High prevalence of Clostridium botulinum in vegetarian sausages

Noora Pernu, Riikka Keto-Timonen, Miia Lindström, Hannu Korkeala

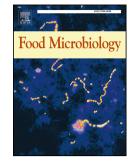
PII: S0740-0020(20)30101-5

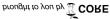
DOI: https://doi.org/10.1016/j.fm.2020.103512

Reference: YFMIC 103512

To appear in: Food Microbiology

Received Date: 21 December 2019


Revised Date: 4 April 2020


Accepted Date: 12 April 2020

Please cite this article as: Pernu, N., Keto-Timonen, R., Lindström, M., Korkeala, H., High prevalence of *Clostridium botulinum* in vegetarian sausages, *Food Microbiology* (2020), doi: https://doi.org/10.1016/j.fm.2020.103512.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Ltd.

	Journal Pre-proof
1	Short communication
2	
3	
4	
5	Title: High prevalence of Clostridium botulinum in vegetarian sausages
6	
7	
8	Noora Pernu ¹ , Riikka Keto-Timonen ¹ , Miia Lindström*, and Hannu Korkeala
9	Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, P.O. Box 66, FI-
10	00014 University of Helsinki, Finland
11	¹ These authors contributed equally to this work.*Author for correspondence: Miia Lindström, tel.
12	+358504486587, fax +358294157101, e-mail miia.lindstrom@helsinki.fi
13	
14	
15	
16	
17	
18	
19	
20	

21 1. Introduction 22 In line with sustainable development goals, plant-based foods and meat substitutes are becoming a 23 preferred source of protein among increasing number of consumers. A popular alternative for meat 24 products are vegetarian sausages, with a range of products being available on the market. Most products 25 are vacuum-packaged chilled foods, but also frozen and canned vegetarian sausages are retailed. 26 Ingredients include typically a plant or fungal protein source (soy, wheat protein, chickpea, pea protein, 27 mycoprotein), other vegetables (corn, potato, pepper, tomato, onion, garlic etc.), herbs, spices, salt, 28 vegetable oil, and additives (thickening agents, stabilizers, pH regulators, antioxidants). 29 30 A major food safety concern in vacuum-packaged chilled foods are psychrotrophic, botulinum neurotoxin 31 (BoNT) producing clostridia, particularly Clostridium botulinum Group II (Lindström et al., 2006a; Peck, 32 2006). These bacteria produce resistant endospores, grow in anaerobic conditions, and produce the highly 33 potent BoNTs during growth. Once ingested, BoNTs inhibit the release of acetylcholine at the 34 neuromuscular junction and cause a potentially lethal flaccid paralysis, botulism. C. botulinum spores exist 35 widely in environment and can contaminate food raw materials. The spores can survive pasteurization and, 36 under favorable conditions, may germinate and outgrow into toxic cultures. 37 38 Both home-canned and commercially processed vegetables are common sources of foodborne botulism 39 (Sobel et al., 2004; Anniballi et al., 2017; Hellmich et al., 2018). A range of vegetables have been implicated 40 in outbreaks, including onions, potatoes, corn, peppers, asparagus, carrots, beans, olives, and garlic 41 (MacDonald et al., 1985; Morse et al., 1990; Angulo et al., 1998; Sobel et al., 2004; Zanon et al., 2006; Date 42 et al., 2011; Jalava et al., 2011; Lindström et al., 2011; Hill et al., 2013). In addition, tofu has caused 43 botulism, introducing soy into the list of implicated vegetables (Chai et al., 2013). However, screening 44 studies on the prevalence of *C. botulinum* spores in non-outbreak-related vegetables are scarce. Negligible 45 positive findings (sample size ranging between 10-200 g) suggest a very low prevalence and spore

46 contamination levels below 1–10 spores/kg (Insalata et al., 1969; Lilly et al., 1995; Braconnier et al., 2001;

47	Sevenier et al., 2012; Barker et al., 2016). The few positive screening samples and most outbreak
48	investigations revealed C. botulinum types A and B. While type A strains are exclusively of the mesophilic
49	Group I, which do not possess a risk of growth under refrigeration, BoNT B-producing strains may belong to
50	either Group I or Group II and can be distinguished by metabolic features (Dahlsten et al., 2008) and by the
51	neurotoxin gene sequence (Hill et al., 2007). Unfortunately, information on the physiological group or toxin
52	gene sequence for early C. botulinum type B findings in vegetables are not available, but a recent report on
53	a subtype B4 neurotoxin gene present in two out of three studied samples of porcini mushrooms (Barker et
54	al., 2016) confirms that the psychrotrophic Group II strains may be of concern. This is in line with our
55	previous finding of Group II C. botulinum type E in a sample of vegetarian sausage (Lindström et al., 2001).
56	
57	Vegetarian sausages can be categorized as refrigerated processed foods of extended durability (REPFED).
58	Typically, REPFEDs are processed at mild pasteurization temperatures, cooled rapidly after processing, and
59	stored refrigerated over extended periods of time (Gorris and Peck, 1998). The safety of REPFEDs relies on
60	hurdle technology combining multiple preservation factors to control microbial growth (Gorris and Peck,
61	1998). The applied heat treatments, prevailing storage temperatures, and the use of preservatives define
62	the product shelf-life and safety.
63	
64	While there are no reported cases of botulism due to vegetarian sausages, the possibility of raw material
65	contamination with C. botulinum Groups I and II spores, mild pasteurization, vacuum-packaging, and long
66	shelf-lives contribute to an apparently high risk of <i>C. botulinum</i> growth and BoNT production related to
67	vacuum-packaged chilled vegetarian sausages. Here we show a high overall prevalence of 32% of
68	C. botulinum in 74 vegetarian sausage products.
69	

- **2. Material and methods**
- **2.1 Vegetarian sausages**.

72	A total of 74 samples of frozen (8) or chilled (66) packaged vegetarian sausages from seven producers were
73	purchased in Finland and Germany. The pH of such products is above 5.7 and added NaCl concentrations in
74	the range of 1.2–1.9%. Assuming dry-matter concentrations of 27–68% (Havlik et al., 2010), the
75	corresponding water-phase NaCl concentrations are mainly in the range of 2–4%, and exceed 5% only in
76	the rare occasions when added NaCl concentration exceeds 1.9% and dry-matter content exceeds 64%. The
77	shelf- <u>lives</u> of the investigated vacuum-packaged products remaining at the time of purchase varied from
78	less than 2 weeks to 6 months. Some of the investigated products contained detailed instructions for
79	cooking, including heating temperature and time, some products contained just a suggestion of heating
80	method without time indications, and some products were advised to be served either heated or cold. The
81	main ingredients of the vegetarian sausages were soy (soy protein or tofu), wheat protein, vegetable oil,
82	sugar, spices, salt, and corn, wheat, or potato starch. Additives such as pH regulators, emulsifiers,
83	stabilizers, and antioxidants were commonly included but were not identified in more detail. Some of the
84	products contained also oat, rice, egg white, apple, onion and/or garlic.
85	
85 86	2.2 Microbial analyses.
	2.2 Microbial analyses. Before laboratory analysis, the vegetarian sausage samples were stored at temperatures instructed by the
86	
86 87	Before laboratory analysis, the vegetarian sausage samples were stored at temperatures instructed by the
86 87 88	Before laboratory analysis, the vegetarian sausage samples were stored at temperatures instructed by the manufacturers, either frozen or at refrigeration. <u>The quantity of <i>C. botulinum</i> was determined from non-</u>
86 87 88 89	Before laboratory analysis, the vegetarian sausage samples were stored at temperatures instructed by the manufacturers, either frozen or at refrigeration. <u>The quantity of <i>C. botulinum</i> was determined from non-heat-shocked samples using the most probable number (MPN) method (Cochran, 1950), using PCR</u>
86 87 88 89 90	Before laboratory analysis, the vegetarian sausage samples were stored at temperatures instructed by the manufacturers, either frozen or at refrigeration. <u>The quantity of <i>C. botulinum</i> was determined from non-heat-shocked samples using the most probable number (MPN) method (Cochran, 1950), using PCR detection of <i>C. botulinum</i> growth and the formula of Thomas (1942) for MPN estimation based on the</u>
86 87 88 89 90 91	Before laboratory analysis, the vegetarian sausage samples were stored at temperatures instructed by the manufacturers, either frozen or at refrigeration. <u>The quantity of <i>C. botulinum</i> was determined from non-heat-shocked samples using the most probable number (MPN) method (Cochran, 1950), using PCR detection of <i>C. botulinum</i> growth and the formula of Thomas (1942) for MPN estimation based on the number of PCR-positive tubes (Hielm et al., 1996). A sample size of 20 to 111 g was inoculated into a set of</u>
86 87 88 89 90 91 91	Before laboratory analysis, the vegetarian sausage samples were stored at temperatures instructed by the manufacturers, either frozen or at refrigeration. <u>The quantity of <i>C. botulinum</i> was determined from non-heat-shocked samples using the most probable number (MPN) method (Cochran, 1950), using PCR detection of <i>C. botulinum</i> growth and the formula of Thomas (1942) for MPN estimation based on the <u>number of PCR-positive tubes (Hielm et al., 1996). A sample size of 20 to 111 g was inoculated into a set of tubes containing tryptone-peptone-glucose-yeast extract (TPGY) broth (1:10) and incubated under</u></u>
86 87 88 90 91 92 93	Before laboratory analysis, the vegetarian sausage samples were stored at temperatures instructed by the manufacturers, either frozen or at refrigeration. <u>The quantity of <i>C. botulinum</i> was determined from non-heat-shocked samples using the most probable number (MPN) method (Cochran, 1950), using PCR detection of <i>C. botulinum</i> growth and the formula of Thomas (1942) for MPN estimation based on the <u>number of PCR-positive tubes (Hielm et al., 1996)</u>. A sample size of 20 to 111 g was inoculated into a set of tubes containing tryptone-peptone-glucose-yeast extract (TPGY) broth (1:10) and incubated under anaerobic conditions at 30°C (Group II) or at 37°C (Group I) for 72–96 hours, followed by overnight cultures</u>
86 87 88 90 91 92 93 94	Before laboratory analysis, the vegetarian sausage samples were stored at temperatures instructed by the manufacturers, either frozen or at refrigeration. <u>The quantity of <i>C. botulinum</i> was determined from non-heat-shocked samples using the most probable number (MPN) method (Cochran, 1950), using PCR detection of <i>C. botulinum</i> growth and the formula of Thomas (1942) for MPN estimation based on the number of PCR-positive tubes (Hielm et al., 1996). A sample size of 20 to 111 g was inoculated into a set of tubes containing tryptone_peptone_glucose_yeast extract (TPGY) broth (1:10) and incubated under anaerobic conditions at 30°C (Group II) or at 37°C (Group I) for 72–96 hours, followed by overnight cultures in fresh TPGY (1:10) under identical conditions. Cells from 1-ml aliquots were prepared for PCR templates</u>

98	fragment length polymorphism (AFLP) method was used to genotype the C. botulinum isolates (Keto-
99	Timonen <i>et al.,</i> 2006).
100	
101	3. Results
102	We show a strikingly high overall prevalence of 32% for <i>C. botulinum</i> in vacuum-packaged vegetarian
103	sausages (Table 1). Apart from one positive frozen sample (13%), all other positive samples were detected
104	among chilled products (23 samples, 35%) with advised maximum storage temperatures of 6–10°C. Genes
105	for BoNT types A, B, E, and F were detected, with types <u>B (33 %), A (33%), and E (25%) detected frequently</u> ,
106	and types B and F together, and types B and E together, once (4%, Table 1). The highest MPN counts were
107	detected for Group II type E, up to 1200 cells/kg. At the time of purchase, eight samples had remaining
108	shelf-lives of 3 to 6 months, and six of them were PCR-positive for <i>C. botulinum</i> .
109	
109 110	Eight isolates were recovered from eight PCR-positive samples (MPN counts in these samples were 30-110
	Eight isolates were recovered from eight PCR-positive samples (MPN counts in these samples were 30-110 cells/kg): two type A, five type B, and one type E isolate. AFLP typing showed all the A and B isolates to be
110	
110 111	<u>cells/kg</u>): two type A, <u>five</u> type B, and one type E isolate. AFLP typing showed all the A and B isolates to be
110 111 112	<u>cells/kg</u>): two type A, <u>five</u> type B, and one type E isolate. AFLP typing showed all the A and B isolates to be of <i>C. botulinum</i> Group I and the one E isolate to be of Group II (Fig. 1.). Successful isolation of <i>C. botulinum</i>
110 111 112 113	<u>cells/kg</u>): two type A, <u>five</u> type B, and one type E isolate. AFLP typing showed all the A and B isolates to be of <i>C. botulinum</i> Group I and the one E isolate to be of Group II (Fig. 1.). Successful isolation of <i>C. botulinum</i> validated the positive PCR findings. With successful recovery of a BoNT gene-carrying isolate as the sole
110 111 112 113 114	<u>cells/kg</u>): two type A, <u>five</u> type B, and one type E isolate. AFLP typing showed all the A and B isolates to be of <i>C. botulinum</i> Group I and the one E isolate to be of Group II (Fig. 1.). Successful isolation of <i>C. botulinum</i> validated the positive PCR findings. With successful recovery of a BoNT gene-carrying isolate as the sole criterion of a positive sample, the overall prevalence of <i>C. botulinum</i> in the vegetarian sausages appeared
 110 111 112 113 114 115 	<u>cells/kg</u>): two type A, <u>five</u> type B, and one type E isolate. AFLP typing showed all the A and B isolates to be of <i>C. botulinum</i> Group I and the one E isolate to be of Group II (Fig. 1.). Successful isolation of <i>C. botulinum</i> validated the positive PCR findings. With successful recovery of a BoNT gene-carrying isolate as the sole criterion of a positive sample, the overall prevalence of <i>C. botulinum</i> in the vegetarian sausages appeared

The MPN counts of *C. botulinum* in the vegetarian sausage samples varied between 20 to 1200 cells or
spores/kg (average/median cell or spore count of 176/110 MPN/kg). Such counts are up to 3 log-units
higher than the predicted counts of 1–10 spores/kg in raw materials (Barker et al., 2016), and one log-unit
higher than counts found in vacuum-packaged hot-smoked fish products (Hyytiä et al., 1998) relatively
frequently linked with botulism outbreaks (Kautter, 1964; Korkeala et al., 1998; Lindström et al., 2006b;
King et al., 2009). We found the highest *C. botulinum* counts (10³ cells or spores/kg) for *C. botulinum* Group

124 II type E, which are psychrotrophic and can grow and produce BoNT at temperatures as low as 3°C within 8 weeks (Graham et al., 1997). The high counts were detected in products with remaining shelf-lives at 125 126 6–10°C of up to 6 months. Thus, the safety risk related to these vacuum-packaged vegetarian sausages 127 appears to be high. 128 129 The origin of *C. botulinum* in vegetarian sausages remains partially unclear. While vegetables are a common 130 source for Group I C. botulinum types A and B, Group II type B strains are associated with pork meat 131 preparations and occasionally to fish and seafood (Galazka and Przybylska, 1999; Lindström et al., 2006a; 132 Mazuet et al., 2018). Type E is mostly associated with fish and seafood (Lindström et al., 2006a). It remains 133 to be discussed how C. botulinum types less frequently associated with vegetables contaminate vegetarian 134 sausages. A possible source for type E could be sea-salt as C. botulinum type E strains prevail in aquatic ecosystems (Hielm et al. 1998) and their spores have been detected in sea-salt (Fenicia et al., 2002). 135 136 137 While BoNT/A is exclusively produced by C. botulinum Group I strains and BoNT/E by Group II, BoNT/B and 138 BoNT/F toxins can be produced by both C. botulinum Group I and II strains. The applied PCR methodology does not distinguish between BoNT/B or BoNT/F genes from Group I and II strains, and Group identification 139 140 was obtained only when isolation of C. botulinum was successful. Indeed, AFLP typing showed all the five 141 bont/B-positive isolates to belong to C. botulinum Group I. It remains unclear if the bont/B-positive and 142 bont/F-positive samples that did not yield C. botulinum isolates were due to Group I or Group II. However, 143 the similar prevalence and counts of bont/A and bont/E findings demonstrate that both Group I and Group 144 II strains are prevalent in these products, and the applied heat treatments did not eliminate any of the two 145 Groups. How the vegetarian sausages support the growth of Group I and II C. botulinum needs to be established. 146 147 Since the applied PCR assay (Lindström et al., 2001) fails to detect the genes for BoNT subtypes A2, A3 and 148 A4 (De Medici et al., 2009), we may have underestimated the prevalence of C. botulinum type A. The only 149

type F-positive sample was also positive for type B, either due to the presence of two distinct strains each
representing one of the two toxinotypes, or caused by a single bivalent type BF strain (Gimenez and
Gimenez, 1993; Barash and Arnon, 2004). Another dual-positive sample yielded PCR signals for toxin types
B and E. No bivalent type BE strains have been described in literature, thus this result is likely caused by the
presence of two strains. Unfortunately, these two samples did not yield positive isolates for further
analysis.

156

While C. botulinum Group I strains are of food safety concern due to the high heat resistance of their 157 158 spores, their growth and toxin production can be controlled by refrigeration. However, Group II strains, whose spores are of moderate heat resistance, are of concern due to their growth and toxinogenic 159 160 potential at low temperature (Graham et al., 1997; Derman et al., 2011). The time to toxinogenesis varies greatly by multiple factors, including the number of spores present, efficiency of the heat treatment 161 162 applied, storage temperature, and intrinsic factors like water activity and pH (Segner et al., 1966; Hauschild 163 and Hilsheimer, 1979; Meng and Genigeorgis, 1993; Peck et al., 1995). In previous inoculation studies, 164 puréed mushrooms supported visible growth and toxin production in 20 days at 5°C (Carlin and Peck, 1996). At 3°C, growth and toxinogenesis were observed in a laboratory medium within 35 days (Graham et 165 al., 1997). In the scenario of product shelf-life of 6 months (180 days) or longer, maintaining the storage 166 167 temperature of vegetarian sausages strictly below 2.5°C (Graham et al., 1997) throughout the entire 168 product lifespan appears imperative. Inoculation studies are needed to establish the growth potential from 169 C. botulinum Group II spores in vegetarian sausages during storage at the temperatures of 6–8°C commonly 170 applied for chilled foods. There is no information available on the growth and toxinogenic potential of C. botulinum Group II at 0-3°C for extended time periods of 6-9 months. This information appears pivotal for 171 172 estimating the safety of extremely long shelf-lives for chilled products with obvious risk of C. botulinum 173 growth.

174

175 To control the safety of vacuum-packaged chilled foods with shelf-lives over 10 days, it is advised that the products are given a 6D heat treatment, a process that will reduce the risk of C. botulinum Group II spores 176 by a factor of 10⁶ (ACMSF, 1992; ECFF, 2006). A temperature-time combination of 90°C 10 min has been 177 proposed to provide a 6-log reduction (ACMSF, 1992; ECFF, 2006). Detection of 10²-10³ C. botulinum Group 178 179 II (type E) cells or spores/kg in the vacuum-packaged vegetarian sausages suggests that the pasteurization 180 processes used to prepare these products are substantially less efficient than a 6D kill. Moreover, matrices 181 containing lysozyme or other lytic enzymes might assist sublethally injured spores to germinate (Peck et al., 1993), thus heat treatments exceeding 90°C 10 min might be required to achieve a 6D kill (Peck and 182 183 Fernandez, 1995). Vegetarian sausages may contain hen egg white, which is a rich source of lysozyme (Lund 184 and Peck, 1994). Also plant-based lysozyme activity has been measured in wheat and maize (Lund and Peck, 185 1994). Whether these lytic activities challenge the heat treatments used in the production of vegetarian 186 sausages, needs to be established. It is recommended that additional factors like chilled storage below 3°C, 187 water activity below 0.97, corresponding to water-phase NaCl concentration of 5% or higher, or pH below 5.0 be applied to control spore germination and outgrowth (ACMSF, 1992). Since the cold chain cannot be 188 189 controlled in the consumer domain, and the product pH is usually above 5.0 and the water-phase NaCl 190 concentrations are mainly below 4%, the use of preservatives appears as an important means to control 191 product safety.

192

Nitrite is a well-established antibotulinal agent used to cure meats (Kim and Foegeding, 1992, KetoTimonen et al., 2012). However, its use is restricted in most non-meat products. While some leafy
vegetables like lettuce and spinach and some root vegetables can contain significant amounts of nitrates
that are reduced to nitrite during storage, soybean and soy products contain only 0.1 mg/kg nitrite
(Kalaycioğlu and Erim, 2019). Thus natural nitrite levels in vegetarian sausages are supposed to be low
(Kalaycioğlu and Erim, 2019).

199

200	Salts of organic acids have potential in controlling <i>C. botulinum</i> Group I and/or II growth. Potassium
201	sorbate, sodium lactate, and sodium acetate at concentrations of 2–6% have growth-inhibitory potential
202	(Seward et al., 1982; Kim and Foegeding, 1992; Miller et al., 1993; Meng and Genigeorgis, 1994) and are
203	used in some vegetarian sausage products on the market. With the maximum concentration of 1000 mg/kg
204	permitted in foods, sorbic acid also controlled <i>C. botulinum</i> Group I growth at pH below 5.5 (Lund et al.
205	1987). The effects of preservatives targeted to tackle with the product pH need to be properly established
206	for soy-based products: in the presence of soy, C. botulinum Group I has been shown to grow and produce
207	toxin at a pH as low as 4.1 (Young-Perkins and Merson, 1987) as opposed to the generally referred growth-
208	inhibitory pH of 4.6 (Hauschild et al., 1975; Peck, 2006).
209	
210	If measures fail to control C. botulinum growth and toxin production, BoNT can be destroyed by heating at
211	85°C for 5 minutes or at 80°C for 20 minutes (Woodburn et al., 1979). Vegetarian sausages are likely heated
212	prior to consumption; however, not all products contain instructions for cooking. Moreover, some products
213	are advised for consumption as cold, and light heating regimes might not destroy all preformed BoNT. Thus
214	the safety of vegetarian sausage products must rely on multiple hurdles controlling growth and toxin
215	production, and never merely on toxin inactivation during cooking.
216	
217	In conclusion, a high prevalence of <i>C. botulinum</i> in vegetarian sausages suggests that these products could
218	be a potential source of botulism. Mild heat treatments enable survival of C. botulinum Group I and Group
219	II spores, and long shelf-lives may support spore germination, outgrowth and toxinogenesis. Inoculated
220	pack studies and shelf-life tests are required to determine the growth and toxic potential of C. botulinum in
221	vegetarian sausages and the length of safe shelf-lives.
222	
223	
224	
225	

	Journal Pre-proof
226	
227	
228	Acknowledgements
229	This work was financially supported by the University of Helsinki and by the food industry. We thank Hanna
230	Korpunen for her excellent technical assistance.
231	
232	References
233	ACMSF (Advisory Committee on the Microbial Safety of Foods), 1992. Report on vacuum packing and
234	associated process. Her Majesty's Stationery Office, London.
235	
236	Angulo, F.J., Getz, J., Taylor, J.P., Hendricks, K.A., Hatheway, C.L., Barth, S.S., Solomon, H.M., Larson, A.E.,
237	Johnson, E.A., Nickey, L.N., Ries, A.A., 1998. A large outbreak of botulism: the hazardous baked potato. J.
238	Infect. Dis. 178(1), 172–177.
239	
240	Anniballi, F., Auricchio, B., Fiore, A., Lonati, D., Locatelli, C.A., Lista, F., Fillo, S., Mandarino, G., De Medici, D.,
241	2017. Botulism in Italy, 1986 to 2015. Euro Surveill. 22(24), 30550.
242	
243	Barash, J.R., Arnon, S.S., 2004. Dual toxin-producing strain of <i>Clostridium botulinum</i> type Bf isolated from a
244	California patient with infant botulism. J. Clin. Microbiol. 42(4), 1713–1715.
245	
246	Barker, G.C., Malakar, P.K., Plowman, J., Peck, M.W., 2016. Quantification of nonproteolytic
247	Clostridium botulinum spore loads in food materials. Appl. Environ. Microbiol. 82(6), 1675–1685.
248	
249	Braconnier, A., Broussolle, V., Perelle, S., Fach, P., Nguyen-The, C., Carlin, F., 2001. Screening for
250	Clostridium botulinum type A, B, and E in cooked chilled foods containing vegetables and raw material using
251	polymerase chain reaction and molecular probes. J. Food Prot. 64(2), 201–207.

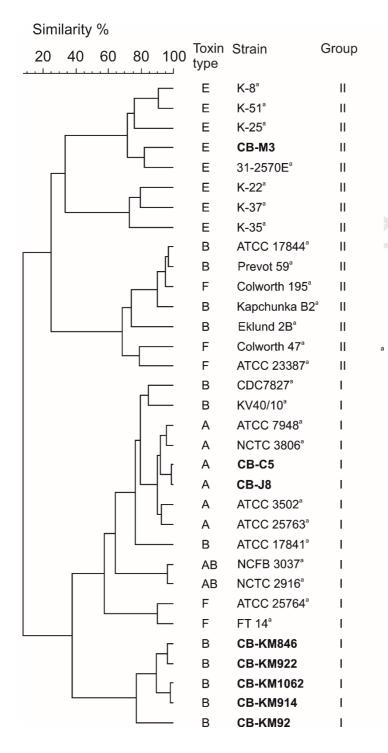
	Journal Pre-proof
252	
253	Carlin, F., Peck, M.W., 1996. Growth of and toxin production by nonproteolytic Clostridium botulinum in
254	cooked puréed vegetables at refrigeration temperatures. Appl Environ Microbiol. 62(8), 3069–3072.
255	
256	Chai, E., Choi, E., Guitierrez, C., Melvin Hochman, M., Johnkutty, S., Kamel, W., Mekles, T., Zarnegar, R.,
257	Ackelsberg, J., Balter, S., Lee, E.H., Li, L., Ramos, A., Rodriguez, T., Weiss, D., Yung, J., Zhao, B., Davis, S.W.,
258	Egan, Hannett, G.E., Rao, A., Toprani, A., Sreenivasan, N., 2013. Botulism associated with home-fermented
259	tofu in two Chinese immigrants — New York City, March–April 2012. MMWR Morb Mortal Wkly Rep.
260	<u>62(26), 529–532.</u>
261	
262	Cochran, W., 1950. Estimation of bacterial densities by means of the "Most Probable Number". Biometrics,
263	6(2), 105–116.
264	
265	Dahlsten, E., Korkeala, H., Somervuo, P., Lindström, M., 2008. PCR assay for differentiating between Group I
266	(proteolytic) and Group II (nonproteolytic) strains of <i>Clostridium botulinum</i> . Int. J. Food Microbiol. 124(1),
267	108–111.
268	
269	Date, K., Fagan, R., Crossland, S., Maceachern, D., Pyper, B., Bokanyi, R., Houze, Y., Andress, E., Tauxe, R.,
270	2011. Three outbreaks of foodborne botulism caused by unsafe home canning of vegetables-Ohio and
271	Washington, 2008 and 2009. J. Food Prot. 74(12), 2090–2096.
272	
273	De Medici, D., Anniballi, F., Wyatt, G. M., Lindström, M., Messelhäusser, U., Aldus, C. F., Delibato, E.,
274	Korkeala, H., Peck, M. W., Fenicia, L., 2009. Multiplex PCR for detection of botulinum neurotoxin-producing
275	clostridia in clinical, food, and environmental samples. Appl Environ Microbiol. 75(20), 6457–6461.
276	

	Journal Pre-proof
277	Derman, Y., Lindström, M., Selby, K., Korkeala, H., 2011. Growth of group II Clostridium botulinum strains at
278	extreme temperatures. J. Food Prot. 74(11), 1797–1804.
279	
280	ECFF (European Chilled Food Federation), 2006. Recommendations for the production of prepackaged
281	chilled food. https://www.ecff.net/best-practice/ (accessed 9 December 2019)
282	
283	Fenicia, L., Anniballi, F., Poushaban M., Franciosa, G., Aureli, P., 2002. Presence of <i>Clostridium botulinum</i>
284	spores in sea-salt in Italy. Poster presented at the 18th International ICFHM Symposium, Food
285	Microbiology, Lillehammer, Norway, 18–23. August 2002.
286	
287	Fernández, P.S., Peck, M.W., 1999. A predictive model that describes the effect of prolonged heating at 70
288	to 90°C and subsequent incubation at refrigeration temperatures on growth from spores and toxigenesis by
289	nonproteolytic <i>Clostridium botulinum</i> in the presence of lysozyme. Appl. Environ. Microbiol. 65(8), 3449–
290	3457.
291	
292	<u>Galazka, A., Przybylska, A., 1999. Surveillance of foodborne botulism in Poland: 1960–1998. Euro Surveill.</u>
293	<u>4(6), 69–72.</u>
294	
295	Gimenez, D.F., Gimenez, J.A., 1993. Serological subtypes of botulinal neurotoxins, in: DasGupta, B.R. (Eds.),
296	Botulinum and tetanus neurotoxins. Plenum Press, New York, pp. 421–431.
297	
298	Gorris, L.G.M., Peck, M.V., 1998. Microbiological safety considerations when using hurdle technology with
299	refrigerated processed foods of extended durability, in: Ghazala, S. (Eds.), sous vide and cook-chill
300	processing for the food industry. Aspen publishers, Inc., Gaithersburg, pp. 207–233.
301	

	Journal Pre-proof
302	Graham, A.F., Mason, D.R., Maxwell, F.J., Peck, M.W., 1997. Effect of pH and NaCl on growth from spores of
303	non-proteolytic <i>Clostridium botulinum</i> at chill temperature. Lett. Appl. Microbiol. 24(2), 95–100.
304	
305	Hauschild H.W., Aris, B.J., Hilsheimer R, 1975. Clostridium botulinum in Marinated Products. Can. Inst. Food
306	Sci. Technol. J. 8(2), 84–87.
307	
308	Hauschild, A.H., Hilsheimer, R., 1977. Enumeration of <i>Clostridium botulinum</i> spores in meats by a pour-
309	plate procedure. Can. J. Microbiol. 23(6), 829–832.
310	
311	Hauschild, A.H.W., Hilsheimer, R., 1979. Effect of salt content and pH on toxigenesis by
312	<i>Clostridium botulinum</i> in Caviar. J. Food Prot. 42(3), 245–248.
313	
314 315	Havlik, J., Plachy, V., Fernandez, J., Rada, V., 2010. Dietary purines in vegetarian meat analogues. J. Sci. Food Agric. 90(14):2352 –2357.
316	<u>Agrit. 50(14).2552 2557.</u>
317	Hellmich, D., Wartenberg, K.E., Zierz, S., Mueller, T.J., 2018. Foodborne botulism due to ingestion of home-
318	canned green beans: two case reports. J. Med. Case Rep. 12(1), 1.
319	
320	Hielm, S., Hyytiä, E., Ridell, J., Korkeala, H., 1996. Detection of <i>Clostridium botulinum</i> in fish and
321	environmental samples using polymerase chain reaction. Int. J. Food Microbiol. 31(1–3), 357–365.
322	
323	Hielm, S., Hyytiä, E., Andersin, A.B., Korkeala, H., 1998. A high prevalence of <i>Clostridium botulinum</i> type E in
324	Finnish freshwater and Baltic Sea sediment samples. J Appl Microbiol. 84(1):133–137.

	Journal Pre-proof
326	Hill, K.K., Smith, T.J., Helma, C.H., Ticknor, L.O., Foley, B.T., Svensson, R.T., Brown, J.L., Johnson, E.A., Smith,
327	L.A., Okinaka, R.T., Jackson, P.J., Marks, J.D., 2007. Genetic diversity among botulinum neurotoxin-
328	producing clostridial strains. J. Bacteriol. 189(3), 818–832.
329	
330	Hill, S.E., Iqbal, R., Cadiz, C.L., Le, J., 2013. Foodborne botulism treated with heptavalent botulism antitoxin.
331	Ann. Pharmacother. 47(2), e12.
332	
333	Hyytiä, E., Hielm, S., Korkeala, H., 1998. Prevalence of <i>Clostridium botulinum</i> type E in Finnish fish and
334	fishery products. Epidemiol Infect. 120(3), 245–250.
335	
336	Insalata, N.F., Witzeman, S.J., Fredericks, G.J., Sunga, F.C.A., 1969. Incidence study of spores of
337	<i>Clostridium botulinum</i> in convenience foods. Appl. Microbiol. 17(4), 542–544.
338	
339	Jalava, K., Selby, K., Pihlajasaari, A., Kolho, E., Dahlsten, E., Forss, N., Bäcklund, T., Korkeala, H., Honkanen-
340	Buzalski, T., Hulkko, T., Derman, Y., Järvinen, A., Kotilainen, H., Kultanen, L., Ruutu, P., Lyytikaïnen, O.,
341	
342	Kalaycıoğlu, Z., Erim, F.B., 2019. Nitrate and nitrites in foods: worldwide regional distribution in view of
343	their risks and benefits. J. Agric. Food Chem. 67(26), 7205–7222.
344	
345	Kautter, D. A., 1964. <i>Clostridium botulinum</i> type E in smoked fish. J Food Sci. 29(6), 843–849.
346	
347	Keto-Timonen, R., Heikinheimo, A., Eerola, E., Korkeala, H., 2006. Identification of <i>Clostridium species</i> and
348	DNA fingerprinting of Clostridium perfringens by amplified fragment length polymorphism analysis. J Clin
349	Microbiol. 44(11), 4057–4065.
350	

	Journal Pre-proof
351	Keto-Timonen, R., Lindström, M., Puolanne, E., Niemistö, M., Korkeala, H., 2012. Inhibition of toxigenesis of
352	group II (nonproteolytic) Clostridium botulinum type B in meat products by using a reduced level of
353	nitrite. J. Food Prot. 75(7), 1346–1349.
354	
355	Kim, J., Foegeding, P.M., 1992. Principles of control, in: Hauschild, A.H.W., Dodds, K.L. (Eds.),
356	Clostridium botulinum: ecology and control in foods. Marcel Dekker Inc., New York, pp 121–176.
357	
358	King, L.A., Niskanen, T., Junnikkala, M., Moilanen, E., Lindström, M., Korkeala, H., Korhonen, T., Popoff, M.,
359	Mazuet, C., Callon, H., Pihier, N., Peloux, F., Ichai, C., Quintard, H., Dellamonica, P., Cua, E., Lasfargue, M.,
360	Pierre, F., de Valk, H., 2009. Botulism and hot-smoked whitefish: a family cluster of type E botulism in
361	France, September 2009. Euro Surveill. 14(45), pii=19394.
362	
363	Korkeala, H., Stengel, G., Hyytiä, E., Vogelsang, B., Bohl, A., Wihlman, H., Pakkala, P., Hielm, S., 1998. Type E
364	botulism associated with vacuum-packaged hot-smoked whitefish. Int. J. Food Microbiol. 43(1–2), 1–5.
365	
366	Lilly, T.J., Solomon, H.M., Rhodehamel, E.J., 1995. Incidence of <i>Clostridium botulinum</i> in vegetables
367	packaged under vacuum or modified atmosphere. J. Food Prot. 59(1), 59–61.
368	
369	Lindström, M., Keto, R., Markkula, A., Nevas, M., Hielm, S., Korkeala, H., 2001. Multiplex PCR assay for
370	detection and identification of <i>Clostridium botulinum</i> types A, B, E, and F in food and fecal material. Appl.
371	Environ Microbiol. 67(12), 5694–5699.
372	
373	Lindström, M., Kiviniemi, K., Korkeala, H., 2006a. Hazard and control of group II (non-proteolytic)
374	<i>Clostridium botulinum</i> in modern food processing. Int. J. Food Microbiol. 108(1), 92–104.
375	


	Journal 110-proof
376	Lindström, M., Vuorela, M., Hinderink, K., Korkeala, H., Dahlsten, E., Raahenmaa, M., 2006b. Botulism
377	associated with vacuum-packed smoked whitefish in Finland, June-July 2006. Euro Surveill. 11(29),
378	pii=3004.
379	
380	Lindström, M., 2011. Two cases of food-borne botulism in Finland caused by conserved olives, October
381	2011. Euro Surveill. 16(49), 20034.
382	
383	Lund, B.M., George, S. M., Franklin, J. G., 1987. Inhibition of type A and type B (proteolytic)
384	<i>Clostridium botulinum</i> by sorbic acid. Appl Environ Microbiol. 53(5), 935–941.
385	
386	Lund, B.M., Peck, M.W., 1994. Heat resistance and recovery of spores of non-proteolytic Clostridium
387	botulinum in relation to refrigerated, processed foods with an extended shelf-life. Journal of Applied
388	Bacteriology Symposium Supplement. 76, 115–128.
389	
390	MacDonald, K.L., Spengler, R.F., Hatheway, C.L., Hargrett, N.T., Cohen, M.L., 1985. Type A botulism from
391	sauteed onions. Clinical and epidemiologic observations. JAMA. 253(9), 1275–1278.
392	
393	Mazuet, C., Silva, JD.N., Legeay, C., Sautereau, J., Popoff, R.M., 2018. Le botulisme humain en France,
394	<u>2013–2016. Bull. Epidémiol. Hebd. 3, 46–54.</u>
395	
396	Meng, J., Genigeorgis, C.A., 1993. Modeling lag phase of nonproteolytic Clostridium botulinum toxigenesis
397	in cooked turkey and chicken breast as affected by temperature, sodium lactate, sodium chloride and spore
398	inoculum. Int. J. Food Microbiol. 19(2), 109–122.
399	
400	Meng, J., Genigeorgis C.A. 1994. Delaying toxigenesis of C. botulinum by sodium lactate in 'sous-vide'
401	products. Lett. Appl. Microbiol.19, 20–23.

	Journal Pre-proof
402	
403	Miller, A.J., Call, J.E., Whiting, R.C., 1993. Comparison of organic acid salts for <i>Clostridium botulinum</i> control
404	in an uncured turkey product. J. Food Prot. 56(11), 958–962.
405	
406	Morse, D.L., Pickard, L.K., Guzewich, J.J., Devine, B.D., Shayegani, M., 1990. Garlic-in-oil associated
407	botulism: episode leads to product modification. Am. J. Public Health. 80(11), 1372–1373.
408	
409	Peck, M.W., Fairbairn, D.A., Lund, B.M., 1993. Heat-resistance of spores of non-proteolytic
410	Clostridium botulinum estimated on medium containing lysozyme. Lett. Appl. Microbiol. 16(3), 126–131.
411	
412	Peck, M.W., Fernandez, P.S., 1995. Effect of lysozyme concentration, heating at 90 degrees <u>°C,</u> and then
413	incubation at chilled temperatures on growth from spores of non-proteolytic Clostridium botulinum. Lett
414	Appl. Microbiol. 21(1), 50–54.
415	
416	Peck, M.W., Lund, B.M., Fairbairn, D.A., Kaspersson, A.S., Undeland, P.C., 1995. Effect of heat treatment on
417	survival of, and growth from, spores of nonproteolytic <i>Clostridium botulinum</i> at refrigeration temperatures.
418	Appl. Environ. Microbiol. 61(5), 1780–1785.
419	
420	Peck, M.W., 2006. Clostridium botulinum and the safety of minimally heated, chilled foods: an emerging
421	issue? J. Appl. Microbiol. 101(3), 556–570.
422	
423	Segner, W.P., Schmidt, C.F., Boltz, J.K., 1966. Effect of sodium chloride and pH on the outgrowth of spores
424	of type E Clostridium botulinum at optimal and suboptimal temperatures. Appl. Microbiol. 14(1), 49–54.
425	

	Journal Pre-proof
426	Sevenier, V., Delannoy, S., André, S., Fach, P., Remize, F., 2012. Prevalence of <i>Clostridium botulinum</i> and
427	thermophilic heat-resistant spores in raw carrots and green beans used in French canning industry. Int. J.
428	Food Microbiol. 155(3), 263–268.
429	
430	Seward, R.A., Deibel, R.H., Lindsay, R.C., 1982. Effects of potassium sorbate and other antibotulinal agents
431	on germination and outgrowth of Clostridium botulinum type E spores in microcultures. Appl Environ
432	Microbiol. 44(5), 1212–1221.
433	
434	Sobel, J., Tucker, N., Sulka, A., McLaughlin, J., Maslanka, S., 2004. Foodborne botulism in the United States,
435	1990–2000. Emerg. Infect. Dis. 10(9), 1606–1611.
436	
437	Thomas, H.A., 1942. Bacterial densities from fermentation tube tests. J. Am .Water Works Assoc. 34(4),
438	572–576.
439	
440	Woodburn, M., Somers, E., Rodriguez, J., Schantz, E., 1979. Heat inactivation rates of botulinum toxins A B E
441	and F in some foods and buffers. J. Food Sci. 44(6): 1658–1661.
442	
443	Young-Perkins, K.E., Merson, L., 1987. <i>Clostridium botulinum</i> spore germination, outgrowth, and toxin
444	production below pH 4.6; interactions between pH, total acidity, and buffering capacity. J. Food Sci 52(4),
445	1084–1088.
446	
447	Zanon, P., Pattis, P., Pittscheider, W., Roscia, G., De Giorgi, G., Sacco, G., Vötter, K., Stockner, I., De Giorgi,
448	F., Wiedermann, C.J., 2006. Two cases of foodborne botulism with home-preserved asparagus. Anasthesiol.
449	Intensivmed. Notfallmed. Schmerzther. 41(3), 156–159.
450	
451	

		n			
α urn	a I	12.00	TAT'	~ 1	
ourn	CL L				

459 **FIGURE LEGEND**

- 460 Fig.1. Dendrogram of eight *Clostridium botulinum* isolates originating from vegetarian sausages and 25 C.
- 461 botulinum strains included in Keto-Timonen et al. (2006) based on AFLP analysis. A similarity analysis was
- 462 performed using the Pearson product-moment correlation coefficient, and clustering was performed by
- 463 using the unweighted pair-group method with arithmetic averages. Isolates originating from vegetarian
- sausages are written in bold font. ^aPreviously published by Keto-Timonen et al. (2006). 464

Table 1. The prevalence of *Clostridium botulinum* and BoNT genes in vegetarian sausages. 465

Product type	samples positive examined samples	MPN estimate of <i>C</i> .	No. of samples positive for one or two BoNT genes (% of positive samples)						
		(%)	botulinum cell count (cells/kg)	Туре А	Туре В	Туре Е	Type F	Types B and E ^a	Types B and F ^a
Vacuum- packaged	66	23 (35%)	20–1200	8 (35%)	7 (30%)	6 (26%)	ND	1 (4%)	1 (4%)
Frozen	8	1 (13%)	110	ND	1 (100%)	ND	ND	ND	ND
Total	74	24 (32%)	20–1200	8 (33%)	8 (33%)	6 (25%)	ND	1 (4%)	1 (4%)
^a Both types	s detected in t	the same sam	ple.						
ND, not dei	tected.								

^aBoth types detected in the same sample. 466

ND, not detected. 467

Similarity %			
20 40 60 80 100	Toxin type	Strain	Group
	Е	K-8ª	П
	Е	K-51 ^ª	П
	Е	K-25°	П
	Е	СВ-МЗ	П
	Е	31-2570E°	П
	Е	K-22°	П
	Е	K-37°	П
	Е	K-35°	П
Г	В	ATCC 17844 ^ª	П
	В	Prevot 59°	Ш
	F	Colworth 195 ^a	П
	В	Kapchunka B2 [®]	' II
	В	Eklund 2B ^a	Ш
	F	Colworth 47 ^a	Ш
	F	ATCC 23387°	П
	В	CDC7827 ^ª	I
	В	KV40/10ª	I
	А	ATCC 7948°	I
-1 h	А	NCTC 3806 ^ª	Ι
	А	CB-C5	I
	А	CB-J8	I
	А	ATCC 3502°	I
	А	ATCC 25763°	I
	В	ATCC 17841°	I
	AB	NCFB 3037 ^a	I
	AB	NCTC 2916 [®]	I
	F	ATCC 25764°	I
	F	FT 14 ^ª	I
	В	CB-KM846	Ι
	В	CB-KM922	I
	В	CB-KM1062	I
	В	CB-KM914	Ι
	В	CB-KM92	Ι

- High prevalence of Clostridium botulinum found in vegetarian sausage products
- C. botulinum Groups I and II, and genes for neurotoxins A, B, E, and F were found
- C. botulinum Group II is the main food safety concern in chilled packaged foods

Journal Prevention

Declarations of interest: none.

Journal Pre-proof