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Abstract 1 

Benthic macrofaunal communities have a profound impact on organic matter turnover and nutrient 2 

cycling in marine sediments. Their activities are of particular importance in the coastal filter, where 3 

nutrients and organic matter from land are transformed and/or retained before reaching the open 4 

sea. The benthic fauna modify the coastal filter directly (through consumption, respiration, 5 

excretion and biomass production) and indirectly (through bioturbation). It is hard to experimentally 6 

quantify faunal contribution to the coastal filter over large spatial and temporal scales that 7 

encompass significant environmental and biological heterogeneity. However, estimates can be 8 

obtained with biological trait analyses. By using benthic biological traits, we explore how the 9 

potential contribution of macrofaunal communities to the coastal filter differ between inner and 10 

outer sites in an extensive archipelago area, and examine the generality of the observed pattern 11 

across contrasting coastal areas of the entire Baltic Sea. Estimates of benthic bioturbation, longevity 12 

and size (i.e. “stability”) and total energy- and nutrient contents differed between coastal areas and 13 

inner versus outer sites. Benthic traits indicative of an enhanced nutrient turnover but a decreased 14 

capacity for temporal nutrient retention dominated inner sites, while outer sites were often 15 

dominated by larger individuals, exhibiting traits that are likely to enhance nutrient uptake and 16 

retention. The overarching similarities in benthic trait expression between more eutrophied inner vs 17 

less affected outer coastal sites across the Baltic Sea suggest that benthic communities might 18 

contribute in a similar manner to nutrient recycling and retention in the coastal filter over large 19 

geographical scales. 20 
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1. INTRODUCTION 1 

Coastal and estuarine ecosystems receive increasing amounts of organic material and nutrients as a 2 

consequence of accelerating human settlement and activities along the world’s coastal margins 3 

(Nixon 1995, Cloern et al. 2016). By transforming, retaining or removing nutrients entering the sea 4 

from land, the coastal ecosystems can, through a range of biogeochemical processes, function as a 5 

filter and alleviate the anthropogenic pressure on the sea (Asmala et al. 2017). The capacity of the 6 

coastal ecosystem to buffer eutrophication is influenced by physical attributes (e.g. catchment area, 7 

land runoff, basin size, topography and hydro-morphology) that together determine the water 8 

residence time of the system. The residence time, together with light conditions will in turn 9 

influence rates of sedimentation, degradation and biological uptake (i.e. primary and secondary 10 

production) of nutrients and organic material along the land-to-sea continuum (Elliot & Whitfield 11 

2011). These processes will successively alter the quantity and quality of organic matter and 12 

nutrients that reach the open sea (Josefson & Rasmussen 2000, Asmala et al. 2016).  13 

While there is extensive information about the impacts of eutrophication on the coastal 14 

ecosystem (Nixon 1995), there is a more limited understanding regarding how the biota contributes 15 

to the system’s filtering capacity (but see Sundbäck et al. 2003, McGlathery et al. 2007, Lloret & 16 

Marín 2011). Several studies suggest that most of the nutrients that enter coastal ecosystems are 17 

taken up by primary producers (Sundbäck et al. 2003, McGlathery et al. 2007). For example, 18 

eutrophic coastal waters are often characterized by a rapid proliferation of fast growing ephemeral 19 

algae (Sundbäck et al. 2003). In coastal areas, mineralization of the produced organic matter is 20 

suggested to mainly occur at the seafloor (Hietanen et al. 2007, Hellemann et al. 2017), since the 21 

close connection between the pelagic and benthic realm (benthic-pelagic coupling; Griffiths et al. 22 

2017) makes the sediment serve as a site for organic matter retention and transformation. 23 

Consequently, the filtering capacity of coastal areas is likely to be substantially influenced by 24 

activities of benthic faunal communities (Josefson & Rasmussen 2000, Allgeier et al. 2017). For 25 
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example, results by Josefson & Rasmussen (2000) indicate that a major part of primary production 1 

in shallow estuaries can be consumed by the benthic fauna and their findings suggest that the 2 

benthic standing stock might even be food limited. Through ingestion, egestion, production and 3 

excretion, the animals regenerate the consumed nutrients (Hall et al. 2007, Vanni et al. 2013) and 4 

will thus have a considerable impact on the overall turnover of carbon and nutrients in the coastal 5 

filter.  6 

The potential of animals to directly influence the turnover of carbon and nutrients largely 7 

depends on their allometric (i.e. size-dependent) and stoichiometric traits (i.e. the elemental content 8 

and ratios of a species, here focusing on carbon, nitrogen and phosphorous). Animals that have a 9 

small biomass often have higher rates of metabolism and respiration compared to larger ones, which 10 

might result in a higher mass-specific nutrient excretion rate for smaller individuals (Brown et al. 11 

2004, Hall et al. 2007). Consequently, when total biomass is equal, this suggests that there could be 12 

a higher nutrient flux from a community dominated by small animals than from a community 13 

dominated by large ones (Hall et al. 2007). In addition, the mass production of an individual scales 14 

positively with size, but mortality rates express an inverse size-relationship (Brown et al. 2004). As 15 

animal tissues often have higher nutrient concentrations compared to the surrounding environment 16 

(Vanni et al. 2013, Allgeier et al. 2017) this indicates that large, long-lived animals potentially can 17 

retain significant nutrient pools (cf. Atkinson & Vaughn 2015) in comparison to more short-lived 18 

animals of small size.  19 

The benthic fauna also affect sediment carbon and nutrient turnover indirectly. Through 20 

feeding they modify standing stocks, distribution and activity of primary producers and microbes, 21 

which often results in an enhanced decomposition of sediment organic matter (Hall et al. 2007). By 22 

bioturbating the sediment (i.e. by modifying the sediment through particle reworking and burrow 23 

ventilation; Queirós et al. 2013) the animals can stimulate aerobic respiration and thus increase 24 

organic matter mineralization rates, i.e. the decomposition of organic matter into nutrients (Welsh 25 
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2003). In contrast, certain species have been observed to create a build-up of organic matter in 1 

deeper sediment layers, by functioning as a vector of fresh material into sub-surface layers which is 2 

likely to decrease mineralization rates (Josefson et al. 2012). Still, by bioturbating the sediment and 3 

by expanding the oxic-anoxic interface, the benthic fauna create suitable conditions for nitrifying 4 

and denitrifying bacteria, which promotes the cycling or removal of particulate organic nitrogen 5 

from the system. Bioturbating fauna can also enhance the sediment phosphorus retention capacity, 6 

as oxygenated sediments more readily absorb P to Fe compounds (Hietanen et al. 2007). Hence, the 7 

availability of land-derived nutrients will be reduced by direct or indirect transformations by the 8 

benthic fauna, gradually decreasing their biological availability and resulting in forms that are more 9 

susceptible to removal (i.e. N2) or permanent burial (e.g. organic or Fe-bound phosphorous; Asmala 10 

et al. 2017).    11 

The contribution of benthic communities to the coastal filter is difficult to assess, as the 12 

coastal zone constitutes a highly dynamic and heterogeneous environment, with strong influences 13 

from land as well as the open sea which will vary according to season (Kauppi et al. 2017). This 14 

causes strong physico-chemical variation and heterogeneous habitats with differing sediment 15 

properties, to which the benthic communities have to adapt (Elliott & Whitfield 2011). Along the 16 

freshwater to marine gradient from land towards the open sea, species diversity and abundance are 17 

known to change, as the number of fresh-water and estuarine species declines while the number of 18 

marine species increases (Remane 1934, Attrill 2002, Attrill & Rundle 2002, Bierschenk et al. 19 

2017). However, this pattern is far from static, as disturbance in form of land-derived nutrients 20 

resulting in organic matter enrichment will affect the benthic communities across the land-to sea 21 

continuum (Villnäs et al. 2018). The benthic response to organic enrichment and its subsequent 22 

stressors (e.g. hypoxia, H2S) has been shown to follow a successional degradation pattern 23 

(Leppäkoski 1975, Pearson & Rosenberg 1978, Rhoads et al. 1978), where the initial stimulatory 24 

effects due to the increasing food supply are replaced by community degradation as eutrophication 25 
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advances. Sensitive species are replaced by tolerant ones, and at advanced stages of eutrophication, 1 

homogenous, low-diverse communities with few functions and rapid turnover rates will dominate, 2 

and these are likely to impoverish the efficiency of the coastal filter. It is clear that an evaluation of 3 

benthic faunal contribution to the coastal filter needs to be based on common benthic features that 4 

allows a direct comparison of diverging communities, such as the biological traits and functions that 5 

are shared by different benthic organisms (Bremner et al. 2006, Snelgrove et al. 2018, Bierschenk et 6 

al. 2017). 7 

In this study, we a) explore how benthic infaunal traits, documented to impact sediment 8 

carbon and nutrient cycling, change across a gradient from inner to outer coastal sites that differ in 9 

eutrophication status, and b) seek to identify commonalities in benthic infaunal trait expression 10 

within the coastal filter, by performing unique cross-system comparisons over a Baltic Sea wide 11 

scale. We identify subsets of traits that describe three essential properties (i.e. bioturbation, stability 12 

and elemental composition as represented by the content of energy and nutrients; Table 1) of the 13 

benthic community that can have profound implications for nutrient transformation (recycling by 14 

animals), removal (denitrification) and retention (binding of phosphate) in the coastal filter (Table 15 

2). As the shallower, inner coastal sites included in this study have higher nutrient loading than 16 

outer ones (e.g. Flindt et al. 1997, Hänninen et al. 2000, Andrulewicz et al. 2004), we follow 17 

Pearson & Rosenberg’s paradigm (1978) hypothesizing that benthic communities at inner sites will 18 

be dominated by small, short-lived individuals that are primarily bioturbating the uppermost 19 

sediment layers and therefor enhance turnover rates of carbon and nutrients in the sediment (Table 20 

2). Outer deeper sites, less prone to eutrophication are hypothesized to be dominated by larger, 21 

long-lived and deep-burrowing individuals that may have a higher contribution to the overall 22 

nutrient retention and removal capacity of the sediments (Table 2). We focus on an example area, 23 

the Tvärminne archipelago (northern Baltic Sea), but also explore the generality of our findings by 24 

utilizing data available from four additional coastal areas in the Baltic Sea (i.e. the Roskilde-25 
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Isefjord, Denmark, the Gulf of Gdansk, Poland and the St. Anna and Umeå archipelago, Sweden). 1 

The areas represent estuaries (defined as partially enclosed water bodies, affected by both saline 2 

water from the sea and fresh water from rivers, land runoff and seepage; Conley et al. 2000) and 3 

archipelagos along the northwards gradient of decreasing salinity. These fjord-like systems have 4 

been found to be essential sites of nutrient removal in the Baltic Sea (Asmala et al. 2017).  5 

 6 

2. MATERIAL AND METHODS 7 

2.1. Coastal areas 8 

The Tvärminne archipelago (TA) is located in the Gulf of Finland, at the southern end of the Hanko 9 

peninsula, NE Baltic Sea. This region is characterized by an irregular coastline and an extensive 10 

archipelago. The area is non-tidal, with surface water salinity varying between 5 and 7 (Table 3). 11 

The area receives freshwater outflow from the river Karjaanjoki, which is connected to a fjord-like 12 

inlet (Pojo Bay), which is separated from the inner archipelago by a 6 m deep sill. There are sharp 13 

environmental gradients in exposure, salinity, temperature, nutrients (Holmberg et al. 2015) and 14 

dissolved organic carbon (Asmala et al. 2016) from the more shallow eutrophied innermost 15 

archipelago sites towards the deeper less affected sites situated in the open sea (eutrophication 16 

classification “poor” and “moderate”, respectively; Table 3). Together, the mosaic topography and 17 

high environmental variability of this archipelago area creates numerous different benthic habitats.  18 

The Roskilde Fjord (RF) is a shallow, on average 4.4 m deep, 123 km2 estuary on the north 19 

coast of Zealand, Denmark. It is connected to Kattegat via the Isefjord and can have high inflows of 20 

saline water from the Kattegat (Flindt et al. 1997, Josefson & Hansen 2004). A salinity gradient 21 

from 8 in the southern part to ca 20 in the northern part of the Fjord (ca 17 on average) is created by 22 

diffuse runoff and freshwater discharges from the drainage area (1127 km2). The water residence 23 

time in the Roskilde Fjord is about twice that of the outer, slightly deeper (on average 5.8 m) 24 
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Isefjord (Table 3), but the water is usually well mixed and thus well oxygenated. Along the 1 

Roskilde Fjord, there is a distinct nutrient gradient with higher nutrient concentrations in the inner 2 

parts, decreasing towards the outer areas of the fjord (Flindt et al. 1997), while even lower nutrient 3 

concentrations are noted for the Isefjord (Josefson & Hansen 2004). Soft sediment, varying from 4 

sand to fine silt and mud covers the seafloor.  5 

The Gulf of Gdansk (GG) is situated in the eastern part of the southern Baltic Sea. It 6 

encompasses the Puck Lagoon, which is a shallow (on average 4.8 m), sandy, semi-enclosed water 7 

body that is separated from the outer Puck Bay by a periodically submerged sandbar. The coastal 8 

areas of the outer Puck Bay are partly sheltered from open sea waters by the Hel Peninsula. These 9 

areas have, in general, a longer water residence time than the corresponding depth stratum in the 10 

open sea, and are also more affected by eutrophication (Table 3, Andrulewicz et al. 2004). The Gulf 11 

of Gdansk is significantly deeper (on average 59 m) and receive large inflows from the Vistula river 12 

(Kruk-Dowgiałło & Szaniawska 2008) that cause seasonal salinity and temperature stratifications. 13 

Surface water salinity in the basin is around 7.5. The soft-bottom sediments in the Gulf encompass 14 

sand, silty sand and mud (Uscinowicz 2011, Thoms et al. 2018). 15 

The St. Anna archipelago (St. A) is situated south of Stockholm, in the northern part of the 16 

Baltic Proper. This archipelago area is relatively shallow with highly varying bottom topography 17 

(depth ranges between <10 to 60 m). Its northwestern inner basins (Slätbaken and Trännöfjärden) 18 

receive freshwater discharge from the river Söderköpingsån that has a catchment area of 880 km2. A 19 

substantial part of its drainage area (26 %) is dominated by farmland and hence the nutrient inputs 20 

can occasionally be high (Arheimer et al. 2015). The water exchange in the inner sub-basins is 21 

restricted by sills (Slätbaken) or by the dense archipelago (Trännöfjärden), resulting in an 22 

accumulation of organic matter on the seafloor and occasional occurrence of oxygen deficiency 23 

(Persson & Jonsson 2000). This also creates a gradient of decreasing nutrient concentrations from 24 

inner areas towards the open sea (Arheimer et al. 2015). The outer part in the St. Anna archipelago, 25 
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Kärrfjärden, has a complex topography, and is sheltered from the open sea by a dense cluster of 1 

islands (Karlsson et al. 2010). The salinity in St. Anna archipelago ranges between 3 to 6 (Table 3).  2 

Umeå archipelago (UA) receives freshwater discharge from the Ume and Vindel Rivers, 3 

which together have a drainage area of 26 814 km2, dominated by forest, mountains as well as 4 

farming areas. The freshwater discharges mainly to Österfjärden and further into Fjärdgrunds-5 

området. Österfjärden is a shallow, almost enclosed basin with a longer water residence time than 6 

the outer areas (Table 3). It is connected to the outer Fjärdgrundsområdet archipelago and the outer 7 

coastal waters of the Quark. Both basins are quite shallow (< 30 m) and dominated by soft 8 

sediments. The inner basin is considered to be moderately affected by eutrophication, while the 9 

outer basin has a good eutrophication status. The salinity is low, ranging from 2 in inner parts to 4.5 10 

in outer areas, and this region can have ice for more than 150 days per year (Table 3).  11 

 12 

2.2. Data  13 

From the Tvärminne archipelago, monitoring data regarding benthic faunal composition 14 

(individuals per m-2) as well as biomass (blotted wet weight, wwt g m-2) from 38 sites along a 15 

transect from the inner, sheltered archipelago towards more exposed sites (Fig. 1) was available 16 

from the HERTTA database, Finnish Environment Institute (Table 3). All included sites have been 17 

sampled with a Van Veen grab sampler (0.1 m2) in August 2012, and sieved through a 1 mm mesh. 18 

In addition, GPS coordinates (decimal degrees), depth, bottom water salinity, organic matter content 19 

(loss on ignition, %) and oxygen concentration (ml/l and %) were available from the same sampling 20 

occasion at each site. The other coastal areas along the Baltic Sea salinity gradient were selected as 21 

comparable benthic community data was available from their sampling sites, i.e. identical sampling 22 

gears and methods of extraction had been used (Van Veen grab, 1 mm mesh size). However, there 23 
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were temporal differences between the data sets, as the samplings were performed in different years 1 

as well as seasons (Table 3).  2 

 3 

2.3. Separation of inner versus outer coastal sites 4 

The number of sampled sites differed between areas, but generally represented a transect from 5 

inner, sheltered towards more exposed sites, encompassing a depth range of 2 to 60 m (Fig. 1, Table 6 

3). In the Tvärminne archipelago, the separation between inner versus outer sites followed the water 7 

body formations identified for the Water Framework directive, distinguishing between southwestern 8 

inner and outer archipelago sites (Perus et al. 2004). A Principal Component Analysis (PCA), based 9 

on geographic position (°N; distance from main river discharge), wind-wave exposure and bottom-10 

water salinity (Fig. S1), illustrate the environmental transect (Fig. S1). The environmental variables 11 

were normalized prior to calculation of Euclidean distances between sites. Also in the other coastal 12 

areas, the separation between inner and outer sites was based on available literature; sites in the 13 

Roskilde Fjord were considered to represent inner coastal sites, while sites in the outer Isefjord, 14 

outside the mouth of Roskilde Fjord, were classified as outer sites following Josefson & Hansen 15 

(2004). Separation of inner and outer sites in the Gulf of Gdansk followed Andrulewicz et al. 16 

(2004). The separation of inner versus outer coastal sites in the St. Anna and Umeå archipelagos 17 

followed the water-body types established for the Water Framework Directive (WFD), a separation 18 

which is mainly based on salinity, stratification (based on buoyancy-frequency and mean salinity in 19 

surface versus bottom waters), and wave exposure (Hansson & Håkansson 2004). In general, all 20 

inner sites were shallower, had lower salinity and were more eutrophied compared to their 21 

corresponding outer sites (Table 3). 22 

 23 

  24 
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2.4. Benthic biological traits 1 

Subsets of benthic biological traits considered important for affecting sediment nutrient cycling and 2 

retention were selected to describe (1) bioturbation, (2) community stability, and (3) estimates of 3 

species-specific content of energy and primary bioelements (i.e. carbon (C), nitrogen (N) and 4 

phosphorus (P); Table 1). The size, environmental position and reworking mode of benthic species 5 

were considered as essential traits for describing bioturbation, while longevity, together with size, 6 

were chosen to depict the stability of the community (Table 1, 2). We assigned species to the trait 7 

modalities using published classifications as well as taxonomic and morphologic sources of 8 

information (Fish & Fish 1996, MarLIN 2006, Queirós et al. 2013, Villnäs et al. 2018, Polytraits 9 

Team 2019) and applied the fuzzy coding procedure if a species was considered to express several 10 

modalities (Chevenet et al. 1994), summing up to 1 within a trait. The fuzzy coded trait expressions 11 

of individual species were scaled up by correcting each modality for species- and sample specific 12 

abundances, creating a site-by-trait matrix. Abundance was used as a correction factor instead of 13 

biomass, as we did not have information about the size-distribution of the individuals. However, for 14 

establishing species-specific energy content (kJ per individual), energy proxies (kJ per g wwt) were 15 

obtained (Weigel et al. 2016) or calculated for each species following biometric conversion factors 16 

(Rumohr et al. 1987, Brey 2001). Species-specific CNP-contents (% per g dry weight) were 17 

available from the Tvärminne area (Villnäs et al. unpublished) and from the literature (e.g. Brey 18 

2001, Liess & Hillebrand 2005, Brey et al. 2010). In cases where there were no species-specific 19 

data available, we applied the values of the closest taxonomic level. To estimate the energy and 20 

CNP (E_CNP) content for one individual of a species, the content was recalculated for the average 21 

wet weight of a species at a site. The carbon, nitrogen and phosphorus contents of the species were 22 

highly positively correlated (R2>0.8, p<0.0001) and thus considered as one trait. The energy and 23 

CNP content of the species was divided into three trait categories, describing a low, medium and 24 

high content, based on log-transformed distributions (Table 1, 2, Fig. 2). For the Roskilde Fjord, 25 
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information regarding C, N, P content of the benthic fauna was not available, and therefore 1 

excluded from the statistical analyses. 2 

Traits were grouped within a subset (cf. Villnäs et al. 2018) for graphical illustrations. 3 

For bioturbation the traits grouped within a subset described; 1) no transport, 2) epibenthic surface 4 

modifiers, 3) small tube dwellers or 4) biodiffusers in the uppermost sediment layers, 5) large 5 

biodiffusers in deeper sediment layers, and 6) medium sized gallery diffusers. To describe stability, 6 

the traits were grouped to describe 1) small, short-lived species, 2) medium-sized species with a 7 

life-span of 2-5 years and 3) large, long-lived species (5-10 years or more). Species’ energy and 8 

nutrient contents were divided into 1) low, 2) medium and 3) high (cf. Fig. 2). The subsets were 9 

related to processes and functions that could enhance nutrient retention and removal from the 10 

coastal filter based on literature sources (Table 2), but due to the lack of data, this study does not 11 

consider remineralization rates or fluxes of nutrients across the sediment water interface.   12 

 13 

2.5. Statistical analyses 14 

Differences in benthic community abundance, biomass and trait subsets between coastal areas and 15 

inner versus outer sites were explored with multivariate analyses (PRIMER). Non-parametric 16 

multidimensional scaling (nMDS) was used for initial examination of spatial patterns. Differences 17 

between areas and inner and outer sites were further analyzed with two-way crossed analyses of 18 

similarities (ANOSIM), while one-way ANOSIM was used to distinguish divergences in trait 19 

composition between sites within an area. ANOSIM is a non-parametric permutation procedure that 20 

compare rank similarities among samples within and between sites based on the underlying 21 

similarity matrix (calculated with the Bray-Curtis measure). The test statistic, R, represent well 22 

separated sites when R>0.75, overlapping but clearly different sites 0.75>R>0.5, while R<0.25 23 

represents sites that are barely separable at all (Clarke & Gorley 2001). The significance level is 24 
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obtained by referring the observed value of R to its permutation distribution (Clarke et al. 2014). 1 

The SIMPER procedure was used to identify the species contributing to (dis)similarities within and 2 

between sites. 3 

To illustrate how the benthic trait composition changed from inner towards outer sites of a coastal 4 

area, we used a principal coordinates analysis (PCO) to project the variation between the sites in 5 

multivariate space onto principal coordinate axes, and performed this analysis for each trait subset 6 

(describing bioturbation mode, energy and nutrient content and stability). The PCO values of the 7 

axis explaining the largest part of variation were plotted for each coastal area, sorting the sites 8 

according to their distance to the main source of freshwater discharge (as visually estimated by 9 

inspecting their geographic position) to illustrate changes in trait composition between inner and 10 

outer sites (cf. Andersen et al. 2009). Instead of a PCO, a constrained analysis, CAP (canonical 11 

analysis of principal coordinates) was used for the Umeå archipelago to find axes through the 12 

multivariate cloud of points that best discriminated among the a priori groups (i.e. inner vs outer 13 

sites). CAP can be used in cases when the direction through the data cloud that distinguishes the 14 

sites from one another is different from the direction of greatest variation across the data cloud 15 

(Anderson et al. 2008). The Bray-Curtis measure, underlying both the PCO and CAP analyses, was 16 

based on fourth root transformed abundance, biomass and trait data in order to down-weigh the 17 

importance of dominating species. The analyses were performed with the PRIMER 7 software and 18 

PERMANOVA+ (Anderson et al. 2008, Clarke et al. 2014, Clarke & Gorley 2015).  19 

Complementing the PCO plots, the trait groups within a subset (cf. Villnäs et al. 2018) were used to 20 

illustrate the main changes in trait composition at each site in a stacked column chart. A majority of 21 

individuals (>98%) could be assigned to the identified trait groups (Villnäs et al. 2018).  22 

 23 
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3. RESULTS 1 

3.1. Tvärminne archipelago 2 

For the Tvärminne archipelago, there was an overlapping but clear difference between inner and 3 

outer sites regarding benthic community composition (abundance), while a less clear difference for 4 

biomass was observed (Table 4). The bivalve, Macoma balthica, the spionid polychaete 5 

Marenzelleria spp., Chironomidae as well as Hydrobiidae dominated inner sites, while the 6 

crustacean, Monoporeia affinis was abundant at outer sites (Table S1). 7 

The difference in community composition between inner and outer sites was reflected 8 

in the overall trait composition of the benthic communities (Table 4). There was an overlapping but 9 

clear difference between inner and outer sites for the subset of traits describing benthic bioturbation 10 

(ANOSIM R=0.45, p=0.0001, Fig. 3A). The inner sites had high prevalence of very small and 11 

small, epibenthic surface modifiers and tube dwellers, while the outer sites had higher numbers of 12 

biodiffusers in the top sediment layer. Biodiffusers in deeper parts of the sediment were abundant at 13 

all sites together with gallery diffusers (Fig. 3A). The subset of traits describing the stability of the 14 

benthic community also showed differences between inner and outer sites (ANOSIM R=0.427, 15 

p=0.0001, Fig. 3B). Short-lived, small individuals were generally more abundant at inner coastal 16 

sites, while medium-sized individuals with a life span of 2-5 years were more dominant at the outer 17 

sites. However, only small differences between sites were observed for large, long-lived individuals 18 

(Fig. 3B). Regarding traits describing energy- and CNP content, we found that individuals having 19 

low energy and nutrient contents were slightly more abundant at inner sites compared to the outer 20 

ones, but the sites could barely be separated (Fig 3C; ANOSIM: R=0.23, p=0.0004). 21 

 22 
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3.2. Comparing spatial variation in benthic community composition across coastal locations 1 

The number of species and diversity (H’) decreased from the southern (RF) to the northern (UA) 2 

coastal areas of the Baltic Sea, reflecting the gradient of decreasing salinity (Fig. S2). Overall, there 3 

were overlapping but clear differences in benthic community abundance and biomass composition 4 

between coastal areas as well as between inner and outer sites (Table 4). The variability in benthic 5 

faunal abundance and biomass within an area was generally high. In the Roskilde Fjord, the within-6 

site similarities in benthic community composition for inner and outer sites were low (<30%), due 7 

to that different species of bivalves and polychaetes dominated different stations along the land to 8 

sea gradient, but inner versus outer sites were well separated (Table 4, S1). In the Gulf of Gdansk, 9 

gastropods belonging to Hydrobiidae, the polychaete Hediste diversicolor and the bivalve Macoma 10 

balthica dominated the community at inner sites, while the crustaceans Pontoporeia femorata and 11 

Diastylis rathkei were more common at outer sites (Table S1). Macoma balthica and Marenzelleria 12 

spp. were the dominant taxa of both inner and outer sites in the coastal areas of the northern Baltic 13 

Sea (i.e. the St. Anna, Tvärminne, and Umeå archipelagos), and often contributed to 70% of within-14 

site similarities (Table S1).  15 

 16 

3.3. Large-scale differences in benthic biological traits 17 

The overall trait composition was overlapping but differed, in general, both between coastal areas as 18 

well as between inner and outer sites (Table 4). However, the differences were not as marked as for 19 

abundance and biomass, indicating that using traits smoothed out the variation between the areas 20 

and enabled a comparison of differing community functions across this broad geographical scale.  21 

Benthic bioturbation mode: Traits describing benthic bioturbation showed overlapping but clear 22 

differences between coastal areas (R=0.50, p=0.0001), and between inner and outer sites (R=0.45, 23 

p=0.0001; two-way crossed ANOSIM). While gallery diffusers, tube dwellers and biodiffusers in 24 
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upper sediment layers were dominant in the Roskilde Fjord, epibenthic surface modifiers and 1 

biodiffusers in deeper sediment layers played a more important role in the Gulf of Gdansk. 2 

Similarly to the Tvärminne archipelago, biodiffusers and gallery diffusers in deeper sediment layers 3 

contributed most to the overall abundance in the St. Anna and Umeå archipelagos (Fig. 3A, 4).  4 

For each coastal area, overlapping gradual shifts in bioturbation mode were observed from inner 5 

towards outer sites (R>0.3, p<0.05, Fig. 4). When exploring traits contributing to dissimilarities 6 

between inner and outer sites, epibenthic surface modifiers and tube dwellers were often found to 7 

have more prominent roles at inner sites, while biodiffusers in the uppermost sediment layers were 8 

more common at the outer sites, especially in Roskilde Fjord and in the Gulf of Gdansk (Fig. 4). 9 

Biodiffusers in the deeper parts of the sediment were more abundant in the outer parts of Puck Bay, 10 

St. Anna and Umeå archipelago, but minor differences between sites were observed in the Roskilde 11 

Fjord. Gallery diffusers were in general present at all sites, but their higher occurrence in outer, or 12 

deeper, sites in the Roskilde Fjord and Umeå archipelago contributed to strengthen between-site 13 

dissimilarities in these areas (Fig. 4).  14 

Stability: Also for traits representing community stability (i.e. maximum individual size and 15 

lifespan), overlapping but clear differences were observed between areas (two-way crossed 16 

ANOSIM R= 0.50, p=0.0001) and inner vs outer sites (R=0.43, p<0.0001). Short-lived, small 17 

individuals were generally more abundant at inner coastal sites in all areas, while medium-sized 18 

individuals with a life span of 2-5 years as well as large, long-lived individuals were more dominant 19 

at outer sites (Fig. 5). In the Roskilde Fjord, however, the innermost sites had extremely high 20 

abundances due to a dominance of small, short-lived individuals, but these sites also had a presence 21 

of large, long-lived ones. Still, medium-sized individuals with a lifespan of 2-5 y dominated outer 22 

sites also in this area (Fig. 5). The differences in traits depicting stability were significant between 23 

inner and outer sites for all areas (R>0.4, p<0.01), except for the Roskilde Fjord (p>0.05).  24 
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Energy and nutrient content: Overall, two-way crossed ANOSIM showed larger differences in 1 

benthic energy content between areas (R=0.45, p=0.0001) than between inner versus outer sites 2 

(R=0.22, p= 0.0008). In general, individuals with low energy content dominated in the Roskilde 3 

Fjord and Gulf of Gdansk, while those with medium energy content were more abundant in the 4 

Tvärminne, St. Anna and Umeå archipelagos (Fig. 3C). Although an increasing trend in the energy 5 

and carbon, nitrogen and phosphorus (ECNP) content of benthic individuals was observed when 6 

comparing inner versus outer sites in the Gulf of Gdansk, St. Anna and Umeå archipelago (R>0.35, 7 

p<0.01; Fig. 6) the sites were not clearly separable. In Roskilde Fjord, inner sites were dominated 8 

by individuals having low energy contents, while species with a medium energy content became 9 

more abundant towards outer sites, but this difference was non-significant (p>0.05, Fig. 6).  10 

 11 

4. DISCUSSION 12 

We found high variability but still significant differences in benthic community and trait 13 

composition between different coastal areas of the Baltic Sea. Despite these differences, there were 14 

overarching similarities in functional traits important for influencing sediment carbon and nutrient 15 

cycling when comparing inner, shallow versus outer, often deeper sites. In accordance with our 16 

hypotheses we found that benthic communities at inner coastal sites more prone to eutrophication 17 

were likely to express traits that enhance turnover rates of carbon and nutrients (i.e. small, short-18 

lived, epibenthic surface modifiers or tube dwellers that have low total energy and nutrient content 19 

per individual). In contrast, outer less nutrient enriched, deeper sites were dominated by species that 20 

could have a more prominent role for nutrient removal and retention in the coastal filter, as their 21 

expressed traits that can promote denitrification, sediment phosphate adsorption and temporal 22 

carbon and nutrient retention within animal tissue (Table 2).  23 
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Both for the Tvärminne archipelago and for the other coastal areas, there was generally a 1 

higher presence of small, short-lived species with lower individual energy, carbon and nutrient 2 

content at inner compared to outer coastal sites. As metabolism scales allometrically with body 3 

mass, such species are likely to have higher metabolism (Brown et al. 2004), high carbon and 4 

nutrient content per mass unit and thus higher rates of excretion per mass unit compared to larger 5 

species (Hall et al. 2007). As excreted nutrients (often in the form of NH4
+ and PO4

3-) are readily 6 

taken up by microbes and primary producers, these species constitute an important step in the 7 

recycling chain (Allgeier et al. 2017) within the coastal filter. Especially the presence of epibenthic 8 

surface modifiers, mostly grazers, at shallow, illuminated inner sites might have an important role 9 

for regulating microphytobenthic primary production (Miller et al. 1996, Norkko et al. 2010, Janas 10 

et al. 2019), while their contribution to sediment bioturbation is known to be marginal (Orvain et al. 11 

2004). In contrast, the high abundance of tube dwellers at inner sites suggests efficient bioirrigation 12 

and an active incorporation of organic matter into the sediment. Tube dwellers, such as 13 

chironomids, have u-shaped tubes and have been shown to stimulate a release of nutrients from the 14 

sediment to overlying water (Hansen et al. 1998), which enhances gross primary production as well 15 

as nutrient turnover rates in the system (Herren et al. 2017), possibly stimulating eutrophication. 16 

However, the influence of tube dwellers on sediment nutrient cycling is not straight-forward 17 

(Hölker et al. 2015), and depending on sediment quality and redox state, tube dwellers might 18 

temporary enhance nutrient removal from the system through enabling phosphorus binding and 19 

denitrification (Hansen et al. 1998, Hölker et al. 2015). Indeed, Benelli et al. (2018) showed that 20 

chironomid larvae and benthic algae in combination significantly decreased the internal nutrient 21 

recycling in a shallow coastal ecosystem and suggest that they could even control the pelagic 22 

production. Importantly, the authors also suggest that this effect could be temporary, as the burrows 23 

might turn anoxic when the chironomids become flying insects, and the adsorbed phosphorous 24 

could then potentially be regenerated to the water column (Hölker et al. 2015, Benelli et al. 2018).  25 
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The benthic communities at outer coastal sites were often dominated by medium- to large 1 

sized, relatively long-lived species with higher energy and nutrient content per individual and is 2 

therefore suggested to constitute a more stable nutrient pool. In addition, outer sites had, in general, 3 

a higher abundance of biodiffusers in upper and lower sediment layers, which is likely to promote 4 

nutrient retention and removal (Table 2). For example, the biodiffusing amphipods Monoporeia 5 

affinis and Pontoporeia femorata, which were common in several of the outer study sites, actively 6 

rework the sediment and enhances sediment oxygen penetration. Monoporeia affinis has been 7 

observed to increase denitrification rates as well as the amount of phosphate bound to the sediment 8 

(Karlson et al. 2007) and its activities are thus likely to increase the functionality of the coastal 9 

filter. A high abundance of gallery biodiffusers, such as Hediste diversicolor and Marenzelleria 10 

spp., observed both at inner and outer sites, is known to promote bacterial communities which will 11 

support organic matter mineralization rates and consequently, nutrient recycling. However, these 12 

gallery diffusers, although showing differences in burrow structure and bioirrigation modes 13 

(Kristensen et al. 2014), both increase sediment oxygenation and can probably promote sediment 14 

nutrient retention (through increased P binding) and removal (through denitrification) in the long 15 

term (Norkko & Reed et al. 2012), which will enhance the efficiency of the coastal filter. 16 

Interestingly, these two gallery diffusers have also been observed to be vectors of fresh organic 17 

material into deeper sediment layers (Nordström et al. 2006, Josefson et al. 2012, Kauppi et al. 18 

2017) which is hypothesized to slow down overall mineralization rates and could also counteract 19 

oxygen depletion in bottom waters (Josefson et al. 2012). 20 

The difference in benthic trait composition between inner versus outer sites observed in this 21 

study are likely to affect the efficiency of the coastal filter as described above. However, it is clear 22 

that the contribution of benthic invertebrates to sediment nutrient recycling and retention cannot be 23 

quantified based on trait classifications, and that the net effect of the animals will be context-24 

dependent. Indeed, the impact of benthic macrofauna on sediment nutrient fluxes has been shown to 25 
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vary across habitats (Gammal et al. 2019, Janas et al. 2019), due to disturbances (Villnäs et al. 1 

2013), with season (Kauppi et al. 2017) and to have contrasting short versus long-term effects 2 

(Norkko & Reed et al. 2012). In addition, trait modalities and groupings cannot be assumed to 3 

describe the exact performance of species. For example, Renz & Foster (2013) showed clear 4 

differences in burrow morphology, depth and bioturbation capacity between the sibling species of 5 

Marenzelleria. Kristensen et al. (2014) in turn suggested that activities of the gallery diffusers 6 

Marenzelleria viridis and Arenicola marina, in contrast to Nereis diversicolor, would increase 7 

concentrations of dissolved incorganic nitrogen concentrations in bottom waters which would 8 

enhance pelagic primary production. Although more specific trait classifications could be adapted, 9 

the influence of species would still depend upon a range of environmental factors affecting both 10 

species behavior and biogeochemical processes, including for example food quantity and quality, 11 

predation pressure, sediment organic matter content and nutrient concentrations, redox state and 12 

nutrient concentrations in overlying waters. Indeed, Thoms et al. (2018) examined the impact of 13 

benthic macrofauna on the coastal filter function in the Gulf of Gdansk and suggested that coastal 14 

zones with a large numbers of deep-burrowing infaunal species, stimulating re-mineralization but 15 

also transforming nutrients into biomass, are likely to offer the best filter function, which supports 16 

the results of our study. 17 

 When interpreting the between-site comparisons in benthic trait distribution, it should 18 

be noted that the number of sampled stations differ between areas as well as sites. This will greatly 19 

affect the significance value of the ANOSIM analysis, while the R-value, which is not a function of 20 

the number of replicates, represents the absolute measure of the differences between sites in 21 

multidimensional space (Clarke and Gorley 2015). Nevertheless, the ANOSIM analyses supported 22 

the observed pattern of differences between inner and outer sites as shown by the Principal 23 

Coordinate Analyses, which was explaining a large part of the variation in multivariate trait-space, 24 

supporting the hypothesized between-site differences. Although our study could not relate variation 25 
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in traits to environmental parameters due to a lack of environmental data, divergences were found 1 

between inner versus outer sites for all the studied areas both in terms of hydrography and 2 

eutrophication pressure (Table 3). Villnäs et al. (2018) showed that such divergences, specifically in 3 

sediment organic matter content, temperature stratification of the water column, and bottom water 4 

salinity and oxygen content were able to explain a large part of the differences in benthic faunal 5 

bioturbation modes in the Tvärminne archipelago. In this study, we can only speculate why the 6 

difference in community trait composition occurs but some may be related to differences in 7 

eutrophication loading as well as water residence time. As indicated in Table 3 the inner sites in 8 

each coastal area have substantially longer residence time than the outer sites. In addition to a high 9 

nutrient input, long residence time allows the nutrients to circulate many times in the system of the 10 

inner sites before being flushed out, and may thus contribute to an even higher nutrient pressure. 11 

Long residence time/low flushing rates may also favor hypoxia/intermittent anoxia and allow small 12 

opportunists do dominate. In contrast, at the outer sites the flushing is higher and nutrients may 13 

have less time to circulate in the system before being transported to the open sea. At the same time, 14 

since flushing is higher, the risk of hypoxia is lower allowing species with longer life spans to 15 

dominate, and thereby increasing temporary retention. In addition, short residence time /high 16 

flushing may mean higher horizontal flux and thereby more food for suspension feeders, many of 17 

which attains large body size. Indeed, Lloret & Marín (2011) illustrated that a benthic macroalgae 18 

(Caulerpa prolifera) together with benthic invertebrates could form an effective coastal filter in 19 

Mar Menor Lagoon, Mediterranean Sea. These authors showed that benthic species favoring higher 20 

nutrient turnover as well as resuspension were more abundant at shallow sites, close to the outlet of 21 

a wadi, while suspension feeders contributing to a net retention of nutrients were more abundant at 22 

outer, deeper sites (Lloret & Marín 2011). 23 

The comparable pattern in trait composition that distinguished inner versus outer sites 24 

suggests that the functional composition of benthic invertebrate communities might contribute in a 25 
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similar manner to recycling and retention of the nutrient cocktail across coastal areas of the Baltic 1 

Sea. The observed dichotomy in benthic trait composition between inner and outer areas is 2 

important, as it indicates that these areas differ in nutrient processing mode and -capacity. The 3 

biological trait composition of the benthic communities at inner sites was indicative of an 4 

intensified carbon- and nutrient turnover, which could possibly promote the internal feedback to the 5 

eutrophication cycle. In contrast, traits important for slower turnover rates, enhancing retention 6 

(binding or burial) and removal (denitrification) were more abundant at outer sites, probably 7 

creating a more efficient nutrient filter. The differences in trait composition between inner versus 8 

outer sites highlights that disturbances such as eutrophication, which can homogenize benthic 9 

communities over larger spatial scale, could result in more rapid nutrient turnover rates and low 10 

retention of carbon and nutrients. This underlines the importance of preserving healthy benthic 11 

communities that can enhance the capacity of the ecosystem to cope with eutrophication. Thus, the 12 

preservation of benthic community structure and function will be vital in management efforts 13 

striving to sustain the functionality of our coastal seas.  14 
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Table 1.  1 

 2 

Community 
property 

Trait Trait modalities Definition 

Bioturbation 
mode 

Sediment 
reworking 

no transport no transport or pelagic 

surface modifier modifies the sediment surface 

tube dweller builds and dwells in a tube 

biodiffuser moves particles in random manner over short distances 

gallery diffuser excavates burrows, move particles by biodiffusion or directly 

Environ-
mental 

position 

pelagic in the water column 
   

epibenthic on the sediment surface   

infauna top in the uppermost 2 cm of the sediment  

infauna bottom in deeper layers of the sediment (> 2 cm)  

Size 

very small  <0.001 g 

small  0.001–0.01 g 

medium 0.01–0.1 g 

large 0.1–1.0 g 

Stability 

Size 

very small <0.001 g 

small 0.001–0.01 g 

medium 0.01–0.1 g 

large 0.1–1.0 g 

Life span 

<1 y  

1-2 y  

2-5 y  

5-10 y or more   

Energy and 
nutrient 
content 

Energy 
content 

Low E 0-0.1 kJ per individual 

Medium E 0.1-1 kJ per individual 

High E > 1 kJ per individual 

Nutrient 
content 

Low CNP C < 1 mg, N < 0.1 mg, P <0.01 mg per individual 

Medium CNP C: 1-10 mg, N: 0.1-1 mg, P: 0.01-0.1 mg per individual 

High CNP C > 10 mg, N > 1 mg, P > 0.1 mg per individual    

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 



(34) 
 

Table 2.  1 

 2 

Trait 
Trait 

grouping 
Activity Process  

Function affecting 
the coastal filter  

References 

B
io

tu
rb

at
io

n
 m

o
d

e
 

No transport Pelagic.  
Activities primarily 
affecting the water 
column.  

No significant effect 
on sediment nutrient 
cycling. 

  

Epibenthic 
surface 

modifiers  

Grazing on 
microphytobentohs at 
the sediment surface. 

Increase sediment 
resuspension. 

Primarily affecting 
sediment nutrient 
cycling by regulating 
primary producers. 

Sundbäck & Miles 2000, 
Andersen et al. 2002, 
Orvain et al. 2004 

Small tube 
dwellers 

Bioirrigation of 
constructed tube during 
restricted life-span, 
enhance sediment 
oxygen penetration.  

Promotes microbial 
growth and activity, 
mineralization rates, 
nitrification-coupled-
denitrification, and 
phosphate adsorption. 

Removal of nitrogen, 
binding of 
phosphorous. 

Hansen et al. 1988, Stief 
& Hölker 2006, Hölker 
et al. 2015, Benelli et al. 
2018 

Biodiffusers, 
top sediment 

Enhance sediment 
oxygen penetration to 
the upper part of the 
sediment.  

Tuominen et al. 1999, 
Karlson et al. 2007 

Large 
biodiffusers, 

deep 
sediment 

Enhance oxygen 
penetration to deeper 
parts of the sediment. 

Michaud et al. 2005, 
2006, Karlson et al. 
2007 

Medium-
sized gallery 

diffusers 

Enhance sediment 
oxygen penetration and 
enlarges the oxic-anoxic 
transition zone. 

Increases mineralisation 
rates*, promotes 
microbial growth and 
activity, nitrificaiton-
coupled-denitrification, 
and P adsorption. 

Removal of nitrogen, 
binding of 
phosphorous. 

Henriksen et al. 1983, 
Hansen & Kristensen 
1988, Sundby et al. 
1992, Norkko & Reed et 
al. 2012 

 3 
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Table 2. Continued. 1 

 2 

Trait 
Trait 

grouping 
Activity Process  

Function affecting the 
coastal filter  

References 

St
ab

ili
ty

  

small, short-
lived 

Opportunistic 
disturbance response. 

Modification of physcial 
and chemical 
characteristics of the 
sediment that facilitates 
succession after 
disturbance.  

Initialize community 
recovery and thereby 
improvement of 
sediment quality as a 
result of benthic 
activities.  

Pearson & Rosenberg 
1978, Norkko et al. 
2006, 2010, van Colen 
et al. 2008 

 

medium-
sized, 2-5y 

     

 

Enrichment of sediment, 
structuring of habitat. 

Stimulation of microbial 
growth, meio-and 
macrofaunal diversity. 

Increase biodiversity 
and stability of the 
benthic community 
and their contribution 
to sediment carbon 
and nutrient cycling.  

Reise 1983, Norkko et 
al. 2001, Thrush et al. 
2006 

large, long-
lived 

Mature community.  

Indication that the 
sediment has not been 
severely disturbed 
during a longer time-
period. 

Characteristic of late 
successional stages 
with species 
contributing to 
sediment carbon and 
nutrient cycling.  

Pearson and Rosenberg, 
1978, Norkko et al. 
2013, Villnäs et al. 2012 

To
ta

l e
n

e
rg

y 
an

d
 n

u
tr

ie
n

t 
co

n
te

n
t 

low 
Small individuals having 
low total energy and 
nutrient content.  

Higher metabolic rate 
and respiration, higher 
mass-specific excretion 
rates compared to 
larger animals. 

Higher turnover of 
energy and nutrients 
compared to larger 
animals.  

Brown et al. 2004, Hall 
et al. 2007 

 
 

medium      

 

Large, longer-living 
individuals having high 
total energy and 
nutrient content. 

Higher retention of 
carbon and nutrients in 
animal tissue compared 
to smaller animals.  

More stable biological 
pool of carbon, 
nitrogen and 
phosphorous.  

Vanni et al. 2013, 
Atkinson & Vaughn 
2015, Allgeier et al. 
2017 high 

* medium-sized gallery diffusers have also been shown to bury fresh organic material (Nordström et al. 2006, Josefson et al. 
2012), which could slow down degradation rates. 
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Table 3. 1 

Area Site 
Stat- 
ions 

Year Season 
Area 
(km2) 

Res.  
time 

Depth  Salinity O2 (ml/l) Eutrophication 
classification* 

Basin(s) 
avg. std avg. std avg. std 

Roskilde 
Fjord 

Inner 5 2004 Spring 123 90 4.4 1.9 17.6 10.4 5.8 15.0 
Higher N 
loadings 

Roskilde N 

Outer  5 2004 Spring 255 46 5.8 3.7 18.9 12.5 5.9 9.3 
Lower N 
loadings 

Isefjord 

Gulf of 
Gdansk 

Inner 8 
2005-
2015 

Autumn 103 38 4.8 2.7 6.8 0.4 7.0 0.7 Bad/Poor 
Inner PB,  
outer coast 

Outer 6 2010 Autumn 257 7-30 36.8 15.9 7.1 0.6 7.8 1.1 Moderate 
Outer PB,  
GG 

St. Anna 

Inner 21 2012 Spring 46 
10-
391, 
>402 

20.0 9.7 4.1-6.4 ND ND Bad/Poor 
Inre 
Slätbaken2, 
Trännöfjärd1 

Outer 14 2012 Spring 63 >40 16.4 5.1 6.2 0.1 9.9 0.4 Moderate Kärrfjärden 

Tvär-
minne  

Inner 24 2012 Autumn 80 ND 18.4 7.6 5.8 0.1 7.5 1.3 Poor Dragsvik, Box 

Outer 15 2012 Autumn 500 ND 34.6 6.9 6.0 0.1 6.5 0.6 Moderate 
Outer 
Storfjärden, 
Hankoniemi 

Umeå  

Inner 10 2006 Spring 16 10-39 7.8 4.4 2.8 0.8 6.2 2.0 Moderate Österfjärden  

Outer 12 2006 Spring 1125 0-9 25.5 12.8 4.7 0.6 7.3 0.6 Good 
Fjärdgrunds-
omr., the 
Quark 

 2 

Information regarding area, volume, residence time and eutrophication classification were available from Josefson & 3 
Hansen (2004), the VISS database (http://viss.lansstyrelsen.se/), the SYKE HERTTA register (https://www.syke.fi/en-4 
US/Open_information), Andrulewicz et al. (2004) and Kruk-Dowgiałło & Szaniawska (2008).The eutrophication 5 
assessment generally follows the WFD classification. For the Roskilde Fjord, only information on nutrient loadings 6 
were available (cf. Josefson & Hansen 2004). PB: Puck Bay, GG: Gulf of Gdansk. 7 
 8 

 9 
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Table 4.  1 

 2 

Two way 
crossed 

Abundance Biomass Traits 

Global R p Global R p Global R p 

Area 0.68 0.0001 0.61 0.0001 0.483 0.0001 

Inner vs outer 0.56 0.0001 0.42 0.0001 0.418 0.0001 

Pair-wise area R p R p R p 

RF, GG 0.84 0.0001 0.81 0.0001 0.28 0.0080 

RF, TA 0.99 0.0001 0.97 0.0001 0.74 0.0001 

RF, UA 0.94 0.0001 0.85 0.0001 0.33 0.0030 

RF, StA 0.98 0.0001 0.83 0.0001 0.48 0.0002 

GG, TA 0.90 0.0001 0.80 0.0001 0.64 0.0001 

GG, UA 0.78 0.0001 0.72 0.0001 0.51 0.0001 

GG, StA 0.77 0.0001 0.57 0.0001 0.51 0.0001 

TA, UA 0.57 0.0001 0.58 0.0001 0.64 0.0001 

TA, StA 0.68 0.0001 0.58 0.0001 0.63 0.0001 

UA, StA 0.32 0.0005 0.36 0.0001 0.18 0.0050 

One way inner vs outer 

RF 0.80 0.0080 0.77 0.0080 0.29 0.0630 

GG 0.57 0.0003 0.53 0.0003 0.41 0.0040 

TA 0.63 0.0001 0.37 0.0001 0.44 0.0001 

StA 0.43 0.0001 0.41 0.0001 0.40 0.0001 

UA 0.54 0.0003 0.56 0.0001 0.47 0.0002 

 3 
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FIGURE LEGENDS 1 

 2 

Figure 1. Map describing the different study areas along the Baltic Sea gradient. UA: Umeå 3 

archipelago, TA: Tvärminne archipelago, St. A: St. Anna archipelago, GG: Gulf of Gdansk, RF: 4 

Roskilde Fjord. Note the different scales. Inner sites are represented by dots, outer sites by triangles.  5 

 6 

Figure 2. The A) energy content (kJ), B) total carbon, C) nitrogen and D) phosphorus content per 7 

species related to the average wet weight of benthic fauna in the Tvärminne archipelago region. 8 

Different symbols mark trait categories representing high, medium and low energy and nutrient 9 

content of a species. Note that the axes are log transformed.  10 

 11 

Figure 3. Differences in A) bioturbation mode, B) stability and C) energy, carbon and nutrient 12 

content between inner (circles) vs outer (triangles) sites for the Tvärminne archipelago. The upper 13 

graph represents the principal coordinate of each site along the first PCO axis. The lower graph 14 

shows the contribution of each trait subset (%) to total abundance at a site. Abundance (dotted line) 15 

is expressed as % of the maximum abundance measured in the area. Sites are ordered to describe a 16 

gradient from their main source of freshwater discharge, in the direction of the arrow.  17 

 18 

Figure 4. Differences in benthic bioturbation between inner (circles) vs outer (triangles) sites for 19 

the different coastal areas. The upper graph represents the principal coordinate of each sites along 20 

the first PCO axis, except for the Umeå archipelago, where a CAP analysis was performed. For 21 

explanation of the lower graph, see Fig. 3.  22 

 23 

Figure 5. Differences in benthic stability between inner (circles) vs outer (triangles) sites for the 24 

different coastal areas. The upper graph represents the principal coordinate of each sites along the 25 

first PCO axis, except for the Umeå archipelago, where a CAP analysis was performed. For 26 

explanation of the lower graph, see Fig. 3.  27 

 28 
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Figure 6. For the Roskilde Fjord, differences in benthic community energy content between inner 1 

(circles) vs outer (triangles) sites are depicted, while graphs for the Gulf of Gdansk, St. Anna and 2 

Umeå archipelagos represent differences in benthic faunal energy as well as C, N, P contents. The 3 

upper graph represents the principal coordinate of each sites along the first PCO axis. For 4 

explanation of the lower graph, see Fig. 3.  5 
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