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Key points  
 

• Infants have increased susceptibility to respiratory viral infections, with RSV and RV being 

the leading pathogens as they cause acute bronchiolitis and are associated with 

development of recurrent wheezing and asthma. 

• Innate immune responses evolve during infancy and differ from that of adults including 

differences in pathogen recognition and weaker interferon responses that may explain 

increased susceptibility to viral infections. 

• Young infants often lack immunological memory towards the invading pathogen and their 

adaptive immune responses are biased to tolerance promoting T regulatory and Th2 

immune responses while Th1 immune responses are restrained. 

• Infancy may represent a critical window when environmental exposures including viral 

respiratory infections may shape the remodeling of the airway and the function of the 

immune system explaining the association between early life RSV and RV infections and 

development of recurrent wheezing and asthma later in life. 
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Synopsis  

Of all respiratory viruses that cause disease during infancy, RSV and RV represent the 

leading pathogens causing acute disease (bronchiolitis) and are associated with the 

development of recurrent wheezing and asthma. The immune system in infants is still 

developing and several factors contribute to their increased susceptibility to viral infections. 

These factors include differences in pathogen detection, weaker interferon responses, lack of 

immunological memory towards the invading pathogen and T helper cell responses balanced to 

promote tolerance (Treg and Th2 type responses) and restrain inflammation. All these aspects 

are reviewed here with a focus on RSV and RV infections. 
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INTRODUCTION  
 

Respiratory viral infections, represent the leading cause of hospitalization in infants and 

young children worldwide and the second cause of infant mortality, excluding the neonatal 

period 1. Of all respiratory viruses that affect young children, respiratory syncytial virus (RSV), 

followed by rhinovirus (RV), represent the two leading respiratory viral pathogens, both 

because of their implications with acute disease severity, but also because of their association 

with the development of reactive airway disease/asthma later in life 2-4. By two years of age 

almost all children have been infected with RSV at least once, and almost all infants develop at 

least one RV infection in the first year of life 5,6. In addition, in a substantial proportion of 

children who develop asthma, the disease originates early in life with episodes of RSV or RV, 

specially RV-C, induced wheezing. This risk is increased in infants born prematurely 7-9 One 

possible explanation for why respiratory viral infections early in life might drive atopic disease, 

including asthma, is that the antiviral immune response in infants is markedly different from 

that in older children. Additionally, there is increasing evidence of the role of the microbiome 

and viral-bacterial interactions in modulating the host infant immune response during the acute 

disease and long-term respiratory mobidity10,11.  

In this chapter, we will review the different components of the infant innate and 

adaptive immune response to both RSV and RV, their differences according to age, and their 

possible influence in long term lung morbidity.  

 
THE INNATE IMMUNE RESPONSE 

Innate immunity has a key role in orchestrating early responses to RSV and RV infections, 

providing an early, non-programmed first line of defense against these pathogens. The 
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importance of innate immunity is critical in infants, in whom the immune system is still 

developing and often lack immunologic memory towards the invading pathogen. Impaired or 

dysregulated innate immune responses may lead to slow and inadequate viral clearance, 

enhanced pathology and greater disease severity during the acute disease, with possible long-

term consequences. Further, innate immune responses drive the development of effective 

adaptive immunity. Consequently, impaired innate immune responses may lead to inadequate 

adaptive immune responses, poor immunological memory and recurrent infections. Different 

components of the innate immune response play a fundamental role against respiratory viral 

infections, including the respiratory epithelium, interferon and other cytokines and innate 

immune cells such as neutrophils, monocytes, natural killer (NK) and dendritic cells (DC).   

 
Respiratory epithelium and pathogen detection 

 The mucosal barrier not only acts as a protective barrier that prevents the direct contact 

between respiratory viruses and the airway epithelial cells, but also has active anti-

inflammatory and immunomodulatory properties12,13. The respiratory epithelium serves as the 

target for the infecting virus and has an important role at inhibiting RSV or RV infections.  It 

represents the source of the initial inflammatory response in which antimicrobial peptides 14, 

surfactant 15 and several cytokines and chemokines are released contributing to the 

recruitment of inflammatory cells 12,13.  

 Respiratory viruses typically infect ciliated airway epithelial cells with different viruses 

having variable tropisms to different parts of respiratory tract. Specifically, RSV infects human 

airway epithelia cells via the apical surfaces 16,17.  Different receptors have been identified for 

RSV (F and G proteins) in epithelial cells including, TLR-4, CX3CR1, annexin or nucleolin 16,18,19. 
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RV also binds to respiratory epithelial cells via several receptors which are different depending 

on the RV species 20.  RV-A and RV-B bind to the intercellular adhesion molecule 1 (ICAM-1) 

receptor and low-density lipoprotein receptor (LDLR) while RV-C binds to the newly identified 

cadherin-related family member 3 receptor (CDHR-3)5–7. The attachment of RSV or RV to their 

receptors elicits an innate immune response that leads to airway inflammation and remodeling.  

Thus, the airway epithelial cells along with the resident immune cells including macrophages, 

dendritic cells (DCs) and innate lymphoid cells (ILCs) have critical role in pathogen detection and 

initiation of the immune response. These cells express pattern recognition receptors (PRRs) that 

bind to pathogen associated molecular patterns (PAMPs). Several PRRs are important in 

recognizing respiratory viruses including toll-like receptors (TLRs) TLR4, TLR3, TLR2/6, TLR7/8, 

TLR9 that are expressed on the cell surface, or retinoic acid inducible gene- I (RIG-I) and 

melanoma differentiation associated gene-5 (MDA-5) that are soluble intracellular PRRs located 

in the cell cytoplasm21-23. Although with contradictory results, possibly due to differences in the 

patient populations studied, single nucleotide polymorphisms (SNPs) in TLR genes, have been 

associated with increased risk and severity to both RSV (i.e, TLR-4, TLR-9) and RV (i.e TLR-8) 

respiratory tract infections in infants and young children, emphasizing the importance of these 

receptors 24-30. 

The nasopharyngeal microbiota seems to modulate both systemic and mucolal host 

responses to viral infections. In RSV infected infants, microbiota clusters enriched for H. 

influenzae and Pneumococcus were associated with increased disease severity, enhanced TLR 

signaling and overexpression of neutrophil and macrophage related transcripts 31,32. Recently, 

transcriptional profiling of nasopharyngeal samples from infants with RSV showed similar 
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strong innate and interferon dominated responses that were identified also in peripheral blood, 

while in RV infected infants the responses were not as strong as in RSV and differed between 

the nasopharyngeal and peripheral blood samples 33. 

 
Interferon responses 

Of all cytokines and chemokines released during RSV or RV infection, interferons (INFs) are 

one of the best characterized because of their antiviral properties, and associated with the 

defense against these infections. There are three main types of IFNs:  

(1). Type-I INFs, (INF ⍺/β) have direct antiviral effects, inducing an antiviral state both in 

infected and uninfected cells through the expression of interferon induced genes (ISGs) 34. INF-

⍺ is produced by several cell types including airway epithelial cells, alveolar macrophages and 

monocytes, but at least in RSV infection, plasmacytoid dendritic cells (pDCs) appear to be the 

primary source of Type-I INF ⍺ 35.  Plasmacytoid DCs harvested ex-vivo from infants and young 

children with acute RSV infection had lower INF-⍺ production capacity compared to adult pDCs 

35. In addition, a recent birth cohort study showed that a predominant Th2, Th17 and Type-I IFN 

response in the respiratory mucosa in early life during acute RSV (but not RV) infection, was 

associated with an increased risk of wheezing during the first 2 years of life 36. These data 

emphasize the important differences on immune responses to viral infections according to age 

and also to the specific respiratory virus.  

(2). Type-II IFN (IFN-γ), which in early innate responses to the infection is produced 

predominantly by natural killer (NK), natural killer T (NKT); and type I innate lymphoid cells 

(ILCs). Later, after development of antigen specific immunity the main source of INF-γ are T cells 

including CD4+ Th1; and CD8+ cytotoxic T cells 37.  The association between type-II interferon 
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responses and RSV disease severity has been shown in multiple studies.  Initial studies in animal 

models and humans suggested that higher INF-γ responses were directly associated with the 

severity of the disease 38-40. However, a growing body of evidence has shown that the INF 

response to RSV is dysregulated. Indeed, infants with more severe RSV disease –need for 

hospitalization, oxygen administration or need for mechanical ventilation-- had lower 

concentrations of nasal IFN-γ and/or suboptimal expression of IFN-related genes in the systemic 

compartment independent of their atopic status41-46.  

(3). Type III INF (INF-λ) or mucosal IFNs, are structurally and functionally similar to type-I INFs, 

although bind to a different receptor complex and control the infection locally, rather than 

systemically. Studies suggest, that the human airway epithelium mounts virus-specific immune 

responses that are likely to determine the subsequent systemic immune responses. Specifically, 

studies showed that the absence of epithelial released of IL-28A, IL-28B and IL-29-- which 

belong to the Type-III IFN family-- after RSV infection, may explained in part the inadequacy of 

systemic immunity to the virus47.  

 Nevertheless, as mentioned above, the importance of adequate INF responses in 

the defense against viral respiratory tract infections in infants are highlighted by several studies 

reporting associations between weaker INF responses, at the mucosal and systemic 

compartments, and increased disease severity in RSV infected infants 43,44,48-50. It is not 

surprising that viruses have developed several ways to inhibit INF production such as the non-

structural proteins of RSV (NS1 and NS2), that inhibit the production of INF ⍺/β 51,52. In addition, 

defective IFN production has been implicated in the increased susceptibility to RV in patients 
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with asthma, with deficient Type-I (IFN-β) and Type-III (IFN-λ) interferon responses that have 

been reported in human respiratory epithelial cells of patients with asthma53,54.  

 
Other cytokines 

Other cytokines mediating early local innate immune responses to RSV and RV respiratory 

infections include tumor necrosis factor (TNF)-⍺, IL-1, IL-6, IL-9, IL-10, CXCL10 (IP-10), CXCL8 (IL-

8), CCL2 (MCP1), CCL3 (MIP-1α) or CCL5 (RANTES) among others 55-58. In addition to their direct 

cellular effect at the site of infection, these cytokines act as potent chemoattractants activating 

and recruiting circulating immune cells such as neutrophils, natural killer (NK) cells and 

cytotoxic T cells to the airway mucosa.  These proinflammatory innate immune responses have 

been found in infants with symptomatic RV infection rather than in children with asymptomatic 

RV detection 59-61. RV infection may also induce eosinophilic infiltration and activation within 

the airway, which correlates with changes in airway hyper-responsiveness, especially in patients 

with asthma. Eosinophil-released ribonucleases, neurotoxin and eosinophilic cationic protein, 

have antiviral properties suggesting an innate antiviral role of these cells during RV infection 62. 

Until recently, it was postulated that severe RSV infection was associated with an exaggerated 

inflammatory response. Similar to IFN responses, there is a growing body of evidence 

suggesting that host innate immune responses are actually inadequately activated or even 

suppressed in infants with severe RSV disease 63-67. In a recent study, investigators showed that 

infants with severe RSV infection had lower capacity to produce the pro-inflammatory cytokines 

TNF-⍺, IL-6 and CXCL8 (IL-8) in whole blood after LPS stimulation when compared to children 

with milder RSV infection and with healthy age-matched healthy controls 68. Another study 

conducted in previously healthy infants hospitalized with RSV (median age 2.6 months) or RV 
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bronchiolitis (5.1 months), compared the concentrations of29 different cytokines (Th1, Th2, 

Th17, pro-inflammatory cytokines, chemokines and growth factors) induced by these two 

respiratory viruses in nasal wash samples.  The study showed that overall, infants with acute 

RSV infection mounted a more robust immune response and had higher cytokine 

concentrations than those with RV infection. Nevertheless, also in infants with RV infection the 

CDSS inversely correlated with MCP-1 and IL-1-⍺ concentrations 43.  In another study, a number 

cytokines were measured in nasopharyngeal aspirates in young infants hospitalized with a first 

episode of wheezing, to determine their association with the development of recurrent 

wheezing. Of all cytokines measured, MIP-1⍺ demonstrated the strongest and independent 

association with recurrent wheezing during the first two years of life69.  

 
Innate Immune cells 

(a) Neutrophils: The most abundant cell type in airway secretions from infants with RSV and RV 

bronchiolitis are neutrophils 70-74. It still remains unclear whether neutrophils have a protective 

role or if they contribute to immunopathogenesis of the disease. Neutrophils can limit viral 

replication and spread, as they are able to detect and destroy infected cells, but at the same 

time produce enzymes that may damage the surrounding tissues through neutrophil 

extracellular traps (NETs). Post mortem studies in infants who died with severe RSV infection 

showed influx of neutrophils and macrophages in lung tissues 75. During acute RV infection, 

both blood and nasal neutrophils increase within the first 72 hours. The high presence of 

phagocytic cells and pro-inflammatory mediators involved in granulocyte regulation such as 

granulocyte colony stimulating factor and IL-8 correlate with the severity of RV symptoms, even 

during mild symptomatic illness 70,71. In premature and full term infants with acute RSV 
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infection, neutrophils seem to be the main source of IL-9 56, a pro-inflammatory cytokine 

associated with development of bronchial hyperresponsiveness and asthma 76. It is possible 

that the damage induced by neutrophils during the vulnerable period of lung development in 

infants with acute RSV or RV infection, may play a role in asthma inception having long lasting 

consequences in lung development 77.   

(b) Eosinophils, mast cells and basophils: The role of eosinophils during RSV infection is still a 

matter of debate. Original studies suggested that eosinophilic degranulation in infants during 

acute RSV infection was associated with airway obstruction78. More recently, in vitro studies 

showed that eosinophils actually facilitated RSV clearance and infectivity 79.  On the other hand, 

RV infection may induce eosinophil infiltration and activation within the airway, which 

correlates with changes in airway hyper-responsiveness, especially in patients with asthma. 

Some eosinophil-released products such as ribonucleases, eosinophil-derived neurotoxin and 

eosinophilic cationic protein, have antiviral properties suggesting an innate antiviral role of 

these cells during RV infection 62. On the other hand mast cells and basophils do not appear to 

play a role in RV pathogenesis as shown by no variations of histamine levels during 

symptomatic infection 80. 

(c) Monocytes, NK, and DCs: Alveolar macrophages are thought to express both, 

immunoregulatory and antigen-presenting capabilities during respiratory viral infections 81. 

Macrophages can be also productively infected by RSV and RV as demonstrated by ex-vivo viral 

replication in these cells 81,82. In peripheral blood, the number of monocytes increases during 

acute RSV infection regardless of disease severity. However, in infants with severe RSV infection 

requiring hospitalization the proportion of monocytes expressing low levels of HLA-DR is 
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increased, suggesting that monocyte function might be impaired in the most severe forms of 

the disease 83,84.  

The numbers of DCs, NK cells and cytotoxic T cells increase in the respiratory tract 

during RSV infection, as they have an important role in controlling viral infections 58,85. While 

pDCs are important producers of type I INF (INF ⍺), conventional DCs (cDC) have an important 

role as antigen presenting cells and regulating T cell responses but also activating NK cells. NK 

cells contribute to early innate immune response by providing early source of INF-γ, by 

activating T cells and by direct cytotoxic killing of the infected cells 86. Lung tissue from infants 

that died with severe RSV infection showed absence of NK cells and CD8+ T cells and extensive 

antigen load 75.  In peripheral blood, lower DC and NK cell numbers were observed in RSV 

infected children vs. healthy controls but the proportion of cells with activated phenotype 

increased during RSV infection 58,87.  

 
ADAPTIVE IMMUNE RESPONSES 

Humoral Immune Responses 

Infants have decreased antibody responses compared with adults, due in part to their 

immature/developing immune response with a limited B-cell repertoire and inefficient 

generation of somatic hypermutations, and the presence of maternal antibodies which may 

interfere with viral-induced immunogenicity 88-92.  These issues are especially challenging when 

dealing with RSV, which typically causes severe disease in infants at a very young age -- the first 

2-3 months of life--.  On the other hand, RV induces genotype-specific neutralizing antibodies, 

with little cross-neutralization among the more than 100 genotypes. In addition, the genetic 
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diversity of RV is continuously changing, hence favoring frequent infections that are caused by 

different genotypes.  

(1) Antibody responses to RSV: In neonates, circulating RSV IgG antibodies, which are of 

maternal origin, significantly decrease by ~4 months of age, with an estimated half-life of 30-72 

days 90,93-95. The interference between pre-existing maternal antibodies and the infant antibody 

production after acute RSV infection has been shown by studies conducted in different patient 

populations. Those studies showed that levels of preexisting maternally transferred antibodies, 

and not age, was the most important factor influencing subsequent antibody responses in infants 

with RSV infection90,96. In addition, antibody responses are possibly influenced by other factors, 

such as disease severity or age, both associated with impaired interferon responses, that must 

be activated to promote adequate T and B cell immunity 97-100. Nevertheless, humoral immunity 

plays a fundamental role in preventing severe RSV disease, and may have implications for 

diminishing long-term pulmonary morbidity. The proof or principle that antibody responses are 

critical at preventing severe RSV disease have been demonstrated in multiple randomized clinical 

trials using monoclonal antibodies (mAb) against the RSV Fusion protein (palivizumab or 

motavizumab)101-105. In those studies, the use of prophylaxis using mAb was associate with a 

significant reduction in hospitalization rates for RSV lower respiratory tract infection (LRTI), 

indicating that enough concentrations of neutralizing antibodies could be protective. 

Importantly, studies conducted in animal models and the infant population, showed a significant 

decreased in the incidence of subsequent wheezing/lung morbidity in the group that received 

palivizumab106-111. Vaccination against RSV in the third trimester of pregnancy could also protect 

infants in the first months of life and could have long lasting implications112. 
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(2) Antibody responses to RV: Humoral immune responses are important for the prevention of 

RV infections; however, the mechanisms of protection are not completely understood. 

Additional support for the importance of humoral immunity is derived from patients with 

primary humoral immune deficiencies who experience more frequent and severe RV infections 

113. Virus-specific antibodies, both IgA (in the upper airway) and serum IgG increase after 

approximately one week of the acute infection and have been detected up to one year after the 

infection 80,114. Cumulative serum antibodies against different RVs develop with age in 

association with repeated infections. It appears that mucosal antibody responses have 

enhanced neutralizing activity as compared with systemic antibody responses115 which 

however, correlate with immunity and with reduced symptom severity 116. Also, the presence of 

antibodies in upper respiratory samples is associated with protection from homologous RV 

infection and disease.  

 
Cellular Immune Responses 

T cells participate in controlling RSV and RV infection through the recognition of viral 

antigens, which trigger both cytotoxic and antibody-mediated immune responses.  

- CD8 T cell responses: After innate immune responses are activated, most of the cells that 

migrate to the respiratory tract are cytotoxic lymphocytes or CD8+ T cells. Secretion of RANTES 

and IP-10 (CXCL10) by RV-infected epithelial cells, neutrophils and phagocytes promotes T cell 

chemotaxis80. CD8+ T cells play a key role in viral clearance, in fact T cell immunodeficiencies 

are associated with prolonged viral shedding and therefore associated with more severe 

disease91. In otherwise healthy infants transient lymphopenia is common and occurs during the 

first days of RSV or RV infection, when T-cells are migrating to the respiratory tract117. This 
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kinetics inversely correlate with changes in bronchial hyper-responsiveness in the acute phase 

of the infection and revert to baseline during convalescence, suggesting that T cells contribute 

to lower respiratory tract symptoms. More profound lymphopenia has been associated with 

enhanced RSV disease severity and even mortality92. We found that symptomatic RV infection 

on otherwise healthy infants, induced a robust transcriptional signature characterized by 

overexpression of innate immunity, but marked under-expression of adaptive immunity genes, 

specifically those related with T-cell and cytotoxic/NK-cell pathways, which was more profound 

in patients with severe disease 61. Whether this reflects a failure to mount an adequate 

response that leads to a more severe illness, or whether it represents a well-controlled early 

step in the host response that balances the excessive inflammation observed during the acute 

viral infection remains unclear.  

- CD4 T cell responses: CD4+ T cells have an important role in orchestrating and mediating the 

immune response against respiratory viruses. After T-cell receptors are activated, CD4+ T-cells 

differentiate into specific CD4 T-helper cell subsets including: Th1, Th2, Th17, T-regs and T 

follicular helper (Tfh) cells, which are defined by their function and cytokine milieu.   

• Th1 cells: are critical during the acute infection, and are mediated mainly by IFN-γ88. Other 

cytokines involved in Th1 immune responses include: IL1, IL-2, IL-12, IL-18 and TNF-α. As 

discussed previously, impaired type-II interferon responses in blood and respiratory samples 

have been associated with enhanced RSV disease severity 43,44,92. Additionally, while IFN-γ can 

inhibit IL-4 mediated allergic responses, it may contribute to early wheeze after RV infection 

(but not RSV) in predisposed infants with atopy 118.  
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• Th2 cells and their induced immune responses are defined by the production of IL-4, IL-5, IL-9, 

and IL-13 and involved in antibody production, class switching and also in eosinophilic 

responses. Studies suggest that a predominant Th2 response during acute RSV infection 

assessed by decreased IFN-γ/IL-4 ratios are associated with both more severe disease and also 

development of persistent wheezing46,119-122. There are several factors that could explain 

persistent wheezing after RSV or RV LRTI, including short and long-term remodeling of the 

airway physiology and certainly in the airway immune response. 

• Th17 cells: These CD4+ T helper cells are defined by the production of IL-17A/F and IL-22, 

playing an essential role in protection against extracellular pathogens, autoimmunity and also 

in the development of some forms of asthma 123,124. These third type of CD4+ T cells are 

considered a bridge between innate and adaptive immunity and have different functions during 

RSV or RV infections including: exaggerated mucus production, enhancing Th2 responses, 

favoring lungs neutrophilic infiltration and modulating CD8+ T cell responses. 125-128. Higher 

concentrations of IL-17 (but also IL-4 and IFN-γ) were associated with a decreased risk of 

hospitalization in infants with RSV or RV LRTI, suggesting that there is tremendous overlap on 

the cytokines responses elicited after respiratory viral infections needed to control virus-

induced lung disease in infants41,129,130.   

• T-regulatory cells (Tregs): Tregs are responsible for maintaining tissue homeostasis during the 

acute infection by facilitating viral clearance and avoiding an excessive innate (neutrophils and 

NK cells) and cellular immune response of both CD4 and CD8 cells125. The main cytokines 

associated with Tregs mediated responses are IL-10 and TGF-β, that play an important role in 

the delicate balance between Th1, Th2 and Th17 responses.88,91,131 IL-10 has important 
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regulatory functions during acute and convalescent RSV and RV infection in infants. Some 

studies showed the association between increased concentrations of serum IL-10 and acute 

RSV or RV severity, as assessed by the need for supplemental O2 or viral-induced wheeze, while 

others have shown a protective effect of mucosal IL-10 in regards to need for oxygen and 

severity92. Studies showed that while IL-12 favored the differentiation of CD4+ T cells into a Th1 

phenotype, IL-10 inhibited Th1 responses, thus favoring a Th2 phenotype and development of 

subsequently wheezing132. Moreover, increased serum monocyte derived IL-10 responses one 

month after acute RSV infection have been associated with recurrent wheezing during the first 

year of life, emphasizing the important regulatory role of this cytokine121.  

• T-follicular helper cells (Tfh): These recently identified CD4 T-cells are characterized by the 

expression of CXCR5 (chemokine receptor), BCL6 (transcription factor) and PD-1 (inhibitory 

molecule). Tfh-cells help with B-cell class switching and are essential for affinity maturation and 

the development of memory B-cells133,134. There is limited information about their role in 

infants with RSV or rhinovirus infection. A recent study in infants with either RSV or RV infection 

showed that activation of BCL6 pathways in blood or NP samples were associated with RSV but 

not RV severity135.  

AGE SPECIFIC DIFFERENCES IN IMMUNE RESPONSES 

The immune system in infant is immature and drastic changes in the composition and 

function of immune cells take place after birth, especially during the first months of life 136,137. 

Environmental exposures seem to be key drivers in the development of the infant immune 

response. This suggests that infancy represents a critical window that shapes the function of 

the immune system and contributes to the remodeling of the airway for years to come, offering 
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a potential explanation for the association between early life RSV and RV infections, and the 

subsequent development of reactive airway disease/asthma later in life. Different studies have 

shown quantitative and qualitative differences in PRR responses between infants (cord blood) 

and adults samples that may contribute to increased susceptibility to respiratory tract 

infections in young children. Stimulation assays with different TLR agonists showed that cord 

blood derived white blood cells (WBCs) produce equal or greater amounts of Th2 and Th17 type 

cytokines (e.g. IL-6; IL-10; and IL-23), but had weaker Th1 responses (INF ⍺ IFN-γ) when 

compared with adult WBCs 138. In addition, weaker responses to lipopolysaccharide (LPS) were 

observed in cord blood derived monocytes, who also had lower TLR4 expression, compared 

with adult monocytes 139.  In addition, infants lack immunologic memory towards the invading 

pathogen. Maternal antibodies provide protection during the first months of life, but the 

protection is incomplete (especially against mucosal infections) and wanes after 4-6 months of 

age. Infant’s immune response is geared towards T regulatory and CD4+ Th2 over Th1 

responses. This balance may be beneficial in the development of tolerance to self and other 

antigens, but it may also increase the susceptibility to viral infections140. As pathogen detection 

is critical for the activation of the immune cascade, and as Th1 type responses are considered 

fundamental against intracellular pathogens including viruses, these age specific differences 

could explain in part the increased susceptibility to viral respiratory tract infections in infants.   
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HOST TRANSCRIPTIONAL PROFILING 

Host transcriptional profiling has provided valuable insights into immune responses in 

respiratory tract infections. Our group and others have showed that systemic immune response 

against RSV, RV or influenza respiratory tract infections is characterized by increased expression 

of neutrophil related genes and relative decreased expression of interferon, B and T cell related 

genes according to severity 33,141-144. Importantly, the breadth and magnitude of those 

responses are different according to the respiratory viruses and are greatly influence by age. 

Preliminary studies in asymptomatic healthy infants showed that IFN and inflammation genes 

were underexpressed in young infants (< 6 months), suggesting that infants in early life may be 

uniquely susceptible to respiratory viral infections (data unpublished). 

We showed that the immune transcriptional profiles of infants less than 6 months of 

age compared with those 6-24 months old were significantly different in response to RSV or 

rhinovirus infection, adjusted for disease severity and other demographic characteristics44.  

Overall, the immune profile of infants < 6 months of age hospitalized with RSV LRTI was 

contracted and dominated by a greater proportion of underexpressed transcripts compared 

with that of older children (6-24 months), also hospitalized with RSV infection. Using a number 

of analytic strategies, including modular analyses --a data driven tool designed to group 

transcripts based on their biological function 145-- we found that despite these infants being 

equally ill as reflected by their similar clinical disease severity scores, those of younger age 

displayed significantly less overexpression of interferon, inflammation and neutrophil 

transcripts, lack of activation of plasma cell related genes, and greater underexpression of B-

cell, NK-cell and T-cell related genes (Figure 1A) 44.  Further, when comparing modular 
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fingerprints from children hospitalized with LRTI due to RV, also stratified by age (less than 6 

months versus 6-24 months of age), we found significant differences in the type and breadth of 

the immune responses to this viral infection. These changes in the immune response was 

observed in symptomatic RV infection while no changes in systemic gene expression was 

observed during asymptomatic viral detection 146. Particularly, children with RV infection, 

independent of age, demonstrated mild activation of immune response related pathways, with 

more subtle differences according to age (Figure 1B). While younger infants with RV infection 

showed less activation of interferon related genes, there were no differences in the degree of 

overexpression of neutrophil, monocyte or inflammatory genes. On the other hand, and similar 

to that from infants with RSV LRTI, adaptive immune response pathways were greatly 

suppressed in younger versus older children with RV LRTI44.  

These data suggest that although there are pathways that are commonly activated upon 

infection with different respiratory viruses, the type and breadth of these responses are greatly 

influenced by age. Nevertheless, whether age at the time of the infection and/or the observed 

age-related changes in immune responses influence the subsequent development of asthma or 

atopy awaits further study.  

 
SUMMARY 

Infancy represents a critical window when environmental exposures, and in particular RSV and 

RV infections, may shape the remodeling of the airway and the function of a developing 

immune system. The immune response evolves during infancy and is characterized early on by 

lack immunologic memory towards the invading pathogen, and a biased tolerogenic immune 

response (Treg & Th2 responses), while Th1 immunity is restrained. These specific nuances on 
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the immune response, may explain the infant susceptibility to these infections and their 

association with the development of recurrent wheezing/asthma later in life. 
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FIGURE LEGENDS 
 
Figure 1. Age at the time of infection influences the host immune response to respiratory 

syncytial virus (RSV) and rhinovirus (RV) infection. (A) RSV immune response according to age. 

The upper panel shows the modular analyses performed and compared between 20 infants < 6 

months of age with RSV lower respiratory tract infection (LRTI), and 17 children with RSV LRTI 6-

24 months of age 44,145. Both groups had similar clinical disease severity scores (CDSS). Healthy, 

age-matched controls, 9 per group, were used as a reference. Colored spots represent the 

percentage of significantly over-expressed (red) or under-expressed (blue) transcripts within a 

module in patients with RSV infection compared to controls, and the number included in the 

dots are the percentage of over or underexpressed transcripts. Blank modules demonstrate no 

significant differences between patients and controls. The middle panel summarizes the 

percentage of over and underexpressed transcripts according to the two age groups and in 

relation to the overall RSV signature. Infants less than 6 months of age with RSV LRTI displayed 

a greater number of underexpressed transcripts (64%) as compared with those 6-24 months of 

age (29%). The lower panel further illustrated in a spider graph format representing the per-

module median expression values of the significant different modules between the two age 

groups. (B) Modular analysis in children with RV LRTI (less than 6 months; n=12 and 8 matched 

controls and 6-24 months: n=8 and 6 controls) revealed fewer differences in host responses 

according to age. Horizontal bars illustrate the proportion of over- and under-expressed 

modules in infants (less than 6 months) and children 6-24 months of age in relation to the 

global influenza and RV signature. These differences are further illustrated in a spider graph 

format representing the per-module median expression values of the significant different 

modules between the two age groups. 
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