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Abstract 25 
 26 
Questions 27 

How to map floristic variation in a patterned fen in an ecologically meaningfully way? Can plant 28 
communities be delineated with species data generalized into plant functional types? What are the 29 
benefits and drawbacks of the two selected remote sensing approaches in mapping vegetation patterns, 30 
namely: (1) regression models of floristically defined fuzzy plant community clusters, and (2) 31 
classification of predefined habitat types that combine vegetation and land cover information? 32 

 33 
Location 34 
Treeless 0.4 km2 mesotrophic string-flark fen in Kaamanen, northern Finland. 35 

 36 
Methods 37 

We delineated plant community clusters with fuzzy c-means clustering based on two different inventories 38 
of plant species and functional type distribution. We used multiple optical remote sensing datasets, digital 39 

elevation models and vegetation height models derived from drone, aerial and satellite platforms from 40 

ultra-high to very-high spatial resolution (0.05 to 3 m) in an object-based approach. We mapped spatial 41 
patterns for fuzzy and crisp plant community clusters using boosted regression trees, and fuzzy and crisp 42 
habitat types using supervised random forest classification. 43 

 44 
Results 45 

Clusters delineated with species-specific data or plant functional type data produced comparable results. 46 
However, species-specific data for graminoids and mosses improved the accuracy of clustering in the 47 
case of flarks and string margins. Mapping accuracy was higher for habitat types (overall accuracy 0.71) 48 

than for fuzzy plant community clusters (R2 values between 0.28 and 0.67).  49 
 50 

Conclusions 51 
For ecologically meaningful mapping of a patterned fen vegetation, plant functional types provide 52 

enough information. However, if the aim is to capture floristic variation in vegetation as realistically as 53 
possible, species-specific data should be used. Maps of plant community clusters and habitat types 54 

complement each other. While fuzzy plant communities appear to be floristically most accurate, crisp 55 
habitat types are easiest to interpret and apply to different landscape and biogeochemical cycle analyses 56 

and modeling. 57 
 58 
Keywords: digital elevation model, drone, floristic analysis, fuzzy, northern boreal, object-based 59 
image analysis, plant community, plant functional types, UAS, UAV, very-high spatial resolution 60 
satellite imagery 61 

  62 
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1 Introduction 63 
 64 
Northern peatlands have fine-scale spatial variation in vegetation, land cover and topography (Lovitt, 65 

Rahman, & McDermid, 2017; Middleton et al., 2012; Palace et al., 2018). This variation is also reflected 66 
in ecosystem functioning and responses (Lehmann et al., 2016). Spatial patterns of peatlands can be 67 
tracked with remotely sensed data, but it has been argued that the spatial resolution in common mapping 68 
approaches is too coarse (Palace et al., 2018). Ultra-high spatial resolution (UHSR) remote sensing, 69 
which provides data with cm-level pixel size, can reveal such patterns in vegetation composition that are 70 

lost in coarser resolution (Díaz-Varela, Calvo Iglesias, Cillero Castro, & Díaz Varela, 2018; Gonçalves 71 
et al., 2016; Lehmann et al., 2016; Mora, Vieira, Pina, Lousada, & Christiansen, 2015). In particular, the 72 
benefits of UHSR are evident in fragmented landscapes such as peatlands (Arroyo-Mora, Kalacska, 73 
Lucanus, Soffer, & Leblanc, 2017; Lehmann et al., 2016; Lovitt et al., 2017; Palace et al., 2018). 74 
 75 

Vegetation patterns have been mapped using remote sensing with multiple methods and levels of detail. 76 
A typical approach has been to map land cover, vegetation, or habitat types, such as different forest or 77 

peatland types (Díaz-Varela et al., 2018; Foody, 1997; Gonçalves et al., 2016; Mora et al., 2015; Tapia, 78 

Stein, & Bijker, 2005). There have also been efforts to map the presence of a single plant species (Dudley, 79 
Dennison, Roth, Roberts, & Coates, 2015; Roth, Roberts, Dennison, Peterson, & Alonzo, 2015), plant 80 
species grouped to communities (Duff, Bell, & York, 2014; Middleton et al., 2012; Rapinel, Rossignol, 81 

Hubert-Moy, Bouzillé, & Bonis, 2018) or plant functional types (PFTs) (Cole, McMorrow, & Evans, 82 
2013; Harris, Charnock, & Lucas, 2015; Kattenborn et al., 2017; Schmidtlein, Feilhauer, & Bruelheide, 83 

2012; Ustin & Gamon, 2010). In PFTs, plant species are grouped based on their traits (Chapin III, Bret-84 
Harte, Hobbie, & Zhong, 1996; Duckworth, Kent, & Ramsay, 2000; Hartley, MacBean, Georgievski, & 85 
Bontemps, 2017; Ustin & Gamon, 2010), and the focus is often on plant functions and biogeochemical 86 

properties. PFTs can be delineated in multiple different ways and they are a generalization of species 87 
data (Duckworth et al., 2000). Commonly, PFTs represent similar growth forms and responses to 88 

environmental and biological conditions (Chapin III et al., 1996; Duckworth et al., 2000; Ustin & Gamon, 89 
2010).  90 

 91 
In remote sensing applications, species, PFTs or communities are distinguished by their optical and 92 

structural features, e.g. spectral reflectance and height. Some PFTs (such as shrubs, forbs, graminoids 93 
and mosses) are easier and faster to record in the field when collecting large validation datasets (Harris 94 

et al., 2015), and it can be assumed that their spectral signature is similar to that of key single species 95 
(Cole et al., 2013). On the other hand, PFTs can be an oversimplification of the species data (Duckworth 96 
et al., 2000; Ustin & Gamon, 2010). We argue that the applicability of PFTs could be judged based on 97 
the similarity of plant community cluster membership, i.e., are the field study plots modeled to 98 
corresponding clusters when different input data is used? 99 

 100 

In addition to the level of units targeted in mapping, the approach used to map certainty can also differ. 101 

Most commonly, maps presenting habitat types and vegetation patterns are crisp: each pixel in a final 102 
map represents a single habitat type (Foody, 1997), or each plant species is assigned to one plant 103 
community only (Rocchini, 2014). As pure habitat types rarely exist (Foody, 1997), fuzzy maps that 104 
indicate probabilities of habitat types are considered to reflect environmental variation in nature more 105 
realistically (e.g. de Klerk, Burgess, & Visser, 2018; Foody, 1997; Tapia et al., 2005). Similar to habitat 106 

types, there have been some attempts to model fuzzy plant communities instead of crisp ones, because 107 
species assemblages vary in space and consequently plant communities seldom have clear boundaries 108 
(Duff et al., 2014; Rapinel et al., 2018; Rocchini, 2014). However, comparisons among different remote 109 



4 
 

sensing-based methods (e.g. between land cover-based classifications and plant community-based 110 

regressions) are still lacking, especially when using fuzzy methods. The main novelty of this article is to 111 
compare above mentioned remote sensing-based vegetation mapping approaches at UHSR. 112 

 113 
We compare different methods to delineate and map fuzzy and crisp plant communities and habitat types 114 
at UHSR in a patterned treeless peatland. Firstly, we assess if species-specific percentage cover data can 115 
be generalized with PFTs when clustering species communities. We hypothesize that a meaningful 116 
compromise could be a combination of PFTs and species (i.e. the data includes species-specific 117 

information only for some PFTs). Secondly, we compare two different approaches to map vegetation 118 
patterns in the peatland using remote sensing methods: (1) classification of predefined habitat types that 119 
combine vegetation and land cover information, and (2) regression of floristically defined fuzzy plant 120 
community clusters. We assess how these two approaches represent vegetation patterns. We hypothesize 121 
that plant communities are floristically more accurate, but habitat types are easier to map using remote 122 

sensing data. 123 

 124 
2 Materials and methods 125 
 126 
2.1 Study area 127 
 128 

The studied peatland is a treeless mesotrophic patterned fen, located in Kaamanen, northern Finland 129 
(69.14°N, 27.27°E; 155 m a.s.l.) in a northern boreal vegetation zone and subarctic climate zone. The 130 

study area (0.4 km2) is characterized by a strong pattern of strings (less than 1 m high), dominated by 131 
dwarf shrubs, and wet flarks with sedges and brown mosses. A small stream runs through the study area; 132 
the riparian areas are characterized by tall sedge vegetation. The study area is surrounded by an upland 133 

pine forest, shrub-dominated peatland types in the ecotone between the upland forest and open peatland, 134 
and a small lake. Our study focus is the footprint area of an eddy covariance tower that has been 135 

measuring ecosystem carbon dioxide exchange since 1997 (see e.g. Aurela, Laurila, & Tuovinen, 2001; 136 
Aurela, Tuovinen, & Laurila, 1998; Maanavilja et al., 2011).  137 

 138 
2.2 Overview of methods 139 

 140 
We compared two different remote sensing based methods for mapping vegetation in the fen. We mapped 141 

predefined habitat types with random forest classification, and we mapped plant community clusters 142 
delineated from floristic data using boosted regression trees. We used field work inventory data collected 143 
in 2006 and 2017. Plot-based data collected in 2006 was used to delineate plant community clusters and 144 
compare how clusters change when the following species data generalization options are used: (1) 145 
species-specific data, (2) species-PFT-combination (called hereafter extended PFTs), and (3) PFTs. Plot 146 

data collected in 2017 was used for remote sensing-based mapping of plant community clusters and to 147 

validate remote sensing-based habitat type mapping, Transect data collected in 2017 was used to 148 

construct training data for the habitat type classification. During both years, field work was conducted 149 
by experts capable of identifying the local plant species. The study area has been visited frequently, and 150 
no obvious changes in spatial distribution of plants and vegetation have been observed between 2006 and 151 
2017. 152 
 153 

2.3 Vegetation and habitat type inventories 154 
 155 
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For delineating plant community clusters, we utilized species-specific vegetation data collected in 2006 156 

(see Maanavilja et al., 2011). The data consist of 278 circular plots, 30 cm in diameter, where the 157 
projection cover (%) of vascular plant, moss and lichen species was visually estimated. The plots were 158 

drawn by systematic transect-based sampling at distances of 5 to 220 m from the eddy covariance tower 159 
(Riutta et al., 2007) (Appendix S1). Due to the lack of accurate enough location information, this data 160 
could not be used in remote sensing analysis. 161 
 162 
Based on the vegetation survey in 2006 and a TWINSPAN analysis (Hill, 1979), Maanavilja et al. (2011) 163 

divided vegetation in the field plots into four plant community types, i.e. Carex–Scorpidium wet flarks, 164 
Trichophorum tussock flarks, Betula–Sphagnum string margins and Ericales–Pleurozium string tops, but 165 
they did not construct maps of these types. We used these four plant community types as predefined 166 
habitat types when conducting field work in 2017 and later in our habitat type classification. Therefore, 167 
in our case, these four types were not based on floristic analysis but on visual interpretation of the 168 

vegetation in the field. We also included a fifth habitat type – riparian fen – found adjacent to the small 169 
brook (Table 1). 170 

 171 

For the remote sensing analysis, we collected extended-PFT data with accurate georeferencing in 2017. 172 
A total of 202 square plots with 50 cm side length were used. The plots were sampled systematically at 173 
distances of 25 to 150 m from the flux tower in cardinal, intercardinal and secondary intercardinal 174 

directions (Appendix S1). In these plots, forbs and shrubs were identified to the species level. In addition, 175 
we identified the following species groups or plant functional groups: Eriophorum spp., Trichophorum 176 

spp., Poaceae, other graminoids (primarily Carex spp.), feather mosses, wet brown mosses, Sphagnum 177 
spp. and lichen. The projection cover (%) of these species and PFTs was visually estimated similarly to 178 
the 2006 inventory. Each plot was also assigned to one of the five habitat types based on visual 179 

interpretation. The plots were situated between 0.6 to 4.1 m from points geolocated with a Trimble R10 180 
GPS device with ±5 cm accuracy, and their exact distance and angle from the GPS point were measured. 181 

The location of the plots in the drone image was double-checked to verify that the vegetation description 182 
and visual interpretation in the field matched that in the drone image. 183 

 184 
We collected transect data of habitat type distribution in 2017 (Appendix S1). Nine 250 m transects were 185 

set up in cardinal, intercardinal, and secondary intercardinal directions from the flux tower and marked 186 
using a Trimble R10 GPS device with ±5 cm accuracy, at 25 to 100 m intervals. Vegetation along the 187 

transects was classified into the five habitat types (Table 1) based on visual interpretation, and transitions 188 
between the habitat types were located with a Garmin eTrex 30 GPS device. 189 
 190 
2.4 Remote sensing data and its preprocessing 191 
 192 

We used optical drone, aerial, and satellite imagery, as well as digital elevation and digital surface models 193 

at several spatial resolutions (Table 2). We utilized different remote sensing datasets to capture 194 

information about the factors that are known to affect accuracy in remote sensing-based mapping of 195 
vegetation; namely topography, vegetation height and phenology, as well as spectral properties and their 196 
spatial variability (Dudley et al., 2015; Räsänen, Kuitunen, Tomppo, & Lensu, 2014). We used a drone 197 
image with 5 cm spatial resolution as the main data in the remote sensing analyses while coarser spatial 198 
resolution datasets were ancillary data to increase the accuracy of vegetation mapping. A DJI phantom 4 199 

pro drone flight was conducted, and we georeferenced these data using 14 ground control points 200 
measured with a Trimble R10 GPS device with ±5 cm accuracy. We computed an image mosaic, as well 201 
as a digital terrain and digital surface models with Pix4d software. We also calculated a vegetation height 202 
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model by subtracting the digital terrain model from the digital surface model. In addition to the drone 203 

image, we used coarser resolution aerial orthophoto and LiDAR data from the National Land Survey of 204 
Finland. To capture topographical variability, we calculated topographic position indices with different 205 

neighborhood distances (Guisan, Weiss, & Weiss, 1999) and topographic wetness index (Böhner & 206 
Selige, 2006) for the digital elevation models. To capture phenological dynamics, we included four 207 
different PlanetScope satellite images from summer 2017. The spatial accuracy of these orthocorrected 208 
images was verified using visual interpretation. More spectral information was obtained from a 209 
WorldView-2 satellite image, which was orthocorrected with the aerial orthophoto and 18 ground control 210 

points. For aerial and satellite images, we calculated the following spectral indices: normalized difference 211 
vegetation index (Rouse, Haas, Schell, & Deering, 1973), normalized difference water index (McFeeters, 212 
1996) and red-green index (Coops, Johnson, Wulder, & White, 2006) to gather information about the 213 
spatial variability in the amount of green vegetation and water.  214 
 215 

2.5 Classification of habitat types 216 
 217 

We conducted a supervised classification, in which we constructed habitat type maps of the study area 218 

with the aid of field inventory-based transect data and remote sensing datasets. In total, we classified ten 219 
habitat types, but in this article, we focus on five of them which are found in studied fen (Table 1). When 220 
input data pixel size (in our case 5 cm) is smaller than the size of the vegetation patches in the study area, 221 

object-based image analysis approaches are recommended (Blaschke et al., 2014). Therefore, we 222 
combined full lambda schedule (FLS) segmentation with supervised random forest (RF) classification 223 

(Breiman, 2001). FLS is a region-based segmentation algorithm in which pixels are merged with their 224 
neighboring pixels to form homogeneous and contiguous segments (i.e. patches). In RF step, we 225 
classified segments into habitat types. RF is an ensemble of multiple classification trees, and final 226 

decisions are made based on a majority vote. In each tree, approximately two thirds of the data is used 227 
for training and the rest one third is called out-of-bag data and is used for evaluation.  228 

 229 
First, we segmented the drone image with the FLS method. After visual interpretation of segmentations 230 

with different parameter combinations, we set the average size of the segment to 5 m2 and gave the 231 
relative weights 0.7, 0.5, 0.3 and 0.3 to color, texture, size and shape, respectively; hence, we formed 232 

such segments that had relatively homogeneous spectral and textural characteristics. Second, to aid 233 
classification of the segments, we calculated 236 features from 65 remote sensing dataset layers for each 234 

segment (Table 2). The features consisted of mean and standard deviation value of the different dataset 235 
pixels within each segment. Additionally, to track variability of spectral properties within segments, we 236 
calculated 13 grey-level co-occurrence matrix textural features (Haralick, Dinstein, & Shanmugam, 237 
1973) with 32 quantization levels and for first and second order neighbors for the drone spectral bands. 238 
Third, we constructed training data for classification with the help of the 2017 transect field data and 239 

visual interpretation of the drone image by selecting 134 to 389 training segments for each class 240 

(Appendix S1). Fourth, as the performance of RF classification can be boosted when reducing the number 241 

of features (Räsänen et al., 2014), we selected features using the Boruta algorithm (Kursa & Rudnicki, 242 
2010). In Boruta, several (in this case 1000) RF runs are conducted and the importance of features is 243 
compared against each other and shadow features with random values. We determined the optimal 244 
number of features by comparing out-of-bag error rates of classifications with different amount of the 245 
most important features. Fifth, we classified the dataset using RF classification with the top 100 most 246 

important features by using 500 trees and tested ten features at each tree node. We computed (i) a crisp 247 
random forest output, in which each segment was classified to the habitat type class with the largest 248 
proportion of the individual tree votes, (ii) fuzzy maps of each habitat type by calculating the proportion 249 
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of tree votes, (iii) a confusion map, which was a ratio between the proportion of votes of the habitat type 250 

with largest proportion of votes and habitat type with second largest proportion of votes (Tapia et al., 251 
2005). Sixth, we calculated the accuracy of the classification by using the 2017 vegetation plots as the 252 

reference data. Analyses were carried out in R (R Core Team, 2018) using packages randomForest (Liaw 253 
& Wiener, 2002), Boruta (Kursa & Rudnicki, 2010) and EBImage (Pau, Fuchs, Sklyar, Boutros, & 254 
Huber, 2010) as well as in ArcGIS 10.3.1 and ERDAS Imagine 2014. 255 
 256 
2.6 Fuzzy clustering of plant communities 257 
 258 
We conducted a regression analysis, in which we constructed plant community cluster maps of the study 259 
area with the aid of field plot data and remote sensing datasets. First, we clustered the species-specific 260 

data collected in 2006 and compared how the clusters differ from  each other when using the following 261 
modifications of the data: (1) using the raw data, i.e. species-specific data, (2) extended PFTs (i.e. similar 262 

classification as in 2017 data), (3) delineation to the following PFTs: evergreen dwarf shrubs, deciduous 263 

dwarf shrubs, Betula nana, Salix spp., deciduous trees, forbs, graminoids, wet brown mosses, feather 264 
mosses, Sphagnum spp. and lichens. Second, we clustered the 2017 data and predicted the spatial patterns 265 
of the clusters using boosted regression trees (BRTs) (Elith, Leathwick, & Hastie, 2008; Ridgeway, 266 

1999). BRTs are an ensemble of regression trees which are gradually boosted by minimizing the loss 267 
function. The methodological steps are described in greater detail below. 268 
 269 

Plant communities were clustered following Duff et al. (2014). First, to measure dissimilarities between 270 
the field inventory plots, we calculated a distance matrix of the species or PFT data using Bray-Curtis 271 

distances (Bray & Curtis, 1957). Second, to reduce noise in the distance matrix and to simplify the data, 272 
we carried out a principal coordinates analysis (PCoA) of the distance matrix (Gower, 1966) and chose 273 
the optimal number of axes by visually estimating the point where the scree plot of coordinate influence 274 

levels off. Third, we chose the optimal number of clusters with cascading K-means clustering of the most 275 

important PCoA axes and Calinski criterion (Calinski & Harabasz, 1974). Fourth, we clustered the data 276 
using fuzzy c-means clustering with fuzziness parameter set to 2 (Bezdek, 1981). In the clustering, each 277 
plot was given a membership value for each cluster as well as a crisp cluster result. Fifth, we evaluated 278 

the indicator species/PFTs for each crisp cluster using Dufrene-Legendre indicator value analysis 279 
(Dufrêne & Legendre, 1997). Sixth, using permutational multivariate analysis of variance (Anderson, 280 

2001), we tested if the differences between clusters in the species/PFT distance matrix are statistically 281 
significant and how large amount of variation of the distance matrix the cluster membership values and 282 
pairwise comparisons of crisp clusters explain. 283 
 284 
Seventh, we predicted spatial patterns of the cluster membership values using BRTs. The BRTs were 285 

applied to predict the cluster membership values to each FLS segment. Plot-based vegetation data 286 
collected in 2017 were used as training and model evaluation data. Features listed in Table 2 were used 287 
for each plot and segment. For each BRT model, we included the features deemed important by Boruta 288 

analysis with 100 RF runs (Kursa & Rudnicki, 2010). We assumed a Gaussian distribution, and evaluated 289 
model performance and tuned parameters using ten-fold cross-validation. We chose the optimal 290 
parameter combinations based on RMSE values and a grid search. After initial parameter value 291 

screening, we tested the following parameter values: number of regression trees in the model ∈ {1000, 292 

2000, … , 10000}, number of splits in each tree (i.e. interaction depth or tree complexity) ∈ {1, 2, … , 293 

5}, shrinkage of added tree contribution in the model (i.e. learning rate) ∈ {0.001, 0.002, … , 0.005}, 294 

and minimum number of observations in the trees’ terminal nodes ∈ {1, 2, … , 5}. For further description 295 
of these parameters, see Elith et al. (2008) and Ridgeway (2017). We produced maps of (i) fuzzy 296 
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membership values of each cluster, (ii) crisp cluster map, in which segments were mapped to the cluster 297 

with the highest membership value, and (iii) a confusion map, which was a ratio between membership 298 
value of the cluster with highest value and the cluster with second highest membership value (Tapia et 299 

al., 2005). These analyses were carried out in R (R Core Team, 2018) with packages vegan (Oksanen et 300 
al., 2018), pairwiseAdonis (Martinez Arbizu, 2019), e1071 (Meyer, Dimitriadou, Hornik, Weingessel, & 301 
Leisch, 2017), labdsv (Roberts, 2016), gbm (Ridgeway, 2017), caret (Kuhn et al., 2018) and Boruta 302 
(Kursa & Rudnicki, 2010). 303 
 304 

3 Results 305 
 306 
3.1 Effect of level of detail in plant community clustering  307 
 308 
Optimal number of clusters was five for each of the datasets (Appendix S2). The level of complexity was 309 

reflected in the number of PCoA axes needed to explain variation in vegetation composition; four for 310 
species-specific and extended-PFT data, and three for PFT data (Appendix S3). 311 

 312 

Cluster 1 (i.e. wet brown moss cluster) was characterized by wet brown mosses, especially Scorpidium 313 
scorpioides. In the species-specific clustering, some Carex species were also representative for this 314 
community. The most important indicator species or PFTs for cluster 2 (deciduous tall shrub) were 315 

Sphagnum mosses and Betula nana. Clusters 3 (graminoid) and 4 (graminoid/Utricularia) were 316 
characterized by graminoid species, and there was some variation between the datasets in terms of which 317 

indicators were significant in these clusters. While the 2017 data differentiated Carex spp. and 318 
Utricularia spp. clusters, in the 2006 data there were different clusters for Carex spp. and Trichophorum 319 
spp. Finally, cluster 5 (evergreen dwarf shrub) was relatively similar when using different datasets, and 320 

was dominated by string-top species such as Rubus chamaemorus, evergreen shrubs and feather mosses. 321 
 322 

The extremes of the wetness gradient, namely wet brown moss and evergreen dwarf shrub clusters, were 323 
similar in all of the clustering options, while there was more variation in the intermediate clusters (Table 324 

3 and Appendix S4). Clusters based on the species-specific data commonly differed from those based on 325 
the two datasets with fewer details (i.e. PFT and extended PFT). These two more coarse datasets, 326 

however, yielded relatively similar clusters. We decided to cluster the 2017 data using extended PFTs 327 
because those were slightly more similar to the species clusters than the PFT clusters. We found that 328 

indicator species/PFTs in the 2017 clusters were quite similar to the clusters in the 2006 extended-PFT 329 
data (Appendix S4). According to the permutational multivariate analysis of variance, clusters differed 330 
from each other (P-value < 0.001 in each pairwise comparison for each dataset, Appendix S5), and cluster 331 
membership values explained considerable amount of the variation in species/PFT distance matrix (43% 332 
with species-specific 2006 data, 63% with extended-PFT 2006 data, 66% with PFT 2006 data, and 66% 333 

with 2017 data). 334 
 335 
3.2 Maps of habitat types and plant communities 336 
 337 
Habitat type mapping had an overall accuracy of 72% (Table 4). Wet flark, string top and riparian fen 338 
had the highest classification accuracies, while string margins were often confused with string tops, and 339 

tussock flarks with wet flarks. The same pattern also appeared when using the fuzzy approach in habitat 340 
type mapping; wet flark, string top and riparian fen had a clear pattern, and had the clear majority of 341 
votes in many areas (Appendix S6). String margin and tussock flark, on the other hand, usually had a 342 

low proportion of votes in segments even if they had the largest proportion of votes. 343 
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 344 

The BRT model fits were best for the evergreen dwarf shrub cluster (R2 0.67, RMSE 0.20), followed by 345 
graminoid/Utricularia (R2 0.55, RMSE 0.23), deciduous tall shrub (R2 0.48, RMSE 0.18), graminoid (R2 346 

0.34, RMSE 0.17), and wet brown moss clusters (R2 0.27, RMSE 0.23). 347 
 348 
Cross-comparison of the habitat type and plant community maps showed that the dominant plant 349 
community in string tops was the evergreen dwarf shrub cluster (Fig. 1). Shrub clusters dominated in 350 
string margins, whereas wet brown moss and graminoid clusters had the highest membership values in 351 

wet and tussock flarks. Finally, in the riparian fen, the graminoid cluster was dominant. These findings 352 
were confirmed by visual interpretation of fuzzy plant community maps (Appendix S7).  353 
 354 
The crisp outputs of habitat type and plant community maps revealed the string-flark pattern of the fen 355 
(Fig. 2). Nevertheless, the confusion in the plant community map was generally much higher than in the 356 

habitat type map, which was largely explained by the difference between classification and regression 357 
methods. In the habitat type map, confusion was the largest in the margins between strings and flarks, 358 

whereas in the plant community map, confusion was relatively high in all areas and lowest in areas 359 

dominated by evergreen dwarf shrub cluster. In the habitat type map (Fig. 2a), the landscape was 360 
dominated by large wet flark patches, followed by string tops (Table 5). When looking at the crisp 361 
clusters (Fig. 2c), graminoid, graminoid/Utricularia, and evergreen dwarf shrub clusters covered the 362 

largest extent and had largest patch sizes (Table 5). 363 
 364 
4 Discussion and conclusions 365 
 366 
Based on our results, the indicator species or PFTs were more or less similar when using different input 367 
data options (Appendix S4). However, there were still some differences between the clusters and 368 

modeled membership values, especially when species-specific input data was compared with generalized 369 

input data (Table 3). Contrary to our hypothesis, extended PFTs (i.e. combination of species and PFT 370 
information) provided little benefit in comparison to PFTs. Therefore, it is important that in addition to 371 
forbs and shrubs, graminoids, mosses and lichens should also be identified at the species level when 372 

carrying out floristic analyses in patterned peatlands. This result is in line with earlier findings concerning 373 
peatland vegetation mapping that show how different moss and graminoid species locate differently on 374 

ordination axes (Harris et al., 2015; Middleton et al., 2012). However, in other types of environments 375 
with fragmented vegetation patterns but higher forb and shrub species richness, such as tundra, an 376 
extended-PFT approach can be more valuable (Mikola et al., 2018; Virtanen & Ek, 2014). Overall, the 377 
value of the PFT generalization depends on the studied system and the choice of traits which are used to 378 
form PFTs. 379 

 380 
The 2006 field work data was sampled with circular plots, whereas in the 2017 inventory, square plots 381 
were used. In previous studies, it has been found that plot shape has an effect on how many species are 382 

observed within the plot (Bacaro et al., 2015; Güler et al., 2016). Thus, the differently shaped plots might 383 
have had an effect on the observed species and PFTs, their %-coverages and modeled clusters, but as 384 
indicator species and PFTs were closely similar for both datasets (see Appendix S4), we do not see that 385 
the differing plot shapes had any major impact on our results. 386 

 387 
The driest and most compositionally unique cluster dominated by evergreen dwarf shrubs was the least 388 
sensitive to the input data (Table 3). This cluster also had the highest R2 in remote sensing-based 389 

regressions, and corresponded with string top habitat type in terms of spatial patterns, average patch size 390 
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and total extent. String tops also had a considerably high classification accuracy (Figs. 1&3, Table 4), 391 

and could thus be modeled well both using plant community clusters and habitat types. In this case, PFTs 392 
were a relevant generalization. 393 

 394 
For other clusters and plant functional types, more information is lost, and species-specific input data is 395 
more preferable. In our case, these include wetter habitat types (i.e. flarks, string margins and riparian 396 
areas). First, there was variation in how much information was lost when PFTs rather than species were 397 
used in plant community delineation. The wettest cluster dominated by wet brown mosses was consistent 398 

regardless of the input data used, but deciduous tall shrub cluster and graminoid clusters had a larger 399 
variation (Table 3). In regression models using remote sensing datasets, R2 values for these clusters were 400 
low to moderate. Instead, in habitat type classification, wet flarks and riparian fens could be classified 401 
with reasonably high accuracy, but accuracies were lower for tussock flarks and string margins (Table 402 
4). These disparities in the success of mapping different habitat types and plant community clusters are 403 

supported by the fact that peatlands have both continuous and abrupt transitions between vegetation 404 
patterns (Middleton et al., 2012).  405 

 406 

In the patterned fen, the two extremes along the moisture gradient had the most specialized plant species. 407 
However, the intermediate habitat types displayed a clear overlap of species within communities, 408 
resulting in continuous transitions and less clear borders. This highlights the continuous and fuzzy nature 409 

of fen vegetation. For instance, when cross-comparing habitat type classification and plant community 410 
cluster regression, it becomes evident that string margins and riparian areas have partly similar vegetation 411 

yet distinct topographical and land cover patterns. As another example, water is commonly a dominant 412 
feature in flarks. The water cover is better mapped with habitat type classification, which accounts for 413 
land cover. At the same time, habitat type classification misses fine-scale vegetation transitions in flarks. 414 

This is exemplified by average patch sizes and total extent of classes (Table 5). On the one hand, wet 415 
flarks had large patches and a large total extent according to habitat type classification. On the other 416 

hand, flark vegetation clusters defined according to plant community composition had generally smaller 417 
patches and smaller total extent. Therefore, the cluster regressions suggest that wet flarks – which 418 

actually have largely uniform land cover – may not be floristically that uniform. This highlights how 419 
crisp land cover classifications often miss fine-scale variation in vegetation patterns (Harris et al., 2015). 420 

 421 
Habitat type classification and plant community regressions each have strengths and weaknesses. On the 422 

one hand, as hypothesized, classification accuracy for mapping habitat types was higher. This is probably 423 
caused by the fact that habitat type classification was developed to detect differences between types with 424 
remote sensing methods. On the other hand, habitat type maps do not reveal the fuzziness of fen 425 
vegetation patterns, which is better modeled with fuzzy plant community clusters (Fig. 2, Appendices 426 
S5&S6). Hence, the approaches complement rather than compete against each other. These approaches 427 

could be further accompanied by and compared to other remote sensing-based vegetation mapping 428 

approaches, such as direct mapping of multiple different types of PFTs (Cole et al., 2013; Schmidtlein et 429 

al., 2012), mapping of floristic gradients (i.e. ordination axes) (Harris et al., 2015), and mapping of 430 
dominant species (Roth et al., 2015). In each of these approaches, methods that capture continuity in 431 
species distribution, such as regressions and fuzzy methods, should be prioritized (Duff et al., 2014; 432 
Rapinel et al., 2018; Rocchini, 2014). 433 

 434 
The benefits of UHSR drone images were obvious in mapping vegetation patterns in a patterned fen. 435 
Some of the vegetation patterns that could be mapped with object-based UHSR methods could not be 436 
seen in visual interpretation of very high spatial resolution satellite imagery. Our work thus further 437 
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highlights the advantages of UHSR remote sensing approaches for mapping not only vegetation patterns 438 

(Arroyo-Mora et al., 2017; Lehmann et al., 2016; Palace et al., 2018) but also spatial dynamics in 439 
biogeochemical processes such as carbon cycling in peatlands with patchy vegetation and topography 440 

(Lehmann et al., 2016). However, we well understand that UHSR image based classifications cannot be 441 
produced for large geographical areas due to limitations of image acquisition and data processing. In 442 
future studies, there is a need to consider what kind of resolution and data is needed in mapping 443 
vegetation patterns in environments with fine-scale variability. In these studies, comparisons could be 444 
made as to (1) what types of input data should be included, (2) what kind of spatial and spectral resolution 445 

these data should have, and (3) what kind of segmentation scale should be used. When remote sensing 446 
based datasets are used in other studies, such as biogeochemical process modeling and upscaling, it is 447 
relevant to know what details are lost when coarser spatial resolution datasets are used. 448 
 449 
Finally, the way how PFTs are categorized affects how well they can be detected using remote sensing 450 

methods and how well they represent species’ variable traits and growth forms (Duckworth et al., 2000; 451 
Ustin & Gamon, 2010). Therefore, PFTs may complement but not replace species-specific data 452 

(Duckworth et al., 2000), because mapping at the species level provides the possibility to later generalize 453 

data to PFTs using different types of groupings, if knowledge on species traits increases or different traits 454 
appear important. Species-level identification allows also to test different types of PFT categorization 455 
when analyzing the data. However, identifying plants at the species level takes much more time in the 456 

field, which consequently reduces the number of sampled plots, as fieldwork time is always limited. 457 
Moreover, species-level identification often requires that trained botanist conduct or guide the field work. 458 

Therefore, careful consideration must be taken when deciding whether to sample a smaller number of 459 
plots identified at the species level or more plots identified at PFT or another similar level of 460 
generalization. In addition, some species are almost impossible to determine reliably in the field, 461 

especially if field work is not conducted during an optimal phenological stage or if plants are of very 462 
small size. 463 
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Table 1. Classified habitat types. 646 
Habitat type Description 

Wet flark Water table aboveground most of the time; field layer dominated by sedges (Carex spp.); ground layer 

covered by open water, bare peat and wet brown mosses 

Tussock flark Water table aboveground most of the time; field layer covered by Trichophorum spp. tussocks and 

other sedges (Carex spp.); ground layer covered by open water, bare peat and wet brown mosses; more 

vegetation than in wet flarks 

String margin Field layer covered by Betula nana, other dwarf shrubs (e.g. Vaccinium uliginosum, V. oxycoccos) and 

some sedges (esp. Carex spp.); ground layer covered by sphagnum, dry and wet mosses, as well as 

open water 

String top Field layer covered by evergreen and deciduous shrubs (e.g. Rhododendron tomentosum, Vaccinium 

vitis-idaea, V. uliginosum, Empeterum nigrum), as well as forbs (esp. Rubus chamaemorus); ground 

layer covered by sphagnum and feather mosses; some lichen 

Riparian fen Field layer dominated by dense and tall sedge growth (Carex spp.), deciduous shrubs (e.g. Betula nana, 

Salix spp.) and forbs (Comarum palustre); ground layer covered by sphagnum, wet mosses and open 

water  

 647 
Table 2. Details of the remote sensing data and features calculated from the data. Features were calculated from 648 
all layers. B refers to blue, G to green, R to red, NIR to near infra-red, TPI to topographical position index, TWI 649 
to topographic wetness index, VHM to vegetation height model, NDVI to normalized difference vegetation index, 650 
NDWI normalized difference water index, RGI to red-green index, GLCM to gray level co-occurrence 651 

matrix, μ to mean, SD to standard deviation, and MAD to mean absolute deviation. 652 
Dataset Date Producer Spatial 

resolution 

Number and list of layers Number and list of 

features 

Drone image Jul 1 2017 Finnish 

Meteorological 

Institute & 

authors 

0.05 m 3: B, G, R 102: GLCM texture, 

μ, SD, MAD, 

percentiles (1st, 5th, 

50th, 95th, 99th) 

Drone digital 

elevation 

model 

Jul 1 2017 Finnish 

Meteorological 

Institute & 

authors 

0.08 m 7: Elevation, slope, TPIs 

(1m, 2m and 5m distance), 

SWI, VHM 

14: μ, SD 

Aerial image Jun 26 2016 National Land 

Survey of 

Finland 

0.5 m 7: B, G, R, NIR, NDVI, 

NDWI, RGI 

14: μ, SD 

WorldView-2 Jun 6 2013 Digital Globe 

Inc. 

2 m 11: coastal B, B, G, yellow, 

R, red-edge, NIR1, NIR2, 

NDVI, NDWI, RGI 

22: μ, SD 

Four 

PlanetScope 

images 

Jun 11 2017 Planet Labs Inc. 

 

3 m 

 

28: B, G, R, NIR, NDVI, 

NDWI, RGI from all images 

56: μ, SD 

Jul 25 2017 

Aug 8 2017 

Sep 7 2017 

LiDAR data Jul 12 2016 National Land 

Survey of 

Finland 

0.5 points m-2 

(point cloud), 

2 m (layers) 

9: Elevation, slope, TPIs 

(5m, 10m, 20m, 50m, 100m 

distances), SWI, VHM 

18: μ, SD 

 653 
 654 
  655 
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Table 3. Correlations (Pearson’s r) between cluster membership values of the different clustering options across 656 
the study plots in the 2006 data. Correlations indicate how well cluster membership values correspond to each 657 
other when different input data is used. In the crisp cluster row, instead of correlations, numbers represent the 658 
proportion of the plots which were modeled similar crisp cluster in both clustering options. 659 

Comparison 1 Species Species Extended PFT 

Comparison 2 Extended PFT PFT PFT 

Wet brown moss 0.80 0.79 0.98 

Deciduous tall shrub 0.61 0.59 0.96 

Graminoid 0.67 0.66 0.96 

Graminoid/Utricularia 0.44 0.46 0.92 

Evergreen dwarf shrub 0.95 0.95 1.00 

Crisp cluster 0.65 0.57 0.81 

 660 
Table 4. Confusion matrix for the habitat type classification. Cell values in the inner matrix are square meters, 661 
and accuracies are calculated on a scale of 0-1. User’s accuracy is the ratio between correctly classified area of 662 
a habitat type and the area covered by the respective class in the final map, and producer’s accuracy is the ratio 663 
between correctly classified area of a habitat type and the area covered by the respective class in the reference 664 
data. 665 

  Reference data  

  Wet flark Tussock flark String margin String top Riparian fen User's accuracy 

C
la

ss
if

ie
d

 d
at

a 

Wet flark 16.40 0.74 0.62 0.28 0.20 0.90 

Tussock flark 1.77 0.57 0.76 0.23 0.00 0.17 

String margin 0.92 0.25 3.47 1.49 0.20 0.55 

String top 0.50 0.00 2.02 6.39 0.00 0.72 

Riparian fen 0.79 0.20 0.20 0.00 1.57 0.57 

 Producer's accuracy 0.80 0.32 0.49 0.76 0.80 0.72 

 666 

 667 

Table 5. Overall extent and average patch size of different habitat types and plant community clusters. 668 

  

Type Extent (ha) 
Average 

patch size 

(m2) 

Habitat 

types 

Wet flark 10.4 144 

Tussock flark 1.7 14 

String margin 3.3 15 

String top 5.2 39 

Riparian fen 4.1 71 

Clusters 

Wet brown moss 3.5 21 

Deciduous tall shrub 2.2 10 

Graminoid 6.7 55 

Graminoid/Utricularia 6.2 55 

Evergreen dwarf shrub 6.0 46 

 669 



19 
 

  670 
Figure 1. The average membership value (y-axis) of each cluster (different colored bars) in habitat type 671 
segments. 672 
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 674 
Figure 2. Crisp habitat type and plant community cluster maps and confusion maps. 675 


