
Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), pages 3528–3534
Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

3528

Automated Phonological Transcription of Akkadian Cuneiform Text

Aleksi Sahala1, Miikka Silfverberg1,3, Antti Arppe2, Krister Lindén1

1University of Helsinki, 2University of Alberta, 3 University of British Columbia
{aleksi.sahala, krister.linden}@helsinki.fi, msilfver@mail.ubc.ca,arppe@ualberta.ca

Abstract
Akkadian was an East-Semitic language spoken in ancient Mesopotamia. The language is attested on hundreds of thousands of
cuneiform clay tablets. Several Akkadian text corpora contain only the transliterated text. In this paper, we investigate automated
phonological transcription of the transliterated corpora. The phonological transcription provides a linguistically appealing form to
represent Akkadian, because the transcription is normalized according to the grammatical description of a given dialect and explicitly
shows the Akkadian renderings for Sumerian logograms. Because cuneiform text does not mark the inflection for logograms, the
inflected form needs to be inferred from the sentence context. To the best of our knowledge, this is the first documented attempt to
automatically transcribe Akkadian. Using a context-aware neural network model, we are able to automatically transcribe syllabic tokens
at near human performance with 96% recall @ 3, while the logogram transcription remains more challenging at 82% recall @ 3.
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1. Introduction

Akkadian was an East-Semitic language spoken in ancient
Mesopotamia. The language is attested from hundreds of
thousands of cuneiform clay tablets and their fragments ex-
cavated from modern day Iraq and the surrounding regions.
Although the first exemplars of Akkadian texts date back
to 2400 BCE, two later dialects, i.e. Babylonian (1900
BCE - 100 CE) and Assyrian (1950 – 600 BCE) provide
the largest source of available text material. Akkadian was
written in the cuneiform script mostly on clay tablets as the
example shown in Fig. 1. In modern electronic text cor-
pora, cuneiform text is represented in two distict latiniza-
tions: (1) sign-to-sign level graphemic transliteration and
(2) phonemic transcription based on an approximation of
the Akkadian language and its reconstructed sound system
(Kouwenberg, 2011).
A large number of transliterated Akkadian texts are freely
available in digitized corpora, however, there exist far fewer
phonologically transcribed texts. The principal reason for
this discrepancy is that the transcription process is labor-
intensive, and the transcription itself is not considered very
useful for scholarly interpetation of the cuneiform texts. It
is, however, indispensable for the development of compu-
tational resources for Akkadian because cuneiform script
often omits phonological elements which provide impor-
tant information for language analysis tools. For example,
vowel quantities are not marked consistently, and dialects
may use slightly different writing conventions (Kouwen-
berg, 2011). Moreover, the underlying readings of lo-
gograms are not transliterated. This information is added
during phonological transcription. In addition to compu-
tational modeling, phonological transcriptions also play an
important role in teaching of the Akkadian language.
In this paper we investigate automated phonological tran-
scription of transliterated Akkadian texts. Conceptually,
transcription consists of two subtasks. For syllabically
spelled words which contain only syllabic cuneiform signs,
transcription is a string transduction task closely related to
grapheme to phoneme (G2P) conversion. For logograms,

Figure 1: Old Assyrian cuneiform clay tablet (Spar, 1988)

transcription chiefly reduces to context dependent dictio-
nary lookup. We apply four different supervised ma-
chine learning models to the transcription task: a statistical
model, which aims to model the correspondence of translit-
erations and transcriptions using string substitution opera-
tions, and three deep learning models based on the encoder-
decoder framework. Our models deliver promising results.
Using a training set of some 270k tokens, our best models
can accurately transcribe around 90% of the syllabic tokens
and 69% of the logograms in a held-out test set.

The main motivation for our work is to facilitate annotation
of Akkadian text corpora using tools like syntactic parsers
and morphological analyzers which typically operate on
transcribed, not transliterated text. To assess the usefulness
of automated transcription, we measured the performance
of a rule-based Akkadian morphological analyzer BabyFST
(Sahala et al., 2019 submitted) on our transcribed text. Our
experiments indicate that the analyzer can retrieve the cor-
rect morphological analysis for 94% of the automatically
transcribed tokens.
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2. Akkadian
This section presents the Akkadian language and the
phonological transcription task.

2.1. Transliteration
Cuneiform script is represented in text corpora in a stan-
dardized transliteration,1 which aims to provide maximum
objectivity for researchers who cannot access the primary
sources. All imperfections, reconstructions and crucial
ortographic exceptions such as scribal errors are marked
consistently using common conventions. These conven-
tions are not only used in Akkadian, but also in Sumerian,
Elamite, Hittite and many other cuneiform languages.
Homophonic signs are indexed with standardized subscript
numbers after each transliterated sign (e.g. bi2 is a distinct
sign from bi), and logograms are transliterated in capital
letters according to their earlier Sumerian names to distin-
guish them from syllabic values. Syllabic signs are sep-
arated from each other with dashes, and logogram com-
pounds with dots, as in DUMU.MUNUS-ia ’my daughter’
(Akk. mārtı̄ja).
Most signs can be read both as syllables and logograms de-
pending on context. For example, the sign

walk   ed  
stem tense

depicting a
star can be read as a logogram DINGIR ’god’ (Akk. ilu) or
AN ’heaven’ (Akk. šamû), but also as a syllable an. More-
over, a limited set of signs can also be used as determina-
tives to categorize a preceding or a following word. De-
terminatives can, for example, indicate that the word they
are attached to is a wooden object or tree, stone or min-
eral, city, bird, river, profession, personal name, or a deity,
just to mention a few (Kouwenberg, 2011). This, originally
Sumerian system was useful, as it allowed disambiguation
between possible readings of a logogram: LUL = sarru
’false’, {lu2}LUL = parris. u ’criminal, wrongdoer’ (liter-
ally {man}FALSE). In modern digital text corpora, deter-
minatives are written in braces, although paper publications
favor indicating them in superscript.

2.2. Phonological Transcription
Phonological transcription provides a linguistically more
appealing form to represent Akkadian texts than transliter-
ation, because it normalizes the language according to the
grammatical description and shows explicitly Akkadian
renderings for various logograms. Because the cuneiform
script rarely marks inflection for logograms, the correct
inflected form needs to be inferred based on its syntactic
context. For syllabically spelled words, transcription
involves reconstructing their correct phonemic quantities.2

The example below illustrates how Standard Babylonian3

Akkadian transliteration is rendered as a phonological
transcription.

1There are in fact two systems: the von Soden system (von
Soden, 1995) and the Gelb system (Gelb, 1970). Their differences
mostly concern the readings of isolated signs in specific dialects
(Kouwenberg, 2011).

2In addition to long /ā ı̄ ē ū/ and short /a i e u/ vowels, Akkadian
has a set of contracted vowels /â ê ı̂ û/ that originate from merged
vocalic clusters (von Soden, 1995).

3Standard Babylonian was an artificial literary language used
by the Babylonians and the Assyrians (Kouwenberg, 2011).

Transliteration: (5) {d}AMAR.UTU kab-ta-ta i-na DIN-
GIR.DINGIR GAL.GAL (6) s̆i-mat-ka la s̆a-na-an si3-qar-ka
{d}a-nu-um

Transcription: (5) Marduk kabtāta ina ilāni rabûtim (6)
s̆ı̄matka lā s̆anān siqarka Anum

Translation: (5) Marduk, you are the most honoured among all
the great gods, (6) your destiny is unequalled, your command is
like that of Anu! (Enūma Eliš, tablet IV 5-6, cf. (Talon, 2005))

Phonological transcription is essential for automatic mor-
phological analysis of Akkadian, as several grammatical
aspects of the language depend on the vowel and conso-
nant quantity which is not always consistently spelled out
in cuneiform. For example, singular and plural nouns are
distinguished only by vowel length, which is often not ex-
plicitly marked in writing. The word ’man’ may be spelled
syllabically a-wi-lu or a-wi-li, having phonemic renderings
awı̄lu (nominative sg.), awı̄lū (nominative pl.)’ and awı̄li
(genitive, sg.), awı̄lı̄ (oblique pl.) respectively. The same
applies to verbs, which distinguish third person masculine
plural and subjunctive, both common forms, only by vowel
length: inaddinū ’they (masc.) give’, inaddinu ’he gives
(subjunctive)’. More ambiguity emerges from final weak
verbs, where the final vowel can be part of the stem: imannu
’he counts’, imannû ’they (masc.) count; he counts (sub-
junctive)’.
Words may be spelled syllabically, logographically or
logo-syllabically. Moreover, phonemic syllables can also
spelled in various ways by using the four basic sign types
(V, VC, CV, CVC) or their combinations (V-VC, CV-V,
CV-(V-)VC).4 For instance a verbal form iddin ’he gave’
may be rendered as id-din, i-din, id-di-in, i-di-in, SUM and
SUM-in, and a verbal form idâk ’he kills’ as i-dak, i-da-ak,
GAZ, GAZ-ak or UŠ2.5 One can immediately see that, for
instance a syllabic sign compound CV-VC or a sign CVC
can represent a closed syllable with different vowel lengths.
Similarly, a singly spelled consonant can be a phonolog-
ical geminate (this applies also vice versa). Although in
many cases syllabic graphemes align somewhat nicely with
the phonemic representation if the phonemic length is not
taken into account, weak consonants /w j ’/ are not regu-
larly visible in the spelling and they have to be inserted in
the phonological transcription: da-a-(a-)nu = dajjānu, ma-
a-da-tu = ma’dātu (Kouwenberg, 2011).
The most difficult words to transcribe are logograms, which
do not give any information on their surface form unless
some of their morphology is explicitly spelled out as in
SUM-in, which restrict the possible grammatical forms to
those ending with /in/. Still, this may leave out numerous
possibilities: in the case of SUM-in the personal prefix is
not spelled out at all, and the theoretically possible forms
could be, among dozens of others, taddin ’you gave’, at-
tadin ’I have given’, inaddin ’he gives’, idin ’give!’ and

4Forms with explicitly spelled long vowels, as ba-nu-u2 for
banû ’to create’ are called plene-writing.

5The spelling variants have been collected from Oracc.
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nadin ’it is being given’. The correct reading is only inter-
pretable by the syntactic context of the word.

2.3. BabyFST
BabyFST (Sahala et al., 2019 submitted) is the most com-
prehensive finite-state based morphological analyzer for
Akkadian up-to-date. Its source code is written according
to the Xerox finite-state syntax with the lexc and xfscript
formalisms, and can be compiled using the Foma Finite-
State tookit (Hulden, 2009) or HFST - the Helsinki Finite
State Transducer toolkit (Lindén et al., 2011). BabyFST is
designed primarily for the Babylonian dialect and is capa-
ble of processing phonological words. Several Akkadian
text corpora contain only the transliteration, so some robust
support is needed for producing phonologically transcribed
text for BabyFST to analyse.

3. Related Work
To the best of our knowledge, this is the first system for au-
tomatically transcribing Akkadian cuneiform text but Smith
(2007) presents a system for grapheme-to-phoneme tran-
scription for the Elamite language, another extinct language
using the cuneiform script. The system uses optimality con-
straints and applies the gradual learning algorithm for learn-
ing a ranking between the constraints.
Many grapheme-to-phoneme transcription systems for-
mulate the task as a probabilistic sequence model on
grapheme-phoneme pairs. For example, Bisani and Ney
(2008) use joint n-gram models and Novak et al. (2012)
use weighted finite-state transducers. These methods rely
on some alignment between the grapheme and phoneme
strings because they gather statistics about symbol align-
ments.6 Because our strings contain logographic material
which may not have a clear connection to the phonolog-
ical representation, alignment is challenging. Therefore
we opted for using models based on the neural encoder-
decoder architecture. These models like Rao et al. (2015)
directly model the relation between the input grapheme se-
quence and output phoneme sequence which does not re-
quire string alignment.
Unlike many grapheme-to-phoneme transcription settings,
the transcription of cuneiform Akkadian text differs in the
sense that the transcription of logograms is partly depen-
dent on sentence context as explained in Section 2.2.. This
suggests that it is beneficial to model the sentential con-
text of the transliterated input token. In this respect, our
task is related to historical text normalization where con-
text can often be helpful. Korchagina (2017) investigates
neural machine translation for historical text normalization.
In contrast to token-based normalization methods applied
in grapheme-to-phoneme transcription, the model here is a
character-level encoder-decoder which is applied on com-
plete sentences. This approach proved to be challenging
in the context of Akkadian transcription based on our pre-
liminary experiments. The character-based NMT model
would overfit the training data possibly because of our rela-

6Although this alignment can be latent as in Bisani and Ney
(2008).

tively small dataset.7 Instead of a full fledged NMT model,
we present experiments on several more restricted ways to
model the sentence context.

4. Models
Conceptually, automatic transcription of Akkadian consists
of two subtasks. On the syllabic level, it is a grapheme
to phoneme (G2P) transcription task, and on the logo-
raphic level it chiefly reduces to context dependent dic-
tionary lookup. We apply five models to the transcription
task. These five models are compared against a straight-
forward majority baseline. Our first model is a statistical
model which learns associations between the graphemes in
transliterations and phonemes in transcriptions. This mod-
els chiefly targets the grapheme to phoneme transcription
task. Our remaining models are character-based neural at-
tentional encoder-decoder systems which translate translit-
erated words into transcribed words. These models are able
to address both the grapheme to phoeneme and context de-
pendent lookup of logograms. The neural models differ
with regard to context modeling. The first one performs
transcription without considering the sentence context, the
second one conditions its transcription on the neighboring
tokens in the sentence and the third one represents the con-
text in a character-based manner.

4.1. Baseline
The baseline system simply memorizes all transcriptions
in the training set. During testing, it generates the most
frequent transcription for the input transliteration if the
transliteration occurred in the training set. Otherwise, it
generates the empty sequence. When generating more than
one output candidate, the system orders them by their fre-
quency in the training set.

4.2. Statistical Model (Stat)
Our statistical model maps syllabic translitera-
tion–transcription correspondences, such as ta-pa-ra-
si : taparrası̄ into relations of abstract sequences:
C1a−C2a−C3a−C4i : C1aC2aC3C3aC4ī.8 If the correct
transcription is not found in the baseline dictionary, the
mapping is often able to generalize transcriptions with
correct vowel and consonant lengths for all unseen words
that belong to the same conjugation type and occur in
the same form as in the training data. This works well in
Akkadian, as its verbal morphology is non-linear and based
on a rather regular interdigitation of root radicals into
patterns. For example, the above-mentioned abstraction
can be used to transcribe the verbal form ta-ga-ma-ri into
tagammarı̄, as the verb gamāru belongs to the same vowel
class (a/u) and conjugation type (strong) as our example
verb parāsu. Because transliterations can be mapped
to several transcriptions (e.g. i-par-ra-su : iparrasu,
iparrasū), each pair is assigned a probability based on

7For example, we observed several occasions where the output
of the NMT system was considerably longer or shorter than the
input sentence and several examples of model hallucination. This
resulted in very bad performance for the NMT system.

8The mapping is simply based on character counting. Sophis-
ticated machine learning methods are not involved.
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Baseline Stat Enc-Dec Enc-Dec+Context Enc-Dec+Char-Context

Recall @ 1 81.37 87.25 89.44 90.01 89.59
Recall @ 2 83.65 91.13 95.44 95.03 94.77
Recall @ 3 83.74 91.93 96.65 96.19 95.91
Recall @ 5 83.75 92.55 97.61 97.11 96.78
Recall @ 10 83.75 92.55 98.14 97.58 97.33

Table 1: Transcription results for syllabic tokens. Baseline refers to the baseline system, Stat to the statistical system, Enc-
Dec to the plain neural system and Enc-Dec+Context and Enc-Dec+Char-Context to the context-aware neural systems.

Baseline Stat Enc-Dec Enc-Dec+Context Enc-Dec+Char-Context

Recall @ 1 60.70 60.64 57.72 69.10 68.70
Recall @ 2 76.10 76.10 74.13 78.59 78.26
Recall @ 3 82.15 82.16 81.14 81.97 81.86
Recall @ 5 85.96 86.03 85.65 84.42 84.26
Recall @ 10 88.90 88.90 88.79 86.09 86.17

Table 2: Transcription results for logograms. Baseline refers to the baseline system, Stat to the statistical system, Enc-Dec
to the plain neural system and Enc-Dec+Context and Enc-Dec+Char-Context to the context-aware neural systems.

the training data, which can be used to choose the most
likely option. The model fails to generalize logograms
and syllabic sequences which do not align consonant by
consonant with the transcription and ignores such pairs
altogether. This is often the case if the editor of the text
has made normalizations or corrections in the transcription
phase, as in an archaistic normalization of ni-s̆u ’people’ to
nis̆um.

4.3. Encoder-Decoder (Enc-Dec)
Our first neural system is a character-based attentional
encoder-decoder system (Bahdanau et al., 2014) which
translates a sequence of transliterated characters like t a - m
i t into a sequence of transcribed characters t ı̄ m ı̄ t.9 Here
we do not distinguish between syllabic and logograms: also
logoograms like DINGIR ’god’ are split into character se-
quences: D I N G I R. As encoder and decoder networks,
we use single layer LSTM networks.

4.4. Encoder-Decoder with Context Modeling
(Enc-Dec+Context)

Our second encoder-decoder system conditions its tran-
scription on neighboring words. We accomplish this by
encoding them into the input sequence. For example,

i p − p a − l a [ lib3−bi−šu ] < {d}e2−a >

where i p − p a − l a is the input token represented as a
character sequence, lib3−bi−šu is the transliterated token
immediately preceding the input word and {d}e2−a is the
transliterated token immediately following the input word.
These are represented as monolithic tokens. We decided to
limit the context to neighboring words instead of the com-
plete sentence due to the limited amount of available train-

9Even though the units in the transliterated sequence denote
syllables, we decided to model transliterations as character se-
quences. This allows the network to easily learn phonetic relations
between related syllables like ta and la.

ing data. The structure of the network and training details
are identical to the first encoder-decoder model (Enc-Dec).

4.5. Encoder-Decoder with Character-Level
Context Modeling (Enc-Dec+Char-Context)

Our final model is very similar to the Enc-Dec+Context
model except that it encodes both the input word and the
context words as character sequences instead of monolithic
tokens. As an example of input, consider:

i p − p a − l a [ l i b 3 − b i − š u ] < {d} e 2 − a >

Again the structure of the network and training details are
identical to the first encoder-decoder model (Enc-Dec).

5. Experiments
This section presents the experimental setup and the results
of the experiments.

5.1. Intrinsic Evaluation of Transcriptions
We perform transcription experiments on a subset of the
Open Richly Annotated Cuneiform Corpus (Oracc) (Oracc,
2014) which provides both transliterations and transcrip-
tions for tokens. The dataset spanning 21,078 sentences
(337,260 tokens) was randomly divided into a training set
(271,311 tokens), a development set (31,884 tokens) and a
test set (34,065 tokens).10

For our neural models, we use single layer LSTM networks
(Hochreiter and Schmidhuber, 1997) with character embed-
ding dimension and hidden dimension 512, and we opti-
mize the network using the Adam algorithm (Kingma and
Ba, 2014). We train for 100k steps with batch size 30. In
all experiments, we use beam width 20 during decoding.
We evaluate the transcription based on whole token accu-
racy and present the results as recall of the gold standard
transcription at n (Recall @ n) based on extracting the n

10The dataset consisted of transcribed Standard Babylonian
texts in Oracc.
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Gold Baseline Stat Enc-Dec Enc-Dec+Context Enc-Dec+Char-Context

Recall @ 1 96.55 76.66 84.40 87.25 89.85 89.30
Precision @ 1 41.19 38.75 38.33 37.22 38.82 38.79

Table 3: Recall and precision of the morphological analysis (on Lemma+POS level) based on the top-1 predicted transcrip-
tions.

Gold Baseline Stat Enc-Dec Enc-Dec+Context Enc-Dec+Char-Context

Recall @ 3 96.55 80.05 89.70 94.31 93.70 93.45
Precision @ 3 41.19 35.10 34.73 31.54 30.49 29.64

Table 4: Recall and precision of the morphological analysis (on Lemma+POS level) based on the top-3 predicted transcrip-
tions.

Gold Baseline Stat Enc-Dec Enc-Dec+Context Enc-Dec+Char-Context

Recall @ 10 96.55 80.60 90.50 96.50 95.55 95.80
Precision @ 10 41.19 31.42 31.12 26.34 22.24 22.19

Table 5: Recall and precision of the morphological analysis (on Lemma+POS level) based on the top-10 predicted tran-
scriptions.

best output candidates from the model. We present results
separately for syllabic tokens and logograms in Tables 1
and 2, respectively.11

As seen in Table 1, the Enc-Dec+Context delivers the best
accuracy (Recall @ 1) for syllabic tokens closely followed
by the other two neural models. All neural models and the
statistical model deliver substantial improvements over the
baseline majority voting system. The neural models deliver
superior performance compared to the statistical model.
When examining recall @ n for n > 1, the Enc-Dec model
which ignores the sentence context delivers the best results,
but all neural models are on par.
As seen in Table 2, the Enc-Dec+Context model delivers
the best accuracy for logograms. It is closely followed by
the Enc-Dec+Char-Context model. Both of the contextual
neural models deliver clear improvements over the base-
line majority voting system for recall @ 1 and recall @ 2.
However, for recall @ n, where n > 2, the majority voting
strategy wins closely followed by the Enc-Dec model.

5.2. Extrinsic Evaluation of Transcriptions
We evaluated the automatically produced transcriptions by
feeding 2,000 auto-transcribed tokens into BabyFST and by
comparing the recall and precision with human-transcribed
text (Gold).12 The gold results exhibit maximum possible
recall (96.55) and precision (41.19) scores achievable with
BabyFST at its current state with our test data, and show the
extent of the inherent morphological ambiguity of the lan-
guage, even when using unambiguous human-transcribed
input. As we did not have a morphologically annotated
gold standard available, our goal was to produce a lemma
and POS-tag that matches the human-made annotations in

11In Table 2, we present results for all examples where the
transliterated input token contains a logogram. The input token
can sometimes additionally contain syllabic material.

12The dataset was extracted from Oracc and comprised 655 lo-
gograms and 1345 syllabic words

Oracc. We measure recall to indicate the percentage of to-
kens that were given at least one correct analysis and pre-
cision to show the percentage of correct analyses over all
given analyses. The results are presented in Tables 3, 4 and
5.
A recall very close to human-transcribed text is achievable
by using the Enc-Dec model with top-10 predictions. Neu-
ral net models have a more negative impact on precision
than the statistical model due to the fact that the statistical
model does not often produce the full number of predic-
tions. Choosing a smaller selection of predictions naturally
improves precision at the cost of recall.

6. Conclusions and Future Work
Our experiments show that transcription for syllabic tokens
is clearly very successful delivering 90% recall @ 1 and
96% recall @ 3. This is likely to be of considerable help in
semi-automatic phonological transcription.
For logograms, results are weaker than for syllabic to-
kens but we can still clearly outperform the baseline which
shows that context modeling is beneficial. Character-based
context modeling delivered very similar results to the sim-
pler token-based context modeling. This is consistent with
the observation that indeclinable words like prepositions,
as well as other logograms, tend to be the most important
cues for the inflectional information associated with nearby
words.
For transcription of logograms, the best approach seems to
be a combination of context-modeling for the top candidate
(or possibly top-2 candidates) and baseline majority voting
for extracting additional transcription candidates. As Table
2 shows, context modeling provides a substantial improve-
ment of 8%-points over other models, when we extract a
single transcription candidate. When extracting more can-
didates, the performance of the various systems is quite
similar.
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The coverage of BabyFST on automatically transcribed text
is high. The gold standard lemma and POS can be recov-
ered for 90% of tokens when a single candidate transcrip-
tion is considered and 94% of the tokens when three candi-
date transcriptions are considered. This comes at the cost of
some added ambiguity: three analyses per input translation.
This can be considered acceptable given the high coverage.
Further rule-based or statistical disambiguation of analy-
ses could limit the ambiguity but this remains future work
at this time. Disambiguation must also be done at the mor-
phological level, as several lemmas may have multiple mor-
phological analyses due to ambiguous spellings. This is,
however, a task that is more closely connected to the future
development of BabyFST. Morphological disambiguation
of Akkadian will likely become easier in the near future, as
a manually morphologically annotated corpus of Akkadian
royal inscriptions is currently in the making by the Akka-
dian Treebanking project in the University of Helsinki.13

The morphological annotation can be used for weighting
the BabyFST transducer, which hopefully solves a part of
the ambiguity alone.
Some of the ambiguity and unwanted predictions emerge
from oddities in the training data. For example, occasion-
ally human-transcribers have removed mimation (an-nu-
tum : annūtu), added morphemes (li-tir : litı̄rma), changed
the case of a noun (a-wi-lu : awı̄li) or transcribed words in-
consistently me-lam-mu : melemmu, melammu. Although
these decisions are usually justified in the original context,
the models can generalize these discrepancies in unwanted
contexts, e.g. for a coincidentally similar looking lexeme.
Thus, cleaning and more careful selection of the training
data would likely have a positive impact on the results. In
the future, it would also be beneficial to train models for
different dialects and time periods, as they feature a num-
ber of consistent differences in their spelling.
One potential way to improve the results would be to try
multitask learning by combining simple dictionary-lookups
and predictive models. For example, a logogram could
be first lemmatized and POS-tagged based on the context,
and this information could later be used to disambiguate
the predicted inflected forms. Also in syllabic renderings,
many transcriptions map unambiguously to one phonolog-
ical representation. Thus it would be useful to minimize
ambiguity by first using a large dictionary lookup (e.g. con-
sisting of the whole corpus of a given dialect in Oracc),
and then trying to predict the correct phonological render-
ing only if the transcription is clearly ambiguous.
Finally, although the present work concerns phonological
transcription of Akkadian cuneiform text, the approach is
by no means specific to Akkadian texts. It could equally
well be applied to other languages which used cuneiform
script like Elamite and Hittite.
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Helsinki).



3534

pages 57–64, Prague, Czech Republic, June. Association
for Computational Linguistics.

Spar, I. (1988). Cuneiform Texts in the Metropolitan Mu-
seum of Art. Volume I: Tablets, Cones, and Bricks of the
Third and Second Millennia. The Metropolitan Museum
of Art.

Talon, P. (2005). The Standard Babylonian Creation Myth:
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