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Abstract 

 

Fungal mycelia are versatile, highly productive and sustainable sources for biocomposites to replace 

conventional plastics. However, with only very few fungal strains that have been characterized, 

numerous strains still remain unexplored as potential competitors against traditional non-

biodegradable materials. Moreover, the functionality of mycelium composites at commonly 

occurring, challenging ambient conditions such as changing humidity and temperature is not well 

characterized. Here we evaluated the properties of the fungal composite material produced by novel 

fungal strains, including Trichoderma asperellum and Agaricus bisporus, grown on oat husk and 

rapeseed cake after oil pressing. The results showed that the mycelium composites were 

hydrophobic and strong, particularly when grown on rapeseed cake. A. bisporus grown on rapeseed 

cake exhibited increased stiffness after humidity was successively increased and decreased. The 

moisture-resistance of these novel mycelium composites is encouraging for novel sustainable 

material solutions. 

 

Keywords: Mycelium biocomposites, fungal mycelia, rapeseed cake, dynamic mechanical analysis 

 

1. Introduction 

Use of numerous types of materials in commodities such as plastics and polymers is an essential 

aspect of modern living. These materials are expected to be resistant under varying conditions 

during transportation, storage, and product usage. Thus, simultaneous dynamic stresses such as 

load, temperature, and moisture affect all materials throughout their life cycle. Plastics such as 

expanded polystyrenes appeal to consumers because of their lightness, moisture-resistance, ease of 

handling, and in some cases low thermal conductivity [1]. However, the production of plastics 
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consumes non-renewable resources and energy. Moreover, difficulties in the disposal of such non-

biodegradable plastic and polymeric materials after their intended use is considered as one of the 

most urgent environmental concerns [2]. Therefore, attempts to decrease the use of plastics and the 

amount of solid waste and environmental damage caused by pollution have given rise to the 

development of bio-based and biodegradable materials. For example, numerous recent studies have 

focused on the development of biocomposites that are reinforced with natural fibers from plant 

sources [3].  

A recent alternative was introduced by directly growing mycelia with applicable substrates [4]. 

Construction of mycelium composites takes the basic inspiration from nature in terms of material 

creation via engineering [5]. Specifically, mycelium composites are produced by the complex 

network of fungal mycelium growing on a substrate of natural and/or waste resources. Filamentous 

fungi colonize the substrate when the internal turgor pressure and the rigid cell walls enable 

mycelial hyphae to penetrate organic materials, and the secreted enzymes degrade polymers of the 

substrate into molecules that can be taken up to serve as nutrients [6]. Therefore, mycelia function 

as a natural glue [7]. These biomaterials have a heterogeneous structure with a network of hyphae 

embedded in the feeding substrate material, which provides mechanical support for the resulting 

mycelia composite [8]. Mycelium composites are economically beneficial, as they are produced 

with a low level of energy, water, and from low-cost raw materials or low-grade agricultural by-

products. As mycelium composites are biodegradable, they can be composted; they can also be re-

used, for example as animal supplies, organic fertilizers, soil conditioners, and substrates for 

seedlings [8-10]. 

The substrates used to grow mycelium composites may be retrieved from industrial or agricultural 

waste streams, such as cereal straws, wood sawdust or other fibers, such as flax and cotton [11], or 

corn stove particles [12]. These by-products enable fungal mycelial growth, as they have moderate 

amounts of carbohydrates, lipids, proteins, inorganic compounds, and water [13]. The physical 

properties of the materials may show differences between the mycelium grown areas and 

undigested feeding substrate materials [14, 15]. Besides, several factors have been proposed to 

affect the properties of mycelium composites, including different combinations of fungal strains and 

substrates, and various treatments applied during the production processes. 

Ganoderma lucidum and Pleurotus ostreatus are the most commonly used fungal strains for 

mycelium composites [4, 16, 17]. Hyphal architecture, fungal cell wall composition, composite 

constituents, and growth kinetics in mycelium composites are determined by inherent and 

exogenous factors, and vary widely among different species [17]. Among the different types, 

lignocellulose degrading basidiomycetes – particularly Pleurotus ostreatus, Ganoderma lucidum, 
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Ganoderma oregonense, Lentinula edodes, Agrocybe aegerita, and Coprinus comatus – are able to 

colonize and grow rapidly on various materials containing cellulose, hemicelluloses, and lignin 

[18]. Among these, P. ostreatus and G. lucidum specifically have been tested in mycelium 

composites. With over 5.1 million fungal species currently known [19], new fungal species may 

have unexplored potential if characterized in composite materials. 

Mycelia composites are considered to be among the most promising alternatives to synthetic 

disposable materials such as expanded polystyrenes [9]. Potential applications include impact 

resistance, as well as thermal and acoustic insulation [10, 17, 20, 21]. Materials are commonly 

exposed to changes in humidity and temperature, sometimes rapidly and dramatically. In this 

respect, the characterization of different plant-based materials such as carboxymethylcellulose-

based hydrogel [22], starch nanocomposite films [23], and cellulose/glucuronoxylan nanocomposite 

films [24] has shown that plant fiber-based materials commonly soften remarkably at high 

humidity. However, only few studies have analyzed the moisture uptake of mycelium composites 

[6, 25], hence a comprehensive understanding of the mycelia properties at challenging ambient 

conditions such as changing humidity and temperature is lacking. The present work aimed to 1) 

compare the growth and physical properties of mycelium composites from novel fungal strains 

grown on previously unused substrates, namely oat husk and rapeseed cake, and 2) characterize the 

novel mycelium composites at changing temperature and humidity, to thoroughly assess their 

material properties and evaluate the potential for their use at challenging conditions.  

 

2. Materials and Methods 

2.1.Materials 

Fungal cultures 

Trichoderma asperellum (TA) was isolated from a forest in Southern Finland; commercial Agaricus 

bisphorus (button mushroom, AB) and Lentinula edodes (shiitake) were purchased from a local 

grocery store. Pleurotus ostreatus (oyster mushroom, PO, HAMBI FBCC0515), Ganoderma 

lucidum (Reishi mushroom, GL, HAMBI FBCC665), Pleurotus ostreatus sajor caju (oyster 

mushroom, HAMBI FBCC471), Pleurotus ostreatus florida (oyster mushroom, HAMBI 

FBCC469), Kuehneromyces mutabilis (sheathed woodtuft, HAMBI FBCC2164), and Flammulina 

velutipes (enoki mushroom, HAMBI FBCC583) were obtained from HAMBI Culture Collection 

(University of Helsinki, Faculty of Agriculture and Forestry, Department of Microbiology). 

All of the isolated fungal cultures were identified with internal transcribed spacer polymerase chain 

reaction (ITS-PCR). Genomic DNA was extracted from homogenized mycelia with a Phire Plant 

Direct PCR kit (Thermo Scientific, USA) according to the manufacturer’s instructions. The 
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mycelial mass was homogenized with a mortar in liquid nitrogen before DNA extraction. The 

ribosomal DNA ITS region was amplified with the ITS1 (5’-TCCGTAGGTGAACCTGCGG-3’) 

and ITS4 (5’-TCCTCCGCTTATTGATATGC-3’) primer pair [26]. The PCR reaction (total 20 µl) 

contained 0.5 µl DNA template, 0.5 µm ITS1 and ITS4 primers, 10 µl 2 x Phire Plant PCR buffer 

and 0.4 µl Phire Hot Start II DNA Polymerase (Thermo Scientific). Initial denaturation was 

performed at 98ºC for 5 min followed by 40 cycles of (1) denaturation at 98ºC for 5 s, (2) annealing 

at 55ºC for 5 s and (3) extension at 72ºC for 20 s. The final extension was at 72ºC for 1 min. The 

concentration of the amplified PCR products was checked on a 1% agarose gel, and subsequently 

sequenced (Macrogen Corp., The Netherlands). The BLAST analysis was done against the NCBI 

database (https://blast.ncbi.nlm.nih.gov/Blast.cgi) to retrieve the ITS sequences with the highest 

identity. 

The mycelia were propagated and maintained on 2% (w/w) malt extract (LabM, UK) 2% (w/w) 

agar (Scharlau, Spain) plates. All cultures were stored on malt extract agar at 4±1°C. The inoculum 

for the colonization growth (7 days) was made to liquid malt extract (2% w/w).  

The feeding substrates for mycelia growth were oat husk (Fazer Mill, Finland) milled to 1 mm 

diameter with a centrifugal mill (Retch GmbH ZM100, Germany) and rapeseed cake (Avena Nordic 

Grain, Finland). Other substrates, namely oat husk without milling, pine sawdust milled to 1 mm 

(Pesäpuru, Pölkky Oy, Finland), oat straw (Merran Talli, Finland) chipped using a wood shredder 

(Eliet Machines, Belgium), and birch sawdust (Merran Talli, Finland) were also tested during the 

initial pre-screening study.  

2.2. Pre-screening test for mycelia selection 

All materials were autoclaved (Steris Finn Aqua, Finland) at 120°C for 20 min before their use. 

Feeding substrates were moisturized with tap water. The final water to substrate ratio (w/w) was as 

follows: oat husk 1:1, oat and birch sawdust 1:2, oat straw 1:2, rapeseed cake 4:3. They were 

autoclaved twice before inoculation with a minimum of one day between the autoclave sessions to 

better inactivate the contaminants.  

Moisturized autoclaved feeding substrates were autoclaved on glass petri dishes. The fungi were 

inoculated to the substrate, and the dishes were sealed with Parafilm (Bemis, USA). The cultures 

were grown at 21±1°C in the laboratory cabinet. After 14 days, the cultures were visually inspected 

for quantitative and qualitative growth properties.  

2.3. Growing of mycelia 

Four selected fungal strains (TA, AB, GL, and PO) were first grown in 100 ml liquid malt extract 

for one week at 21°C in a 250 ml glass Erlenmeyer flask, covered with a cellulose plug and 
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aluminum cap, and sealed with Parafilm. Fungal inoculums (1 cm³) were mixed with the feeding 

substrates (rapeseed (RS) and oat husk (OH)) and grown on petri dishes at 21ºC. After two weeks, 

the samples were visually inspected, mixed, and transferred to 4-well plates (1 cm³/well) (Thermo 

Scientific, Denmark) and left to grow for one more week. The mycelium composites produced were 

then dried at 40ºC for 48 hours to result a water content between 5.8 and 8%. The resulting eight 

mycelium composites were abbreviated according to the fungal strain and growth substrate, as TA-

RS, TA-OH, AB-RS, AB-OH, GL-RS, GL-OH, PO-RS, and PO-OH. 

2.4. Chemical Characterization  

Chemical characterization of the four selected fungal strains and the feeding substrates (RS and 

OH) as well as the biocomposites produced was performed with a Fourier transform infrared (FT-

IR) spectrophotometer (Perkin Elmer Spectrum, USA) with the attenuated total reflectance (ATR) 

accessory. All spectra were recorded in the range from 4000 to 800 cm
−1 

with 4 cm
−1 

resolution, 

accumulating 128 scans [6]. 

2.5. Physical characterization 

The four selected strains grown on OH and RS substrates to firm mycelium composites were 

physically characterized by the following analyses. 

2.5.1. Water Uptake  

Water absorption and desorption of the mycelium composites and the plain (before inoculation) 

substrates were measured using a Dynamic Vapor Sorption (DVS Intrinsic, Surface Measurement 

Systems Ltd., UK) microbalance. Measurements were made at 25ºC, at relative humidity conditions 

from 5% to 90%, in a stepwise procedure (240 minutes at each step), followed by a similar stepwise 

decrease from 90% to 5% [27].  

2.5.2. Density 

Density measurements of the mycelium composites were made by using glass beads (0.2 mm 

diameter, 1.68 g/cm
3
) according to a previously described method [24]. All samples were 

conditioned for three days at 50% relative humidity (RH) before the density measurements.  

2.5.3. Compressive strength 

Compressive strength of mycelium composites was measured with a Texture Analyzer TA-XT2i 

(Stable Microsystems, UK) 36 mm probe at 35% strain, 5 kg force, pre-test speed of 1.0 mm/s and 

test speed of 2 mm/s. Compressive strength was determined from the obtained force-time profile 

and stress-strain curve. Mycelium samples had a diameter of 12–14 mm, and thickness of 6 mm. All 

samples were conditioned for three days at 50% RH before the compressive strength measurements.  

2.5.4. Effect of temperature and humidity on mycelium composites 
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The thermal and mechanical properties of mycelium composites were evaluated by a Dynamic 

Mechanical Analyser (DMA) (TA Instruments, UK) using a compression clamp in the dynamic 

oscillatory mode (DMA multi-frequency/strain experiments). Using the humidity accessory, DMA 

measurements started with chamber conditioning at 30% RH for 5 hours at 25ºC. RH was first 

increased in a stepwise manner by 0.50% every 2 min until it reached 90% RH, and then back to 

0% RH with the same rate.  

After initial isothermal conditioning (25ºC at 50% RH for 4 hours), temperature scans were carried 

out by applying a slow ramp (0.1 N, 0.5ºC/min) between 25–70ºC and then cooling down to 25ºC at 

the same rate. The DMA runs were made at 1 Hz and 5 Hz frequencies. 

 

3. Results and Discussion 

3.1. Prescreening Test 

A prescreening test was done to compare the growth rate of nine fungal strains on five different 

feeding substrates, the latter of which were by-products from agriculture or forest industry. The 

biocomposites were evaluated by testing the integrity of the formed structures, both visually and 

manually. According to the pre-screening trials (Table 1), oat husk (OH, 1 mm) and rapeseed cake 

(RS) were selected as the feeding substrates to be used in the further measurements, because they 

produced composites with high integrity. Of the mycelia strains, TA, AB, PO, and GL were selected 

for detailed characterization, since these strains grew rapidly and formed intact, homogeneous and 

rigid mycelium composite structures. TA and AB are previously unexplored strains in mycelium 

composites, and they were compared with the known strains of PO and GL to examine the unknown 

potential for bio-based composites and reveal any differences compared to the known strains. The 

other tested strains demonstrated slow growth rate and/or relatively weak structures, and thus they 

were eliminated from the remaining part of the study. Photographs of the selected mycelium 

composites are shown in Figure 1.   

3.2.Chemical Characterization 

The FT-IR spectra were measured to characterize the chemical composition of the studied mycelia 

and to compare the chemical nature of different strains and substrates. Mycelium-based materials 

grown on selected feeding sources are expected to inherit the microstructure and properties of the 

feeding material [8]. 

Journal Pre-proof



Jo
urnal P

re-proof

 

7 
 

Table 1. Growth of fungal strains on different feeding substrates after 14 days  

                                                                                                     Mycelia 

Feeding 

substrates 

Pleurotus 

ostreatus 

(PO) 

Pleurotus o. 

sajor caju 

Pleurotus o. 

florida 

Ganoderma 

lucidum 

(GL) 

Kuehneromyces 

mutabilis 

Flammulina 

velutipes 

Trichoderma 

asperellum 

(TA) 

Agaricus 

bisporus  

(AB) 

Lentinula 

edodes 

OH  ++ +++ +++ (fluffy) +++ (flat) ++ (fluffy) +++  +++ (fluffy)  +++ 

(fluffy) 

++ 

RS ++ (flat)  ++ ++ + (flat) ++ +++ (flat)  +++ (fluffy) ++ (fluffy) +(flat) 

OH: Oat husk, RS: Rapeseed cake 

Fluffy or flat growth morphology is indicated in parenthesis, if applicable.  

The growth rate is indicated with plus signs: + slow, ++ moderate, and +++ fast growth.
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Figure 1. Images of the mycelium composites 

Trichoderma asperellum (TA) grown on A) rapeseed cake (RS) and B) oat husks (OH) as 

substrates; Agaricus bisporus (AB) grown on C) RS and D) OH; Pleurotus ostreatus (PO) grown on 

E) RS and F) OH; Ganoderma lucidum (GL) grown on G) RS and H) OH.  

Previously, the effect of different substrates on the polysaccharide, lipid, and chitin composition of 

mycelia films produced from P. ostreatus and G. lucidum has been reported [25]. 

The observed bands are presented in Table 2, and the spectra of the mycelia both as plain and as 

grown on substrates are shown in Supplementary Material (Figure S1). According to the FT-IR 

spectra, both the pre-inoculation mycelia and the plain RS and OH substrates had distinct 

differences in their chemical structures. Specifically, RS induced stronger peaks for 

polysaccharides, proteins, and lipids than OH.  

The fungal cell wall is composed of various mannans, different types of β-glucans, chitin, and 

proteins. Some other polymers that possess carboxyl, phosphoryl, hydroxyl, amino, amine and 
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imidazole functional groups have also been detected on the surface [28, 29]. The characteristic 

functional groups in fungal mycelia are as follows: 3000–2800 cm
−1

 for fatty acids/lipids; 1700–

1600 cm
−1 

for amide I, 1575–1300 cm
−1 

for amide II and amide III (proteins), and 1200–900 cm
−1

 

for polysaccharides [30]. Differences in β-1,3-glucan structures are characterized by shoulders 

(1070 cm 
-1

)
 
and/or slight deviations around 1090 cm

-1
 [30]. These are consistent with our findings. 

Before inoculation on substrates, the TA and GL mycelia gave generally the strongest absorption 

peaks among the studied mycelia strains (Supplementary Materials, Figure S1). In contrast, AB 

gave slightly greater intensities mainly for proteins and lipids when it was fed with OH as a 

substrate, in comparison to the plain mycelia before inoculation. GL showed a stronger indication of 

polysaccharides when fed with OH. The studied mycelia also differed in lipid structure when OH 

was used as the feeding substrate.  

 

Table 2. Observed bands in the FT-IR (Fourier transform infrared) spectra. Adapted from [25] 

Assignment Mycelium component  

(main contribution) 
TA   AB PO GL RS 

substrate 

OH 

substrate 

O-H 

stretching 

Polysaccharides 3289 3285 3278 3290 3284 3305 

CH2 

asymmetric 

stretching 

Lipids 2925 2924 2971 2930   

CH2 

symmetric/ 

asymmetric 

Lipids  2854     

Ester C=O 

stretching 

Lipids  1745     

Amide I 

 (β-sheet) 

Proteins 1639 1634 1649 1640 1631  

Amide II Proteins   1547    

CH2 bending Lipids  1403   1443  

C-H 

bending 

Chitin 1371 1370 1370 1377 1370 1370 

Amide  1259  1313    

PO2
-
 

asymmetric 

stretching 

Nucleic acids  1241 1230     

C-C 

stretching 

Polysaccharides 1020 1025 1028 1020 1044 1020 

TA: Trichoderma asperellum, AB: Agaricus bisporus, PO: Pleurotus ostreatus, and GL: 

Ganoderma lucidum mycelia, RS: rapeseed cake and OH: oat husk. 

3.3.Density 
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Density is generally accepted as a good indicator of the mechanical properties of bio-based 

materials [31]. Mycelium composites are often considered as being similar to solid foams with their 

low density, high porosity, and slight rigidity [32]. The densities of mycelium-based foam-like 

materials may range from 59 to 318 kg/m
3
 [17]. Extended polystyrene foams were considered as 

their primary competitor, with densities around 50 kg/m
3
. On the other hand, higher densities of 

mycelium composites have been highlighted as a significant contributor to the elastic behavior of 

the materials, due to filling the micropores of the composite materials [9]. 

According to the present findings (Figure 2), the selection of growth substrate affected the density 

more than the mycelium strain. This is in agreement with a previous study [33] that compared 

densities of Lentinus strigosus (Schwein.) Fr. mycelia grown on wood sawdust samples of pitch 

(Protium puncticulatum), tauari (Cariniana micrantha), and piquiarana (Caryocar glabum) 

supplemented with wheat, corn, or rice bran [33]. In the present work, the RS-fed mycelium 

composites had higher densities than those that were OH-fed. This can be expected, as the density 

of RS has been reported to be around 561 kg/m
3
 to 557 kg/m

3
 [34] [35], while the density of OH 

was only about 230 kg/m
3
 [36]. Moreover, the OH had a more porous structure in comparison to 

RS. Porosity is considered to be a significant factor that affects the densities of mycelium 

composites [20].  

 

Figure 2. Density measurements of the mycelium composites 
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Values are means of duplicate measurements ± standard deviations. RS: rapeseed cake; OH: oat 

husk; TA: Trichoderma asperellum, AB: Agaricus bisporus, PO: Pleurotus ostreatus and GL: 

Ganoderma lucidum mycelia.  

When grown on RS, the novel mycelium composites AB-RS and TA-RS showed higher densities 

than composites with the known strains, PO-RS and GL-RS. However, differences in densities 

measured among strains grown on RS and strains grown on OH were not statistically significant 

(p>0.05). 

In previous studies, higher mycelial density has also been correlated with a higher amount of 

hyphae branching, which leads to a more compact structure with fewer micropores. More 

specifically, hyphae branching in GL – rather than lengthwise hyphae growth in PO – has been 

suggested as the cause for their density differences in film application [25]. This finding is in 

contrast with the present results, as the PO mycelia grown on both substrates showed slightly higher 

densities than GL. In mycelium composites, replacement of substrate with fungal material has been 

reported to decrease the density [37]. The availability of nutrients, such as carbon sources and/or 

supplementation [9], and differences in fungal growth rate also affect the material density; the 

extracellular enzymes released from fungal mycelia hyphae contribute to the growth by degrading 

the substrate used, and thus increase the mycelia density [9, 25].  

3.4. Compressive strength  

Compressive strength is one of the most significant material parameters, particularly for packaging 

applications that are intended to protect the inside contents from mechanical damage [17]. The 

studied mycelium composites differed in their compressive strengths (Figure 3). Specifically, the 

RS-fed mycelia composites showed a higher strength than those that were OH-fed. The novel TA-

RS composite showed the highest compressive strength of all studied samples (299.6 kPa); this, 

along with the GL-RS and PO-RS (274.8 and 274.6, respectively) was significantly higher 

compared to AB-RS (200.2 kPa) (p<0.05). Stress-strain curves of mycelia composites are provided 

in Supplementary Materials (Figure S2). The present findings support the previous knowledge that 

the compressive strength of mycelium composites is highly dependent on the substrates and mycelia 

strains, which also affect the morphology of the mycelium composites [4]. Among the previously 

known strains, GL-RS showed higher compressive strength than PO-RS. The difference was more 

evident in the OH-fed composites of these strains. This is in agreement with a previous study, where 

Ganoderma demonstrated higher compressive strength than P. ostreatus spp. [38]. 

In the present study, the compressive strength ranged between 16.8 and 299.6 kPa. Therefore, 

mycelium composites may be considered as competitors of expanded polystyrene, as these have 

been reported to have the compressive strength in a similar range (69–400 kPa) [38, 39]. The 
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presence of chitin in the fungal cell wall has been suggested to provide mechanical strength to 

mycelium composites, as chitin is aggregated into fibrils that decrease the crack formation during 

compression and support the material structure [9, 40]. Proteins and lipids may function as 

plasticizers, while polysaccharides give stiffness to mycelium-based films [25]. In the present study, 

the chemical characterization by FT-IR highlighted the presence of polysaccharides in the RS-fed 

mycelium composites, which may contribute to the higher compressive strength of these 

composites.  

 

 

Figure 3. Compressive strength measurements of the mycelium composites 

Values are means of duplicate measurements ± standard deviations. RS: rapeseed cake; OH: oat 

husk 

TA: Trichoderma asperellum, AB: Agaricus bisporus, PO: Pleurotus ostreatus, and GL: 

Ganoderma lucidum mycelia. 

Density of the mycelium composites was not clearly correlated with their compressive strength. 

TA-RS showed both the highest density and compressive strength. However, the other high-density 

sample (AB-RS) had a relatively low compressive strength. Previously, high-density mycelium 

composites produced by white-rot fungi also revealed higher compressive strength [40]. However, 

similar to our findings, densities of mycelium-based materials do not generally correlate with their 

compressive strength measurements, as clearly outlined in a recent review [32]. In the present work, 
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the density was mainly affected by the feeding substrate (RS or OH), but it appears that the 

compressive strength depends also on the growth behavior of mycelia. Recently, Appels et al. [43] 

revealed that location of dominant growth of hyphae significantly affects the mechanical strength of 

mycelium composites. Presently, the TA mycelium, which had high compressive strength, showed 

clearly decreased FT-IR bands for polysaccharides after growing on the substrates (Supplementary 

Material, Figure S1). Further studies are needed to fully understand the connection between mycelia 

composition, growth, and mechanical properties of mycelium composites.   

 

3.5.Water Uptake  

Water uptake is an inherent characteristic of materials, and influences their other properties, such as 

mechanical stiffness. Furthermore, water uptake may affect the use of materials as packaging 

applications, for example. Susceptibility to water might be more complex when considering 

composite materials compared to single-component systems [41]. In the present study, all mycelia 

composites, either with RS or OH as feeding substrates, had rather low (up to 5%) water uptake 

until 50% RH. Therefore, all samples – irrespective of the mycelium and substrate types – seemed 

to be resilient to humidity (Figures 4a to 4d). Substrate type did not determine the water uptake; 

rather, the mycelium matrix had a large effect on it. However, mycelium composites fed with RS 

had slightly higher water absorption than those fed with OH. 

At 75% RH, the water uptake increased to about 10% for all composites except for GL-RS (17.1%). 

At the highest studied RH (90%), GL-RS showed the highest water uptake of 32.0%. Among the 

mycelium composites grown on OH, TA-OH had the highest water uptake of 21.4%. In contrast, 

AB-OH had the lowest water uptake at 90% RH (19.5%), and TA-OH had 22.6%. 

Most fungi are considered as hydrophobic, a property that is linked to hydrophobins – low-weight 

proteins found only in fungi. Hydrophobins have several functions related to cell wall 

morphogenesis, hydrophobicity, and substrate adhesion [32]. The difference in water uptake 

mechanisms of different mycelia has been related to the difference in their chemical structure. The 

relatively low content of chitin in the P. ostreatus (PO) cell wall, with cellulose/potato-dextrose as a 

feeding substrate, has been attributed to its higher sensitivity to water uptake [25]. However, no 

clear relation was detected between the water absorption behavior of the present mycelium 

composites and their strength of chitin signals in FT-IR. An increase in water uptake at around 80% 

RH is commonly observed for most polysaccharides. The higher moisture uptake around this 

humidity level has previously been related to the onset of capillary condensation [42]. Mycelium 

composites of P. ostreatus and T. multicolor grown on rapeseed straw, exposed to 60% and 80% 
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RH conditions showed slightly lower weight gain results (3.87–8.22% at 60% RH and 10.00–

10.96% at 80% RH [43]) than the present findings.  
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Figure 4. Moisture uptake in mycelium composites 

A) mycelium composites grown on RS, with increasing relative humidity, B) mycelium composites 

grown on OH, with increasing relative humidity, C) mycelium composites grown on RS, with 
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decreasing relative humidity, and D) mycelium composites grown on OH, with decreasing relative 

humidity. TA: Trichoderma asperellum, AB: Agaricus bisporus, PO: Pleurotus ostreatus, and GL: 

Ganoderma lucidum mycelia. 

Among the samples fed on RS, those that absorbed higher levels of water (GL-RS and PO-RS) 

maintained higher moisture during desorption until 50% RH. Below 50% RH, all samples showed a 

similarly gradual decrease. 

3.6. Effect of temperature and humidity on mycelium composites 

Determining the characteristic mechanical changes at dynamic temperature and humidity conditions 

is regarded as a powerful and sensitive "fingerprinting" tool, particularly for the characterization of 

polymer structures and complex porous materials [32]. Currently, DMA has not been extensively 

used to characterize mycelia composites, although it is commonly applied with many other 

materials. 

In the present study, RS-fed mycelia composites showed significantly higher values for storage 

modulus compared to OH-fed composites, both with changing temperature and RH. Selection of 

substrate affects the morphology and mechanical properties of the mycelium composites [25]. In 

polymer science, highly cross-linked thermoset polymers show much larger storage moduli than 

lightly cross linked ones, indicating that a tight network structure is related to high stiffness [3]. The 

intrinsic properties of biocomposite matrix components and the interfacial nature between the 

components govern the dynamic mechanical properties of composites [3, 44]. Although a high 

polysaccharide content has been correlated with stiff structure [32], the more rigid structure of RS 

substrates likely leads to stiffer mycelium composites compared to mycelia fed with OH. 

Figure 5 shows the storage modulus of RS-fed mycelium composites determined at 1 Hz frequency. 

All DMA tests were also conducted at 5 Hz frequency, which consistently resulted in slightly higher 

storage moduli (data not shown). The highest storage modulus value during the temperature scans 

was measured for AB-RS (83 MPa) (Figure 5A). The high mycelium concentration due to the high 

growth rate of AB-RS may have reduced the mobility and deformation of the material, leading to 

high stiffness [40]. RS seemed to provide better growth conditions than OH, which could enhance 

the hyphae morphology development.  

Increasing the temperature from 25ºC to 65ºC decreased the stiffness of all RS-fed mycelium 

composites. Even though the modulus of AB-RS composites decreased the most, they still exhibited 

the highest modulus at 65ºC compared to all studied mycelium composites. The AB-RS sample 

gave a lower compressive strength than the other mycelia composites (as discussed in Section 3.4). 

Together with the DMA measurements, this finding indicates that it had a unique elastic behavior. 
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AB-RS showed high density similar to that of TA-RS, however such similarity in their density did 

not reflect their mechanical behavior in the changing environmental conditions.  

The storage moduli of the OH-fed mycelium composites varied between 0.32 and 0.87 MPa (data 

not shown) and were relatively low in comparison to those fed with RS (7–83 MPa). GL-OH gave 

an increasing storage modulus until 45ºC (0.76 MPa), which then dropped slightly under its initial 

storage modulus at 65ºC (0.48 MPa). This behavior was different from that of TA-OH and PO-OH, 

which showed a decreasing trend followed by an increase in strength with increasing temperature. 

For AB-OH, on the other hand, the storage modulus increased with temperature. Previously, P. 

ostreatus inoculation of wheat straw as a filler for high-density polyethylene production has given 

promising storage moduli results by improving interfacial adhesion [45]. However, determining the 

impacts of dynamic temperature and relative humidity conditions using DMA is a novel approach 

for mycelium composites. 
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Figure 5. Storage moduli of mycelium composites 

Rapeseed cake (RS)-fed mycelium composites at A) increasing temperature, B) decreasing 

temperature, C) increasing relative humidity, and D) decreasing relative humidity. TA: 

Trichoderma asperellum, AB: Agaricus bisporus, PO: Pleurotus ostreatus, and GL: Ganoderma 

lucidum mycelia. 

A decrease in temperature after heating increased the storage modulus of all studied mycelia 

composites (Figure 5B). However, the extent of the stiffness increase depended on the feeding 

substrate and mycelia strain. Increasing stiffness caused brittleness in RS-fed mycelia; GL-RS 

collapsed during cooling at 62.7ºC, and TA-RS at 63ºC. The other studied RS-mycelium 

composites were more fragile and broke at higher temperatures. In contrast, the OH-fed mycelium 

composites showed increased storage moduli until the end of the analysis, down to 25ºC. The 

increase in stiffness was steep for GL-OH, while PO-OH only showed a minor increase. The 

behavior of TA-OH and AB-OH were between that of GL-OH and PO-OH. The mechanical 

properties of the composites generally display weakening at elevated temperatures, since polymers 

become pliable and lose their homogeneous behavior as a matrix element [46]. Moreover, high 

temperatures may cause the formation of microscopic cracks and voids in the composite material 

matrix, and hence reduce the storage modulus [44]. The mechanical behavior of mycelium 
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composites may differ from that of polymer matrices. For example, the behavior of mycelium 

composites is dominated by the mycelium matrix at low strains, whereas higher strains lead to the 

rapid stiffening due to the contact established between mycelia and feeding substrate [8]. Therefore, 

an increase in stiffness may be related to the mycelia hyphae acting as filler after the applied heat 

treatment, to limit the porous structure of the substrate and therefore enhancing the material 

stiffness, in a similar mechanism to brewer’s spent grain used as fillers to limit the mobility of 

polymer chains [47]. The increased stiffness during cooling may be explained by heat-induced 

interaction, such as physical cross-linking between the functional groups of composite matrix 

elements, which may lead to an increase in stiffness [22]. 

Making humidity scans with DMA is an established method to characterize biopolymer materials, 

such as films from bacterial cellulose and glucuronoxylan [24], spruce galactoglucomannans [27],  

calcium caseinate [48], or hydrogels with carboxymethylcellulose [22]. Water plays a role as a 

plasticizer at high humidity for most polysaccharides due to the solubilization/plasticization 

phenomenon. Hence, an increase in RH generally causes softening of those materials [42]. The 

effect of hydrodynamic treatment on the studied RS-fed mycelium composites was different from 

the above mentioned materials. After the initial slight softening, AB-RS (until 50% RH) and GL 

(until 60% RH) became stiffer with increasing humidity (Figure 5C). In contrast, PO-RS 

demonstrated a constant softening. For AB-RS, a gradual increase in stiffness was seen until around 

60% RH, followed by a rather constant storage modulus until 85% RH, at which point it softened. 

The change in storage modulus during the increasing RH was about 10 MPa. The significantly 

higher stiffness in AB-RS samples might also be related to the water uptake data discussed above, 

as a clear difference in water uptake of AB-RS samples was evident. Lower water uptake may have 

increased the stiffness at changing environmental conditions. However, AB-RS was discrete also in 

compressive strength, as all other RS-fed samples had higher strength (Fig 3). The effect of RH on 

storage modulus of OH-fed mycelia composites was minor, as the samples were significantly softer 

(0.1–0.90 MPa) than the RS-fed mycelia composites (results not shown). An increase in storage 

modulus after increasing the relative humidity has not been commonly observed, and generally a 

softening is expected [22, 49]. In mycelia-based materials, the presence of mycelia hyphae may 

serve as a hydrophobic reinforcement in the material structure [45]. 

After the DMA test with increased RH, another test with decreasing RH was performed. The 

decreasing RH further increased the storage modulus of all samples, regardless of the substrate (Fig. 

5D). GL-RS gave the highest storage modulus value (by increasing from 5 MPa over 100 MPa), 

after the RH was decreased to 60%. TA-RS showed the increasing storage modulus further until 

50% RH (85MPa). This RH range is close to the RH at which the mycelium composites showed the 
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first change in their hydromechanical characteristics during the initial RH increase, but with 

significantly increased storage modulus. An increase in stiffness was also evident for OH-fed 

mycelium composites, although the increases were generally smaller.  

Mechanical properties of mycelium composites are mainly determined by cohesion between the 

fungal hyphae and polymer matrix of the substrate material. Hyphal differences among different 

fungal species, along with the differences in their substrate degradation mechanisms, play a key role  

in mechanical properties [32]. Although GL and PO are both lignocellulose degrading fungi, the 

morphological differences between these two strains – namely the higher flexibility of the twisted 

and branched structure of GL – have been previously related with their higher strength and 

elongation [25]. Moreover, binding hyphae type has been linked with higher material strength, 

whereas generative type of hyphae has been associated with a more limited mechanical strength 

[17]. In the present study, the novel mycelium composite of AB-RS showed an especially high 

mechanical stiffness and responded to successive humidity increase and decrease with increased 

stiffness. 

 

4. Conclusion  

We showed that of the nine known strains that were pre-screened and the two novel fungal strains 

for mycelium composites characterized, A. bisporus (AB) was especially stiff and strong compared 

to the previously known mycelia strains P. ostreatus (PO) and G. lucidum (GL). The dense structure 

and rich chemical composition of rapeseed cake made it a potent feeding substrate for mycelia. For 

the first time, we determined the dynamic mechanical properties of mycelium composites at a broad 

moisture gradient and showed that AB grown on rapeseed cake was resistant towards high 

humidity. Hydromechanical stress factors applied via DMA analysis worked as an efficient tool to 

simulate the possible conditions for mycelium composites during expected consumer usage. The 

fungal mycelium composites have high potential and capability to be used more widely in future 

material solutions due to their promising properties of adaptation to different ambient conditions, as 

well as sustainability, low cost, and ease of production.  
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Research Highlights 

 The dynamic mechanical properties of mycelium composites were studied for the first time 

at a broad moisture gradient. 

 Novel mycelium composites from Agaricus bisporus gave high moisture-resistance.  

 The dense structure and rich chemical composition of rapeseed cake made it a potent 

feeding substrate for mycelia. 
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