Ludwig,  2019; Progin, 2018; Scherrer 
et  al.,  2019). Finally, an ensemble prediction (ESMEP) was created 
by averaging the outputs of both the single model ESMs (ESMGAM, 
ESMMARS; Breiner et  al.,  2015). For each environmental variable 
contributing to ESMs (predicted by different bivariate models), the 
weighted mean was calculated using the mean weight of all bivariate 
models, variable of interest as well, regularized by the variable with 
the highest weight ranging between 0 and 1 (Razgour et al., 2011; 
Scherrer et al., 2019). This allows using importance value for each 
variable in the ESMs.

2.3.3 | Species distribution and richness maps

To create distribution maps, for three groups of species (all species, 
non-threatened species, and threatened species), we combined the 
ensemble of each group of species into a final ensemble (Figure 8; 
Breiner et al., 2015, 2018). In order to select the optimal habitat of 
bird species which occupy varying home ranges in such a heteroge-
neous environment, we preferred to rely more on practical binary 
(proportion of presence cells) maps instead of probability maps 
(mean habitat suitability; Progin, 2018; Scherrer et al., 2019), as it is 

more complicated to compare the probability of model predictions 
with binary data (presence-absence) than to compare two variables 
at the same scale (Guisan et al., 2017). For this reason, a threshold 
value of 10% (the predicted value above which the model includes 
90% of the training locations) was applied in probability map (mini-
mal predicted area, MPA90%; Engler, Guisan, & Rechsteiner, 2004; 
Razgour et  al.,  2011; Scherrer et  al.,  2019). We then stacked and 
summed individual probabilities across all species predictions to 
yield maps of species richness that highlight optimal habitats and 
hotspots for each group of species. The predicted suitability of an 
area for bird species or the richness maps shows where there the 
best chance to find species is and allow us to understand how each 
group of species is distributed in the study area and could be a useful 
tool for nature practitioners (Distler, Schuetz, Velásquez-Tibatá, & 
Langham, 2015; Dubuis et al., 2011).

3  | RESULTS

3.1 | Univariate models—Scale selection

The average predictive power of the focal variables is shown by 
AUC of univariate models for each focal variable across the scales 
(100–5,000  m) based on the test datasets of 7 species classes. 
Generally, our results showed that the primary predictors of species 
distribution were land use/cover variables measured at large scales 
with the neighboring window size ranging from 1,000 to 5,000 m 
(Figure  5), but with considerable variations among different spe-
cies and variables. Bird species, in 7 different habitat, showed a high 
probability of presence/occurrence in areas located between 100 
and 500 m (small scale) away from Hedge and Forest areas, while 
for Agriculture, Swamp, Orchard, Lake, and NDVI variables they had 
the highest probability of presence/occurrence across large scales 
(1,000–5,000 m; Figure 5). This (univariate model) approach could 
improve the selection of the best scale for each focal variable used 
in the following stage in the final ESMs.

3.2 | ESMs—Model performance

The results have shown that both MARS and GAM modelling tech-
niques have been performing very similarly and consistently based 
on all evaluation metrics (Boyce Index, SomernD, TSS, AUC and 
Kappa), there have been no significant improvement in performance 
of modeling techniques used within ESM framework (Scherrer 
et al., 2019). For instance, the "SomersD" index showed no signifi-
cant differences in the performance of the ensemble prediction of 
models (EP) for all species, as the mean SomersD for MARS and GAM 
was 0.78 (±0.12 SE) and 0.77 (±0.13 SE) respectively. The mean TSS 
(MARS, GAM) and EP were similar for each modelling technique, 
equal to 0.67 (±0.15 SE), and it is true for other evaluation meth-
ods like AUC and Kappa (Figure 6). In summary, the performance of 
ensemble prediction, measured by the Continuous Boyce Index as 

F I G U R E  4   The number of bird species in different habitat types
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one of the most reliable presence-only evaluation metrics (Hirzel 
et al., 2006), has shown a good prediction accuracy for GAM mod-
els, ranging from 0.55 to 1 (M = 0.92, ±0.08 SE), and also for MARS 
models, ranging from 0.48 to 0.99 (M = 0.91, ±0.08 SE). All can be 
considered as very good models according to Araújo et al. (2005).

3.3 | Variable importance in the final model (ESMs)

Figure 7, shows the contribution of each variable (see Table 1 for its 
acronyms and descriptions) to all 91 modeled species. In general, the 
patterns of habitat suitability highlighted by the ESMs are strongly 

F I G U R E  5   Performance of univariate models for each group of species in different habitats: Association (averaged area under the curve 
over the 50 runs of each univariate models) between the presence of each group of species and each focal variable at 12 spatial scales
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linked to bioclimatic variables. For example, the most important 
relative contribution to model (0.79 and 0.72, respectively) to the 
average of all 91-bird species was the Bio 11 (Mean Temperature 
of Coldest Quarter) and the Bio 4 (Temperature Seasonality), while 
for the focal variables, Forest (0.66), Orchard (0.64) and Agricultural 
(0.62) contributed a significant, but slightly lower, total weight 
of 91 modeled species. The third in total value assessments were 
Euclidean variables distance to residential area (Diszonehabit; 0.61) 
and distance to road (Distoroad; 0.58), and then Slope (0.60; the 
only topographic variable). The focal predictors, NDVI (0.49), Lake 
(0.46), Swamp (0.41) selected by univariate models, and the distance 
variable "Distolake" (0.45) were of less importance than the others. 
Eventually, there were the variables of poor performance, including 
Hedge (0.39), "Disriver" (distance to river; 0.35) and "canoheight" 
(canopy height mean; 0.16; Figure  7). Results of three different 
groups of bird species are provided in Figure S1.

3.4 | ESMs—Species distribution maps

In general, species richness predictions show that the areas close 
to coniferous forest, agricultural areas, and zone habitats (residen-
tial areas) of the highlands are the most suitable for 78 of species 
listed as LC, NT in the study area. Species richness maps of the 91 
bird species and LC or NT in the national red list showed a pattern 
of moderate species richness distributed across the study area with 
higher habitat suitability in the eastern, central and northern parts of 
the study area near the highland area. However, this pattern varies, 
when 13 endangered species (VU or EN) are taken into consideration, 

which appear to occur only in lower slopes in the western part of the 
study area, near the deciduous forest, lake, and wetland (Figure 8).

4  | DISCUSSION

This study supports the role of the best scale of effects of focal 
predictors (land cover and land use) at local scale (topography and 
micro-climate) and the exclusion of poor focal variables (Bellamy 
et al., 2013; Progin, 2018) in bird species distribution in a complex 
landscape. This systematic approach to variable selection (univariate 
models with focal variables) and assessment of landscape's neigh-
boring influence increased the power of the model predictions in 
our heterogeneous study area and our findings confirmed that bird 
species respond to ecological parameters at particular spatial scale 
(Graf et al., 2005; Rocchia, Luppi, Dondina, Orioli, & Bani, 2018). The 
additional important finding is that ESMs approach is highly efficient 
for modelling species distributions with limited number of species 
occurrences. ESMs, with a limited number of presence data and a 
large number of environmental variables, can be effectively used for 
modelling bird species, the generated models and distribution maps 
can be used as comprehensive and practical tools in biodiversity 
conservation decisions (Chamberlain, Pedrini, Brambilla, Rolando, 
& Girardello, 2016; Scherrer et al., 2019). This innovative study im-
proved our knowledge and understanding of bird species niche vari-
ation, ecological priorities and distribution in the western Swiss Alps. 
It also supports practitioners to interpret the findings for identifying 
the environmental niche of the bird species (Guisan et al., 2017) and 
taking practical management decisions.

F I G U R E  6   Evaluation of the ensemble 
of small models (ESMs). Boxplot of the 
Continuous Boyce Index, Somers'D, true 
skills statistic (TSS), area under the curve 
(AUC) and kappa, calculated for each run 
of the ESMs
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4.1 | Univariate models

The occurrence of species, predicted by focal variables, significantly 
changed across all species and the relative importance of focal vari-
ables frequently changed with the radius and, in general, most were 
associated with focal variables measured at large scales between 
1,000 and 5,000  m. Focal variables in both univariate and multi-
variate models (final models) of the majority of species, Hedge and 
Forest have generally been the most influential predictors of habitat 
suitability at the small scale (100–500 m; within foraging, nesting, 
and breeding range) in different habitats. It is remarkable that differ-
ent group of species (7 groups) have similarly been identified in the 
small radius (100–500 m) of two focal variables Hedge and Forest. 
It could be interpreted that, among the 91 bird species included in 

our research, the majority are passerine birds (66 out of 91 species) 
which occupy agriculture habitats, and ecologically, breed, feed, and 
forage in forest edge areas that are rich in small trees and shrubs 
(Bauer, Bezzel, & Fiedler, 2012; Ludwig et  al.,  2012; Santangeli 
et  al.,  2018; Schaub, Kéry, Birrer, Rudin, & Jenni,  2011; Schwarz, 
Trautner, & Fartmann, 2018). Small-scale habitats of two variables 
Hedge and Forest show the special feeding behaviors of species 
within the range of their nesting and feeding habitats that, for pas-
serine in general, is a distance of around 300 m (Graf et al., 2005; 
Krištín & Kaňuch, 2017; Menz, Mosimann-Kampe, & Arlettaz, 2009). 
It could be assumed that these 7 groups of species benefit from two 
variables (forest and hedge) as foraging sources of insect prey that 
coincide with nesting and feeding in small distances within the home 
range (Monsarrat et al., 2013). We may infer that, for two variables 

F I G U R E  7   Variables contribution 
to three groups of the species. Boxplot 
of the variables contribution of each 
environmental variable among the 10 sets 
of pseudo absences. The value represents 
the proportion of the weights of the 
ensemble, which include the variable of 
interest

F I G U R E  8   Prediction of the models 
for three groups of species. () Binary 
prediction of the ensemble of small 
models (ESMs) (upper row). () The final 
prediction of the ESMs (lower row)
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(Hedge and Forest), habitat suitability of the seven groups of species 
declines over larger scales (Roth, Amrhein, Peter, & Weber,  2008) 
and these variables are undesirable or may be disrupted by human 
activities at larger scales (Graf et al., 2005).

The presence/occurrence probability of majority of species in 
different habitats increased with increasing the radius of focal vari-
ables, “Agriculture area”, “Orchard”, “Lake”, “NDVI”, and “Swamp”, in-
dicating that the strongest interaction with these focal variables was 
typically observed at larger scales (1,000–5,000 m). In these radius 
sizes, a greater number of species (Figure 5) benefit from these focal 
variables over larger scales, perhaps because these focal variables 
are faced with disruption such as urban and agricultural develop-
ments, transport growth, loss of connectivity (fragmentation) and 
loss of habitat at small scales in which bird species are threatened. 
Bird species are therefore forced to occupy suitable large-scale hab-
itats of these focal variables (Graf et  al.,  2005; Grüebler, Schuler, 
Spaar, & Naef-Daenzer, 2015). We can conclude that bird species, 
in this mountainous area, are disturbed by small-scale anthropo-
genic habitat disturbance for these five focal variables and it is not 
surprising that bird species in different habitats prefer these focal 
predictors at larger scales (Forman, Reineking, & Hersperger, 2002; 
Grüebler et al., 2015; Marzluff, 2001).

4.2 | Species distribution maps

Creating species richness maps by summing species habitat suitability 
maps (HSMs) probably overestimates species richness because it does 
not account for limitation factors such as competition and dispersal 
that can affect species distribution (Bellamy et al., 2013; Graham & 
Hijmans, 2006). Prediction of habitat suitability in the highland areas 
(north to east of the study area) was generally higher and these high-
land areas support higher diversity of species (all species, threatened 
and non-threatened species) except for VU and EN species. The rich-
ness maps of the threatened species signify a different pattern from 
those of the non-threatened species and the main distribution area 
of this group of birds is only the western part of the study area lo-
cated below 1,000 m that can be regarded as the area near the water 
habitats such as Lake Geneva and wetlands with well-vegetated banks 
and parts of the deciduous forest that have been used as foraging and 
feeding sites. Lowland areas can be considered suitable for the VU and 
EN species due to the warmer climate and proximity to water habi-
tats like lake and wetlands in the study area. Generally, climatic and 
focal variables “Orchard” and “Forest” play an important role in the 
distribution of species (Figure 7) and most species seem to respond 
negatively to global warming as they are forced to shift to the highland 
area (Maggini et al., 2011, 2014).

In some parts of lowland areas and the western quadrant of the 
study area, prediction maps of non-threatened species (mostly pas-
serine bird species in agricultural habitat) were also higher, which 
can be interpreted as the importance of arable land and wide-leaved 
forest for feeding and nesting of this group of species. These areas 

are richer in resources of foraging and nesting. The findings of these 
study thus emphasize the importance of forests for the survival of 
bird species contributing to biodiversity conservation. The findings 
suggest that, despite the high anthropogenic effects in the field, 
most of the species have a strong relationship with the forest area. 
Conservation efforts should therefore concentrate on forest area 
management and conservation in order to optimize habitat for these 
species.

Our research allows us to claim that forest regions are the most 
potential areas for feeding and nesting of these species (Brüngger & 
Estoppey, 2008; Carpenè et al., 2006). According to our analysis, we 
are also able to conclude that lower temperatures play a major role 
in the distribution of most species in this mountainous area, and that 
these species react negatively to higher temperatures as some are 
predicted to shift and some already shifted to higher altitudes ac-
cording to some case studies in Switzerland (see Maggini et al., 2011, 
2014), which indicates that bird species are likely affected in breed-
ing season by climate change due to increasing temperatures in the 
breeding season. As the available habitat suitability is reduced, the 
distributional movements can thus be a common response to this 
situation (Revermann et al., 2012). Our findings shows that climate 
in the western Swiss Alps, particularly temperature, is the main driv-
ing factor for birds and during breeding seasons, minor changes in 
temperature can push species up. Our results have proved that the 
bioclimatic variables have the most important effects on species dis-
tribution and the important part has been played by "Bio11" and "Bio 
4" in shaping the distribution of these species.

5  | MAIN CONCLUSIONS

One first shortcoming in this study was the limitations of select-
ing maximum scales in univariate models due to the heterogeneity 
and size of the study area and similar responses of some species for 
many variables. Some species, for example, have different ecological 
behavior and strategies for feeding, nesting and long-distance flight 
and probably prefer scales of more than 5,000 m. We eventually se-
lected 5,000 m as a maximum scale for all focal variables to address 
the problem of the size of the study area. The multi-scale approach 
that incorporates focal variables with the strength of ESMs was ef-
ficient in identifying the complexities of bird localization as species 
of high mobility in a heterogeneous ecosystem and proved to out-
perform single scale modelling. This study  reveals the significance 
of lower and seasonal temperatures at higher elevations, as well as 
forest and farmland edge, for the bird species in the study area. The 
availability of data for certain species, due to difficulty of detec-
tion, rare and threatened status, was also limited in this research, 
but prediction advantages of ESMs enabled the models to consider 
poorly sampled bird species and model the distribution of species 
with limited availability of occurrence data. ESM is a powerful strat-
egy to understand the ecology of complex and heterogeneous en-
vironments, and nature reserve managers may make better use of 
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the models to estimate the effects of climate change and land use, 
such as agriculture utilization and urbanization, on target species. 
Distribution maps of the area under study will help to identify the 
locations of the most threatened and endangered bird species bio-
diversity and improve conservation efforts toward the identification 
of bird hotspot. In this study, we only tested the framework with bird 
species, but this strategy could be applied to other taxa and here we 
encourage future studies to also examine  this modelling approach 
particularly in case of limited presence data and rare species.
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