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ABSTRACT 

Fusarium head blight (FHB) disease and the mycotoxins produced by its 
causal agents such as Fusarium graminearum Schwabe, F. culmorum (Wg. 
G. Sm.) and F. langsethiae  Torp and Nirenberg have become a growing
problem for oat (Avena sativa L.) production in the northern countries over
the last decades. Since Nordic oats and oat products are branded as high
quality and healthy food, FHB has to be managed. Controlling FHB by
agricultural or manufacturing practises can be cumbersome. However,
development of resistant cultivars would offer a highly needed and
economical solution to the problem. Disease resistance refers to the plant’s
ability to either stop or slow down the progress of a disease. Breeding for
resistance is of high priority in oats, but information on suitable phenotyping
methodology and resistance sources against Fusarium species is scarce and
dispersed. A phenotype is the expression of a certain genotype in a specific
environment and phenotyping is measurement of phenotypes, which is a
crucial part of plant breeding. In plant breeding, the variation within a plant
species is utilized through crossings of individuals and selects plants from the
progeny. By selection, traits of new plants such as productivity or disease
resistance can be improved.

The primary aim of this thesis was to improve the tools for FHB resistance 
breeding in oats. A literature review was conducted focusing on resistance 
sources and phenotyping techniques available for oats against the most 
common deoxynivalenol (DON) mycotoxin producing Fusarium species, F. 
graminearum. The literature survey covered improved inoculation and 
screening methods as well as resistance and association studies. Several 
traits that may be related to resistance and used for resistance phenotyping 
were identified. Also, potential resistance sources were identified among 
both advanced cultivars and genebank accessions.  

Resistance among genebank accessions and Nordic oat breeding material, 
inoculation methods and potential traits to measure resistance were 
evaluated in several field and greenhouse experiments in Finland. 
DON-producing Fusarium fungi were inoculated with spawn and spray 
methods to screen oat genotypes. Fusarium-infected kernels, germination 
capacity, and DON accumulation were compared as resistance related traits. 
A screening method relying on point inoculation was applied to study 
Fusarium infection in oats at a spikelet level. Agronomical and 
morphological traits that can potentially lead to reduced FHB infection were 
also phenotyped from the field trials and their relation to mycotoxin 
accumulation was investigated. 

Greenhouse and field research resulted in significantly different oat 
genotype susceptibility rankings for both DON accumulation and 
Fusarium-infected kernels. Cultivars, breeding populations, and selected 
genebank accessions all represented high ranges of variation within DON 
accumulation. Earliness, height and flowering traits all significantly affected 
Fusarium infection and DON accumulation in the field conditions. When 
different groups of inoculated oat genotypes were investigated, both 
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cleistogamic and highly open flowering oats were found lacking high 
mycotoxin contaminations. 

Interesting differences in FHB resistance were found. Especially, the most 
resistant and the most susceptible lines of the core set of 30 genotypes can 
work as sources for resistance as well as good checks for resistance 
evaluation. Correspondence between genotype rankings in Fusarium 
infection, DON accumulation, and loss of germination were found, but there 
were also genotypes that were susceptible based on one trait and moderately 
resistant based on the other. In greenhouse conditions, the spray-inoculated 
landrace VIR7766 was significantly more resistant against initial infection 
and DON accumulation than the rejected variety BOR31, but no difference in 
F. graminearum biomass measured in real-time quantitative PCR from
spikelets at 6 days after point inoculation.

The results obtained from the field experiments had more practical 
relevance in identification of cultivars that accumulate less DON, because in 
the field conditions, the escape mechanisms such as early flowering, height 
or high rate of anther extrusion through open flowering can all contribute to 
DON accumulation and Fusarium infection within an oat plant. However, 
greenhouse research may have value for identification of novel resistance 
sources from unadapted germplasm. Different results for point and spray 
inoculation methods used in greenhouse indicate that once the infection is 
established, the role of resistance may be insignificant, since infection 
proceeded equally in moderately resistant and in susceptible genotypes. 
Large variation in several Fusarium-associated traits among different oat 
genotypes indicates that FHB resistance in Finnish oats can be improved. 
Further research with more specified hypotheses are recommended in order 
to better understand the genetics of FHB resistance in oats and also to 
achieve more efficient methods for the phenotyping of large progenies. 
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ABSTRAKTI 

Punahome ja punahometoksiinit, joita tuottavat mm. seuraavat 

punahomelajit Fusarium graminearum Schwabe, F. culmorum (Wg. G. Sm.) 

ja F. langsethiae Torp and Nirenberg muodostavat kasvavan uhan pohjoisten 

alueiden kaurantuotannolle. Pohjoismainen kaura ja kauratuotteet on 

brändätty korkealaatuisiksi tuotteiksi, joten punahomeista aiheutuvat 

laatuongelmat on pidettävä hallinnassa. Taudinkestävät lajikkeet toisivat 

tarvittavan lisän olemassa oleviin taudin hallintakeinoihin, sillä haastellisina 

vuosina EU:n asettama raja-arvo deoksinivalenoli (DON) toksiinille voi 

ylittyä, vaikka kaikki muut hallintakeinot olisivatkin huomioitu. 

Taudinkestävyydellä eli resistenssillä tarkoitetaan kasvin kykyä joko 

pysäyttää tai hidastaa infektion etenemistä. Kestävyysjalostus koetaan 

tärkeäksi kauralle, mutta tieto sopivista fenotyyppaustekniikoista ja 

kestävyyslähteistä punahometta aiheuttavia Fusarium -lajeja kohtaan on 

ollut vähäistä ja hajanaista. Kasvinjalostaja luo risteytysten kautta uusia 

yhdistelmiä kasvilajin sisäisestä vaihtelusta ja pyrkii valitsemaan jälkeläisistä 

parhaimmat, mikä johtaa parannuksiin esimerkiksi tuottavuudessa ja 

taudinkestävyydessä. Fenotyyppien määrittäminen, eli fenotyyppaus, on 

keskeinen osa kasvinjalostusta. Fenotyyppi on tietyn perimän omaavan 

yksilön eli genotyypin ilmentymä tietyssä ympäristössä eli esimerkiksi 

kuinka vakava tietyn jalostuslinjan tartunta on tietyssä kokeessa. 

Tämän väitöskirjan ensisijainen tavoite oli parantaa punahomeen 

kestävyysjalostuksen tilaa kauralla. Kirjallisuuskatsauksella selvitettiin, 

millaisia tekniikoita ja kestävyyslähteitä F. graminearum -punahomeella on 

saatavilla. F. graminearum on DON-toksiinia tuottavista punahomeista 

yleisin. Kirjallisuudesta nousi esiin hyödyllisiä tartutusmenetelmiä, 

havainnoitavia ominaisuuksia sekä tietoa kestävyyden periytymisestä 

kauralla. Sekä jalostus- että geenipankkiaineiston arvioitiin sisältävän 

potentiaalisia kestävyyden lähteitä. 

Geenipankki- ja jalostusaineistojen resistenssiä, tartutusmenetelmiä ja 

lupaavia resistenssiä kuvaavia ominaisuuksia lähdettiin arvioimaan useiden 

kenttä- ja kasvihuonekokeiden avulla. Kokeissa tartutettiin DON-toksiinia 

tuottavia punahomeita eri menetelmin kauroihin. Tartunnan saaneita jyviä, 

itävyyttä ja DON-pitoisuutta vertailtiin resistenssiä mittaavina 

ominaisuuksina. Pistetartutukseen nojaavaa menetelmää käytettiin sieni-

infektion voimakkuuden tarkasteluun tähkylätasolla. Monet agronomiset ja 

morfologiset ominaisuudet voivat myös vaikuttaa punahometartunnan 

määrään, ja siksi myös näiden fenotyyppaukseen keskityttiin peltokokeissa, 

ja niiden vaikutusta mykotoksiinien kertymiseen tarkasteltiin. 

Sekä DON-toksiinipitoisuuksien ja tartunnan saaneet jyvien tapauksessa 

kasvihuone- ja kenttäkokeet luokittelivat kauroja hyvin eri tavoin kestävistä 

alttiisiin. DON pitoisuuksissa oli suurta vaihtelua riippumatta siitä 
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tarkasteltiinko lajikkeita, jalostuslinjoja vai geenipankkikauroja. Aikaisuus, 

pituus ja kukintaominaisuudet kaikki vaikuttivat merkitsevästi 

punahometartuntojen määrään ja DON pitoisuuksiin kenttäkokeissa. 

Kukintatyypiltään joko erittäin suljettu tai avoin kauralajike vältti 

kokeissamme korkeimmat toksiinipitoisuudet. 

Kaurojen punahomekestävyydessä löytyi mielenkiintoisia eroja. Varsinkin 

kaikista poikkeavaisimmat genotyypit tarkimmin fenotyypitetyssä 30 kauran 

joukossa voivat toimia sekä kestävyyden lähteinä että hyvinä verrokkeina 

kokeissa. DON, tartunnan saaneet jyvät ja itävyys korreloivat osittain 

keskenään, mutta edustavat myös omia kestävyyskomponenttejaan. 

Kasvihuoneessa sumutartutettu maatiaslajike VIR7766 oli merkittävästi 

kestävämpi tartuntaa ja DON pitoisuuden nousua kohtaan, kuin hylätty 

lajike BOR31. Sen sijaan, kun tartuke pipetoitiin tähkylän sisään, se oli 

tuottanut yhtä paljon punahomeen biomassaa molemmissa genotyypeissä 

kuusi päivää tartutuksesta. 

Kenttäkokeiden tulokset olivat paremmin sovellettavissa tilanteeseen 

viljelijöiden pelloilla ja ne ovat käyttökelpoisempia tulevaisuuden lajikkeiden 

DON-pitoisuuksien alentamisessa. Kasvihuonetutkimukset kuitenkin voivat 

mahdollistaa kontrolloituine olosuhteineen tutkimuksen ja mm. pohjoisiin 

olosuhteisiin sopeutumattomien kestävyyslähteiden vertailun. 

Kenttäkokeissa infektion todennäköisyyttä pienentävät mekanismit, kuten 

aikainen kukinta, pitkä korsi tai korkea heteiden ulostyöntyminen avoimen 

kukinnan myötä lisäävät kauran kestävyyttä punahometartuntaa vastaan. 

Kasvihuoneessa tehdyistä piste- ja sumutartutuksista saadut toisistaan 

poikkeavat tulokset viittaavat, ettei tartunnan tapahduttua kestävyyden rooli 

olisi merkittävä. Suuri muuntelu useissa punahomeeseen yhdistettävissä 

ominaisuuksissa eri kauragenotyypeissä viittaa suomalaisten kaurojen 

punahomekestävyyden olevan parannettavissa fenotyyppauksen avulla. 

Jatkotutkimuksia tullaan tarvitsemaan, jotta kestävyyden periytyvyyttä 

voitaisiin paremmin ymmärtää kauralla ja, kasvinjalostukselle tyypillisten 

suurten jälkeläistöjen fenotyyppauksesta saataisiin kustannustehokkaampaa.  
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1 INTRODUCTION 

1.1 NORDIC OATS 

Nordic conditions favor production of oats (Avena sativa L.) for feed and 

food. Oat is a crop that has relatively little disease problems and, due to its 

vigorous growth, it competes well with most weeds (Marshall et al. 2013). 

Thus, oat is favoured in crop rotation; it is often grown in less productive 

fields even though the utilisation of yield potential of modern cultivars 

requires investments in modern agronomical technology in good soils. Oat 

suits well also for organic production. In human consumption, oat can be 

seen as health-benefiting crop; especially oat fibre content is appreciated and 

valued in morning cereals and other oat-based food products. The health 

claims for beta-glucans and their positive effects to maintain normal blood 

cholesterol concentrations have been approved by the EU (EFSA 2009 and 

2011). Use of oats for human use is growing steadily and new oat products 

are being developed for the consumer market. For example baking 

technology for oat bread has been recently improved, allowing the consumers 

enjoy breads that are made entirely from this gluten free cereal (Flander et al, 

2007). Also plant-based milk alternatives such as oat drinks are a rising 

trend (Sethi et al. 2016). Nordic oats has become a brand of high quality 

cereal marketed by Finnish mill industry (Fazer mills 2019). 

Approximately 1 million tons and nearly 30 percent of the yearly cereal 

production in Finland is oat (Luke 2019). During recent years (2015-2019), 

the cultivated area for oats has been between 306 500 and 337 000 hectares, 

which is between 13.5 and 17 per cent of total agricultural land use in Finland 

(Luke 2019). Over 300 000 tons of yearly export make Finland one of the 

most important oat producers in Europe and the second largest exporter in 

the world after Canada (FAOSTAT 2017). In Finnish fields, oat is a common 

crop in almost all regions below Lapland, but the most common oat 

production areas are coastal regions of Finland such as Ostrobothnia (Luke 

2019, Finnish Cereal Committee 2019a). Sixty-six oat cultivars were listed 

National List of Plant Varieties in 2018 (Finnish Cereal Committee 2019b). 

The five most commonly grown cultivars, which are all blonde hulled, are: 

Niklas, Meeri, Belinda, Matty and Akseli. They account approximately 40 % 

of all oat acreage in Finland (Finnish Cereal Committee 2019b). 
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1.2 FUSARIUM HEAD BLIGHT IN OAT 

Fusarium diseases such as fusarium head blight (FHB) or fusarium crown rot 

cause severe losses in cereal production globally (Buerstmayr et al. 2014, Liu 

et al. 2015, Nganje et al. 2004, Bjørnstad & Skinnes 2008) and these are 

especially harmful for farmers and for the entire grain chain. FHB in oat can 

cause yield losses (Kiecana et al. 2002), low seed germination (Tekle et al. 

2013), and accumulation of mycotoxins (Scott 1989). Mycotoxins, especially 

toxigenic sesquiterpene epoxides, the trichothecenes, are the most severe 

problems related to FHB. The harmful impacts of mycotoxins to human and 

animal health have led to limitation of these substances in food and cereals. 

In EU, the concentration of one of the most common mycotoxins, 

deoxynivalenol (DON), has been limited to 1750 µg/kg in unprocessed oat 

grains (European Commission Regulation No 1881/2006). There is also a 

recommendation for feed usage (<7500 µg/kg, Lantmännen Agro 2019). In 

addition, there is a continuous discussion of setting thresholds for other 

mycotoxins, such as T-2 and HT-2 mycotoxins, which are produced by 

Fusarium species such as F. langsethiae Torp&Nirenberg, F. 

sporotrichioides Sherb. Sacc., and F. sibiricum (Yli-Mattila et al. 2004a, Yli-

Mattila et al. 2008, Jestoi et al. 2008, Yli-Mattila et al. 2011). Since the 

thresholds are used as reasons to either discard or lower the price of the oat 

lot, it is relevant to express that FHB is a major concern in both aspects, in 

health and economy. 

Mainly due to changes in cultivation practises and climate, the most 

important producer of DON mycotoxin and one of the most important fungal 

plant pathogens in the world (Dean et al. 2012), Fusarium graminearum 

Schwabe has increased in westernEurope and also in northern America 

during the recent decades (Tekauz et al. 2000, Tekauz et al. 2008). The 

incidence of F. graminearum is also increasing in northern Europe (van der 

Lee et al. 2015) and it has recently become the most common species 

associated with DON production in Nordic countries (Hofgaard et al. 2016a, 

Hietaniemi et al. 2016, Fredlund et al. 2013). In Finland, F. graminearum 

was determined to explain DON contaminations in cereals more than F. 

culmorum (Wm. G. Sm.) and F. langsethiae was determined to explain T-

2/HT-2 contaminations more than F. sporotrichioides (Yli-Mattila et al. 

2009, Kaukoranta et al. 2019). 

An effective management of FHB and DON in oat is difficult due to 

several reasons. First of all, in addition to F. graminearum, the disease is 

caused by several different Fusarium species that favour different 

environmental conditions. FHB is mainly caused by 16 different species 

belonging to the so-called F. graminearum species complex, which has a 

variable constitution between environments (van der Lee et al. 2015). These 

species can produce several different mycotoxins. Most typical of these in 

Finland, in addition to F. graminearum sensu tricto, are F. avenaceum (Fr.) 

Sacc., F. culmorum, F. langsethiae, F. poae and F. sporotrichioides Sherb. 



16 

Sacc. and F. tricinctum (Corda) Sacc. (Yli-Mattila et al. 2004b, Hietaniemi et 

al. 2016). Secondly, the mycotoxin production and the infection by Fusarium 

species in cereals are influenced by several overlapping but not identical 

external factors. Moisture is the most important factor (Lacey et al. 1999). 

Other factors include factors such as temperature (Brennan et al. 2005), light 

intensity, nitrogen fertilization (Doohan et al. 2003), cultivation practices 

(Yli-Mattila et al. 2009, Kaukoranta et al. 2019) and cultivar susceptibility 

(Wegulo et al. 2015). For example, dry and warm conditions favour F. poae, 

warm and humid environments F. graminearum and cool and rainy 

conditions favour F. culmorum (Xu et al. 2008). Moreover, the infections by 

DON producers are promoted by moisture during anthesis, but the 

mycotoxin accumulation is also dependant on the weather after flowering 

(Kaukoranta et al. 2019, Hjelkrem et al. 2016). In contrast to DON 

producers, F. langsethiae has an earlier and smaller response to moisture 

before anthesis and strongly benefits from warm autumn weathers 

(Kaukoranta et al 2019). 

The management of FHB in cereals requires an integrated disease 

management approach including crop rotation system, cultivar, fungicide 

treatment, weed management and soil tillage (Hietaniemi 2016, Wegulo et al. 

2015). In addition, post-harvest management of the harvested crop plays an 

important role in the prevention of mycotoxin accumulation (Magan & 

Aldred 2007). Several fungicides are registered to control the disease, but 

timing of spraying is critical and even rightly timed spraying may not protect 

from infection. There exists continuous infection pressure from airborne 

spores (Keller et al. 2013) from other fields and crop residues (Sutton 1982). 

Also a longer flowering period in oats compared to wheat increases 

susceptibility (Misonoo 1936, Percival 1921). Under high infection pressure 

oats can accumulate more DON than wheat or barley and creates a concern 

for industry promoting oat-based foodstuffs. More resistant oat cultivars 

would bring awaited contribution for the disease management (Hietaniemi 

2016).  

1.3 EPIDEMIOLOGY OF FHB 

Most FHB pathogens, especially the DON producing Fusarium fungi, 

infect wheat and barley spikes and oat panicles around anthesis (Schroeder 

and Christensen 1963; Wagacha and Muthomi 2007, Tekle et al. 2012). FHB- 

causing pathogens overwinter in crop residue as mycelium and resting spores 

(clamydospores) or in infested seeds (Parry et al. 1995). A range of 

alternative hosts, including maize, soybean, sorghum, wild oats, and various 

common weeds, have been reported to be sources of F. graminearum 

inoculum (Sutton, 1982; Fernandez, 1991, Dill-Macky and Jones, 2000, 

Pereyra et al. 2008). Crop residue is considered to be the main source of 

inoculum for F. graminearum (Sutton 1982). Increase of crop debris as well 
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as lack of crop rotation have been shown to increase disease severity in wheat 

(Dill-Macky and Jones 2000). The relationships between mycotoxin 

accumulation, crop rotation and tillage practises may, however, be different 

in different Fusarium species and in different regions (Kaukoranta et al. 

2019). F. graminearum can produce perithecia and ascospores on soil 

surface for two to three years after the host crop has been harvested (Khonga 

and Sutton 1988). This saprophytic survival of F. graminearum in crop 

residue determines the primary inoculation load to growing oat plants.  

FHB spreads from inoculum to crop by air movement, which is the main 

pathway for F. graminearum sexual ascospores, or with rain splashes, which 

is more typical for conidia (Sutton 1982). Since the most of FHB causing 

species do not have sexual forms, the splash dispersal of conidia is a very 

important mechanism. Different spreading mechanisms were found to result 

in different deposition patterns in wheat canopy (Manstretta et al. 2015), 

which indicates that conidia will need to use nodes and leaves as bridges 

where sporulation cycle or further splashes are needed before reaching the 

head (Parry et al. 1995). The long-distance spread of F. graminearum is 

likely to occur via transportation of infected seeds, although viable 

ascospores of F. graminearum are estimated to disperse via air movements 

from tens to hundreds of kilometres (Keller et al. 2013). When infected seeds 

are planted, seedling blight, Fusarium crown rot and and Fusarium root rot 

can develop in the following season (Tekle et al. 2013, Parry et al. 1995) and 

from these sources of inoculum the disease can spread to heads and panicles. 

Fusarium spores are more likely to land on outer floral parts than inside 

the florets of oats (Tekle et al. 2012, Xue et al. 2015) and thus they have to 

grow hyphae towards the soft floral interior tissue. In inner surfaces of the 

flowers, they can form infection structures such as infection cushions and 

foot-like structures (appressoria) (Boenisch and Schafer 2011, Divon et al. 

2019) which can penetrate cell walls and produce mycotoxins. Degrading 

anthers are suggested to act as a route into the flower since they are often 

colonized first (Tekle et al. 2012). If the infection occurs during flowering the 

colonization of developing ovary may easily lead to dead and empty grain 

(Tekle et al. 2012). Infection continues until maturity and secondary 

infections can occur up to yellow maturity (Tekle et al. 2013).  

1.4 ACCUMULATION OF DON 

Trichothecene production may be a major survival factor for the fungus and 

for example DON has shown antimicrobial properties in crop residue 

(Bennett and Klisch 2003). The ability to produce DON in wheat stubble is 

shown to correlate with the aggressiveness of F. graminearum isolates 

during the infection (Tunali et al. 2012). Trichothecene production has been 

shown to contribute pathogenicity of F. graminearum in several cereal 

species (Langevin et al 2004). DON mycotoxin disrupts protein synthesis by 
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binding into ribosomes. The problems with protein synthesis reduce cell 

division, cause oxidative stress, and eventually accumulation of DON kills the 

plant cells if the plant is not able to remove the toxin or detoxify it 

(Audenaert et al. 2013). There is a growing evidence found mainly in wheat 

that F. graminearum uses DON as a weapon against the host plant in several 

phases of infection (Gunupuru et al. 2017, Walter et al. 2010) and that 

resistant genotypes include genes that can contribute to removal or 

transformation of DON. Several detoxified forms for DON such as DON-3-O-

glucoside or 16-hydryxy-DON are known (Gunupuru et al. 2017). During 

detoxification DON binds to hydrophilic molecules such as glucose and then 

transported out from the cytoplasm.  

Large-scale DON production does not usually start until the pathogen is 

challenged by the host defence mechanisms (Walter et al 2010; Audenaert et 

al. 2013). In wheat, many defences of the host plant against the infection 

actually promote trichothecene synthesis, such as the sucrose that is 

transported to infected tissue as energy source to fight the disease (Jiao et al. 

2008) and stress-related polyamine production (Gardiner et al. 2009). An 

important phase in the SA defence pathway, the oxidative burst increasing 

H2O2 level in the plant tissue, is actually found to promote early DON 

synthesis in vitro (Ponts et al. 2007; Audenaert et al. 2010). This may be a 

way for the fungus to halt the formation of defence proteins such as 

chitinases, peroxidases and PR-proteins (Audeanaert et al. 2013).  

DON has been speculated to act as immunosuppressor in the beginning of 

infection, preventing programmed cell death (Diamond et al. 2013), which 

aids the fungus to feed itself on living plant tissue and to establish an 

infection. Additionally, DON has been also associated with delayed activation 

of plant defence response pathways, based on gene expression patterns 

between susceptible and resistant wheat genotypes inoculated with either a 

wild type or toxin deficient mutants of F. graminearum (Foround et al. 

2012). Recognition of a pathogenic microbe such as Fusarium through 

microbe-associated molecular patterns (MAMP, Newman et al. 2013) could 

lead into the formation of thickened cell walls (papillae) under the 

penetration structure, segregation of antifungal compounds such as 

chitinases and induction of defence signalling (Walter et al. 2010). 

Trichothecene deficient mutants have no limitations in their ability to 

penetrate wheat floral tissue, suggesting that DON has no major role in the 

beginning of infection (Boenisch and Schafer 2011). This applies also in 

barley where no DON was detected from infected tissue until 48 h after 

inoculation (Evans et al. 2000).  

1.5 RESISTANCE AGAINST FUSARIUM HEAD BLIGHT 

Mycotoxins accumulate during infection; this is not direct consequence of the 

presence of fungus, but more likely a consequence of different interactions 
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between environment, host and the pathogen (Walter et al. 2010). Moreover, 

the infection of a floret, depending on the developmental stage of the host, 

causes damage and in the worst case dead of the germ. If this occurs at 

flowering the grain can remain empty (Bjørnstad & Skinnes 2008, Bjørnstad 

et al. 2017). Damage, mycotoxin and the presence of the fungus can reduce 

germination ability (Tekle et al. 2013), which are especially risky for seed 

producers.  

In cereals, the resistance against FHB is commonly divided into five 

components: resistance against initial infection (type I), resistance against 

the spread of infection (type II, Schroeder and Christensen 1963), resistance 

to toxin accumulation (type III, Miller et al. 1985), resistance against kernel 

infection and tolerance (types IV and V, respectively, Mesterházy 1995, 

Mesterházy et al. 1999). Resistance can also be either passive or active, 

depending on whether the resistance mechanism requires presence of the 

pathogen to be triggered (Buerstmayr & Buerstymayr 2014), e.g. the height of 

the plants and their flowering time can both lead to avoidance of fungal 

spores and in that way reduce the mycotoxin accumulation in field trial 

conditions (Bjørnstad et al. 2017). 

From over 200 known quantitative trait loci (QTL) for resistance against 

FHB in wheat about 50 % originate from Asian genotypes (Buerstmayr et al. 

2009) and over half of these QTL confer type III resistance (Liu et al. 2009), 

the rest divide quite evenly among types I, II and IV. The function of these 

QTL is still under investigation. Even with the case of the most important 

FHB QTL in wheat, Fhb1, which originates from Chinese landrace Sumai 3, 

there exists three different hypotheses regarding its function (Su et al. 2019, 

Li et al. 2019, Rawat et al. 2016).  

The genetics behind the resistance of oats are similarly quantitative as in 

wheat but only a few QTL have been identified (Bjørnstad et al. 2017). 

Several traits can be used to measure the resistance to FHB in oats, but these 

traits may not necessarily correlate well with each other. For example, FHB 

symptoms can be quantified but they correlate weakly with DON contents in 

oat, whereas germination and DON levels (Tekle et al. 2018) and F. 

graminearum DNA levels and DON correlate well (Yli-Mattila et al. 2009, 

Yli-Mattila et al. 2013). Despite the good correlation, there are some oat 

genotypes that had good germination even though their DON levels were 

high (Tekle et al. 2018), which indicates that mycotoxin contamination and 

the viability of kernels represent different resistance components. Several 

potential resistance sources have been identified for oats in multiple 

screening studies (Tekauz et al. 2008, Bjørnstad & Skinnes 2008, Gagkaeva 

et al. 2013, Bjørnstad et al 2017, Tekle et al. 2018).  

Phenotyping FHB in plant breeding can be a challenge. A sufficient 

number of replications are required to quantify differences in resistance. For 

example, Tekle et al. (2018) used a minimum of four experiments in different 

environments for sufficiently reliable FHB resistance rankings. For this 

reason, in the early breeding generations with lots of variation and in with 
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small seed amounts available, phenotyping for FHB resistance is not feasible, 

even if the risk of losing all the seeds for infection would be ignored 

(Buerstmayr & Buerstmayr 2014). Another challenge in phenotyping is that 

the traits that give us the most reliable results for selecting resistant 

genotypes are expensive to measure. This is especially a problem for oat 

where unclear symptoms do not serve as a reliable screening method (Tekle 

et al. 2018).  
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2 AIMS OF THE STUDY 

In this doctoral thesis the primary aim was to improve tools for resistance 

breeding in oats against Fusarium infection and deoxynivalenol 

accumulation in Finland. This aim can be further divided into three specific 

aims, which are:  

I Gather, test, develop and choose phenotyping methods for 

selecting resistant oat genotypes.  

II Investigate the role of flowering traits and other 

morphological traits in oat FHB resistance 

III  Evaluate resistance within Nordic oat breeding material 

and selected genebank accessions. 

The following hypotheses were tested: 

-Inoculated field experiments can separate FHB resistant oats

from susceptible oats

-Inoculated greenhouse experiments can separate FHB resistant

oats from susceptible oats.

-Fusarium infected kernels, germination capacity and DON

accumulation are indicators FHB resistance

-Accumulation of Fusarium graminearum biomass and loss of

plant tissue fresh weight can be used to separate FHB resistant

oats from susceptible oats

-Morphological traits including height, earliness and flowering

traits correlate with FHB resistance

-Nordic oat breeding material and genebank accessions both

contain FHB resistance
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3 MATERIALS AND METHODS 

The key methods and plant material used in the thesis are provided in Table 1 

and discussed in this chapter. More comprehensive descriptions of the 

materials and methods including statistical analyses conducted for each 

experiment can be found in Papers II, III, and IV. Paper I provides an 

overview of methodology described in literature. 

Table 1. The methods and type of plant material applied in the original articles of this thesis. 

Category Description Papers 
Inoculation methods Point inoculation III 

Spray inoculation II, III, IV 
Spawn inoculation II, IV 

Visual scoring: Height  
Earliness 
Absence of hulls and colour of hulls 
Percentage of open flowering (OFL) 
Anther extrusion (AE) 

II, IV 
II, IV 
II 
IV 
IV 

Analyses Mycotoxin accumulation (DON) 
Fusarium infected kernels (FIK)  
Germination capacity (GC) 
Fusarium graminearum/oat DNA ratio 
Spikelet fresh weight reduction 
Anther retention (AR) 

II, III, IV 
II, III, IV 
II, IV 
III 
III 
IV 

Plant material Genebank accessions II, III, IV 
Breeding lines II 
Cultivars II, III, IV 

Environment Greenhouse II, III 
Field II, IV 

3.1 PLANT MATERIAL AND DATA 

The 348 Nordic breeding lines and 40 cultivars that were studied in 
Paper II were provided by Boreal Plant Breeding Ltd. In addition, 16 
potentially resistant genebank accessions were provided for Dr. Outi 
Manninen from N. I. Vavilov All-Russian Institute of Plant Genetic 
Resources by Docent Tatiana Gagkaeva (Paper II). Dr. Matthias 
Herrmann (Julius Kühn-Institut) provided seeds for panels of 50 and 16 
oats for the two separate experiments made in Paper IV. These panels 
included modern cultivars and older genebank accessions with potential 
differences in flowering habit as well as resistance to FHB. Studies in 
Papers II and III were done in Finland whereas Paper IV contained both 
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Finnish and German field experiments. Paper III used point and spray 
inoculation for a comparison of two contrasting oat genotypes in 
controlled greenhouse environment. Paper II studied resistance 
parameters and rankings in field and greenhouse experiments in a 
combined data-analysis of 13 field and 8 greenhouse experiments and 
Paper IV focused on studying flowering traits and FHB resistance 
parameters of oats in field experiments with multiple sites. 

3.2 INOCULATION METHODS 

Figure 1. Peritrechia formation on Fusarium graminearum spawn inoculum. 

Three different types of inoculation methods were used in this Thesis (Paper 

I, Table 1). A point inoculation was conducted by inserting a Fusarium spore 

suspension inside a floret in mid panicle region by a pipette at anthesis. In 

the spray inoculation procedure, the inoculum suspension was sprayed over 

the plants at anthesis. The field inoculations in Papers II and IV were done 

with either spray or spawn inoculations depending on the experiment. All 

greenhouse experiments and the first field experiments in Paper II were 

spray inoculated and since 2015 spawn inoculation method was used in field. 

The spawn inoculation (Fig. 1) is based on autoclaved grains infested by 

several F. graminearum isolates (Skinnes et al. 2010, Tekle et al. 2018). This 

was spread evenly within the irrigated field nursery before panicle 

emergence. The experiment was then irrigated regularly to maintain 

moisture suitable for formation of peritrechia and ascospore release (Fig. 2). 

Individual isolates or mixtures of several Fusarium isolates isolated from 

Finland were used in the experiments in Finland (Papers II, III and IV). For 

the experiments made in Germany local isolates were used (paper IV). 
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3.3 VISUAL SCORINGS 

Plant height in centimetres was measured from several field experiments in 

Papers II and IV. Additionally, visual estimates for plant height were grouped 

in three categories (short, intermediate and high) in Paper II. In Paper II, 

earliness was scored in days to heading or days to maturity or by scale from 1 

to 5, where 1 was the earliest and 5 the latest maturing genotypes. 

Additionally, in Paper IV, earliness was estimated by determining the 

developmental stage of the genotypes twice with one week interval around 

panicle emergence. Hulless and dark hull colour were registered from the 

field trials containing genotypes from N. I. Vavilov All-Russian Institute of 

Plant Genetic Resources (Paper II).  

Percentage of open flowers was scored during the afternoon hours when 

the 50 selected genotypes in 2016 and 16 selected genotypes in 2017 had 

started flowering (Paper IV). Upper and lower panicle parts were scored 

separately and each scoring was repeated at least twice during the flowering 

of the plots that were scored. Anther extrusions of the oat genotypes in Paper 

IV were determined from two replicate plots in the experiments. In each plot 

two transparent bags were put over four panicles per bag before flowering. 

The amount of anthers inside the bags was assessed after flowering on a scale 

from 1 (no anthers visible) to 9 (in 100% of spikelets anthers pushed out or 

collected in the bag). 

3.4 ANALYSES OF SAMPLES AND DATA 

Total of 2349 DON accumulation analyses, 4665 analyses of Fusarium 

infected kernels (FIK) and 1516 germination capacity (GC) analyses were 

analysed in Papers II and III. In addition GC and FIK analyses were made in 

one of the experiments in Paper IV and DON analyses from specific spikelet 

samples collected from the plots were made in that paper. A total of DON was 

measured by a serological assay (ELISA RIDASCREEN® Kits R5906, R-

Biopharm) according to the manual. All DON analyses in Papers II, III and 

the DON analyses for the Paper IV’s experiments conducted in Finland were 

made by Boreal Plant Breeding Ltd. FIK were calculated by placing samples 

of 50 kernels per plot on agar plates with a selective PCNB 

(pentachloronitrobenzene (Nash and Snyder medium, Nelson et al. 1983)) 

medium favouring Fusarium growth instead other bacteria and fungi. This is 

a method introduced by Parikka et al. (2007). GC was determined by paper 

testing samples of 100 seeds according to the international seed testing 

agency’s instructions (ISTA 2006).  

Relative amount of F. graminearum in plant by real-time PCR and 

spikelet fresh weight reduction were determined from 120 point inoculated 

spikelet samples at 6 days post inoculation (Paper III). For the calculation of 

relative F. graminearum/ plant DNA ratio, DNA was extracted, Fusarium 



25 

specific primers and oat reference gene primers were selected and real-time 

PCR reactions were run and analysed. Fresh weigh was calculated by 

reducing the weight of inoculated spikelet from an average spikelet weight of 

water inoculated controls.  

Anther retention (AR) was determined in Paper IV from two replicated 

plots per experiment. Anthers were calculated from four florets from selected 

panicle locations from frozen samples of 10 panicles per plot. 

The results from analyses were tested for statistical significance. Mostly a 

mixed model approach in SAS program was applied (SAS Institute Inc., Cary, 

NC, USA) and more comprehensive descriptions can be found from the 

Papers. 
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4 RESULTS 

4.1 RESISTANCE-RELATED TRAITS IN THE FIELD AND 
GREENHOUSE 

The estimates (Best Linear Unbiased Estimators=BLUE) for different FHB 

resistance-related traits including DON, FIK and GC measured in eight 

inoculated greenhouse, and 13 field, experiments (Paper II) separated highly 

susceptible genotypes from moderately resistant genotypes in both 

environments (Figures 2a-2d). Calculations for statistical power (Paper II) 

revealed that the least significant differences in DON accumulation between 

oat genotypes started to become feasible when data from more than three 

field experiments or two greenhouse experiments were combined. The core 

set of 30 oat genotypes that consists of cultivars, breeding lines and 

genebank accessions phenotyped in several field and greenhouse trials was 

formed to demonstrate the results (Fig. 2 and Paper II). 

Figure 2. Best linear unbiased estimators (BLUEs) for DON accumulation (DON), Fusarium 
infected kernels (FIK), germination capacity (GC) plotted against each other for the core set of 30 
oat genotypes. Different symbols represent different types of material, which are: breeding lines 
and a rejected variety (diamond), cultivars (square) and genebank accessions (triangle). Figures 
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2a, 2b and 2c consist from field BLUEs and Fig. 2d represents greenhouse estimates. Four 
genotypes are marked on the figures with letters on the right side of their symbols (Belinda=B, 
Akseli=A, susceptible BOR31=S and VIR7766=V). The lines and regression coefficients 
represent all points. 

FIK, GC and DON were all identified as traits explaining variation of FHB 

resistance in oats. There was a significant correlation between the GC and the 

DON contents of field samples (r=-0.65, P<0.0001, Paper II). Fusarium 

inoculated oat genotypes with similar DON accumulation levels had clear 

differences in their GC, which will be discussed below together with other 

examples, where genotypes rank differently depending on the trait. In 

greenhouse experiments (Papers II and III), DON accumulation and FIK 

estimates correlated well (r=0.68, P<0.001, Paper II), but in in field the 

correlation at sample level was weak when all experiments and genotypes 

were considered. When estimates of genotypes with relatively high number 

of repeated measurements were considered (the correlations of the core set 

in Paper II), the correlations improved. Moreover, in Paper IV, where 

genotypic correlation between FIK and DON was calculated for the panel of 

16 oats, the correlation was rather high (r=0.69, P<0.01).  

4.2 ADDITIONAL TRAITS AND METHODS 

Point-inoculated F. graminearum spore suspensions were shown to 

accumulate F. graminearum biomass (the relative amount of F. 

graminearum in plant, P<0.001) and reduce the fresh weight (P<0.001) of 

oat spikelets (Paper III). This method was not, however, able to distinguish 

two oat genotypes that gave continuously very different levels of DON and 

FIK in spray inoculated greenhouse experiments. Also the resistance 

rankings for oat genotypes were different in field compared to greenhouse, 

which can be seen from Fig. 2c and 2d and confirmed by significant 

interaction between oat genotype and experiment for both DON (P<0.05) 

and FIK (P<0.001, Paper II). 

In field experiments, also traits other than DON, FIK and GC that affected 

FHB resistance were detected. Height (Papers II and IV) and earliness (Paper 

II) of an oat genotype had strong impact (P<0.001) on the DON

accumulation of oats in field trials. The five hulless genebank accessions in

the study were highly resistant against FHB in both greenhouse and field, but

the hulled genebank accessions that were among the most resistant in

greenhouse were not as resistant in field. One example is the genotype

VIR7766. Other spikelet-related traits that were studied were flowering traits

and these were found to vary significantly in oat and also influence on the

degree of FHB resistance. The most cleistogamic and the most open

flowering (OFL) oats found, accumulated both less DON than the genotypes

with intermediate values in flowering traits (Paper IV). The rates of OFL and
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anther retention (AR) had a highly negative phenotypic correlation (r=-0.85, 

P<0.01, Paper IV), i.e., a high rate of OFL leads to high anther extrusion 

(AE). 

4.3 RESISTANCE RANKINGS 

Nordic cultivars, breeding lines and selected genebank accessions had a large 

variation in DON, FIK and GC (Fig. 2) and in this study various degrees of 

resistance and susceptibility were found (Table 2). Table 2 lists example 

genotypes of contrasting resistance to DON accumulation. This information 

can be used for breeding purposes or for further research. The most 

promising lines were either hulless genebank accessions or breeding lines 

(Papers II and IV). The BLUEs for DON accumulation of the 16 genebank 

accessions were on average lower in both field and greenhouse experiments 

(P<0.001, Paper II) than the average estimates for the 40 cultivars and 348 

breeding lines investigated. Similarly, eight older cultivars or accessions 

including Schenkenfeldener stood out with lower DON and T-2 mycotoxins 

from a panel of 25 oats used for studying the impacts of flowering traits to 

Fusarium infections (Paper IV).  

 

Table 2. Contrasting oat genotypes highlighted from Papers II-IV. Resistance to DON 
accumulation in field conditions is categorized by the author from moderately resistant (MR) to 
susceptible (S) and intermediate moderately susceptible (MS)  

Name 
Resistance 
to DON 
accumulation 

Reason for highlighting 

AVEIA MR High rate of anther retention 
BELINDA MR Average check cultivar in Norway 
BOR03 MR Lowest DON contents among hulled oats 
BOR15 MR Breeding line with multicomponential resistance 
BOR31 MS Rejected variety, the highest DON in greenhouse 
MIRELLA S Susceptible in field 
NIKLAS MR Most popular Finnish cultivar  
OBELIX S Susceptible in field 
ODAL MR One of the most resistant Norwegian cultivars 
ROCKY S Susceptible in field 
SCHENKENFELDENER MR High rate of anther extrusion 
SYMPHONY MS Moderately susceptible cultivar 
VIR11012 MR Hulless and the most resistant accession  
VIR6963 MR Brown-hulled genebank accession 
VIR7766 S Susceptible in field, resistant in greenhouse 
VIR7934 MR Resistant genebank accession with white hull 
VIR8479 MS Moderately susceptible genebank accession 
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5 DISCUSSION 

5.1 AVAILABILITY OF INFORMATION ON FHB 
RESISTANCE IN OATS 

The following conclusions were made in our review article, titled “Evaluating 

resistance against Fusarium graminearum in oats” (Paper I). The basic 

information on FHB resistance in oats was found to be available and can be 

utilised for plant breeding purposes. Several oat genotypes were named as 

potential resistance sources for prebreeding, e.g. from the Far East East 

(Loskutov et al. 2016, Gagkaeva et al. 2013) or from North and South 

America (Bjørnstad et al. 2017, Tekauz et al. 2008). The landraces VIR7766, 

VIR6963, and VIR8479, which were cited as the most resistant hulled 

landraces by Gagkaeva et al. (2013), were included in the experiments in 

Paper II. 

There is evidence that consistent selection with the methods available can 

be used to improve resistance levels in oat cultivars (Tekle et al. 2018). These 

methods, including repeated measurements of DON and GC from seeds 

harvested from spray- and spawn-inoculated nurseries, are time-consuming 

and expensive. Moreover, a lot of replication is necessary to handle 

environmental variance. Despite appropriate methods for the experiments of 

this thesis were determined, investments in more efficient phenotyping, 

novel genomic selection tools, and pre-breeding programs are necessary in 

future. Resistance breeding could be speeded by methods that quantify 

resistance parameters prior to harvesting or by development of low-cost 

laboratory analysis methods.  
Traits correlating with FHB were also found that potentially supplement 

selection or increase efficiency in genomic prediction. Suggested components 

of resistance in cereals, associated traits or potential traits, and their 

mechanisms are presented in Table 3, which is modified from Paper I. Some 

of these traits were further studied in this thesis. An oat cultivar with high 

levels of resistance against FHB should reach heading and maturity under 

conditions that are not disease conducive, its stem should be robust and not 

too short, and its panicles should have a low disease incidence, low 

mycotoxin content, and a high number of heavy grains with good GC even 

under strong disease pressure. Breeding of ideotypes of a resistant oat 

cultivar is complicated when using resistance sources from landraces and 

crop wild relatives. Several backcross generations are needed to filter out the 

undesired genes that can result in inferior agronomy. Furthermore, after 

every backcross, all individuals should be phenotyped from the progeny in 

order to identify the resistant ones. 
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Table 3. Summary of commonly accepted FHB resistance traits in cereals (modified from Paper I). 
The table is divided into mechanisms and measurable traits for oats by the authors of Paper I. If 
applicable the mechanisms are further divided into traits that are continuously expressed or that 
require interaction. The information was gathered from: Aamot et al. 2012, Bjørnstad et al. 2017, 
Bjørnstad and Skinnes 2008, Skinnes et al., 2010, Boutigny et al. 2008, Gagkaeva et al. 2013, 
Martinelli et al. 2014, Mesterhazy 1995, Mesterhazy et al. 1999, Miller et al. 1985, Schroeder and 
Christensen 1963, Tekle et al. 2012, Tekle et al. 2013, Tekle et al. 2014, Tekle et al. 2018, Walter 
et al. 2010.  
Types of 
resistance 

Mechanisms Traits and potential *) traits 

Initial infection 
(type I) 

Avoidance mechanisms, 
morphological and chemical 
barriers 

Cleistogamy, height, earliness, lodging, level 
of anther extrusion, surface structure *, 
absence of hulls, lemma colour, 
phytochemicals * 

Defence against cell wall 
penetration: antifungal 
compounds, cell wall 
fortification 

Incidence, diseased/ damaged kernels, fungal 
biomass within floret, defence related 
proteins, cell wall thickening*, and spectral 
changes at infection site* 

Spread of 
infection 
(type II) 

Morphological and chemical 
barriers 

Panicle size and density, phytochemical 
compounds * 

Similar to type I in addition 
detoxification (type V) 

Symptom severity, fungal biomass and 
fluorescence * within panicle 

Toxin 
accumulation 
(type III) 

Slowing the infection by type I 
or II resistance may reduce the 
total toxin accumulation. 
Detoxification, toxin 
transportation, anti-oxidation, 
prevention of toxin synthesis. 

Toxin and masked mycotoxin contents 
directly (chromatography, ELISA, rapid tests, 
or indirectly with imaging technology 
(VIS/NIR). 

Kernel infection 
(type IV) 

Types I, II and III protect also 
kernels. Kernel structure * 

Kernel structure * and biochemical 
constitution * 

Defence proteins and 
fortification, induced resistance 

Diseased/damaged kernels, germination 
capacity, (hyper) spectral imaging, proportion 
of infection when inoculated post anthesis(?)  

Tolerance 
(Type IV) 

Compensation capacity, 
antioxidant content 

Water and nutrient use efficiency*, high yield* 

Antioxidant production, 
allocation of resources, 
detoxification 

Panicle yield or 1000-kernel weight versus 
disease severity or toxin content 

5.2 METHODS FOR PHENOTYPING RESISTANCE 

Finding suitable methods for phenotyping resistance against Fusarium head 

blight and DON accumulation in Finnish oat breeding was one of the main 

goals of the project “Development of breeding technologies for oat Fusarium 

resistance”. The major part of the data for this thesis was gathered during the 

project.  
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DON estimates based on 13 field experiments were consistent with the 

results of a large analysis made previously by the Finnish Cereal Committee 

(VYR) from grain sample data, provided by the cereal trade and industry 

(Finnish cereal committee’s website, accessed 6.2.2019). The cultivars - 

Rocky, Obelix and Mirella - that were found most susceptible in Paper II 

were also the most susceptible samples collected from farmers’ fields. 

Similarly, the cultivars with the lowest DON estimates performed well also in 

VYR’s listing, i.e. cultivars such as Niklas, Alku and Belinda, did not show 

high DON medians in that study. 

Field testings in this study relied mainly on spawn inoculated nurseries. 

There, an artificial inoculum was spread on the ground before anthesis 

mimicking the natural infection by F. graminearum, whose primary 

inoculum source is the crop residue (Dill-Macky & Jones 2000, Hofgaard et 

al. 2016b). In addition, the conditions were kept conducive to disease by 

increasing moisture through mist irrigation during evenings, which favours 

ascospore release (Sutton 1982, Paulitz 1996). According to Paper I, many of 

the latest resistance evaluations in oat relies on spawn inoculum (Tekauz et 

al. 2004, Gagkaeva et al. 2013, Bjørnstad et al. 2017, Tekle et al. 2018). With 

several replicated trials over space and time, these evaluations have been able 

to make rankings that can distinguish highly susceptible and moderately 

resistant oat genotypes. According to statistical power calculations in Paper 
II, the least significant difference was found to pass below 3000 µg/kg, when 

the number of field experiments behind the estimates rose from three to four. 

This is completely in agreement with the results of Tekle et al. (2018), who 
got least significant differences of 3000 µg/kg based on a minimum of four 

field experiments. 

Fewer genotypes were tested in the greenhouse experiments than in the 

field; thus, our data is not optimal for comparing field and greenhouse 

experiments. Potentially resistant genebank accessions showed high 

resistance levels in the greenhouse. However, there was also plenty of 

inconsistencies in the rankings of genebank accessions, breeding lines or 

cultivar estimates between the field and greenhouse. These differences can be 

explained by the escape mechanisms that play a role in field. Theoretically, in 

the greenhouse, height or earliness should not have an impact on disease 

infection severity. Greenhouse spray inoculations can be done according to 

the plants developmental stage and height and humidity in controlled 

temperature conditions. Large differences in these traits can, however, have 

undesired impacts on disease development. For example, higher plants are 

closer to the warm lights. In addition, during spring or autumn the rapid 

change in day length over few weeks can have impacts on the light, 

temperature and moisture conditions inside the greenhouse. Nevertheless, 

the temperature, moisture and light conditions are considered more stable in 

greenhouse than in field.

The high correlations found between DON and FIK (Papers II, III and IV) 

suggests that in suitable conditions the initial infection often directly leads to 
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accumulation of DON mycotoxin. Paper III emphasizes the role of type I 

resistance in oats which is resistance against the initial infection (Schroeder 

& Christensen 1963). In wheat research, type II resistance is commonly 

assessed by inserting Fusarium spores inside a spikelet by point inoculation 

and measuring the spread of symptoms after inoculation (Mesterhazy 1995). 

The panicle structure of oats, however, constrains the spread of symptoms 

and thus Langevin (2004) did not find differences in type II resistance of 

oats. The cell level mechanisms against the initial infection and the spread of 

infection should be somewhat similar including morphological and chemical 

barriers at the cell wall and active defence through cell wall fortification, 

antifungal compounds and maybe also detoxification of mycotoxins at least 

in the case of wheat FHB (Walter et al. 2010). The point inoculation method 

used in Paper III was applied from a study on wheat and barley by Kumar et 

al. (2015). There, in addition to symptom spread, a clear difference in fungal 

biomass was found between different genotypes. However, the two oat 

genotypes investigated with large differences in their DON accumulation and 

proportion of FIK in greenhouse experiments did not show any difference in 

their fungal biomass accumulation. At least in this case, F. graminearum was 

able to spread as efficiently within the tissue of the susceptible cultivar as 

within the tissue of the presumably moderately resistant oat.  

In point inoculation, individual spikelets got heavily infected during 6 

days, which also suggests that the resistance against infection spread is 

mainly affected by the panicle structure. This was also predicted by Tekle et 

al. (2012), who estimated that established infection in the primary floret may 

make the secondary and other later flowering florets more vulnerable. 

Typical Fusarium infected oat spikelets lose their chlorophyll under field 

conditions, which suggests that the infection spreads or kills all florets within 

a spikelet. The study in Paper III was made only by two different oat 

genotypes and further research with additional oat genotypes would be 

valuable in determining whether oat tissue has ability to resist this kind of 

infection. The genotypes compared in Paper III, had high difference in their 

resistance response when spray inoculated in greenhouse, but in field 

conditions the difference was not significant (Paper II). The different 

distributions in DON accumulation and FIK in field and greenhouse, and 

differences between GC and DON rankings in our research (Paper II) and in 

other investigations (Tekle et al. 2018) suggest that there are several 

mechanism at work. Thus differences in infection spread at tissue level may 

be detectable in some oat genotypes. Also the strength of the inoculum and 

the time point of comparison need to be considered. Only one concentration 

of inoculum was used in the point inoculation study, which may have 

resulted to infection pressure so high that small differences in resistance 

against infection may have disappeared. Inoculation by a slower growing 

pathogen F. langsethiae (Divon et al. 2019) did not cause any weight 

reduction by 6 dpi. 
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Significant genotypic correlations between the estimates of FIK and DON 

in sets of genotypic estimates based on several experiments (Papers II, III 

and IV) suggest that type I resistance is a highly important determinant for 

resistance in oats. Considering the constant release of spores from heading to 

yellow maturity in our spawn inoculated field experiments, it is not 

surprising to have majority of grains at least superficially infected. This leads 

to low rate of differentiation between genotypes and reduces the ranking 

power of FIK. A greenhouse study conducted by Tekle et al. (2013) 

demonstrated that timing of inoculation can have substantial impact on the 

relationship between DON accumulation and the level of infection. It is 

suggested that anthesis is the most susceptible time of inoculation. The field 

research of Gagkaeva et al. (2013) also found clearly weaker correlation 

between mycotoxins and Fusarium infected seeds than between mycotoxins 

and fungal biomass. The use of a quantitative PCR method for determining 

the amount of fungal biomass from field samples and consequently severity 

of infection could produce more reliable data than proportion of FIK. Further 

investigations in inoculated environment are, however, needed, since the 

reported correlations between fungal biomass and mycotoxin production 

vary a lot between different samples and environment (Gagkaeva et al. 2013, 

Yli-Mattila et al. 2017). 

The correlation between DON and GC in our research was similar to the 

results obtained by Tekle et al. (2013 and 2018), who determined that in oats 

DON can restrict seedling growth but the loss of GC is more dependable on 

the fungus. The infections occurring at anthesis often killed the germ and led 

to accumulation of mycotoxins, whereas later occurring infections were able 

to weaken GC but not to cause significant mycotoxin accumulation (Tekle et 

al. 2012, Tekle et al. 2013). The average GC and the GC ranking of oat 

genotypes was affected by the level of DON (Paper II), which suggests that 

there are either differences in tolerance to infection and DON accumulation 

or differences in susceptibility to lose GC once infected. The resistance 

against kernel infection is one of the resistance types in cereals (Mesterhazy 

et al. 1999) and it has been measured as a resistance component in 

Norwegian FHB screenings of oats (Tekle et al. 2013, Tekle et al. 2018). The 

results of Paper II further encourage the use of this trait in resistance 

screenings of oats. According to data of Paper II, cultivars such as Akseli, 

Niklas, Eemeli, and Belinda, are potential sources for resistance against 

kernel infection. 
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5.3 TRAITS CONTRIBUTING TO FIELD RESISTANCE  

  

Figure 3. Hulless oats (left) and brown/black oats (right) on August 2016 (soft dough stage). 

Passive resistance can be determined as resistance that is not dependent on 

the detection of the pathogen. Tekle (2014) describes passive resistance 

mechanisms against FHB being morphological traits affecting inoculum 

deposition or establishment of infection on cereal heads. Some of these traits 

are also referred to as escape mechanisms or evasion factors. As has been 

shown, the results between different phenotyping methods are not consistent 

in all oat genotypes. Type I resistance in oats can be highly contributed by 

several escape mechanisms that can have high impact on the severity of FHB 

especially in field conditions. The agronomic and morphologic characters 

potentially affecting FHB in oats are described and discussed in the literature 

review (Paper I). In this chapter, these are reflected into the results of our 

research.  

The higher FHB resistance level in hulless accessions (Fig. 3) is in 

agreement with other research results (Gagkaeva et al. 2013, Tekle et al. 

2018), where hulless oats have also been more resistant than others. Most of 

the mycotoxins accumulate on the hulls which are also called as palea and 

lemma, since these are the first parts to be colonized by F. graminearum 

(Tekle et al. 2012). The genotypes that lose hulls during the threshing have 

less mycotoxins than typical hulled genotypes where the hulls need to be 

removed mechanically. Loss of hulls at maturation, may not however, stop 

optimally timed Fusarium infections from killing the embryos and thus the 

yield impact of FHB in hulless oats may not be different compared to hulled 
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cultivars. The yield impact of FHB may actually be greater due to 

indeterminate flowering of hulless oats.  

Four of the resistant genebank accessions in Paper II were also 

characterized by brown hull colour (Fig. 3) and the average DON content was 

lower (P<0.001) than the average for the rest of the oats in Paper II. Dark-

colour in hulls has been connected to resistance against Fusarium infection 

both a long time ago (Rainio 1932) and also recently (Loskutov et al. 2016). 

In black barley the similar resistance was associated to Fusarium growth 

inhibiting compounds including phenolics (McKeehen et al. 1999), lignin 

(Siranidou et al. 2002) and flavonoids (Skadhauge et al. 1997). Black or 

brown hull colour was associated with resistance on oats (Rainio 1932) and 

in barley (Choo et al. 2015). Neither, the hulless nor the black or brown 

hulled genotypes are interesting for the current market (Leena Pietilä, oat 

breeder at Boreal Plant Breeding Ltd., pers. discussion) and thus it was 

decided not to continue the field research with these genebank accessions.  

F. graminearum spores and hyphae are susceptile to desiccation in dry

air and sunlight, despite of their own protective pigments (Gambaza et al. 

2018) and hydrophobins (Quarantin et al. 2019). Therefore the spores on the 

air or the hyphae growing on the thick external surfaces of florets need to 

reach for the soft inner surfaces of palea and lemma as well as anthers and 

developing caryopsis. In oats, the fungus typically enters via the floret mouth 

(Tekle et al. 2012). Thus, differences in flowering morphology can act as 

passive resistance mechanisms. 

At anthesis, the opening flower lets in the airborne spores. After anthesis, 

anthers that are retained inside the flowers start to degrade and provide 

dying tissue where Fusarium fungi can proliferate (Tekle et al. 2012, Divon et 

al. 2019). Tekle (2014) suggested in her thesis that further research should 

investigate the importance of AE as a passive resistance mechanism. She also 

underlined that the flowering biology of oats should be further investigated. 

Cleistogamic and open flowering oats were searched among 50 candidates by 

estimating OFL and AE and measuring AR. These three flowering traits 

correlated relatively well with each other, but AR can be recommended as the 

most precise and reliable method, although it is also rather time consuming 

to assess. A cleistogamous oats was found and genotypes of high rate of OFL 

were also named. The highest AE rates were found among older cultivars and 

accessions. Similarly, Stråbø (2015) observed a clear decline in AE among

modern Nordic cultivars when compared to older cultivars. In that study, the 

highest AE was similar to the highest AE in paper IV. 

AE was expected to have an impact, since oats are most susceptible during 

flowering (Tekle et al. 2012, Xue et al. 2015) and AR is commonly known to 

affect resistance against FHB and DON in wheat (Strange and Smith 1971, 

Skinnes et al. 2010, Steiner et al 2019). In barley, the cleistogamous 

genotypes are less susceptible than open flowering genotypes during 

flowering but they become more susceptible later when the developing grain 

pushes the degrading anthers so that they become visible and available for 



36 

the Fusarium spores and mycelium (Yoshida et al. 2007). In our study, the 

most cleistogamous and the most open flowering accessions Aveia and 

Schenkenfeldener, respectively, had similarly low DON levels, but they had 

considerably high differences in their GC, which may be due to anther 

extrusion, since later infections are shown to have greater impact on GC than 

toxins (Tekle et al. 2013). Only a part of genetic variation of FHB resistance 

can be explained by variation in AR, thus more precise evaluation of effects 

by AR on mycotoxin content is required. This needs to be done with 

populations that have high range in AR, but less variation for other traits that 

can have impact Fusarium infection such as plant height and flowering date 

as in a recent wheat study (Steiner et al. 2019).  

Weather conditions favourable for Fusarium species are shown to 

promote mycotoxin production in oats (Hjelkrem et al. 2016, Kaukoranta et 

al. 2019) as well as T-2/HT-2 production in UK (Xu et al. 2014). Thus, the 

maturity of the host genotype can offer an escape mechanism that is shown 

to affect the severity of FHB in oats (Loskutov et al. 2016, Bjørnstad et al. 

2017, Tekle et al. 2018, Rainio 1937). The optimal phenology depends on the 

agricultural environment. For example in Norway the early maturing 

genotypes were more susceptible than late maturing (He et al. 2013, 

Bjørnstad et al. 2017) and also in the experiments of Paper IV that were made 

in Germany (Paper IV). In Finnish conditions, the early genotypes were less 

susceptible than late maturing genotypes (Paper II) and this has been also 

found in other research in Finland (Parikka et al. 2008) and Russia 

(Gavrilova et al. 2008). In Finland, early flowering can occur before the 

warmest part of the growing season and it can make early genotypes less 

vulnerable to the combination of warm and moist weather promoting F. 

graminearum infections. Late maturing oats can also face rainy autumn 

weathers that can promote accumulation of DON toxin especially when they 

are suitably timed with development of oats and optimal temperature 

(Hjelkrem et al. 2016, Kaukoranta et al. 2019). The growing seasons are, 

however, variable and the development of oats is fast in the long days of high 

latitudes and thus the maturity is not likely to resolve the entire FHB 

problem in oats. 

Autumn weathers during harvesting in, for example, Norway or UK, are 

usually warmer than in Finland (Kaukoranta et al. 2019). Slightly different 

rankings of cultivars Belinda and Symphony in our experiments compared to 

Norwegian experiments may be explained by differences in climatic 

conditions. Additionally, earliness may partly explain why the rejected 

variety BOR31 was highly susceptible in greenhouse, but only moderately 

susceptible in field. BOR31 was one of the earliest genotypes of our 

experiments (Paper II). Contrastingly, there were also genotypes such as 

BOR03 that could clearly resist toxin accumulation in field (Paper II), despite 

being among the latest maturing. This genotype was not tested in greenhouse 

and it could be interesting to study its type I resistance by seeing if the DON 

accumulation in this genotype is connected with infected kernels or not.  
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Short plants or very high plants with late maturity and tendency to 

lodging accumulated more Fusarium infections and DON than average 

genotypes in Finland (Paper II). The only dwarf genotype in our inoculation 

research, Troll, had more mycotoxins than the other 24 genotypes within the 

same panel (Paper IV). Despite being closer to the source of inoculum in the 

soil and suffering from a higher inoculum density in the air (Manstretta et al. 

2015), short plants may also have more disease conducive microclimate in 

field nurseries. Their panicles are closer to the leaves of taller genotypes, 

which can both act as bridges for conidia as well as concentrate moisture. 

Height is also regarded as component of type I resistance in wheat (Lu et al. 

2013) and it is shown to contribute Fusarium infection rankings in genebank 

accessions (Loskutov et al. 2016). The impact of height and earliness should 

be considered in future screenings and analyses by either, selecting sets of 

similar height and earliness material as was done by leaving Troll out from 

the analysis in Paper IV, or using earliness and height as covariant (Tekle et 

al. 2018, Bjørnstad et al 2017). 

5.4 FUSARIUM HEAD BLIGHT RESISTANCE IN OAT 

At the beginning of this PhD project there was a clear lack of information 

regarding the level of resistance in the current oat cultivars and breeding 

population in Finland. Moreover, there was no evidence on how the 

promising genebank lines would perform in Nordic conditions. This chapter 

describes and discusses the variation in FHB resistance and accumulation 

DON mycotoxin found in Papers II, III and IV and reflects it with literature 

gathered in Paper I.  

The screenings by the N. I. Vavilov All-Russian Institute of Plant Genetic 

Resources (Gagkaeva et al. 2013) found no significant differences between 

cultivars and landraces when screening their genebank collections. In this 

thesis, the cultivars were generally new and the genebank accessions in Paper 

II were selected based on available resistance data. Thus, a wider gap 

between these groups of genotypes can be assumed, and a significant 

difference in resistance was also expected. In the field, the ranges of DON 

estimates were, however, quite similar between the cultivars, breeding lines, 

and hulled genebank accessions (Table 3 in Paper II). Moreover, if the 

hulless lines are excluded, there was no genebank accession that could 

exceed the most resistant genotypes within the Nordic breeding pool. 

Considering that FHB resistance is a quantitative trait and FHB can have 

yield impacts, it is easy to agree with Bjørnstad et al (2017), who suggested 

that breeding for yield in moist Nordic conditions has already made some 

progress against FHB. Nevertheless, the good performance of genebank 

accessions in greenhouse and the vast genetic diversity in landraces 

compared to modern cultivars (He & Bjørnstad 2012) both encourage 
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examination of genebank accessions more in detail. Consequently, new pre-

breeding efforts may be started.  

Despite the genebank accessions from N. I. Vavilov All-Russian Institute 

of Plant Genetic Resources being generally more resistant than other 

genotypes, some genebank accessions turned out to be moderately resistant 

in greenhouse to moderately susceptible in field (Paper II). For example, 

VIR11012 had the lowest estimate for DON accumulation in greenhouse (462 

µg/kg). This was clearly better than any other genotype, but in the field it had 

an estimate of 7525 µg/kg, which was at the same level as the estimate for the 

best cultivar. Hulled genebank accessions VIR7766 and VIR8479 

accumulated relatively more DON in field than in greenhouse (16037 vs. 

4640 µg/kg and 14362 vs. 5148 µg/kg, respectively), whereas VIR6963 

behaved quite similarly in both environments (10569 vs 4462 µg/kg). These 

results suggest that pre-breeding would be required to see whether the 

resistance of a specific accession can be integrated in the Nordic oat genepool 

successfully. The biggest challenge in the application of resistance from 

genebank accessions is that the genetics of the resistance is yet unknown. As 

long as the genes behind the resistance are not associated with markers, 

comprehensive phenotyping has to be made in every backcross generation. 

Thus, the use of resistance existing already within the breeding population 

may be less cumbersome approach to improve FHB resistance in oats in the 

near future. 

In the results of Paper II and in Figure 2, clear relationships between the 

resistance traits (DON, FIK and GC) can be seen, but also interesting outliers 

can be identified. For example, the most DON resistant breeding line in field 

was BOR03 with DON estimate of 5007±2978 µg/kg (mean±S.E.) but it had 

relatively weak GC estimate of 58±8.5 % and rather intermediate FIK rate 

(57±8.6 %). Contrastingly, breeding line BOR15 had almost similar DON 

(6000±3294 µg/kg), but with clearly better GC estimate of 74±8.3 % and 

lower FIK estimate (46±8.4%). These different responses in different traits 

indicate that there may be different resistance mechanisms in these 

phenotypes. The Finnish cultivar Niklas had the best DON estimate among 

cultivars in field (7204±3703 µg/kg) and also relatively low estimate for DON 

in greenhouse (5792±3515 µg/kg). One of the most DON resistant oat 

cultivars in Norway (Tekle et al. 2018), Odal, was also moderately resistant to 

DON in our experiments with a DON estimate of 10335±4846 µg/kg in field 

and average DON estimate in greenhouse (8430±1823 µg/kg). The most 

susceptible accessions in field were the cultivars Rocky, Obelix, Mirella with 

DON estimates ranging from 17490±5540 to 20138±5881 µg/kg). These 

three also had GC estimates below 55%. Mirella was also associated with high 

mycotoxin content and low GC in Norway (Tekle et al. 2018). The most 

susceptible genotype in greenhouse, BOR31, was however; only moderately 

susceptible in field experiments with a DON estimate of 13553±4852 µg/kg, 

whereas in greenhouse its DON estimate was as high as 22059±3163 µg/kg.  
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The rankings of cultivars across evaluations can be used as cross-

validation but also to determine genotype×environment interaction. 

Cultivars Mirella and Odal rank similarly between Paper II and Norwegian 

screenings but for example cv. Symphony had less DON accumulation in our 

conditions (Papers II and IV) than in Norwegian conditions (Tekle et al. 

2018). In addition to Finnish conditions, Symphony was also studied in 

Germany (Paper IV) and the results from these trials were similar to the 

results obtained in Finland. In the study made in Germany, however, the 

most susceptible cultivar for accumulation DON and T-2/HT-2 toxins in a 

panel of 25 oats was Bessin, which is the susceptible control in Norway 

(Tekle et al. 2018, Bjørnstad et al. 2017). Bessin has been also found to rank 

as susceptible in Russian FHB resistance screenings where also Belinda was 

intermediate and Odal resistant (Gagkaeva et al. 2017). Unfortunately, 

Bessin was not included in the study of Paper II and thus there is no estimate 

for its performance in Finnish conditions. Since genotype×environment 

interactions are likely to occur due to, for example, different weather 

conditions and earliness requirements of the sites, the use of common check 

cultivars can be recommended for phenotyping studies to better understand 

these mechanisms. Phenotypic effects of QTL for resistance are often 

incidental, showing only in certain experiments even with same mapping 

populations (Niks et al. 2011). 

Figure 4. Contrasting genebank accession VIR7766 and rejected variety BOR31 grown for point 
inoculation experiment in a greenhouse environment. Settled for the image, originally mixed with 
each other. 

The comparison of the rejected variety BOR31 and the genebank 

accession VIR7766 can serve as an example how different resistance 
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components can become important in different conditions (Fig. 4). These two 

genotypes were inoculated by all three methods (spawn, spray, point) with 

very contrasting results. BOR31 was clearly more susceptible than VIR7766 

in spray inoculated greenhouse experiments measured by both DON 

accumulation and by FIK incidence (Papers II and III). However, the results 

from field experiments inoculated mainly by spawn methods found these 

genotypes to be rather equally susceptible and VIR7766 had actually higher 

DON estimate than BOR31 (Table 3, Paper II). Moreover, the results from 

point inoculations in Paper III showed that both of the genotypes similarly 

accumulated F. graminearum biomass and lost their fresh weight at spikelet 

level (Paper III). These results indicate that once established the infection 

spreads and leads into certain accumulation of DON in a spikelet, but the oat 

genotype has an ability to resist the initial infections and in field conditions 

this ability is contributed by different factors than in greenhouse.  

In short, it seems that these two genotypes differ mainly in their 

resistance against the initial infection (type I), which can be contributed by 

the following differences in these two genotypes. VIR7766 is one of the 

highest and most late maturing accessions whereas BOR31 was the earliest 

genotype in these investigations and also relatively short. BOR31 is a cultivar, 

whereas VIR7766 is a dark-hulled landrace accession. According to a 

preliminary study (data not shown), BOR31 also has relatively high level of 

AE and low AR among our core set of oat genotypes. High rate of open 

flowering could actually increase its susceptibility in spray inoculations at 

greenhouse and protect it from constantly released spores in the field. 

The FHB resistance in oats is a puzzle that cannot be solved if only one 

piece is considered. In Figure 5, a suggestion of different pieces of resistance 

is made based on the results gathered in Papers I-IV. This figure underlines 

that different mechanisms behind the variation found in oats should be 

considered. Some of the statements (Fig. 5) are still incomplete. For example 

the mechanism that is protecting from DON accumulation in BOR03 and 

mechanisms increasing susceptibility in Rocky, Mirella and Obelix require 

further research in greenhouse environment. These different pieces of the 

puzzle can be highly valuable, when they are used together. For example, 

genomic prediction of DON accumulation could be enhanced by GC and FIK 

data and perhaps also by data from different environments.  

More pieces of this puzzle are likely to be identified when more 

phenotyping is made in future. One should always remember that a 

phenotype is only a reflection of genotype in the specific environment where 

it has been observed. The precision of phenotyping is dependent on the 

number of environments where it has been done. Thus determining each and 

every factor influencing on the resistance of a specific genotype would 

require phenotyping in limitless set of environments.  
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Fig. 5. The puzzle of Fusarium head blight resistance components in oats. Each piece of the 
puzzle resembles a mechanism that can be suggested based on this research data and gives 
also examples of genotypes that manifest this mechanism. Empty gray pieces resemble 
mechanisms that remain unknown. Green pieces describe resistance and red susceptibility. 
Passive resistance mechanisms are marked with yellow since these may promote either 
resistance or susceptibility depending on the circumstances.  
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6 CONCLUSIONS AND FUTURE 
PERSPECTIVES 

Several methods to phenotype FHB resistance in oats were evaluated. From a 

breeding perspective and for cultivar evaluation purposes, field trials give 

more comprehensive and applicable resistance rankings than greenhouse 

testing. The latter can, however, be used to produce information on single 

resistance mechanisms due to more controlled environmental conditions in 

the greenhouse than in the field experiments. Resistance associated traits 

DON, FIK, and GC were found to partially correlate, but the numerous 

outliers that either rank as weak in DON but good in GC, or vice versa, 

indicate that these also reflect different dimensions of resistance. Thus, at 

least two of these three or equivalent methods should be used in 

phenotyping.  

All types of oat germplasm, including cultivars, breeding lines and 

genebank accessions, were found to include genotypes with different degrees 

of susceptibility to DON accumulation, Fusarium infections and loss of GC 

under infection. Thus, it is important to phenotype different types of material 

in order to identify new sources for resistance breeding. Constant selection 

against FHB within the breeding population would also shift the population 

towards lesser susceptibility.  

Resistance against the initial infection (type I) was found to be a highly 

important character for host plant resistance in oats. Type I resistance can be 

enhanced or reduced by morphological (flower structure and flowering 

physiology) and phenological (height, earliness) traits in field, whereas in the 

greenhouse it more purely reflects the plant’s active mechanisms working 

against infection and infection spread. In addition, colour and dropping of 

the hulls, both extremely closed and extremely open flowering, increased 

passive resistance in oats. The proportion of retained anthers was shown to 

sort out oat genotypes with different rates of flower opening. Thus, AR can be 

used to select for lower mycotoxin content.  

Great challenges for the breeding of FHB resistant oats come from the 

sizes of the breeding populations and from the need of expensive repetitions 

and analyses similar to those of this study. Thus, the development of genomic 

prediction tools for breeding FHB resistance in oats would be highly valuable 

since these would in the long run reduce the need of expensive phenotyping 

and make it possible to improve the entire breeding population. Even 

genomic selection requires efficient and intensive phenotyping when the 

model is being developed, but when an accurate model is available the 

phenotyping can be reduced (Jannick et al. 2010).  

The need for further investigations to make better generalization of our 

results in either larger sets of genotypes that are more representable such as 

in the case of spikelet infection (Paper III) or more advance material with 
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less variation such as in the case of flowering traits (Paper IV) arose. If 

genebank accessions are found to contain resistance mechanisms lacking in 

the modern gene pool, then pre-breeding programs could have highly 

positive impacts to FHB resistance. 

The availability of anthers was shown to impact on the severity of FHB in 

oats, but these investigations focused on the rate of flowers open or on the 

amount of anthers extruded, even if the duration of flowering within a 

certain oat genotype could easily be as affective a trait. Duration of flowering 

is very laborious to be quantified by observation, but in the future, 

automated imaging by stationary cameras could result to identification of 

variation in the duration of flowering within oat genotypes. We also need 

data on the importance of flower opening under greenhouse conditions. 

Imaging technology can proof itself useful also in replacing existing 

techniques by more efficient and cost effective technology such as replacing 

DON analysis with hyperspectral imaging (Tekle et al. 2014).  

The lack of resistance genes conferring strong resistance could also 

encourage researchers and breeders to use new plant breeding technologies 

to modify oat plants more resistant to FHB. For example Fhb1 QTL in wheat 

is suggested to result from either gain or loss of function after a deletion 

mutation (Su et al. 2019, Li et al. 2019). Systems such as CRISPR-Cas9 could 

be applied in the introduction of similar mechanisms in oats. Naturally this 

would require public acceptance and the duration of this kind of resistance 

should be considered critically. There is, however, no evidence on breaking of 

FHB resistance, even in wheat. Maybe this is the positive aspect of a disease 

with multiple and highly variable causal agents. 

The functions of currently detected resistance mechanisms in oat are also 

unclear. For example, is the resistance against initial infection - after the 

passive resistance mechanisms are filtered out - related to cell walls or on 

specific resistance proteins? Or is the lower DON content in specific 

genotypes a result from detoxification, degradation, transportation or 

something else? Comparative genomics and RNA sequencing of inoculated 

and healthy spikelets at different time points could help to reveal this in 

future. Perhaps, there are also susceptibility genes. Studying the 

susceptibility of rejected variety BOR31 could provide interesting 

information on how Fusarium infection invades oats. 

The grain yield impacts of FHB (Kiecana et al. 2002) should be compared 

in oat germplasm for better dissemination of different resistance mechanism 

in oats. The empty kernels resulting from very severe and well-timed 

infections are suggested to cause misinterpretation of resistance (Bjørnstad & 

Skinnes 2008, Bjørnstad et al. 2017). Estimation of empty kernels did not, 

however, clearly improve DON estimates in a study by Bjørnstad et al (2017). 

Better understanding of the factors causing the differences between field and 

greenhouse environment or a system, where a comparable yield from 

uninoculated and inoculated field plots could be achieved, may answer this 

question.  
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