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Abstract 

The aim of the present study was to prepare niosomal formulations for dual drug therapy 

of ceftriaxone sodium and poorly water-soluble rifampicin by the ecological probe 

sonication method. Pluronic L121 and Span 60 were used as surface active agents and the 

optimization of the composition was made with the aid of Design of Experiment (DoE) 

concept. Concentration levels of charge inducing agent, dicetylphosphate (DCP), and 

Pluronic L121 were studied as variables. Prepared niosomes with varying concentrations 

of DCP and Pluronic L121 resulted in small sized niosomes with sizes ranging from 165 

nm to 893 nm. During the four weeks stability testing, the particle sizes of the empty 

niosomes were reduced, while the particle sizes of the drug loaded niosomes were 

increased very slightly. The optimized formulations resulted in stable niosomes with high 

drug entrapment efficiencies: entrapment efficiency was 99% for rifampicin and 96% for 

ceftriaxone. All the niosomal formulations showed faster in vitro drug release rates as 

compared to bulk drug formulations. In conclusion, ceftriaxone and rifampicin loaded 

niosomes prepared with Pluronic L121 and Span 60 resulted in stable, small sized 

niosomes with high drug entrapment efficiencies and improved drug release profiles. 

Keywords: Ceftriaxone sodium; Design of experiment (DoE); Ecological probe 

sonication; Niosomes; Poor solubility; Rifampicin  
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1. Introduction 

In dual drug therapy, two active pharmaceutical agents (API) with synergistic drug effect 

are administered concurrently. For example, in cancer therapy, simultaneous 

administration of doxorubicin and paclitaxel has shown to be beneficial: paclitaxel causes 

depolymerization of microtubules, leading to mitotic arrest, and doxorubicin intercalates 

into the duplex preventing biosynthesis of nucleic acids, resulting cell apoptosis [1].  

Tuberculosis is a global health problem that causes worldwide approximately 1.5 million 

deaths every year. Treatment of drug-susceptible tuberculosis requires combination anti-

microbial therapy with a minimum of four antimicrobial agents applied over the course of 

6 months time [2]. In antimicrobial therapy, the increasing number of infections caused 

by antimicrobial-resistant organisms, in particular the methicillin-resistant 

Staphylococcus aureus (MRSA), has led to high interest towards antimicrobial 

combination therapies [3,4]. The antibacterial drug combinations have been 

recommended extensively in clinical practice owing to enhanced bactericidal activity, 

reduced toxicity and selection pressure, and, most importantly, suppressed possibility of 

resistance [5].  Rifampicin and cephalosporins, such as ceftriaxone, combination therapy 

has been shown to be especially beneficial in cases where there is a low organism burden, 

e.g. in resistant biofilm infections [6]. Therefore, loading rifampicin along with 

ceftriaxone within the advanced drug delivery system such as niosomes is needed. 

Niosomes are vesicles made from self-organizing non-ionic surfactant systems, which 

encapsulate aqueous volume of API(s) with or without the addition of cholesterol and 

other lipid constituents [7,8]. Niosomes are able to encapsulate both hydrophilic and 

hydrophobic drugs [9], and they are good alternatives to liposomes due to their benefits of 

lower price, higher stability and better biodegradation [10]. By fabricating niosomes, the 

therapeutic efficacy of drugs has been increased, while reducing at the same time side 

effects [11].  

More than 50 different types of drugs have been encapsulated in niosomes, and 

administered via inhalation, nasal, oral or parenteral routes [12]. The characteristics of 

drug material, membrane additives and method of preparation influence the structure and 

properties of niosomes [13-15]. Numerous non-ionic surfactants have been used for the 
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manufacturing of niosomes, i.e., polysorbates, alkyl esters, alkyl ethers and alkyl amides 

[16-19]; mixtures of non-ionic surfactants have resulted in more stable, monodisperse and 

smaller niosomes [16]. Poloxamers, common pharmaceutical solubility enhancing agents 

[20,21], and permeation enhancers [22], have been extensively used as pharmaceutical 

excipients, though so far they have been less frequently utilized in niosomal formulations.  

Different methods have been used for preparation of niosomes, i.e,. the reverse phase 

evaporation technique, the ether-injection method and the extensively used thin film 

hydration method [23,24]. However, these methods are time consuming, ecotoxic, 

expensive, and they require removal of organic solvents. A more recent technique, called 

probe sonication method, is a simple, fast, eco-friendly and solvent free method, with low 

cost of production [25]. In our previous study, we have shown that spherical niosomes 

were obtained with both probe sonication and thin film hydration techniques, though 

niosomes prepared with probe sonication method were even smaller having faster drug 

release rates [25].  

In niosomal structures, hydrophobic drugs can be encapsulated between the bilayer and 

hydrophilic drugs inside the bilayer structure of non-ionic surfactant systems. 

Accordingly, different types of drugs can be encapsulated into the niosomes, in which 

anticancer drugs are an example of class of drugs that have been formulated within 

niosomes for targeted and/or sustained delivery purposes [26]. The challenge is to achieve 

the combined therapy by loading multiple drugs into a single drug delivery system and 

delivering them to the site of action [27-29]. Although the loading of multiple APIs can 

be problematic due to the loading of APIs with different physicochemical characteristics 

[30], a carrier containing multiple drugs can promote the APIs’ synergism and disease 

management [29]. 

The aim of the present study was to prepare niosomal formulations loaded with 

rifampicin and ceftriaxone as APIs for dual drug therapy purposes. In the production of 

niosomes, an environmentally friendly and cost-effective probe sonication method was 

used. Rifampicin is a Biopharmaceutics Classification System (BCS) class II drug having 

poor water solubility, and ceftriaxone sodium is a BCS class III drug, presenting low 

permeability [20-23,31,32]. These undesired characteristics of rifampicin and ceftriaxone 

make them good candidates for niosomal encapsulation.  
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In order to improve the performance of the niosomes, a combination of non-ionic 

surfactants of Span 60 and Pluronic L121 was used for the construction of niosomes, as it 

has been shown in earlier studies that utilization of  non-ionic surfactant mixtures have 

led more stable, monodisperse and smaller niosomes [16,25,33]. Pluronic L121 was 

selected due to its capability to improve the solubilization of poorly water-soluble drugs, 

like rifampicin in this study.  

With the aid of factorial design, the exact composition of the niosome formulations was 

optimized. As variables in the factorial design, the amount of Pluronic L121 and charge 

imparting agent, dicetylphosphate, were altered in three different levels. Charge imparting 

agent was added to the composition in order to study the importance of the zeta-potential 

on drug loading and stability of niosomes.    

2. Materials and methods 

2.1.Materials 

Rifampicin (Orion Pharma, Finland) and ceftriaxone sodium (Orion Pharma, Finland) 

were used as APIs in the formulations. Polyethylene oxide-polypropylene oxide-

polyethylene oxide copolymer (PEO-PPO-PEO copolymer, Pluronic L121, Mn 4400, 

Sigma-Aldrich, USA) and Sorbitan monostearate (Span 60, Sigma-Aldrich, USA) were 

used as bilayer membrane formers. Dicetylphosphate (DCP, Sigma-Aldrich, USA) was 

used as charge imparting agent, and cholesterol (Sigma-Aldrich, USA) as membrane 

stabilizing agent. Sodium chloride, disodium hydrogen phosphate and potassium 

dihydrogen phosphate (all from Sigma-Aldrich, USA) were used for the buffer solution. 

Water used was Milli-Q water (Millipore, Merckmillipore, USA).  

2.2.Preparation of niosomes 

Niosomes were prepared by probe sonication method [25,33]. First, rifampicin and 

ceftriaxone sodium were mixed with 15 mL of water with the aid of magnetic stirrer, after 

which cholesterol, Span 60, Pluronic L121 and dicetylphosphate (DCP) were added. The 

mixtures were then subjected to probe sonication for 5 min time at 57 °C (probe 

temperature) in a pulsatile manner (50 sec sonication with 10 sec pause) at an amplitude 

of 30%. After probe sonication, niosome formulations were collected and stored at 4 ºC 

for further physicochemical characterization. The amounts of Pluronic L121 and DCP 
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were the variables in the optimization of niosome formulations. The exact compositions 

of studied niosomal formulations are shown in Table 1.  

 

Table 1. The exact compositions of the studied niosome formulations. 

 

2.3.Attenuated Total Reflectance−−−−Fourier Transform Infrared (ATR −−−−FTIR) 

spectroscopy 

The interactions between the non-ionic surfactants, drugs, and other membrane additives 

were studied by ATR−FTIR spectroscopy. The ATR−FTIR analysis of all the individual 

constituents, physical mixture of the constituents, and one niosomal formulation (dried 

niosomes, dried in filter paper at room temperature) were performed. The spectra were 

collected by the FTIR spectrophotometer (Bruker Optics, Germany) with an ATR 

additional (horizontal) accessory (MIRacle, Pike Technology, Inc., Germany) in the 

wavenumber range of 400−4500 cm-1 and with a resolution of 4 cm-1. The spectral data 

was analyzed by the OPUS 5.5 software with no pre-treatment of spectra. The 

measurements were performed at room temperature. All the measurements were 

performed in triplicate. 

2.4.Thermal Analysis 

The physical states of the rifampicin and ceftriaxone in the selected formulation were 

analyzed by using Differential Scanning Calorimetry (DSC 823e, Mettler Toledo, USA). 

The pure drugs (powder), individual constituents of the niosomes including Span 60, 

Formulations 
Span 

60 (mg) 

Pluronic 
L121 
(mg) 

Cholesterol 
(mg) 

DCP 
(mg) 

Ceftriaxone 
sodium 
(mg) 

Rifampicin 
(mg) 

Water 
(mL) 

E1 43 290 77.3 1 - - 15 

E2 43 290 77.3 2 - - 15 

E3 43 290 77.3 0 - - 15 

E4 43 246 77.3 1 - - 15 

E5 43 334 77.3 1 - - 15 

CR1 43 290 77.3 1 10 10 15  

CR2 43 290 77.3 2 10 10 15  

CR3 43 290 77.3 0 10 10 15 

CR4 43 246 77.3 1 10 10 15 

CR5 43 334 77.3 1 10 10 15 
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Pluronic L121 and cholesterol, physical mixture of the constituents and one niosomal 

formulation were weighed accurately in aluminum pans, which were further closed with 

cap having a tiny hole on it. The thermal scanning was conducted at a rate of 5 °C/min 

from 25 °C to 260 °C. The scans were recorded under the nitrogen gas flow at a rate of 50 

mL/min. Indium was used as a reference standard for the equipment. 

2.5.Drug entrapment efficiency 

For the determination of drug entrapment efficiency, the formulations were ultra-

centrifuged (Beckman Coulter, Optima LE-80K, USA) at 4 °C at a speed of 28 000 rpm 

for 1 h. The supernatant was collected, and the pellets were washed twice with water. The 

water was collected, and centrifugation was repeated. The drug concentration was 

measured in supernatants after washing steps. The percentage of entrapment efficiency 

(%EE) of drugs was calculated using the following equation (Equation 1): 

%EE = [(Qt -Qr)/ Qt] x 100,   (1) 

where, Qt is the amount of the drug used initially for the preparation of formulation and Qr 

is the amount of the drug present in the supernatants. All the drug entrapment efficiency 

tests were repeated three times. 

2.6.Differential light scattering analysis 

The average diameter of the niosomes (z-average), polydispersity index (PDI) and zeta-

potential of all the formulations were measured using Zetasizer Nano ZS (Malvern 

Instruments Ltd., USA). The niosomal formulations (20 µL) were diluted with water (15 

mL) before measurements in order to avoid multi-scattering phenomenon. The 

measurements were carried out in triplicate. 

2.7.Transmission electron microscopy 

Transmission electron microscope (TEM, Jeol JEM-1400, Jeol Ltd, Japan) was used for 

the morphological analysis of the niosomes. An acceleration voltage of 80 kV was used 

and the sample was negatively stained using 2% of uranyl acetate solution. For TEM 

analysis, niosome suspensions were diluted in order to be able to avoid aggregated 

samples and to study separated niosome particles. Samples were mounted on carbon 

coated copper mesh and dried in room temperature before analysis. 
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2.8.Stability studies 

The stability of all the formulations was determined by storing them at 4 °C in a sealed 20 

mL glass vial. The size, PDI and zeta-potential values were recorded at predefined time 

intervals (fresh preparation, 1, 2, 3 and 4 weeks after manufacturing and storage). All the 

measurements were repeated three times. 

2.9.Dissolution studies 

The dissolution studies of all the niosomal formulations were carried out in phosphate 

buffer saline pH 7.4 at 37 °C under continuous stirring in a glass vessel with an 

established method utilized in earlier studies [9,25,33]. For the dissolution, the dialysis 

membrane (Spectra/Por MWCO: 8–10 kD, Sigma-Aldrich, USA) was soaked in water for 

24 h time prior the study. Then, 1 mL of niosomal dispersion was added inside the 

dialysis membrane, membrane ends was clamped, and the membrane was put in 350 mL 

of dissolution medium, under stirring at 100 rpm. The aliquots were sampled and 

replenished with the same volume of fresh buffer at predefined time intervals (0, 15 min, 

30 min, 45 min, 60 min, 75 min, 105 min, 2.5 h, 4 h, 5.5 h, 8 h, 10 h, 12 h). The 

withdrawn samples were analyzed for rifampicin and ceftriaxone sodium concentrations 

with UV-Vis spectrophotometer (UV-1600PC, VWR Int. bvba, China) at wavelengths of 

475 nm and 241 nm, respectively. The sampling and concentration analysis were 

performed in triplicates.  

2.10. Design of Experiment (DoE) and Data analysis 

In factorial design set up for optimization of niosomal formulation, central composite 

design for two factors with axial design points were utilized in DoE. The amounts of 

Pluronic L121 and DCP were the variables in the optimization of niosome formulations. 

If not otherwise stated, all the results are given as an average value and standard deviation 

of three separate measurements. 

3. Results and discussion  

3.1.Characterization of niosomes 

Rifampicin and ceftriaxone sodium were co-loaded into niosomes, prepared with Pluronic 

L121 and DCP as formulation variables. Both empty and drug loaded formulations were 

produced with the same factorial design. Fixed concentrations of Span 60, cholesterol and 
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drugs were used. The optimization of the formulations containing both the drugs was 

performed containing 290 mg of Pluronic L121 and 1 mg of DCP as a central point in the 

factorial design. The exact compositions of the different formulations are presented in 

Table 1. 

The physicochemical characteristics of niosomes, such as average size (< 350 nm), PDI 

(< 0.5) and zeta-potential (< −30 mV) values were considered as critical quality attributes 

(CQAs). Here, PDI values lower than 0.5 indicates low level of aggregated niosomes. 

Similarly, a zeta-potential value below −30 mV indicates the presence of electrostatic 

repulsive forces, which result in a higher stability of the system [34]. DCP was added for 

adjusting the zeta-potential value. The previous study suggested that the presence of 

cholesterol resulted in more stable, rigid and intact niosomes, without gel formation, and 

for that reason, cholesterol was added to the composition [35].   

Typically, non-ionic surfactants presenting a high hydrophilic-lipophilic balance (HLB) 

value hinder the formation of bilayer structure. Here, we used Span 60 to promote the 

formation of stable, rigid, intact and large niosomes, with the capability of high 

entrapment efficiency [36]. Additionally, Pluronic L121 encapsulates hydrophobic drugs 

more efficiently, and it has solubilization properties, which is important for efficient 

dissolution of poorly water soluble drugs [37-39].  

In this study, the average sizes of the produced niosomes ranged between 165 nm and 893 

nm, with PDI values from 0.333 to 0.725 (Table 2). The drug-loaded niosomes were 

smaller than corresponding empty niosomes, with sizes varying between 165 nm and 206 

nm. All the drug-loaded niosomes have PDI values below 0.5, and zeta-potential values 

ranging from −25.9 mV to −39.9 mV, meaning acceptable quality.  

The morphology of the niosomes was studied by TEM (Figure 1). Before TEM analysis 

niosome suspensions were diluted in order to be able to monitor the structure and form of 

single niosomes. Though the size of the niosomes based on TEM figures seemed to be in 

good agreement with DLS determinations, it is important to notice that DLS 

measurements are much more reliable for particle sizing due to the large amount of 

particles measured for the analysis in that technique. 
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Figure 1. Example of one TEM image of a single niosome showing its morphology 

and shape. Image is taken from niosomal formulation from batch CR1. 

 

3.2.Drug entrapment efficiency 

The percentages of entrapment efficiency (%EE) values of all the niosome formulations 

containing rifampicin and ceftriaxone were high, and the differences in the values 

between different batches were very small (Table 2). The formulations CR3, CR4 and 

CR5 had highest entrapment efficiency values. The formulation CR3 was without DCP. 

The formulation CR4 was prepared with the lowest amount of Pluronic L121 (246 mg), 

and formulation CR5 contained the highest amount of Pluronic L121 (336 mg). 

Accordingly, the quantities of Pluronic and DCP affected on CQAs and %EE, but the 

exact relations are not clear. The %EE of hydrophobic rifampicin was higher in all the 

batches as compared to hydrophilic ceftriaxone sodium. Part of the hydrophilic 

ceftriaxone might have escaped to outer aqueous phase during the preparation, while 

hydrophobic rifampicin preferred the hydrophobic environment inside the niosomes. 

Table 2. Physical characteristics and %EE values for all the prepared niosomal 

formulations. 

Formulations Size (nm) PDI 
Zeta-

potential 
(mV) 

%EE 
Rifampicin 

%EE 
Ceftriaxone 

sodium 
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E1 195.6±12.8 0.492±0.047 -27.5 ±0.9 - - 

E2 236.3±36.0 0.391±0.105 -27.5± 0.9 - - 

E3 443.5±86.7 0.469±0.037 -34.9± 3.4 - - 

E4 300.5±36.6 0.448±0.034 -38.8±0.3 - - 

E5 893.6±135.5 0.725±0.117 -39.9±5.2 - - 

CR1 187.2±3.5 0.421±0.018 -25.9± 0.7 98.71 95.73 

CR2 164.8±6.1 0.333±0.039 -29.1± 0.2 98.86 95.88 

CR3 192.5±13.7 0.455±0.087 - 7.2± 1.2 99.59 96.84 

CR4 195.4±16.6 0.499±0.036 -28.6± 1.2 99.30 96.41 

CR5 205.7±18.9 0.473±0.095 -29.6± 0.3 99.49 96.67 

 

3.3.Interaction studies 

ATR−FTIR spectroscopy gives information related to compatibility of all the ingredients 

present in formulations. The ATR−FTIR spectra of rifampicin, ceftriaxone sodium, all the 

excipients, physical mixture of the niosomal formulation and corresponding niosomal 

formulation CR1, are shown in Figure 2.  

Rifampicin showed the bands for acetyl group and furanone (C=O) at 1713 cm-1 and 1733 

cm-1, respectively. Vibrations at broad band area (3565 cm-1 -3150 cm-1) were due to 

−OH group. Due to amide group, C=O peak at position 1566 cm-1, and due to N-CH3, 

peak at 2883 cm-1,  were seen, as reported earlier [40]. 

Ceftriaxone sodium showed a broad band at 3530−3570 cm-1 due to the amide group. In 

β-lactam ring, 6-H and 7-H stretching are shown at 2948 cm-1. At 1772 cm-1 and 1670 cm-

1 stretching of C=O and of β-lactam and amide bond were observed. The stretching of 

oxime (C=N) was detected at 1592 cm-1, and a vibration band on a broad band area at 

1515−1570 cm-1 was due to acrylic amide. The stretchings of C-O and N-O were 

observed at 1060 cm-1 and 1025 cm-1, respectively, as reported elsewhere [41]. 
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Span 60 showed the peaks at 2916 cm-1 and 2849 cm-1 due to −OH stretching. The peak 

for the 5-membered cyclic ring was seen at 1734 cm−1. The small broad band peaks 

ranging from 1000 cm−1 to 1200 cm−1 can be ascribed to the aliphatic groups, which are 

also reported in previous studies [42]. 

Pluronic L121 showed peak stretch of asymmetrical methyl C−H at 2990 cm−1. The 

scissoring bondage of C-H group at 1480 cm−1, symmetrical C−H bond at 1387 cm−1 and 

ether linkage of C−O−C at 1120 cm−1 were observed, as previously reported [43]. 

Cholesterol showed ATR-FTIR peak of acetyl group at 2931 cm−1, −CH3 (symmetric) at 

2866 cm−1, vinyl group at 1770 cm−1, and R−O group at 1055 cm−1, as observed in earlier 

findings [44].  

The spectra of physical mixture and corresponding niosomal formulation CR1 were 

similar, and the peaks were diffused, which is due to interaction between the glycerol 

group in Span and β-OH group in cholesterol [25,45]. The characteristic spectral peaks of 

pure drugs were not observed in the spectrum of the niosome formulation, as observed 

also in the previous study [16]. The diffusion of the spectra of physical mixture and 

niosomal formulation indicated drug excipient interactions.  
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Figure 2. ATR−−−−FTIR spectra of all the pure raw materials, physical mixture of 

niosome composition (CR1) and corresponding niosomal formulation (CR1) 

containing ceftriaxone sodium and rifampicin. 

 

The thermal DSC analysis showed characteristic melting endotherms of Span 60, 

cholesterol, DCP, rifampicin and ceftriaxone sodium at 54 °C, 150 °C, 78 °C, 184 °C and 

162 °C, respectively (Figure 3). Additionally, a small peak of ceftriaxone was detected at 

47 °C. The physical mixture of optimized formulation showed a slightly broader peak at 

59 °C, which is the indication of interaction of Span 60 and cholesterol, as already 

described with ATR−FTIR results part, and as reported in previous observations [16].  

Studied niosomal formulation CR1 showed endothermic events between 79–122 °C, but 

no clear drug melting peaks were observed. The relative drug amount in the formulations 

were small, which could cause the lack of the characteristic melting peaks. The presence 

of drugs inside the vesicles is not detectable and with low total drug quantity it is 

expected that sharp or prominent melting peaks are not shown. It is also possible that the 

drug is dispersed in molecular level to the excipients, as was suggested by the ATR−FTIR 

results, or that the drug is in amorphous form, but it is not possible to confirm these 

conclusions based on the DSC results alone. 
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Figure 3. DSC thermograms of pure materials, physical mixture of niosomal 

composition (CR1) and niosomal formulation (CR1) containing ceftriaxone sodium 

and rifampicin. 

 

3.4.Stability Studies 

The stability study was carried out at 4 °C for all the niosomal formulations, and the 

results are shown in Table 3. After one week of storage, the formulations without drug 

loading (E1-E5) decreased in size. The formulations loaded with drugs showed slight 

increase in size (CR1-CR5), except formulation CR2, which had the highest 

concentration of DCP and lowest PDI value. 

Formulations E1, E2, CR1 and CR2 showed stable particle sizes with only minor 

variations during the storage time of one month. The sizes of the rest of the drug loaded 

formulations increased very slightly, but remained below the determined CQA value for 

particle size. Particle sizes of the empty niosomes decreased during the storage. The PDI 

value of the formulation E5 was 0.725 and remained high during storage. The formulation 

E5 had the highest amount of Pluronic L121, and its PDI value was above 0.5 even after 1 
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week of storage time. All the drug-loaded niosomes remained stable with PDI values 

below 0.5.  

The zeta-potential values of all the formulations remained close to or below −30 mV, 

which indicates stable niosomes. The formulations E1, E2, CR1, and CR2 were the most 

stable niosome formulations with the smallest and most stable particle sizes and PDI 

values. 
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Table 3. Particle size information, PDI values and zeta-potentials of the empty and drug loaded niosomal formulations stored at 4 �C 

for four weeks time (n=3). 

Time  Parameters E1 E2 E3 E4 E5 CR1 CR2 CR3 CR4 CR5 

F
re

sh
 s

am
pl

e 

Size (nm) 195.6±12.8 236.3±36.0 443.5±86.7 300.5±36.6 893.6±135.5 187.2±3.5 164.8±6.1 192.5±13.7 195.4±16.6 205.7±18.9 

PDI 0.492±0.047 0.391±0.105 0.469±0.037 0.448±0.034 0.725±0.117 0.421±0.018 0.333±0.039 0.455±0.087 0.499±0.036 0.473±0.095 

Zeta-Potential  -27.5 ±0.9 -27.5± 0.9 -34.9± 3.4 -38.8±0.3 -39.9±5.2 -25.9± 0.7 -29.1± 0.2 -37.2± 1.2 -28.6± 1.2 -29.6± 0.3 

1 
w

ee
k Size (nm) 223.4±11.4 175.8±5.8 294.4±8.0 199.3±5.4 244.8±7.6 253.2±4.2 175.8±71.4 248.4±28.2 251.8±18.1 255.8±25.3 

PDI 0.340±0.046 0.198±0.040 0.362±0.038 0.282±0.014 0.535±0.020 0.256±0.003 0.365±0.106 0.445±0.126 0.366±0.082 0.318±0.106 

Zeta-Potential -23.8±0.9 -26.9± 0.9 -28.2± 1.0 -28.5 ±0.6 -30.4±0.5 -30.1±1.3 -28.2±1.8 -29.3±1.1 -33.0±2.1 -29.2±1.6 

2 
w

ee
ks

 Size (nm) 191.9±3.3 178.7±3.6 347.4±9.0 212.7±6.1 245.2±5.5 190.7±2.3 163.2±6.1 253.2±4.7 218.0±7.3 265.5±11.1 

PDI 0.168±0.039 0.169±0.028 0.375±0.030 0.299±0.022 0.543±0.015 0.212±0.012 0.270±0.030 0.343±0.023 0.267±0.034 0.257±0.070 

Zeta-Potential -23.8±0.9 -28.1± 2.2 -29.5±2.5 -28.2 ±3.0 -26.3±0.5 -28.0±0.3 -28.7±3.1 -28.6±0.5 -24.4±1.3 -24.1±1.2 

3 
w

ee
ks

 Size (nm) 199.4±4.9 172.2±1.7 296.3±12.6 208.7±4.6 291.6±8.3 189.3±2.3 169.2±8.9 269.2±4.7 228.0±7.3 269.5±11.1 

PDI 0.213±0.011 0.151±0.033 0.320±0.051 0.324±0.020 0.532±0.051 0.246±0.003 0.271±0.106 0.421±0.127 0.467±0.041 0.357±0.070 

Zeta-Potential -27.2 ±0.4 -28.9± 0.5 -28.6±1.5 -31.6 ±2.2 -28.9±0.2 -29.3±0.2 -29.7±3.1 -32.6±0.5 -29.4±1.3 -28.3±3.2 

4 
w

ee
ks

 Size (nm) 186.8±1.6 182.0±2.7 311.8±8.1 190.0±2.5 255.8±34.8 191.7±4.3 172.1±4.5 279.6±7.1 237.0±2.5 274.8±9.1 

PDI 0.138±0.025 0.226±0.016 0.364±0.042 0.208±0.037 0.534±0.078 0.210±0.106 0.231±0.003 0.443±0.103 0.453±0.034 0.412±0.125 

Zeta-Potential  -25.5 ±1.3 -27.3± 1.5 -26.7±0.2 -27.8 ±1.0 -29.8±1.1 -30.1±4.2 -28.9±2.1 -31.3±1.5 -31.2±2.1 -32.4±7.2 
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3.5.Dissolution Studies 

The drug release studies of all the ceftriaxone sodium and rifampicin loaded niosome 

formulations and controls (pure ceftriaxone sodium and pure rifampicin) were carried out 

in phosphate buffer saline at pH 7.4 (Figures 4 and 5). A burst release of drugs from all 

the niosome formulations was observed in the beginning of the dissolution testing, which 

was due to the presence of Pluronic L121, as concluded in previous findings [46]. The 

burst release of rifampicin was higher as compared to ceftriaxone.  

After 12 h of release testing, the amount of ceftriaxone released from niosome 

formulations was over 94.8 % in all the batches (Figure 4). The niosome formulation CR4 

containing the lowest amount of Pluronic L121 (246 mg) showed the slowest release rate 

of ceftriaxone (94.8% in 12 h), while the formulation containing the highest amount of 

Pluronic L121 exhibited the fastest release of ceftriaxone (98.5% in 12 h).  

The amount of rifampicin released from the niosomes in 12 h ranged from 72.4 to 79.1% 

(Figure 5). Again, the formulation CR4 containing the lowest amount of Pluronic L121 

(246 mg) exhibited the slowest release of rifampicin (72.4% in 12 h). The center point 

formulation CR1, and formulation CR5 containing the highest amount of Pluronic L121 

(334 mg), showed the fastest release of rifampicin (in both the batches, 79.1% after 12 h).  

Pluronic L121 is acting as a solubilizer and, hence, the higher the amount, the faster the 

drug release [42]. This behavior was observed with both the studied drugs. From the 

release profile of niosome formulations it was clear that an increased concentration of 

Pluronic L121 improved the drug release profiles, while the least quantity led to a slower 

drug release. 
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Figure 4. Ceftriaxone sodium release profiles from niosome formulations at pH 7.4. 

 

 

 

Figure 5. Rifampicin release profiles from niosome formulations at pH 7.4. 

Conclusion 

In this study, dual drug niosomal formulations were developed, containing both 

hydrophobic rifampicin and hydrophilic ceftriaxone sodium. The formulated niosomes 

showed small average sizes (165±6 nm) with low PDI values (0.3±0.0). Drug entrapment 
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efficiencies of both the drugs were very high, with values over 96%. Four weeks stability 

studies at 4 °C showed good colloidal stability. The drug release profiles of both the drugs 

were improved when compared to the pure drugs, and presence of Pluronic L121 

improved the drug release due to the solubilization effect. The formulations showed 

controlled drug release over 12 h time. Accordingly, formulated ceftriaxone and 

rifampicin loaded niosomes were stable and small in size having high drug entrapment 

efficiencies as well as improved drug release profiles. 
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