AlLiveSim: An Extensible Virtual Environment
for Training Autonomous Vehicles

Jérome Leudet
AlLiveSim Oy
Helsinki, Finland
jerome.leudet@ailivesim.com

Tommi Mikkonen
Department of Computer Science
University of Helsinki
Helsinki, Finland
tommi.mikkonen @helsinki.fi

Abstract—Virtualization technologies have become common-
place both in software development as well as engineering in
a more general sense. Using virtualization offers other benefits
than simulation and testing as a virtual environment can often be
more liberally configured than the corresponding physical envi-
ronment. This, in turn, introduces new possibilities for education
and training, including both for humans and artificial intelligence
(AI). To this end, we are developing a simulation platform
AlLiveSim. The platform is built on top of the Unreal Engine'
game development system, and it is dedicated to training and
testing autonomous systems, their sensors and their algorithms
in a simulated environment. In this paper, we describe the
elements that we have built on top of the engine to realize a
Virtual Environment (VE) useful for the design, implementation,
application and analysis of autonomous systems. We present the
architecture that we have put in place to transform our simulation
platform from automotive specific to be domain agnostic and
support two new domains of applications: autonomous ships
and autonomous mining machines. We describe the important
specificity of each domain in regard to simulation. In addition,
we also report the challenges encountered when simulating
those applications, and the decisions taken to overcome these
challenges.

Index Terms—Virtual Environment, Autonomous Systems, Au-
tonomous Vehicles, Simulation, Training, Validation.

I. INTRODUCTION

Developing software for autonomous systems can rely on
fully integrated end-to-end solutions [S], [28] or more a en-
gineered software stack [3], [4]. However, in both approaches
the algorithms controlling these systems rely on sensors for
perception and controllers for actuation. The autonomous
functions of systems are often based on machine learning
algorithms. Training and testing them takes a huge amount of
data. The exact amounts varies of course’ and popular datasets:
15k images [9], appoloscape 140k image [13], bdd100K 1.2M
images [29], can be used as a starting point, but most manufac-
turer will want to customize them to their own sensors, ground

Thttps://www.unrealengine.com
Zhttps://devblogs.nvidia.com/training-self-driving-vehicles-challenge-scale/

Francois Christophe
Department of Computer Science
University of Helsinki
Helsinki, Finland
francois.christophe @helsinki.fi

Tomi Ménnisto
Department of Computer Science
University of Helsinki
Helsinki, Finland
tomi.mannisto @helsinki.fi

truth and requirements. Collecting and maintaining this data
is difficult and time consuming. It takes up to 79% of data
scientists time, and 99.9% of the data collected in real life
is redundant?. Testing autonomous systems thoroughly is no
easy task either, partly because a good enough test case is
impossible to define. Even with real-size mock-ups — such as
Google’s fake city using professional pedestrians [2] — there
are yet many real-life cases that are simply impossible to
reproduce during training. There are interesting deployments
of agents in virtual environments used for automating testing
[27]. On the domain of driving, similar environments are also
used for motion planning and training cars for autonomous
driving [19].

In this paper, we present AILiveSim, a simulation platform
intended for development, training, testing, and validating
of autonomous systems. In the advent of disruption of au-
tonomous mobility and Al in various industries, AlLiveSim
provides a tool for the developers that makes the journey
to autonomy faster and more reliable. AlLiveSim provides a
parametric simulation environment that lets developers gather
data virtually through simulations, together with annotations or
metadata that can be used for supervised learning, or to mea-
sure the performances of the systems. AlLiveSim helps deep
learning, reinforcement learning and testing of autonomous
systems. AlLiveSim enables (i) building prototypes and verify
concepts; (ii) creating data sets to train Al systems; (iii)
debugging and optimizing algorithms; and (iv) testing and
validating products.

Using virtualization also offers other benefits, as a virtual
environment can often be more liberally configured than the
corresponding physical environment. This, in turn, introduces
new possibilities for education and training, including both
humans and artificial intelligence (AI). While the results may
not be enough for completely bypassing training in real world,

3https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-
time-consuming-least-enjoyable-data-science-task-survey-says/#3t58ed7f6£63

virtual reality can offer learning experiences configured to
match exact learning needs and real-world corner cases that
almost never happen. Furthermore, the environment has been
architected so that it can be easily enriched with new features
and subsystems that can be plugged into the system in a
straightforward fashion.

The rest of this paper is structured as follows. In Section 2
we provide the background and the motivation for this paper.
In Section 3, we introduce our prototype design and imple-
mentation, including its key interfaces and design decisions.
In addition, we provide sample applications, created for a
diversity of contexts such as maritime, automotive or ground
mining. In Section 4, we discuss some design challenges with
the system’s architecture that we had to solve when applying
our software to new domains. In Section 5, we provide
an extended discussion regarding lessons learned during the
development of our environment. In Section 6, we present
some directions for future work. Finally, in Section 7, we draw
some final conclusions.

II. BACKGROUND

Developing a complete and good enough test set for au-
tonomous system is no easy task. Standards like ISO 26262
[17] present some of the core principles, and establish that
tests should be integrated at all stages of the development.
To this end, developers of autonomous vehicles have started
to integrate the principles of continuous software engineering
[8] in their development cycles. Tesla, for example, delivers
software updates over-the-air*. However in many cases, the
integration has turned out to be much more complex than origi-
nally envisioned. For instance, in [22], the authors conducted a
study in which they interviewed developers to understand how
continuous integration of their changes could be improved.
This study shows that the main factors include, in order of
importance:

¢ speed, including in particular tools and processes that are
fast and easy to use;

« availability of the test environment;

« confidence through test activities;

« reliability of the test environment.

In our previous study [18], we provided an overview of how
VEs are used and how they could be beneficial for different
machine learning (ML) tasks. We also showed how having
access to the precise state of the world — in simulation — gives
a significant advantage over conducting the same tests in real
life, when considering measuring or scoring the performance
of algorithms or systems.

Testing and pre-training autonomous vehicles in a Virtual
Environment (VE) as such is not a very novel idea. The
concept was originally introduced in [9]. Today, multiple other
VEs exist [6], [10], [23] that cover several applications, includ-
ing for instance control, reinforcement learning, and situation
testing. However, these environments are still very focused on
the automotive context. Our claim in this paper is that VEs

“https://www.tesla.com/support/software-updates

can be applied in the development of any kind of Autonomous
Systems. To this end, our platform has been in used in various
domains, including maritime, mining, and automotive. This
versatile background has helped us to integrate the necessary
components to the AlLiveSim platform and to interface it
with various maritime applications already in use or in current
development, including MonaL.isa project [20], AIS [25], and
STM validation [21], to name some examples.

Each of these domains have their special characteristics —
developing autonomous ships, for instance, presents somewhat
different challenges than those of an autonomous car. In the
context of ships, considering deep sea navigation, the relative
scarcity of fixed points in the environment, and because of the
distances being large, the types of sensors and the problems
to solve in general are different from the automotive context.
Also, when considering harbour conditions, where traffic can
be busy with a high number of ships of different sizes,
the development of an autonomous ship poses very different
issues than with cars due to parameters such as vessel’s own
inertia and awareness of every other actors position, speed
and direction within the ships area of reach [24]. Therefore,
sensors dedicated to marine environments [26] have different
specifications and requirements than those for automotive [17].
In the development of autonomous ships, various radars will
be used to detect objects at different ranges, positioning will
rely on the Global Positioning System (GPS) coupled with
Geographic Information System (GIS), or satellite imaging.
LiDARs are fairly new sensors and they are used for close
range navigation [12]. Cameras are also making their way to
the autonomous ships [14]. Measurements from these sensors
need to be compensated for roll and pitch of the boat when at
sea, which is not necessarily an easy task as these parameters
change according to weather conditions. Weather conditions
such as fog, rain, or frost, also have other impacts on sensors.
Precise sensor fusion is necessary to make sense of constant
orientation of the ship but also get a clear description of objects
in the environment regardless of weather conditions. For this
purpose, a common practice is to use redundant sensors that
have different strengths and weaknesses in order to crosscheck
relevant information from incorrect information caused by
these changing conditions. In contrast to roads where things
can happen in a fraction of a second, in the maritime en-
vironment things are much slower, ships are relatively slow
and with long braking distances due to their inertia. Each
situation covers large areas and for this reason we might need
to accelerate the simulation speed and concentrate only on the
essential moments.

In mining environments, the fundamental application-
specific needs and the set of sensors available are again
different. The GPS is not available underground, and the very
low light conditions will have an impact on the sensors that
can be equipped to the mining machines. The machines can
be loaded with heavy loads affecting their dynamic models.
The tunnels can be narrow allowing for very little imprecision
in control commands. Also at a planning level, the problems
are very different than for self driving cars. In the mines,

there are custom traffic rules, and priorities can traditionally
be agreed upon and communicated through radio, or even a
central recommendation can be used for planning.

III. PROTOTYPE IMPLEMENTATION

The purpose of our prototype, named AlLiveSim, is to act
as a demonstrator of how virtual reality can be used as an
environment where the training autonomous vehicles can take
place. The first use case — training artificial intelligence for
self-driving cars — is reported in [18], together with some
preliminary lessons learned. Focusing on two new use cases
that were developed using AlLiveSim for customers from
the maritime and the mining industrial domains, this section
summarizes the key learnings and design principles that were
implemented to generalize the platform to support the two new
new application domains.

A. Requirements

Based on our learnings in [18], we extracted the following
architecturally significant requirements for our design:

« to be able to simulate any amount of sensors in real time;

¢ to produce simulated sensor data that is good enough to
be used to augment existing datasets;

o to be able to accelerate simulations;

o to have the ability to collect ground truth annotations
together with data;

o to use parameters to artificially alter the quality of data
in a realistic way (e.g. simulating stains, lens distortions
grain, or bad pixels);

e to support multiple domains of applications, covering
vehicles in a general sense, and covering cars, trucks,
cranes, boats, and drones;

o to enable the creation of use cases for different algo-
rithms, such as machine vision, control, and reinforce-
ment learning.

Furthermore, we wanted to design AlLiveSim as an open
platform, so that it can be used for training various other
types of vehicles as well in the future. Such openness was one
of the key architectural design drivers when composing this
prototype. To this end, additional components that introduce
specialized functions can be added to the virtual world as
plugin extensions. Therefore, it is also possible to plug in not
only sensors that detect virtual items in the virtual reality,
similarly to their real-world counterparts, but also application
specific components, like controllers or trackers. These can
even interface with external hardware or proprietary customer
architectures, which allows the inclusion of drones, ships, and
other autonomous vehicles in the animation. As an example,
Fig. 1 presents three sample applications, where a car follow-
ing a lane in traffic (top), a maritime vessel is sailing under
configurable conditions (middle), and two mining machines
in a collision avoidance scenario in a cramped mining envi-
ronment (bottom). Obviously, there could be numerous ’real’
vehicles included in the same virtual environment, if there are
enough computational resources, or the other vehicles could
be fully simulated by the platform.

Fig. 1. AlLiveSim in action. Top: A car autonomously following a line in
traffic. Middle: A maritime scenario with different sea conditions and ships.
Bottom: Avoiding a collision in a mine.

B. Design

In the technical sense, the AlLiveSim platform is built
on top of the Unreal Engine [7], a suite of integrated tools
for game developers to design and build games, simulations,
and visualizations. This way the design efficiently leverages
pre-existing technology and benefits from updates that will
keep the performance level high as the technology evolves.
Fig. 2 presents the AlLiveSim architecture with the specific
components that had to be developed, in addition to those that
we could directly use from the Unreal Engine.

More specificially, we created blueprints, use modes, envi-
ronments and sensors (marked in blue in Fig. 2) that are built
within the Unreal platform. These internal components allow
us to control the elements of the scene, the logic, the properties
of the simulations etc. AILiveSim exposes a simple API that
allows the users to control the simulation, send commands
to the vehicles, extract sensor feedback or other information
about the state of the world. The AlLiveSim controller is
handling sessions, caches, and configurations related to client
applications. AlLiveSim was developed to interface with a
wide range of applications such as autonomous vehicle train-
ing, intelligent harbour and autonomous ship simulation, and
a framework for automated tests of a maritime vessel sailing
in configurable conditions near a coastline. In the mining
application, the open architecture allowed us to easily create
two different versions of the vehicles dynamics and two sets
of sensors that allowed us to easily support two very different
use cases with the same assets.

As AlLiveSim is an open and extendable platform by
design, custom features specific to a new domain can be
integrated in the system as plugins, including also extending
key parts of the system itself. We have developed components
inside the Unreal Engine to support its specific features and
we also have developed content in specific ways to maximize
the amount of changes and parameters that can be exposed.
AlLiveSim also offers a library of common sensors that are
parametric, allowing users to tweak them to obtain data that
is similar to what they are getting with their real sensors.
The platform also simulates cameras, LiDARs, GPS, and other
sensors at a reasonable level of fidelity so that they can be used
together with data collected in real conditions. Furthermore,
custom sensor code, or different application-specific logic and
behaviors can be integrated in the system as well using the
plugin mechanism.

C. Developing Custom Applications

Due to the openness of the design, the system can be easily
adjusted to different application domains, requiring different
functions. In the following, we discuss how AlLiveSim was
gradually extended through two customer projects from mar-
itime and mining industry domains.

Extending AlILiveSim for Autonomous ships. We have
created a maritime environment in AlLiveSim. We created a
model for the sea, waves and coast line — we automatically
dress a natural landscape based on height maps of real loca-
tions — and parametric harbours that allow for many situations.

We already mentioned some of the specificity of the maritime
environment in Section II. The main challenge in this project
was to realize simulation acceleration. Indeed, ship movements
and manoeuvres happen relatively slowly and, to be able to
test rapidly the validity of actions within a long process, we
needed to implement a fast-forward capacity.

Extending AILiveSim for the mining industry. We have
created a mining environment and a few different mining
machines. In our case, the vehicles are mostly relying on
LiDARs and laser based proximity sensors. In this case, Lidar
data is used by an awareness system to establish a map of
navigable areas. In turn this map is used by other systems
like path planning or other higher level systems. Those two
can be isolated and developed separately. We can generate
LiDar data and test the awareness system, and we can generate
the map of navigable areas based on the meta data we have
in the simulation to test higher level systems. In Fig. 3, we
display both the simulation of the real data and the simulation
of the abstracted data that a subsystem would otherwise
generate. That data takes the form of a grid that indicates
navigable areas. In turns this data can be used to improve
the performance of the awareness system. This information
can also be fed to the other systems. As a matter of fact, we
found that simulating the Lidar data is much more expensive
than simulating the more abstract map, and moreover that the
map data is much smaller (1kb vs 122kb per frame for Lidar)
S0 it is easier to manage and to transfer.

IV. EXPERIENCES AND DESIGN CHALLENGES

In this paper, we report the real life issues that we en-
countered when we wanted our existing platform, AILiveSim,
to support new domains of application. We grouped the
major ones into two categories: (i) challenges related to
the integration into the virtual world and the Unreal engine
underlying simulation; and (ii) execution challenges related to
performance of the simulation.

A. Integration challenges

There are several types of integration challenges that we
faced when composing AlLiveSim. These include integrating
sensors in the virtual environment as well as integrating our
design with available libraries and open source components.
In the following, these are discussed in more detail.

1) Integration of sensors in the environment: The im-
plementation of the simulation of sensors varies with each
sensors. So far, we have been working with three different
sensor categories — cameras, and LiDAR and radar sensors.

Cameras. Images that are generated by default were not
close to the images we got out of real sensors, so we had
to add custom parametric elements to allow more realism,
and less perfect images. Luckily in Unreal Engine, the image
generation and render pipeline is rather good. There are
plenty of parameters, and you can use a stack of post-process
shaders that can access various buffers to create custom effects,
distortions to the images or ground truth measurements. In our
platform, we have developed an interface to configure a stack

~
4 VehicleVR platform Application
(Unreal™ engine \ .
g VehicleVR controller J_
P Application
. Sessions sensoras= Software
Blueprints Terf e]
CODﬁgUTBtiOFIS instructions +
Sockets pm——— | P—
Use Modes 5 Config .
| management ! Automated
IPC L -
Envi - - —— Ay test
nvironmen = Session 4 framework
Config. files :% \:n_afig.ewa-J
Sensors Conditions log T
Application plug-ins
\ / —|' Test
requirements
\ \ A

Fig. 2. A simplified view of the parts provided by AlLiveSim (presented in blue), combined with the components of an integrated example application to

perform automated testing (represented in green).

A
¥

Here, the machine and th&sensors are simulated by AlLiveSim

"

Here, the machine and th@&ensors are simulated by AlLiveSim

Fig. 3. Simulation of a VLP16 LiDar, with segmentation of the data using
custom rules (top), and the simulation of abstracted data that another system
would otherwise generate based on LiDar data (below).

of pre-made post-process effects that can be applied on top of
each other to compose different effects and their strength. That
allows users to control the amount and the nature of the noise
that they want their systems to support. Fig. 4 presents the
range of effects that can be applied directly from our platform.

LiDAR Sensors. The LiDAR sensors need to be simulated
based on reflected light. There are two different options: (i)
Simulate the LiDAR on the rendering using shaders [1]; or (ii)
Simulate the LiDAR on the physics using traces [11]. When
simulating the LiDAR on physics data, the sensor will only be
exposed to a simplified version of the world that is meant to be
handled by the physics engine. That means that the collision
meta-data will need to have higher quality in order to serve
also the needs of the LiDAR sensor. When approximating
objects with simpler shapes, details about the sharpness of
edges might be abstracted away. Those issues are not present
when using the shader approach to simulate the LiDAR data,
as the shaders will have access to information embedded into
the materials. For every triangle, the materials will convey in-
formation about the nominal and other parameters (roughness,
metallic, specular) for each point within the triangle. When
this information is taken into account in the calculation of
the reflected light, we can get much more precise results than
when using only the triangle.

Radar sensors. Radars are harder to simulate accurately
than other sensors. Also, different radars have different levels
of abstraction for low level data. Like with the physics, the
approach here is to approximate the shapes of various objects
with simpler geometries for which radar cross sections are well
known. The radar sensor would only have to work on those
simple objects instead of working on the full environment.

2) Integration of libraries: Another area of integration
challenges is introduced due to using libraries and other
functions that can be used to extend the platform. Unreal
engine has a handy plugin architecture, which allows third

Fig. 4. The AlLiveSim platform offers various shaders that can be stacked, in order to reproduce traits or imperfections of images from real sensors. f) is the
baseline thermal camera shader, to which we add: a) Blur effect, b) Grain lines effect, c) Heat bleed+lens effect, d) Thermal image RYG effect, e) Thermal

image WRB effect.

parties to extend the functionalities by providing actors, actor
components or other unreal specific objects. To this end,
our platform provides specific Blueprint interfaces for sensor
developers to implement and integrate with AlLiveSim. For
example, if one would like to develop a specific sensor, he
would implement the ALS_Sensor_Actor interface. That would
allow the sensor to be configurable in the configuration file
just like any sensor provided by the platform, attached to the
actor, and to expose the data collected in a streamlined fashion.
Finally, some vendors have developed proprietary, commercial
algorithms to simulate sensor data. We have performed techni-
cal feasibility studies regarding their integration in AILiveSim,
but no licensing negotiations have been carried out at this
point.

3) Integration with Open-Source software: One of the ben-
efits of using the Unreal Engine is the community of talented
people susceptible to create open source projects, solving
specific simulation problems better than many others. If a
customer developing a plugin is willing to make it available as
open source, he might get others interested to contribute too.
To protect business interests and related intellectual property
rights, it is possible to decouple the algorithms and the

interfacing with the simulation, and make the algorithm part
available is open source with a suitable licence. However,
as with other third party libraries, no negotiations with other
vendors have taken place.

B. Simulation execution challenges

Currently, when using the AILiveSim platform, every sensor
is simulated locally in the simulator. That can cause perfor-
mance issues especially when the computer running the sim-
ulation is not powerful enough. Slow-downs in the simulation
will cause the data to arrive slower than real time, which
is harmful for obvious reasons. So far, we have considered
two potential solutions to this potential performance problem:
distribution and acceleration.

1) Distribution: To improve the performance of the simula-
tion, we have considered distributing the sensor simulation to
several computers. At least all the camera sensors are easy
to distribute with the Unreal Engine. The engine proposes
a client-server architecture that is very well suited to this
kind of situation: the server executes the physics once, and
every client has local approximations of the state of the world.
In case of network delays, the difference might become too
large between the client and the server, in which case some

rollback operations might be needed, which may cause partial
invalidation of past sensor data. Therefore, all sensors that have
really high coupling with the physics or overall high frequency
might need to be executed on the server to avoid correcting
wrong predictions. Such high coupling is a limiting factor for
distribution.

2) Acceleration: Another issue to consider is the simulation
speed. In the Unreal Engine, there are two main threads where
things can happen, the logic tick and the physics tick. It
is possible to create faster threads or events, but they can
only access such data that is not currently processed by
the engine, or there will be a serious performance hit. The
physics thread is where all the physical simulation actually
happens. It controls the movement of all objects in the world.
In AlLiveSim, this thread is configured to run at least at
100Hz (Fig. 5), and the Unreal Engine can use a variable
time step time below this upper bound, called sub-stepping
in the Unreal Engine. The other important tick is the logic
tick, called update in the Unreal Engine. The logic tick will
execute more computing-intensive operations, like monitoring,
decision-making, reaction to events and general logic-related
functions. The logic tick happens at much lower frequencies
than the physics tick, and the therefore the logic tick is also
the preferred place to handle communications with the outside
world.

Fig. 5 presents a visualization of how decisions and ex-
ecutions are handled in AlLiveSim. We need to execute the
routines in the correct threads to guarantee a smooth execution
even at higher speeds. When accelerating the simulation, we
generally need to accelerate the physics thread while the logic
thread might not speed up quite as much. The physics thread
needs to stay as lightweight as possible but execute all the
routines that need to control the movements and forces every
time. However reaction to events or planning can be run at
slower pace. For example, when controlling a ship, the deci-
sion on the trajectory changes infrequently, but its application
can be implemented with low level controllers like PIDs that
are lightweight and benefit to run every physics update to keep
smooth controls. In AILiveSim, the users can control vehicles
remotely from their machine while the simulation is executed
on a distant server. The delay incurred by the network becomes
a problem when executing the simulation much faster than
real-time. For that reason, the decoupling of decisions and
controls is very important. Low level execution and control can
be executed locally on the server, while higher level decisions
can be executed remotely and at lower frequency.

V. LESSONS LEARNED

To begin with, the Unreal Engine is a very powerful game
engine that offers solid possibilities for making simulations
of and for serious applications. However, there are certain
limitations and constraints that must be taken into considera-
tion when developing them. In particular, the Unreal Engine is
designed for real-time applications. Therefore, it will prioritize
the main rendering loop at the cost of physical simulation
when running short on resources. The consequences of setting

the priorities this way only really matter if the implications are
incompatible with the requirements associated with the subject
we are simulating. In the following we will cover some of the
limitations we have encountered. In addition, we present the
solutions we have chosen as well as a brief evaluation of the
impact that these decisions have on the model in comparison
with reality.

A. Precision of the model against real-life simulations

It is clear that the simulation will use models for the
environment and the vehicles, meaning that we use a collection
of techniques that produce a result that is “close enough” to
the reality. Defining “close enough” really depends on the
requirements that are set to applications.

One concrete example is the wake trail that follows a boat
and propagates small waves behind it. Every boat that is
moving will create waves on the water surface that is caused
by the displacement of bodies of water along with the shell of
the boat. In our case, we decided that the fluid simulation was
not critical to get the overall behaviour of the boat correctly.
To control autonomous ships, we figured that it was enough
to have a higher level of abstraction.

However, for our camera sensors the wake sometimes plays
a big role in identifying the boat on the sea, since the boat
itself might be much smaller than the trail it leaves behind.
For that reason we have decided to focus on having limited
visual elements for our cameras as shown in Fig. 6, but that
will not have any physical impact on the boats.

B. Communication between controller and simulator

It was a requirement of AlILiveSim to be able to accelerate
the simulation. The biggest performance bottlenecks are cur-
rently associated with the volumes of sensor data that need to
be generated and transmitted to the client algorithm, as listed
in the following:

e 2 Mp (megapixel) camera, FullHD at 30 frames per sec-
ond generates around 33 Mbps (megabytes per seconds)
uncompressed. In AlLiveSim, we offer Portable Network
Graphics (PNG) compression that reduces the number
down to 29 Mbps.

o LiDAR like VLPI16 rotating at 10 rpm generates around
2.7 Mbps data. Adding layers, rotation speed, or point
density can produce considerably more data, up to 20-70
Mbps.

o Sonar will result in about 10-100 Kbps.

o GPS will result in about 50 Kbps.

Typical setups include several cameras and LiDARs on one
single vehicle, creating large amount of data to be generated
and transmitted. Depending on the network configuration, and
particularly if the simulation is executed on a remote server
on the cloud, there are chances for packet loss.

Two protocols were considered for this communication,
TCP and UDP (Transmission Control Protocol [16] and User
Datagram Protocol, [15], respectively). The TCP protocol is
impacted by the latency of the network in case of packet
loss while the UDP protocol is not. Initially, TCP was used

Learning frequency T

sor frequency

Rare
Change Scenario, In AlLiveSim
(1) Vehicle configuration and parameters
(ex: low level parameters)
Planning, Decision ' I I |
Variable, when needed ! b !
(2)
Monitor execution i | I L L |
Regulany T T T T T T
L ‘ ‘.
I
(3)
|
Measurements
Simulation Logic, Monitors etc
Network comms..
Command 30Hz — } ; } } ; { i 4 -
| Sel largets lor controllers I
(4)
| Sensor 1 |
Sensor 2 l
Physics sim. 100Hz ot | Ooteready ot sem
KA RARAA Tip Parial sxacutior

Low Level Physics

—HHHHHA A
WAMAMAM - Low level Controllers work on
For example speed controller,
steering controller, PID etc

Fig. 5. Graph visualization of the decoupling of the decision and execution to maximize the precision even when accelerating the simulation.

Fig. 6. Visual simulation of the wake trails behind boats.

for communication between sensors and client algorithms.
The protocol offers guarantees on the transmission of data.
However, loss of throughput could become considerable in
some cases. To manage this, we decided to use UDP for
transferring sensor data issued from simulations. UDP offers
less guarantees on the transmission of packets, but it is much
faster to transfer large amount of data using UDP than TCP.
However, TCP is still used for commands and controls sent
from the controller to the simulator, in order to keep guarantee

of message integrity.
VI. FUTURE WORK

Our long term vision is to demonstrate value of training
autonomous systems in virtual environments. While our work
is still at an early stage, we believe that the following topics
will take us closer to the eventual goal.

Distribute the simulation of the sensors to several
machines. Here, the goal is to partition the simulation of the
state of the world and the simulation of each sensor to different

machines. Such design introduces the the challenge to keep
those in sync so that the sensor readings that are simulated
match to the state of the world at a given time.

Distribute the simulations of larger amount of scenario
on the cloud. To run through a large number of test cases
at a reasonable time, we can distribute test execution to the
cloud. The challenge with such approach is to find an easy,
secure, and private way to make the controlling algorithm to
the cloud so that it can be invoked together with each instance
of the simulation. As one of our requirements is to make
no assumptions on the client algorithms, the coupling has to
remain loose.

Improve the quality of the simulation of the sensor data,
by adding defects that are observed in real data. In the case
of data-set creation or for training various low-level algorithms
like segmentation or detection, we need to be able to generate
data that has similar characteristics as the real sensors. To
solve such issues, we would like to try various approach and
compare them.

Automatic reconstitution in AlLiveSim of situations
that are similar to some samples provided as input. Our
objective is be to create a network that could generation
simulation parameters that minimize differences, given one
or several sensor inputs. We believe that this would be an
interesting problem to solve, as it would make it easier to
create specific situations.

VII. CONCLUSION

Virtual reality has become a viable option that offers various
opportunities for building autonomous vehicles of the future
in a more agile fashion than relying solely on physical vehi-
cles. However, designing such environments in an extendable
and modular way is not straightforward. Such development
requires combining knowledge from various domains.

We have developed AlLiveSim for training autonomous
vehicles in virtual environments. We want it to serve several
applications, from testing, awareness, learning, and we are
well aware that techniques associated with these activities
are constantly evolving. Also we believe that the domain of
application is just a context and content, and there is no need
for building domain-specific system for every domain. There-
fore, AILiveSim can serve numerous applications in different
domains, as demonstrated in this paper by the introduction of
two new application domains, each with specific requirements.

During the development, we faced numerous challenges,
many of which we have been able to solve with well-
established engineering practices and support provided by the
Unreal Engine. These include the design of a plugin system
for extensions to the platform and variance associated with
the different domains and their characteristics. The remaining
problems, mostly associated with performance, are an im-
portant direction for our future work. We wish to study the
benefits that the AlLiveSim platform can bring to specific
algorithms, like reinforcement learning or model predictive
controls with models of real vehicles and reals sensors.

[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]
[16]
[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

REFERENCES

Gregory D Abram and Turner Whitted. Building block shaders. In ACM
SIGGRAPH Computer Graphics, volume 24, pages 283-288. ACM,
1990.

Mark Austin. Google built an entire fake city to test the AI of
its driverless cars. Digital Trends, Aug. 27, 2017., Available at
https://www.digitaltrends.com/cars/google-fake-city/.

Sagar Behere. Reference architectures for highly automated driving.
PhD thesis, KTH Royal Institute of Technology, 2016.

Karl Berntorp, Tru Hoang, Rien Quirynen, and Stefano Di Cairano.
Control architecture design for autonomous vehicles. In 2018 IEEE
Conference on Control Technology and Applications (CCTA), pages
404-411. IEEE, 2018.

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard
Firner, Beat Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Mon-
fort, Urs Muller, Jiakai Zhang, et al. End to end learning for self-driving
cars. arXiv preprint arXiv:1604.07316, 2016.

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and
Vladlen Koltun. Carla: An open urban driving simulator. arXiv preprint
arXiv:1711.03938, 2017.

Epic Games. Unreal Engine. Online: https://www. unrealengine. com,
2007.

Brian Fitzgerald and Klaas-Jan Stol. Continuous software engineering:
A roadmap and agenda. Journal of Systems and Software, 123:176-189,
2017.

Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun.
Vision meets robotics: The kitti dataset. The International Journal of
Robotics Research, 32(11):1231-1237, 2013.

Cristian Gorgorin, Victor Gradinescu, Raluca Diaconescu, Valentin
Cristea, and Liviu Iftode. An integrated vehicular and network simulator
for vehicular ad-hoc networks. In Proceedings of the 20th European
Simulation and Modelling Conference, volume 59, 2006.

Carl Gutwin. Traces: Visualizing the immediate past to support group
interaction. In Graphics interface, pages 43-50, 2002.

Marko Hoyhtyé, Jyrki Huusko, Markku Kiviranta, Kenneth Solberg, and
Juha Rokka. Connectivity for autonomous ships: Architecture, use cases,
and research challenges. In Information and Communication Technology
Convergence (ICTC), 2017 International Conference on, pages 345-350.
IEEE, 2017.

Xinyu Huang, Peng Wang, Xinjing Cheng, Dingfu Zhou, Qichuan Geng,
and Ruigang Yang. The apolloscape open dataset for autonomous driving
and its application, 2018.

Terry Huntsberger, Hrand Aghazarian, Andrew Howard, and David C
Trotz. Stereo vision—based navigation for autonomous surface vessels.
Journal of Field Robotics, 28(1):3-18, 2011.

IETF RFC 768. User Datagram Protocol. 1980.

IETF RFC 793. Transmission Control Protocol. 1981.

1SO26262. Road Vehicles — Functional Safety. International Standard
ISO/FDIS, 26262, 2011.

Jerome Leudet, Tommi Mikkonen, Frangois Christophe, and Tomi
Mainnistd. Virtual environment for training autonomous vehicles. In
Annual Conference Towards Autonomous Robotic Systems, pages 159—
169. Springer, 2018.

Liyun Li. Iterative em planning: A flexible motion planning platform
for autonomous driving on urban roads. In 2018 IEEE 42nd Annual
Computer Software and Applications Conference (COMPSAC), pages
374-379. IEEE, 2018.

Mikael Lind, Anders Brodje, Richard Watson, Sandra Haraldson,
PE Holmberg, and M Higg. Digital infrastructures for enabling sea
traffic management. In The 10th International Symposium ISIS, 2014.
Mikael Lind, Mikael Hiagg, Ulf Siwe, and Sandra Haraldson. Sea traffic
management-—beneficial for all maritime stakeholders. Transportation
Research Procedia, 14:183-192, 2016.

T. Mrtensson, D. Sthl, and J. Bosch. Continuous integration impediments
in large-scale industry projects. In 2017 IEEE International Conference
on Software Architecture (ICSA), pages 169—178, April 2017.

Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. Airsim:
High-fidelity visual and physical simulation for autonomous vehicles. In
Field and service robotics, pages 621-635. Springer, 2018.

Thomas Statheros, Gareth Howells, and Klaus McDonald Maier. Au-
tonomous ship collision avoidance navigation concepts, technologies and
techniques. The Journal of Navigation, 61(1):129-142, 2008.

[25]

[26]

[27]

(28]

[29]

Enmei Tu, Guanghao Zhang, Lily Rachmawati, Eshan Rajabally, and
Guang-Bin Huang. Exploiting ais data for intelligent maritime nav-
igation: a comprehensive survey from data to methodology. [EEE
Transactions on Intelligent Transportation Systems, 19(5):1559-1582,
2018.

UCG Commandant. International regulations for prevention of collisions
at sea, 1972 (72 colregs). International Standard ISO/FDIS, 26262,
2011.

Shufeng Wang and Hong Zhu. Catest: a test automation framework for
multi-agent systems. In Computer Software and Applications Conference
(COMPSAC), 2012 IEEE 36th Annual, pages 148-157. IEEE, 2012.
Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo.
End-to-end multi-modal multi-task vehicle control for self-driving cars
with visual perception, 2018.

Fisher Yu, Wenqi Xian, Yingying Chen, Fangchen Liu, Mike Liao,
Vashisht Madhavan, and Trevor Darrell. Bdd100k: A diverse driving
video database with scalable annotation tooling, 2018.

