Soil Biology & Biochemistry

Fungal colonization patterns and enzymatic activities of peatland ericaceous plants following long-term nutrient addition

Heikki Kiheri, Sannakajsa Velmala, Taina Pennanen, Sari Timonen, Outi-Maaria Sietiö, Hannu Fritze, Jussi Heinonsalo, Netty van Dijk, Nancy Dise, Tuula Larmola

PII: S0038-0717(20)30130-9

DOI: https://doi.org/10.1016/j.soilbio.2020.107833

Reference: SBB 107833

To appear in: Soil Biology and Biochemistry

Received Date: 4 November 2019

Revised Date: 17 April 2020

Accepted Date: 21 April 2020

Please cite this article as: Kiheri, H., Velmala, S., Pennanen, T., Timonen, S., Sietiö, O.-M., Fritze, H., Heinonsalo, J., van Dijk, N., Dise, N., Larmola, T., Fungal colonization patterns and enzymatic activities of peatland ericaceous plants following long-term nutrient addition, *Soil Biology and Biochemistry* (2020), doi: https://doi.org/10.1016/j.soilbio.2020.107833.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Ltd.

- 1 Fungal Colonization Patterns and Enzymatic Activities of Peatland
- 2 Ericaceous Plants Following Long-Term Nutrient Addition
- 3
- 4 Heikki Kiheri^{ab}, Sannakajsa Velmala^a, Taina Pennanen^a, Sari Timonen^b,
- 5 Outi-Maaria Sietiö^{bc}, Hannu Fritze^a, Jussi Heinonsalo^{bcd}, Netty van Dijk^e,
- 6 Nancy Dise^e, Tuula Larmola^a
- 7 ^a Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790
- 8 Helsinki, Finland
- 9 ^b Department of Microbiology, University of Helsinki, Finland
- 10 ^c Institute for Atmospheric and Earth System Research (INAR), University
- 11 of Helsinki, Finland
- 12 ^d Finnish Meteorological Institute (FMI), Climate System Research,
- 13 Helsinki, Finland
- 14 ^e UK Centre for Ecology and Hydrology (UKCEH), United Kingdom
- 15
- 16 Corresponding author:
- 17 Heikki Kiheri
- 18 Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790
- 19 Helsinki, Finland
- 20 +358295324576
- 21 heikki.kiheri@helsinki.fi
- 22
- 23
- 24

25 Abstract

26 Northern peatlands are often dominated by ericaceous shrub species 27 which rely on ericoid mycorrhizal fungi (ERM) for access to organic 28 sources of nutrients, such as nitrogen (N) and phosphorus (P), and host 29 abundant dark septate endophytes (DSE). Relationships between hosts 30 and fungal symbionts may change during deposition of anthropogenic N 31 and P. We studied the long-term effects of N and P addition on two 32 ericaceous shrubs, Calluna vulgaris and Erica tetralix, at Whim Bog, 33 Scotland by analyzing fungal colonization of roots, enzymatic activity, 34 and fungal species composition. Unexpectedly, the frequency of typical 35 ERM intracellular colonization did not change while the occurrence of 36 ERM hyphae tended to increase and DSE hyphae to decrease. Our 37 findings indicate that altered nutrient limitations shift root associated 38 fungal colonization patterns as well as affecting ericaceous root enzyme 39 activity and thereby decomposition potential. Reduction of recalcitrant 40 fungal biomass in melanized DSE may have implications for peatland C 41 sequestration under nutrient addition.

- 42
- 43

44 Keywords: ericoid mycorrhizae; peatland; nutrient limitation; enzyme
45 activity; mycorrhizal colonization; dark septate endophyte; nitrogen
46 deposition; *Sphagnum*

47

48 Declarations of interest: none

49 **1 Introduction**

50 Peatlands in the Northern hemisphere are often nutrient poor 51 ecosystems characterized by acidic, anoxic, water saturated conditions 52 with considerable nitrogen (N) and phosphorus (P) limitations (Aerts et 53 al., 2001). These conditions and the accumulation of recalcitrant 54 vegetation litter containing high concentrations of phenolic compounds 55 and humic acids inhibitory to microorganisms and vegetation are 56 considered to largely suppress decomposition (Leake and Read, 1990; 57 Painter, 1991; Read et al., 2004; van Breemen, 1995). The challenging 58 conditions in peatlands support a unique diversity of vegetation, with 59 ericaceous species comprising one of the most dominant ground cover 60 groups. Ericaceous shrubs are largely dependent on ericoid mycorrhizal 61 fungi (ERM) to provide access to organic N and P which they provide in 62 exchange for photosynthetic carbon (C) from the host plant (Smith and 63 Read, 2008). The ERM fungi are capable of accessing organic N and P via 64 a large variety of degradative enzymes which act primarily on plant cell 65 wall components (Perotto et al., 2018), demonstrating a potential 66 versatility more comparable to saprotrophs than to other types of 67 mycorrhizae. These ericaceous species are also host to abundant dark 68 septate endophytes (DSE) with extracellular enzyme capabilities 69 potentially capable of improving host nutrient uptake (Mandyam and 70 Jumpponen, 2005, 2014; Upson et al., 2009).

71

72	Over the past 150 years atmospheric deposition of N and P in forms
73	easily accessible to plants has been increasing through combustion of
74	fossil fuels and agricultural fertilization (Galloway et al., 2013; Galloway
75	et al., 2003; Tipping et al., 2014; Wang et al., 2015). As nutrient
76	limitations are alleviated, ericaceous reliance on ERM fungi may be
77	reduced, potentially altering the symbiont community and leading to
78	the loss of mycorrhizal symbionts. As mycorrhizal symbionts likely play a
79	role in protection against pathogens (Vohník et al., 2016; Weiß et al.,
80	2016), host species may in turn become more vulnerable to infection.
81	Furthermore, the long-term effects of an altered nutrient balance in
82	peatlands may include reduced nutrient acquisition competitiveness for
83	ericaceous species. The ERM fungi are not as efficient decomposers as
84	free-living saprotrophs, which may be naturally kept in check by
85	nutrient limitations and direct competition with ERM fungi (Averill et al.,
86	2014). Reduction of nutrient limitations may free the saprotrophic
87	species' decomposition potential, leading to their dominance and the
88	decline of ERM species and their host plants.

90 The selective pressure of N deposition on the symbiont community 91 highlights a risk to peatland plant diversity, potentially leading to similar 92 large-scale community shifts as seen in the continental level decline of 93 ectomycorrhizal tree species and the increase in arbuscular tree species 94 described by Averill et al. (2018). Any large-scale changes to peatland 95 microbial and plant communities risk changing the status of peatlands

96	as net C sinks to net sources of greenhouse gas emissions (Andersen et
97	al., 2013), which holds a globally significant potential when considering
98	that peatlands sequester nearly one third of global soil organic carbon C
99	(Gorham, 1991). The risk to C sink potential has been indicated by
100	Larmola et al. (2013), who found that ecosystem C uptake did not
101	increase in a long-term nutrient addition experiment at a nutrient-poor
102	peatland in Canada simulating atmospheric N deposition.

104 The Whim Bog experimental site, located in the Scottish Borders, was 105 established in 2001 to study the effects of different N forms and P 106 addition on an ombrotrophic peat bog (Sheppard et al., 2004). This site 107 allowed us to study nutrient addition effects on the ericaceous species 108 Calluna vulgaris and Erica tetralix and their root associated fungi. The 109 primary goals of this study were to characterize the frequency and 110 morphology of mycorrhizal colonization in these ericaceous shrub 111 species, assess ericoid mycorrhizal root enzyme capability related to 112 organic matter degradation, and identify their fungal symbionts under 113 changing nutrient availability. We hypothesized that: (1) the frequency 114 of microscopically observed fungal colonization in ericaceous shrub 115 roots is reduced across both forms of N and NP nutrient addition 116 treatments, reflecting a reduction in reliance on symbionts for nutrient 117 uptake; (2) nutrient addition treatments alter root associated fungal 118 diversity, as determined by morphotypic analysis and ITS sequencing;

	in the			
oun				

- and (3) the activities of ericoid mycorrhizal root surface enzymes reflect
- 120 treatment nutrient limitations.
- 121
- 122 2 Materials and Methods
- 123 2.1 Study Site

124	The study site, Whim Bog, located in the Scottish Borders, UK (Latitude:
125	55.76670, Longitude: -3.26667), has undergone nutrient addition
126	treatment since 2001. The study site, Whim Bog, located in the Scottish
127	Borders, UK (Latitude: 55.76670, Longitude: -3.26667), has undergone
128	nutrient addition treatment since 2001. The four nutrient addition
129	treatments included in this study received annually 6.4 g N m ⁻² either as
130	sodium nitrate (NaNO $_3$) or as ammonium chloride (NH $_4$ Cl), both with
131	and without P and K (as K_2HPO_4). K_2HPO_4 was added at a 1:14 P:N ratio
132	to represent the ratio found in amino acids (See Sheppard et al. (2004)
133	and Levy et al. (2019) for details). The ambient deposition in controls
134	was 0.8 g N m ⁻² . Precipitation collected at the site was mixed with
135	standard solutions to the required treatment concentrations. When
136	adequate precipitation was collected an automated sprayer-system
137	applied the treatment to the plots, simulating natural rainfall. Natural
138	precipitation was not excluded from plots. Plots received 15 years of
139	nutrient addition resulting in a 96 g N m ⁻² cumulative load.

141 2.2 Site Measurements and Sampling

142	In August 2016, plant species composition and abundance for each plot
143	were measured via the point-intercept method using a 0.36 m ² frame on
144	permanent vegetation quadrats established on site. The frame was
145	placed at a height of ca. 1 m relative to the surface of the plot and a
146	graduated pin was used to measure the frame height and vertical
147	location of each vegetation point for 61 intercepts as described in
148	Larmola et al. (2013). Water table (WT) depth for each plot was
149	measured from holes present after extraction of ingrowth cores used in
150	a separate study, relative to moss surface height.
151	
152	Triplicate plots per treatment and controls were sampled in November
153	2016 for Calluna vulgaris (L.) Hull and Erica tetralix (L.) plant roots from
154	one individual plant per plot. Fine root sections were collected from
155	several points throughout the root system of each sampled plant and
156	stored at 8 °C prior to transport, followed by storage at -20 °C. Each root
157	sample was split into two subsamples: one for microscopy and the other
158	for enzymatic and subsequent molecular analyses.
159	
160	Surface peat from triplicate plots per treatment and controls was
161	sampled to a depth of 20 cm in each plot and stored at 8 °C prior to
162	transport, followed by storage at -20 °C. After melting, the pH of each
163	sample was measured following homogenization with deionized water
164	at a 1:4 ratio.
165	

166 2.3 Microscopy

167	The mycorrhizal status of the ericaceous shrub species C. vulgaris and E.
168	tetralix was determined via light microscopy and Trypan Blue staining as
169	described in Kiheri et al. (2017). Using the magnified intersections
170	method described by McGonigle et al. (1990), with one slide per species
171	from each of three replicate plots per treatment and controls (15
172	samples per species), using 300 counts per slide, mycorrhizal
173	colonization was quantified according to different morphological
174	categories, described in Table 1. These categories were used to estimate
175	differences between the frequencies of potential ericoid mycorrhizal
176	(ERM) hyphae and typical dark septate endophyte (DSE) hyphae. In our
177	study, only those fungi which were robust in structure, heavily
178	melanized and displaying septa were assessed to be DSE. This was
179	necessary to prevent misclassification of those ERM species which
180	produce melanized and septate hyphae (Vohník and Albrechtová, 2011).
181	
182	Table 1. Microscopic morphological categories of ericaceous root

183 associated fungi.

Hyphal	Quantification	Morphological
Туре	Category	Characteristics
	ERM0/DSE0	No fungal presence
Potential	ERM1	Intracellular coiling
ericoid	ERM2	Intracellular hyphae
mycorrhizae	ERM3	Colonizing surface hyphae
(ERM)	ERM4	Extracellular surface hyphae
Dark	DSE1	Intracellular coiling
Septate	DSE2	Intracellular hyphae
Endophyte	DSE3	Colonizing surface hyphae
(DSE)	DSE4	Extracellular surface hypha

104	
185	Hereon, putative ericoid mycorrhizal morphotypes are referred to with
186	categories ERM1-4 and dark septate endophytes with DSE1-4 (Table 1).
187	Of the morphotypic categories, only ERM category 1 (intracellular
188	coiling) was interpreted as mycorrhizal colonization frequency.
189	Categories 2-4 were interpreted as potential changes in fungal diversity
190	and function.
191	
192	2.4 Enzyme Assays
193	The enzymatic activities of root samples from C. vulgaris and E. tetralix
194	were determined using a multi-enzyme assay described by Pritsch et al.
195	(2011), originally performed for assessing ectomycorrhizal exo-enzyme
196	potential. From triplicate plots of each of the five treatments, rhizomes
197	of both ericaceous species were each sampled for 9 individual ca. 1 cm
198	root pieces, for a total of 270 root samples (n = 5 treatments x 3 plots x
199	2 species x 9 root samples). To measure eight different hydrolytic and
200	oxidative root surface enzyme potentials we used the method described
201	by Velmala et al. (2014) for fluorescences representing the potential
202	activities of leucine aminopeptidase (EC 3.4.11.1), hemicellulases via eta -
203	glucuronidase (EC 3.2.1.31) and $\beta\mbox{-xylosidase}$ (EC 3.2.1.37), cellulases via
204	cellobiohydrolase (EC 3.2.1.91) and β -glucosidase (EC 3.2.1.21),
205	chitinase via N-acetylglucosaminidase (EC 3.2.1.14), and acid
206	phosphatase (EC 3.1.3.2). Samples were incubated at room temperature
207	in the dark and under agitation at 180 rpm on a tabletop shaker, with

208	each root piece in individual wells of 96-well filter plates (30–40 μm
209	mesh size, AcroPrepTM 96 Filter Plate; PALL, Port Washington, NY, USA)
210	in buffers containing enzyme specific 7-amino-4-methylcoumarine
211	(AMC) or 4-methylumbelliferone (MU) substrates. Incubation times for
212	each enzyme followed the protocol of Pritsch et al. (2011). The
213	respective substrates used were Leucine-AMC, MU-xylopyranoside, MU-
214	β-D-glucuronide, MU-cellobiohydrofuran, MU-N-acetyl-β-D-
215	glucosaminide, MU- β -D-glucopyranoside, and MU-phosphate. After
216	incubation, substrate solutions were collected by centrifugation with a
217	96-well plate adapter at 3200 rpm onto Optiplate-96F reading plates
218	(Perkin-Elmer, Waltham, MA, USA) containing stop buffer (pH 10). Each
219	substrate's fluorescence was measured using a Victor ³ 1420 multilabel
220	plate counter (Perkin-Elmer, Waltham, MA, USA) at an excitation
221	wavelength of 355 nm and an emission wavelength of 460 nm. Standard
222	solutions were prepared using aminomethylcoumarin (AMC) and 4-
223	methylumbelliferone (MUF) and used to calculate enzymatic activities
224	from concentrations of released AMC or MUF according to their
225	respective substrates. All standard and enzyme substrate solutions were
226	purchased from Sigma-Aldrich (Merck KGaA, Darmstadt, Germany).
227	
228	Further, laccase (EC 1.10.3.2) activity was used as an indicator of lignin
229	modification activity and was determined by incubation in buffer
230	containing diammonium 2,2'-azinobis-3-ethylbenzothiazoline-6-

231 sulfonate (ABTS) and colorimetric measurement using a Tecan Infinite

- 232 M200 PRO Multimode Reader (Tecan Trading AG, Männedorf,
- 233 Switzerland).
- 234

235 Following enzymatic measurements, the individual root pieces were

scanned at high resolution (650 dpi) and their surface area measured

237 using winRHIZO Pro (ver. 2017, Regent Instruments Inc.) software.

238 These surface area values were used to convert enzymatic activity to

239 pmol mm⁻² min⁻¹.

240

241 2.5 Molecular Methods and Sequencing

242 From triplicate plots of each of the five treatments, rhizomes of both 243 ericaceous species were each sampled for 9 individual ca. 1 cm root 244 pieces, for a total of 270 root samples (n = 5 treatments x 3 plots x 2 245 species x 9 root samples). Following enzyme assays and winRHIZO 246 analysis on these samples, a randomized subset of 1 of 3 treatment 247 replicates was taken from the 270 samples for sequencing. These 90 248 samples, plus four repeated samples, were then directly amplified using 249 a Phire Plant Direct PCR kit's plant leaf protocol (Thermo Fisher 250 Scientific, Waltham, MA, USA) and PCR using the ITS1F (Gardes and 251 Bruns, 1993) and ITS4 (White et al., 1990) primer pair. Individual root 252 pieces were manually crushed using sterile pestles in provided dilution 253 buffer, in order to release fungal cells both on the root surface and 254 within the root structure, and 1 μ l of each mixture was then used as a 255 template in a 20 μ l PCR reaction. Cycling conditions for the Direct PCR

256	were: initial denaturation 98 °C 5 min, 40 cycles (98 °C for 5 sec, 57 °C
257	for 5 sec, 72 °C for 20 sec), and final extension 72 °C for 1 min. The
258	Direct PCR products were separated in a 2% agarose gel in 1X TAE buffer
259	at 120V for 2 hours and each ITS band excised and purified using a
260	Nucelospin [®] Gel and PCR Clean-Up kit (Macherey-Nagel GmbH & Co.
261	KG, Düren, Germany). The purified products were then further amplified
262	using a DreamTaq PCR mastermix (Thermo Fisher Scientific, Waltham,
263	MA, USA) by using 1 ul of Direct PCR product as the template in a 20 μl
264	DreamTaq PCR reaction with the same ITS1F-ITS4 primer pair. The
265	DreamTaq PCR was performed with the following program: initial
266	denaturation 95 °C for 3 min, 35 cycles (95 °C for 30 sec, 57 °C for 30
267	sec, 72 °C for 1 min), and final extension 72 °C for 10 min. This was done
268	as a quick method to identify common fungal species in each root
269	sample which could then be linked to their associated root surface
270	enzyme activities. These ITS products were Sanger sequenced using the
271	ITS4 primer (Macrogen Europe, Amsterdam, NL). This produced ITS
272	fragments ranging from 98 to 884 bp in length. This method resulted in
273	the successful sequencing of 60% of (57 out of 94) ITS products
274	(Supplementary File 1), of which 38 sequences were more than 200 bp
275	in length and of high enough quality required for NCBI Gen Bank
276	submission. The sequences are disposed to Gen Bank under the
277	accession numbers MN059889-MN059927. See Supplementary File 1
278	for all 57 FASTA sequences. The high proportion of sequencing failure
279	was likely due to mixed ITS products from multiple fungal species and

280	inhibitory chemistry. Sequence identification was performed using the
281	Unite massBLASTer analysis (Nilsson et al., 2019) on manually trimmed
282	sequences. Analyzed sequences had 86-100% sequence similarity to
283	existing reference or representative sequences within the INSD or
284	Environmental databases and the most likely species hypotheses (SH)
285	were selected as their fungal identities. Functional roles were then
286	assigned to these fungal identities according to the web based FUNGuild
287	bioinformatic tool (Nguyen et al., 2016).
288	
289	2.6 Statistical Analyses
290	Hereon, α level for statistical significance is defined as $p \le 0.05$ and
291	indicative as 0.05 \leq 0.1 in all cases, and the term significant
292	specifically indicates statistical significance as $p \le 0.05$. All analyses were
293	calculated using values from treatment means (n=3). Differences
294	between treatments, for each host plant separately, were determined
295	by analysis of variance (ANOVA) on logarithmically transformed data
296	followed by pairwise comparisons using the parametric Tukey's HSD and
297	nonparametric Games-Howell post hoc tests, using IBM SPSS Statistics
298	25. Fungal-Enzyme activity profiles in Figure 8 were prepared using
299	OriginPro 2018 by assigning fungal identifications to enzyme activities
300	on an individual root piece basis.
301	
302	The combined data for both host plants' mycorrhizal morphotype
303	categories ERM1-4 and DSE1-4 (Table 1), root enzyme activities, plot

304	level vegetation abundance, surface peat pH, and water table depth
305	were analyzed using correlation analyses. Correlation analyses were
306	performed using rcorr-function with Spearman rank based correlation
307	from package Hmisc v4.1-1 (Harrell et al., 2014) and plotted using
308	corrplot-function from package corrplot v0.84 (Wei and Simko, 2016) in
309	the R programming environment (R Core Team, 2017).
310	
311	3 Results
312	3.1 Vegetation, Peat pH, and Water Table
313	In all four nutrient addition treatments, the dominant ericaceous shrub,
314	Calluna vulgaris, tended to decrease in abundance while Erica tetralix
315	tended to increase, especially in NaNO $_3$ treatments (Table 2). Nutrient
316	addition treatments showed decreasing trends in the abundance of
317	Sphagnum, when compared with controls. The sedge Eriophorum
318	vaginatum showed increasing trends in abundance in all treatments
319	except NaNO ₃ , when compared with controls. The high abundance of
320	reported <i>E. vaginatum</i> in the NaNO ₃ +PK treatment was largely an effect
321	of one plot where the point-intercept measurements were performed
322	within a large <i>E. vaginatum</i> tussock. Furthermore, the different forms of
323	N addition were found to cause opposite changes in peat pH, with
324	NaNO $_3$ increasing pH by ca. 0.2-0.3 units and NH $_4$ Cl decreasing pH by ca.
325	0.2-0.4 units (Table 2). Effects of treatments on peat pH were found to
326	be statistically significant ($F_{(4,10)}$ =6.410), with pairwise comparisons
327	finding statistically significant differences between NaNO $_3$ and NH $_4$ Cl+PK

328	treatments and between NaNO $_3$ +PK and NH $_4$ Cl+PK treatments. Mean
329	water table (WT) depth, measured relative to moss surface, was eight
330	cm closer to the moss surface in NaNO $_3$ +PK treatments than in control
331	plots, while NH ₄ Cl treatments affected WT the least. This was likely
332	affected by the loss of moss abundance and subsequent subsidence in
333	NaNO ₃ +PK treatments.
334	
335	Table 2. Vegetation abundance (hits per m ²), surface (0-20cm) peat pH,
336	and treatment water table (WT) depth with ± 1 standard deviation, n=3.
337	Different superscript letters indicate significant differences (P<0.05)
338	compared with the other treatments. Statistically significant differences

339	were only	y observed	for pH	l values	(<i>F</i> _(4,10) =6.410).
-----	-----------	------------	--------	----------	---------------------------------------

	Calluna vulgaris	Erica tetralix	Eriophorum vaginatum	Other Vasc. spp.	Sphagnum	Other Mosses	рН	WT (cm)
Control	212.6 ± 33.6	4.0 ± 4.9	42.3 ± 32.0	2.0 ± 2.1	24.3 ± 17.5	28.3 ± 16.7	4.1 ± 0.0 ^{ab}	16.0 ± 12.4
NaNO₃	156.6 ± 72.3	57.0 ± 28.7	23.3 ± 2.3	5.6 ± 7.3	11.6 ± 16.4	25.3 ± 1.6	4.4 ± 0.2 ^ª	12.6 ± 9.8
NaNO₃ +PK	61.0 ± 41.4	11.0 ± 14.8	205.3 ± 182.1	5.0 ± 2.9	0.0	35.0 ± 11.3	4.3 ± 0.1 ^a	8.0 ± 1.4
NH₄CI	221.6 ± 49.7	19.0 ± 12.3	57.0 ± 26.1	0.0	10.6 ± 5.2	20.3 ± 19.7	3.9 ± 0.1 ^{ab}	16.0 ± 2.6
NH₄Cl +PK	163.3 ± 72.6	24.6 ± 23.7	113.3 ± 64.5	1.3 ± 1.8	9.6 ± 8.01	24.6 ± 8.1	3.7 ± 0.1 ^b	24.0 ± 4.2

341 3.2 Root Associated Fungal Morphology and Frequency

342 The mean proportion of root intersects which were microscopically

343 quantified as presenting fungal colonization increased from 78% and

344 83% in control plots for *C. vulgaris* and *E. tetralix* roots, respectively, to

345 89% and 91% in nutrient addition plots, respectively. Of these root

346 intersections which contained fungal structures, both ericaceous host

347	species showed trends of increasing ERM hyphal frequency and
348	decreasing DSE hyphal frequency when under nutrient addition (Figure
349	1). Nutrient addition increased mean ERM hyphal frequency in <i>C</i> .
350	vulgaris and E. tetralix roots by 31% and 16%, respectively. However,
351	mean DSE hyphal frequency decreased by 30 % in <i>C. vulgaris</i> roots and
352	22% in <i>E. tetralix</i> roots. Though these trends are considerable, they
353	were not found to be statistically significant due to high natural
354	variation between samples.
355	
356	Intracellular hyphal frequency (ERM2, Table 1) of C. vulgaris roots
357	significantly ($F_{(4,10)}$ =11.406) increased by ca. two-fold under nutrient
358	addition when comparing controls to NaNO $_3$ +PK, NH $_4$ Cl, and NH $_4$ Cl+PK,
359	as well as increasing by approximately half under NaNO $_{3}$ addition, which
360	was a statistically indicative change (Figure 2). C. vulgaris roots showed
361	no statistically significant increases in cells containing typical ERM
362	intracellular coiling (ERM1), root surface colonizing hyphae (ERM3), or
363	extracellular surface hyphae (ERM4) under nutrient addition. <i>C. vulgaris</i>
364	DSE extracellular hyphal frequency (DSE4) decreased significantly under
365	NH ₄ Cl addition to less than 10% that of controls ($F_{(4,10)}$ =4.654) (Figure 3).
366	The same analysis for <i>E. tetralix</i> roots showed similar trends of
367	increasing ERM morphotype frequencies under nutrient addition (Figure
368	2), while DSE morphotype frequencies decreased (Figure 3).
369	Interestingly, a statistically indicative positive correlation was found

α m		ne.	-12	\mathbf{r}	
Uuu					

- 370 between *E. tetralix* root surface DSE colonization frequency (DSE3) and
- 371 plot *Sphagnum* abundance (r= 0.58) (Figure 5).
- 372

373 3.3 Root Enzymatic Activity

374	The different forms of N addition, NH_4^+ and NO_3^- , induced variable and
375	opposing effects on C and N acquiring enzymes on the two ericaceous
376	shrubs' root surfaces, when compared to controls (Figures 6&7).
377	Treatment with NaNO $_3$ tended to reduce all <i>C. vulgaris</i> root enzymatic
378	activities except acid phosphatase, suggesting that C. vulgaris or its root
379	associated fungi are more sensitive to NaNO ₃ than <i>E. tetralix</i> , which did
380	not show this effect. In <i>C. vulgaris</i> roots under NH_4Cl addition, the
381	activities of the C acquiring enzymes $\beta\mbox{-xylosidase}$ and $\beta\mbox{-glucosidase}$ did
382	not change compared to controls, while activity of β -glucuronidase
383	tended to increase two-fold and N-acetylglucosaminidase tended to
384	decrease by nearly half. In contrast, the effects of both forms of N on E.
385	tetralix roots were similar for all C and N acquiring enzymes, while
386	leucine aminopeptidase activity tended to be suppressed under NH_4CI
387	addition to less than 25% of controls and N-acetylglucosaminidase
388	decreased by less than half, compared to controls. Laccase activity was
389	not detected in any samples.
390	
391	Compared to control plots, addition of both forms of N alone tended to
392	induce an approximately 25% increase in acid phosphatase activity in

both plant species (Figures 6&7). In contrast, treatments with additional

394	PK reduced acid phosphatase activity to 1/3 rd of controls in both
395	ericaceous species (Figure 7). In <i>C. vulgaris</i> roots, the effect of nutrient
396	additions on acid phosphatase activity was statistically significant
397	($F_{(4,10)}$ =8.163), with significant differences between NaNO ₃ and
398	NaNO ₃ +PK and NH ₄ Cl+PK treatments, as well as between NH ₄ Cl and
399	NaNO ₃ +PK and NH ₄ Cl+PK treatments. In <i>E. tetralix</i> roots the effect of
400	nutrient addition on acid phosphatase activity was significant
401	($F_{(4,10)}$ =11.400), with significant differences between control and
402	$\rm NH_4Cl+PK$ treatments, between $\rm NaNO_3$ and $\rm NaNO_3+PK$ and $\rm NH_4Cl+PK$
403	treatments, and also between NH ₄ Cl and NaNO ₃ +PK and NH ₄ Cl+PK
404	treatments.
405	
406	Interestingly, in both ericaceous species the NPK treatments induced
407	higher, although statistically non-significant, activities in many C and N
408	acquiring enzymes compared to N alone (Figures 6&7). The exceptions
409	to this were the suppression of β -xylosidase and β -glucuronidase
410	activities in <i>C. vulgaris</i> roots under NH ₄ Cl+PK addition. Additionally,
411	there was a significant positive correlation between C. vulgaris ERM
412	intracellular hyphal frequency (ERM2) and β -glucuronidase activity (r=
413	0.66) and a statistically indicative positive correlation with β -glucosidase
414	activity (r= 0.50) (Figure 4).
415	
44.0	2.4 Evice accurate Accession of Europi

417	Sanger sequencing of Direct PCR ITS amplicons from individual root
418	samples from both ericaceous species revealed several confirmed and
419	putative ERM/DSE fungal species, as well as a range of possible
420	endophytes, saprotrophs, and pathogens (Table 3). Fungal sequence
421	identifications based on Species Hypotheses (SH) ranged from 86% to
422	100% matches with reference sequences. Identifications of ascomycete
423	fungi likely inhabiting these ericaceous roots as ERM symbionts included
424	Hyaloscypha hepaticicola and Hyaloscypha sp., (names updated from
425	Rhizoscyphus ericae and Meliniomyces sp., respectively, according to
426	Fehrer et al. (2019)). Other members of the Leotiomycetes were also
427	identified, including unidentified Helotiales, unidentified
428	Hyaloscyphaceae, Phialocephala sphaeroides, and Pseudogymnoascus
429	sp. Furthermore, identified basidiomycetes which are capable of the
430	ERM lifestyle included members of the family Serendipitaceae (syn.
431	clade B Sebacinales) and its member genus Serendipita. Interestingly,
432	members of the Helotiales were found only in roots of both hosts from
433	control, NH_4Cl or NH_4Cl +PK treatments while unidentified Pezizales
434	members were only detected in NaNO $_3$ +PK treatments. Other
435	ericaceous root associated fungi which were possibly living saprotrophic
436	or pathotrophic lifestyles are presented in Table 3.

437 Table 3. Fungal identifications from Sanger sequencing of Direct PCR ITS amplicons from *C. vulgaris* and *E. tetralix* roots. % ID values indicate range of similarity

438 with reference sequences according to Unite database. Function assignment according to FUNGuild analysis. Sequences are from 38 samples with ITS

439 amplicons >200 bp as required by Unite Gen Bank, see Supplementary File 1 for all 57 FASTA sequences. Sources of sequences listed by treatments and host

440 species indicated with Cv and Et, numbers in brackets indicate the number of replicate plots with the same sequence, subscripts c=Control, 1=NaNO₃,

441 2=NaNO₃+PK, 3=NH₄Cl, 4=NH₄Cl+PK.

Phylum	Class	Order	Family	Species	% ID	Function	Reference Seq(s) SH	Source
Ascomycota	Archaeorhizomycetes	Archaeorhizomycetales	Archaeorhizomycetaceae	Archaeorhizomyces sp.	97.58	Sapro	KT768305 SH180923.07FU	Cvc
	Dothideomycetes	Capnodiales	Mycosphaerellaceae	Acrodontium crateriforme	95.16	Patho-Sapro	KX287271 SH214154.07FU	Cv ₄
			Cladosporiaceae	Cladosporium sp.	99.77	Patho-Sapro-Symbio	KX459429 SH212842.07FU	Cv ₁
	Leotiomycetes	Helotiales	Hyaloscyphaceae	Hyaloscypha hepaticicola*	99.07	Patho-Sapro-Symbio	FM172802 SH181107.07FU	Cv ₃
				Hyaloscypha sp.*	99.18- 99.59	Sapro-Symbio	FM997935 SH025067.07FU DQ309217 SH214267.07FU	Cvc; Cv/Ft2:Cv4
				Unidentified	99.79	Sapro	HF947840 SH004619.07FU	Etc
			Vibrisseaceae	Phialocephala sphaeroides	91.06	Symbio	KC480051 SH204990.07FU	Et ₃
			Unidentified	Unidentified	88.89- 99.61	-	HF947859 SH218310.07FU AF252840 SH211416.07FU HF947861 SH197071.07FU AY627806 SH201639.07FU	Cv _c ; Cv/Et(2)₃
		Rhytismatales	Unidentified	Unidentified	92.00- 95.71	-	AF149078 SH183994.07FU DQ309240 SH143881.07FU	Cv/Et _c ;Cv ₁
		Thelebolales	Pseudeurotiaceae	Pseudogymnoascus sp.	93.89	Patho-Sapro-Symbio	KP902680 SH183329.07FU	Cv ₂
	Pezizomycetes	Pezizales	Unidentified	Unidentified	95.94- 100	-	JQ347011 SH203769.07FU	Cv(2)/ Et(2)₂
	Sordariomycetes	Microascales	Halosphaeriaceae	Unidentified	94.64	Sapro	FJ524322 SH211311.07FU	Et ₂
	Taphrinomycetes	Taphrinales	Taphrinaceae	Taphrina tormentillae	99.14	Patho	KX516468 SH200748.07FU	Et _c
	incertae sedis	incertae sedis	incertae sedis	Xenochalara sp.	96.04	Sapro	HM230882 SH202721.07FU	Et ₄
Basidiomycota	Agaricomycetes	Agaricales	Entolomataceae	Entoloma cetratum	97.14	Patho-Sapro-Symbio	KC898450 SH185814.07FU	Cv ₂
			Tricholomataceae	Unidentified	93.82	Patho-Symbio	KY701558 NA	Cv ₃
			Strophariaceae	Pholiota sp.	86.47	Sapro	HQ533029 SH219745.07FU	Et ₂
		Cantharellales	Ceratobasidiaceae	Ceratobasidium sp.	99.49	Patho-Sapro-Symbio	JN569114 SH220624.07FU	Cv ₃
		Jaapiales	Vibrisseaceae	Jaapia ochroleuca	99.31	Sapro	UDB031153 SH190037.07FU	Et₃
		Sebacinales	Serendipitaceae (Clade B Sebacinales)	Serendipita sp.	98.25- 100	Symbio	GQ907110 SH003898.07FU HF947895 SH201953.07FU DQ309211 SH179088.07FU DQ309149 SH180008.07FU	Et _c ; Cv(2)₁; Et(2)₃
				Unidentified	94.35- 100	-	HF947869/HF947915 /DQ309208 SH179085.07FU	Cv(2) ₂ ; Cv/Et ₄
			Sebacinaceae	Unidentified	99.66	Symbio	HQ154421 SH199330.07FU	Cv _c ;Et ₂
		Thelephorales	Thelephoraceae	Thelephora terrestris	98.72	Symbio	KX438350 SH184510.07FU	Et ₃
Mortierellomycota	Mortierellomycetes	Mortierellales	Mortierellaceae	Mortierella humilis	100	Sapro-Symbio	KM504403 SH196779.07FU	Cv/Et₃
				Mortierella parvispora	99.83	Sapro-Symbio	FN565295 SH193938.07FU	Et ₄
Rozellomycota	unidentified	Unidentified	Unidentified	Unidentified	98.23	-	KF297176 SH204524.07FU	Et ₃

442 *Sequences identified as *Rhizoscyphus ericae* and *Meliniomyces* sp. updated to as *Hyaloscyphus hepaticicola* and *Hyaloscyphus* sp., respectively, according to Fehrer et al. (2019)

443	3.5 Ericaceous Root Enzyme Activity Profiles

444	When fungal sequence identifications were linked to the enzymatic
445	activities of their respective root samples, potential species related
446	enzyme activity patterns emerged (Table 3, Figure 8). C. vulgaris root
447	samples from NaNO ₃ , NaNO ₃ +PK, and NH ₄ Cl+PK treatments and hosting
448	Serendipitaceae (Clade-B Sebacinales) or Serendipita sp. produced the
449	highest detected leucine aminopeptidase activities. A C. vulgaris root
450	sample in the NH ₄ Cl+PK treatment and hosting <i>Hyaloscypha</i> sp. was
451	highly active in β -xylosidase, N-acetylglucosaminidase, and β -
452	glucosidase, while samples hosting $Hyaloscypha$ sp. in control and NH_4Cl
453	treatments were ca. 50-75 % less active for the same enzymes.
454	Additionally, a <i>C. vulgaris</i> root sample in the NH ₄ Cl treatment
455	simultaneously hosting Hyaloscypha hepaticicola and Ceratobasidium
456	sp. was one of the most active samples, across all enzymes.
457	
458	Interestingly, a root sample from <i>C. vulgaris</i> in the NaNO ₃ +PK treatment
459	was linked to a fungal identification of <i>Pseudogymnoascus</i> sp., which
460	produced some of the highest activities for all enzymes in this
461	treatment, except leucine aminopeptidase. A sample of C. vulgaris root
462	from the NH4Cl+PK treatment which hosted the species Acrodontium
463	crateriforme indicated activities of cellobiohydrolase, N-
464	acetylglucosaminidase, and β -glucosidase several times higher than any
465	other samples measured. In the control treatment, C. vulgaris root
466	samples hosting a member of the Rhytismatales showed the highest

		Pre_nro	~ 1
U	umar		U

467 activity for leucine aminopeptidase and acid phosphatase while *E*.

468 tetralix samples hosting Rhytismatales showed the highest activities for

- 469 all enzymes in that treatment, except leucine aminopeptidase.
- 470

471 4 Discussion

472 The increases in overall fungal colonization for both Calluna 473 vulgaris and Erica tetralix under nutrient addition were unexpected and 474 the unchanged frequency of ERM intracellular coiling showed that long-475 term N and NPK addition did not reduce mycorrhizal colonization. This 476 suggests that the ericaceous host plants are unable to restrict fungal 477 colonization of their roots, despite access to excess inorganic N and P. 478 Alternatively, unchanged mycorrhizal colonization rates may indicate 479 that the fungi provide benefits to the plant beyond N and P. 480 481 The observed reduction of *Sphagnum* abundance and the decreased 482 frequency of DSE associated with ericaceous roots may be linked. DSE 483 fungi have been shown to be a common occurrence in submerged 484 aquatic plants (Kohout et al., 2012) and are capable of propagating and

- existing as saprobes of moss gametophytes (Day and Currah, 2011). This
- 486 capability and their prevalence in aquatic plants suggest that DSE fungi

487 are well adapted to periodic waterlogged conditions in peatlands,

- 488 perhaps providing a niche during the annual senescence of their
- 489 ericaceous hosts. A similar relationship between ERM fungi and
- 490 liverworts, common species in peatlands, may also provide a niche

491	during host senescence (Kowal et al., 2018, 2015). As the loss of
492	Sphagnum species is one of the most obvious effects of nutrient
493	addition treatments (Bubier et al., 2007; Levy et al., 2019), this may
494	remove an important ecosystem niche for DSE fungi. Our finding of
495	positive correlation between E. tetralix root surface DSE colonization
496	frequency and Sphagnum abundance supports this possibility.
497	
498	The significantly increased frequencies of ERM hyphal morphotypes and
499	decreased DSE hyphal morphotypes in ericaceous roots strongly
500	suggests that long-term nutrient addition resulted in an altered fungal
501	community. Furthermore, the different forms of N addition may have
502	had selective effects on the fungal community as we identified different
503	root associated Helotiales members only in controls, NH_4Cl or NH_4Cl+PK
504	treatments and members of the Pezizales only in NaNO $_3$ +PK treatments.
505	The Helotiales may prefer NH_4^+ as a substrate compared to NO_3^- , as
506	experimental evidence has shown for Hyaloscypha hepaticicola (Cairney
507	et al., 2000). The presence of the Pezizales in only NaNO $_3$ +PK
508	treatments may imply they prefer this N source, though their
509	mycorrhizal status is unclear it has been suggested for some families by
510	Hobbie et al. (2001).
511	
512	Sequence identification of ITS amplicons from root samples of both
513	ericaceous species revealed several ERM and DSE species commonly
514	found to associate with ericaceous roots, as well as common peatland

515	saprotrophs and pathogens (Sietiö et al., 2018; Thormann, 2006;
516	Thormann and Rice, 2007). Both ericaceous species shared several
517	family and genus level groups, indicating a common symbiont
518	community among the ericaceous hosts. This is in line with the findings
519	of Kjøller et al. (2010) who showed that several ericaceous species in a
520	subarctic mire shared fungal communities when in close proximity.
521	While ERM symbionts are generally ascomycetes, recent studies have
522	found that the basidiomycete fungi Serendipitaceae (Clade-B
523	Sebacinales) are common in ericaceous roots and capable of forming
524	mycorrhizal structures (Brundrett and Tedersoo, 2018; Vohník et al.,
525	2016; Weiß et al., 2016), and potentially capable of utilizing
526	photosynthetic C (Sietiö et al., 2018). Our identifications of members of
527	the Serendipitaceae and Serendipita sp. in both ericaceous hosts
528	support their likely role as root symbionts. Interestingly, in C. vulgaris
529	roots from the NaNO $_3$ +PK treatment we found a potential ERM
530	symbiont, <i>Pseudogymnoascus</i> sp., which is a genus that may form ERM
531	associations, as shown between <i>Pseudogymnoascus roseus</i> and
532	Vaccinium angustifolium (Dalpé, 1989).
533	
534	Our findings on the varying effects of N addition on root surface
535	enzymatic activities in the two ericaceous species, C. vulgaris and E.
536	tetralix, indicate that they may have functionally different root
537	symbionts and decomposition potentials. In NPK treatments both
538	ericaceous plants displayed highly suppressed acid phosphatase activity

539	as the roots and root associated fungi did not need to access organic P
540	sources. Conversely, N treatments increased acid phosphatase activity,
541	reflecting the colimitation of N and P found in peatlands (Pinsonneault
542	et al., 2016; Wang et al., 2015) and confirming that ericoid mycorrhizal
543	root enzymatic activities reflect nutrient limitations. Almost every
544	enzyme activity increased with additional P compared to either form of
545	N alone, while NaNO $_3$ addition was found to generally decrease enzyme
546	activities for <i>C. vulgaris</i> . Additionally, both forms of N addition led to
547	reductions in chitinase activity, which is similar to the findings of
548	Bragazza et al. (2006), who suggested that this indicates an alleviation
549	of N limitation.
550	
551	In C. vulgaris roots β -xylosidase, β -glucuronidase, and β -glucosidase
552	activities under NH_4Cl addition were comparable to or higher than their
553	activities in controls and NaNO $_3$ +PK treatments, suggesting that NH $_4$ Cl
554	promotes overall decomposition activity, as these enzymes primarily
555	degrade plant cell wall components (Dunn et al., 2014). This may reflect
556	a reduction in N limitation for the C. vulgaris mycorrhizal symbiont
557	
558	identified as Hyaloscypha hepaticicola, as experimental in vitro data has
550	identified as <i>Hyaloscypha hepaticicola</i> , as experimental <i>in vitro</i> data has shown that this species may preferentially utilize NH_4^+ as a source of N
559	identified as <i>Hyaloscypha hepaticicola</i> , as experimental <i>in vitro</i> data has shown that this species may preferentially utilize NH ₄ ⁺ as a source of N compared to organic sources (Cairney et al., 2000). Additionally, this is
559 560	identified as <i>Hyaloscypha hepaticicola</i> , as experimental <i>in vitro</i> data has shown that this species may preferentially utilize NH_4^+ as a source of N compared to organic sources (Cairney et al., 2000). Additionally, this is supported by the colonization morphotype data showing that NH_4CI
559 560 561	identified as <i>Hyaloscypha hepaticicola</i> , as experimental <i>in vitro</i> data has shown that this species may preferentially utilize NH ₄ ⁺ as a source of N compared to organic sources (Cairney et al., 2000). Additionally, this is supported by the colonization morphotype data showing that NH ₄ Cl addition induced the largest significant increase in intracellular ERM

563	therefore higher decomposition potential. Furthermore, the sequence
564	identification of <i>H. hepaticicola</i> in a <i>C. vulgaris</i> root sample from the
565	$\mathrm{NH}_4\mathrm{Cl}$ treatment was linked to relatively higher enzymatic activities
566	compared to other root samples in the same treatment. Calluna vulgaris
567	roots hosting Hyaloscypha sp. displayed higher enzymatic activity under
568	nutrient addition than in control conditions, indicating a response to
569	increased N or NPK availability.
570	
571	Our results demonstrate that it is necessary for studies of mycorrhizal
572	fungi to include measurements of enzyme activities in natural
573	conditions in order to more precisely estimate their roles in nutrient
574	cycles. Though there is extensive research on the enzymatic activity of
575	mycorrhizal fungi in sterile systems, few studies have measured the
576	activity of mycorrhizal roots in their natural environment. While these in
577	vitro enzyme activities of mycorrhizal fungi are often interpreted as
578	their natural activities, work by Timonen and Sen (1998) showed that
579	enzyme expression levels in <i>Pinus sylvestris</i> mycorrhizal fungi are locally
580	regulated in the mycorrhizosphere, highlighting the variability in fungal
581	enzyme expression which is not apparent from <i>in vitro</i> studies.
582	
583	We observed that long-term nutrient addition resulted in a reduction in
584	C. vulgaris abundance, potentially due to a reduction in competitive
585	fitness, leaving an ecosystem gap that was rapidly occupied by other
586	fast-growing species such as the non-mycorrhizal sedge Eriophorum

587	vaginatum, which is not reliant on symbionts for organic N uptake
588	(Chapin et al., 1993). The suppressive nature of NaNO $_3$ on <i>C. vulgaris</i>
589	root enzymatic activities, compared to <i>E. tetralix</i> , suggests that <i>C</i> .
590	vulgaris and its symbionts are more sensitive to NaNO $_3$ and its effects
591	on peat properties, such as pH. This is also reflected in the vegetation
592	abundance data for NaNO $_3$ where <i>C. vulgaris</i> abundance is reduced
593	while <i>E. tetralix</i> abundance increases. This sensitivity to NaNO ₃ may put
594	C. vulgaris at a competitive disadvantage to other ericaceous species
595	during NO ₃ ⁻ deposition.
596	
597	Our findings of the cumulative effects of nutrient addition treatments at
598	Whim Bog on abundances of peatland vegetation are similar to those
599	detailed in Levy et al. (2019) which describes the decline of several plant
600	species and the increase of <i>E. vaginatum</i> as the major effects over the
601	entire timespan of the experimental site. The loss of Sphagnum may
602	also directly reduce the ability of ericaceous species to uptake nutrients,
603	as the upper moss layer is heavily inhabited by ericaceous roots,
604	forming a thick layer which receives nutrients from litter and the
605	atmosphere before it reaches the lower layers (Read et al., 2004). As the
606	living Sphagnum layer is lost and forms bare, decaying peat, it collapses
607	and becomes more submerged and anoxic, becoming an environment
608	that ericaceous roots are less likely to inhabit. This loss of aerobic
609	substrate for ericaceous species to inhabit and uptake nutrients from
610	may be an underlying cause of the observed reduction in <i>C. vulgaris</i>

611	abundance. The loss of the moss layer may also lead to the subsidence
612	of peat, as has been observed by Juutinen et al. (2018) to be a result of
613	nutrient addition at another long-term nutrient addition experiment,
614	Mer Bleue Bog, located in Ontario, Canada. This subsidence was
615	indicated by our water table depth measurements, as they were made
616	relative to the moss surface and the treatments with the highest water
617	table values, NaNO $_3$ and NaNO $_3$ +PK, also showed the largest reductions
618	in moss abundance. Furthermore, the effects of the treatments on peat
619	pH should not be overlooked as a significant source of variation. Long-
620	term alteration of pH is likely directly linked to the observed differences
621	in fungal colonization patterns as well as root enzymatic activity.
622	
623	Loss of ericaceous vegetation and Sphagnum are key examples of the
624	risks posed by anthropogenic N and P deposition. Current research has
625	lacked a clear picture of how ericaceous root associated fungi, ERM and
625 626	lacked a clear picture of how ericaceous root associated fungi, ERM and DSE, are involved in these processes. Our findings indicate that altered
625 626 627	lacked a clear picture of how ericaceous root associated fungi, ERM and DSE, are involved in these processes. Our findings indicate that altered nutrient limitations shift root associated fungal diversity and
625 626 627 628	lacked a clear picture of how ericaceous root associated fungi, ERM and DSE, are involved in these processes. Our findings indicate that altered nutrient limitations shift root associated fungal diversity and morphology, with direct effects on enzyme activity and thereby
625 626 627 628 629	lacked a clear picture of how ericaceous root associated fungi, ERM and DSE, are involved in these processes. Our findings indicate that altered nutrient limitations shift root associated fungal diversity and morphology, with direct effects on enzyme activity and thereby decomposition potential. The losses of <i>C. vulgaris</i> and <i>Sphagnum</i> due to
625 626 627 628 629 630	lacked a clear picture of how ericaceous root associated fungi, ERM and DSE, are involved in these processes. Our findings indicate that altered nutrient limitations shift root associated fungal diversity and morphology, with direct effects on enzyme activity and thereby decomposition potential. The losses of <i>C. vulgaris</i> and <i>Sphagnum</i> due to nutrient addition and the subsequent reduction in DSE colonization
625 626 627 628 629 630 631	lacked a clear picture of how ericaceous root associated fungi, ERM and DSE, are involved in these processes. Our findings indicate that altered nutrient limitations shift root associated fungal diversity and morphology, with direct effects on enzyme activity and thereby decomposition potential. The losses of <i>C. vulgaris</i> and <i>Sphagnum</i> due to nutrient addition and the subsequent reduction in DSE colonization rates may have additional consequences. Dark septate endophytes are
625 626 627 628 629 630 631 632	lacked a clear picture of how ericaceous root associated fungi, ERM and DSE, are involved in these processes. Our findings indicate that altered nutrient limitations shift root associated fungal diversity and morphology, with direct effects on enzyme activity and thereby decomposition potential. The losses of <i>C. vulgaris</i> and <i>Sphagnum</i> due to nutrient addition and the subsequent reduction in DSE colonization rates may have additional consequences. Dark septate endophytes are by nature heavily melanized and may contribute a significant source of
625 626 627 628 629 630 631 632 633	lacked a clear picture of how ericaceous root associated fungi, ERM and DSE, are involved in these processes. Our findings indicate that altered nutrient limitations shift root associated fungal diversity and morphology, with direct effects on enzyme activity and thereby decomposition potential. The losses of <i>C. vulgaris</i> and <i>Sphagnum</i> due to nutrient addition and the subsequent reduction in DSE colonization rates may have additional consequences. Dark septate endophytes are by nature heavily melanized and may contribute a significant source of recalcitrant C (Fernandez and Koide, 2014). Subsequently, the potential

IJ	111		D	r	61		
9	ш			T,	<u> </u>	U	

635	sequestration. As suggested by Averill et al. (2014) and Orwin et al.
636	(2011), ERM symbionts may be responsible for limiting the
637	decomposition potential of free-living saprotrophs and the microbial
638	community by increasing N and P limitation in soil. Addition of inorganic
639	N and P may upset this limitation, leading to increased decomposition
640	which releases C limitation for the more efficient saprotrophs, which in
641	turn outcompete the mycorrhizal fungi, thereby limiting ericaceous
642	nutrient access. Further research is necessary to determine the
643	potential long-term risks of N and P deposition and the role of peatland
644	mycorrhizal fungi in C sequestration.
645	
646	4.1 Conclusions
647	The total frequency of fungal colonization at Whim Bog, Scotland, did
648	not decrease under nutrient addition treatments but instead tended to
649	increase by ca. 10% in both Calluna vulgaris and Erica tetralix, refuting
650	our hypothesis (1) which expected a reduction in fungal colonization
651	rates. The considerable increase in ERM hyphal frequency (ca. 20-30%)
652	in both host species was accompanied by a significant suppression of
653	DSE hyphal frequency (ca. 20-30%) under nutrient addition, indicating a
654	strong treatment effect on the root symbiont community. The altered
655	fungal morphotype frequencies and identified fungal species agree with
656	our hypothesis (2) of mycorrhizal diversity indicating nutrient addition
657	effects and suggests that altered nutrient availability is a selective
658	pressure upon the root associated fungal community. The enzymatic

684	Aerts, R., Wallén, B., Malmer, N., De Caluwe, H., 2001. Nutritional
685	constraints on Sphagnum-growth and potential decay in northern
686	peatlands. Journal of Ecology 89, 292–299. doi:10.1046/j.1365-
687	2745.2001.00539.x
688	Andersen, R., Chapman, S.J., Artz, R.R.E., 2013. Microbial communities
689	in natural and disturbed peatlands: A review. Soil Biology and
690	Biochemistry 57, 979–994. doi:10.1016/j.soilbio.2012.10.003
691	Averill, C., Dietze, M.C., Bhatnagar, J.M., 2018. Continental-scale
692	nitrogen pollution is shifting forest mycorrhizal associations and
693	soil carbon stocks. Global Change Biology 24, 4544–4553.
694	doi:10.1111/gcb.14368
695	Averill, C., Turner, B.L., Finzi, A.C., 2014. Mycorrhiza-mediated
696	competition between plants and decomposers drives soil carbon
697	storage. Nature 505, 543–545. doi:10.1038/nature12901
698	Bragazza, L., Freeman, C., Jones, T., Rydin, H., Limpens, J., Fenner, N.,
699	Ellis, T., Gerdol, R., Hájek, M., Hájek, T., Iacumin, P., Kutnar, L.,
700	Tahvanainen, T., Toberman, H., 2006. Atmospheric nitrogen
701	deposition promotes carbon loss from peat bogs. Proceedings of
702	the National Academy of Sciences of the United States of America
703	103, 19386–19389. doi:10.1073/pnas.0606629104
704	Brundrett, M.C., Tedersoo, L., 2018. Evolutionary history of mycorrhizal
705	symbioses and global host plant diversity. New Phytologist 220,
706	1108–1115. doi:10.1111/nph.14976

707	Bubier, J.L., Moore,	T.R., Bledzki, L.A.	, 2007. Effects	of nutrient addition
-----	----------------------	---------------------	-----------------	----------------------

- 708 on vegetation and carbon cycling in an ombrotrophic bog. Global
- 709 Change Biology 13, 1168–1186. doi:10.1111/j.1365-
- 710 2486.2007.01346.x
- 711 Cairney, J.W.G., Sawyer, N.A., Sharples, J.M., Meharg, A.A., 2000.
- 712 Intraspecific variation in nitrogen source utilisation by isolates of
- 713 the ericoid mycorrhizal fungus Hymenoscyphus Ericae (Read) Korf
- and Kernan. Soil Biology and Biochemistry 32, 1319–1322.
- 715 doi:10.1016/S0038-0717(00)00025-0
- 716 Chapin, F.S., Moilanen, L., Kielland, K., 1993. Preferential use of organic
- 717 nitrogen for growth by a non-mycorrhizal arctic sedge. Nature 361,
- 718 150–153. doi:10.1038/361150a0
- 719 DALPÉ, Y., 1989. Ericoid mycorrhizal fungi in the Myxotrichaceae and
- 720 Gymnoascaceae. New Phytologist 113, 523–527.
- 721 doi:10.1111/j.1469-8137.1989.tb00364.x
- 722 Day, M.J., Currah, R.S., 2011. Role of selected dark septate endophyte
- 723 species and other hyphomycetes as saprobes on moss

724 gametophytes. Botany 89, 349–359. doi:10.1139/b11-023

- 725 Dunn, C., Jones, T.G., Girard, A., Freeman, C., 2014. Methodologies for
- 726 extracellular enzyme assays from wetland soils. Wetlands 34, 9–
- 727 17. doi:10.1007/s13157-013-0475-0
- 728 Fehrer, J., Réblová, M., Bambasová, V., Vohník, M., 2019. The root-
- 729 symbiotic Rhizoscyphus ericae aggregate and Hyaloscypha
- 730 (Leotiomycetes) are congeneric: Phylogenetic and experimental

- ridence. Studies in Mycology 92, 195–225.
- 732 doi:10.1016/j.simyco.2018.10.004
- 733 Fernandez, C.W., Koide, R.T., 2014. Initial melanin and nitrogen
- 734 concentrations control the decomposition of ectomycorrhizal
- fungal litter. Soil Biology and Biochemistry 77, 150–157.
- 736 doi:10.1016/j.soilbio.2014.06.026
- 737 GALLOWAY, J.N., ABER, J.D., ERISMAN, J.W., SEITZINGER, S.P.,
- 738 HOWARTH, R.W., COWLING, E.B., COSBY, B.J., 2003. The Nitrogen
- 739 Cascade. BioScience 53, 341. doi:10.1641/0006-
- 740 3568(2003)053[0341:tnc]2.0.co;2
- 741 Galloway, J.N., Leach, A.M., Bleeker, A., Erisman, J.W., 2013. A
- 742 chronology of human understanding of the nitrogen cycle.
- 743 Philosophical Transactions of the Royal Society B: Biological
- 744 Sciences 368, 20130120. doi:10.1098/rstb.2013.0120
- 745 GARDES, M., BRUNS, T.D., 1993. ITS primers with enhanced specificity
- 746 for basidiomycetes application to the identification of
- 747 mycorrhizae and rusts. Molecular Ecology 2, 113–118.
- 748 doi:10.1111/j.1365-294X.1993.tb00005.x
- 749 Gorham, E., 1991. Northern peatlands: role in the carbon cycle and
- 750 probable responses to climatic warming. Ecological Applications 1,
- 751 182–195. doi:10.2307/1941811
- 752 Harrell Jr, F.E., Dupont, C., others, 2014. Hmisc: Harrell Miscellaneous,
- 753 2011. URL Http://CRAN. R-Project. Org/Package= Hmisc. R Package
- 754 Version 3–9.

755	Hobbie, E.A., Weber, N.S., Trappe, J.M., 2001. Mycorrhizal vs
756	saprotrophic status of fungi: The isotopic evidence. New
757	Phytologist 150, 601–610. doi:10.1046/j.1469-8137.2001.00134.x
758	Juutinen, S., Moore, T.R., Bubier, J.L., Arnkil, S., Humphreys, E.,
759	Marincak, B., Roy, C., Larmola, T., 2018. Long-term nutrient
760	addition increased CH4 emission from a bog through direct and
761	indirect effects. Scientific Reports 8. doi:10.1038/s41598-018-
762	22210-2
763	Kiheri, H., Heinonsalo, J., Timonen, S., 2017. Staining and microscopy of
764	mycorrhizal fungal colonization in preserved ericoid plant roots.
765	Journal of Berry Research 7, 231–237. doi:10.3233/JBR-170160
766	Kjøller, R., Olsrud, M., Michelsen, A., 2010. Co-existing ericaceous plant
767	species in a subarctic mire community share fungal root
768	endophytes. Fungal Ecology 3, 205–214.
769	doi:10.1016/j.funeco.2009.10.005
770	Kohout, P., Sýkorová, Z., Čtvrtlíková, M., Rydlová, J., Suda, J., Vohník, M.,
771	Sudová, R., 2012. Surprising spectra of root-associated fungi in
772	submerged aquatic plants. FEMS Microbiology Ecology 80, 216–
773	235. doi:10.1111/j.1574-6941.2011.01291.x
774	Kowal, J., Pressel, S., Duckett, J.G., Bidartondo, M.I., 2015. Liverworts to
775	the rescue: an investigation of their efficacy as mycorrhizal
776	inoculum for vascular plants. Functional Ecology 30, 1014–1023.
777	doi:10.1111/1365-2435.12580
778	Kowal, J., Pressel, S., Duckett, J.G., Bidartondo, M.I., Field, K.J., 2018.

$\overline{\mathbf{n}}$			D	re	51	\sim	
υι	1111	aı		17	<u>.</u>	U.	

779	From rhizoids to roots? Experimental evidence of mutualism
780	between liverworts and ascomycete fungi. Annals of Botany 121,
781	221–227. doi:10.1093/aob/mcx126
782	Larmola, T., Bubier, J.L., Kobyljanec, C., Basiliko, N., Juutinen, S.,
783	Humphreys, E., Preston, M., Moore, T.R., 2013. Vegetation
784	feedbacks of nutrient addition lead to a weaker carbon sink in an
785	ombrotrophic bog. Global Change Biology 19, 3729–3739.
786	doi:10.1111/gcb.12328
787	Leake, J.R., Read, D.J., 1990. The effects of phenolic compounds on
788	nitrogen mobilisation by ericoid mycorrhizal systems. Agriculture,
789	Ecosystems and Environment 29, 225–236. doi:10.1016/0167-
790	8809(90)90281-H
791	Levy, P., van Dijk, N., Gray, A., Sutton, M., Jones, M., Leeson, S., Dise, N.,
792	Leith, I., Sheppard, L., 2019. Response of a peat bog vegetation
793	community to long-term experimental addition of nitrogen.
794	Journal of Ecology 107, 1167–1186. doi:10.1111/1365-2745.13107
795	Mandyam, K., Jumpponen, A., 2005. Seeking the elusive function of the
796	root-colonising dark septate endophytic fungi. Studies in Mycology
797	53, 173–189. doi:10.3114/sim.53.1.173
798	Mandyam, K.G., Jumpponen, A., 2014. Mutualism-parasitism paradigm
799	synthesized from results of root-endophyte models. Frontiers in
800	Microbiology 5. doi:10.3389/fmicb.2014.00776
801	McGONIGLE, T.P., MILLER, M.H., EVANS, D.G., FAIRCHILD, G.L., SWAN,
802	J.A., 1990. A new method which gives an objective measure of

\sim	urn		Ð		2	rn	
U.	սու	aı		1	<u> </u>	ιU	

803	colonization of roots by vesicular—arbuscular mycorrhizal fungi.
804	New Phytologist 115, 495–501. doi:10.1111/j.1469-
805	8137.1990.tb00476.x
806	Nguyen, N.H., Song, Z., Bates, S.T., Branco, S., Tedersoo, L., Menke, J.,
807	Schilling, J.S., Kennedy, P.G., 2016. FUNGuild: An open annotation
808	tool for parsing fungal community datasets by ecological guild.
809	Fungal Ecology 20, 241–248. doi:10.1016/j.funeco.2015.06.006
810	Nilsson, R.H., Larsson, K.H., Taylor, A.F.S., Bengtsson-Palme, J.,
811	Jeppesen, T.S., Schigel, D., Kennedy, P., Picard, K., Glöckner, F.O.,
812	Tedersoo, L., Saar, I., Kõljalg, U., Abarenkov, K., 2019. The UNITE
813	database for molecular identification of fungi: Handling dark taxa
814	and parallel taxonomic classifications. Nucleic Acids Research 47,
815	D259–D264. doi:10.1093/nar/gky1022
815 816	D259–D264. doi:10.1093/nar/gky1022 Orwin, K.H., Kirschbaum, M.U.F., St John, M.G., Dickie, I.A., 2011.
815 816 817	D259–D264. doi:10.1093/nar/gky1022 Orwin, K.H., Kirschbaum, M.U.F., St John, M.G., Dickie, I.A., 2011. Organic nutrient uptake by mycorrhizal fungi enhances ecosystem
815 816 817 818	D259–D264. doi:10.1093/nar/gky1022 Orwin, K.H., Kirschbaum, M.U.F., St John, M.G., Dickie, I.A., 2011. Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: A model-based assessment. Ecology Letters 14,
815 816 817 818 819	D259–D264. doi:10.1093/nar/gky1022 Orwin, K.H., Kirschbaum, M.U.F., St John, M.G., Dickie, I.A., 2011. Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: A model-based assessment. Ecology Letters 14, 493–502. doi:10.1111/j.1461-0248.2011.01611.x
815 816 817 818 819 820	D259–D264. doi:10.1093/nar/gky1022 Orwin, K.H., Kirschbaum, M.U.F., St John, M.G., Dickie, I.A., 2011. Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: A model-based assessment. Ecology Letters 14, 493–502. doi:10.1111/j.1461-0248.2011.01611.x Painter, T.J., 1991. Lindow man, tollund man and other peat-bog bodies:
815 816 817 818 819 820 821	D259–D264. doi:10.1093/nar/gky1022 Orwin, K.H., Kirschbaum, M.U.F., St John, M.G., Dickie, I.A., 2011. Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: A model-based assessment. Ecology Letters 14, 493–502. doi:10.1111/j.1461-0248.2011.01611.x Painter, T.J., 1991. Lindow man, tollund man and other peat-bog bodies: The preservative and antimicrobial action of Sphagnan, a reactive
 815 816 817 818 819 820 821 822 	D259–D264. doi:10.1093/nar/gky1022 Orwin, K.H., Kirschbaum, M.U.F., St John, M.G., Dickie, I.A., 2011. Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: A model-based assessment. Ecology Letters 14, 493–502. doi:10.1111/j.1461-0248.2011.01611.x Painter, T.J., 1991. Lindow man, tollund man and other peat-bog bodies: The preservative and antimicrobial action of Sphagnan, a reactive glycuronoglycan with tanning and sequestering properties.
 815 816 817 818 819 820 821 822 823 	D259–D264. doi:10.1093/nar/gky1022 Orwin, K.H., Kirschbaum, M.U.F., St John, M.G., Dickie, I.A., 2011. Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: A model-based assessment. Ecology Letters 14, 493–502. doi:10.1111/j.1461-0248.2011.01611.x Painter, T.J., 1991. Lindow man, tollund man and other peat-bog bodies: The preservative and antimicrobial action of Sphagnan, a reactive glycuronoglycan with tanning and sequestering properties. Carbohydrate Polymers 15, 123–142. doi:10.1016/0144-
 815 816 817 818 819 820 821 822 823 824 	D259–D264. doi:10.1093/nar/gky1022 Orwin, K.H., Kirschbaum, M.U.F., St John, M.G., Dickie, I.A., 2011. Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: A model-based assessment. Ecology Letters 14, 493–502. doi:10.1111/j.1461-0248.2011.01611.x Painter, T.J., 1991. Lindow man, tollund man and other peat-bog bodies: The preservative and antimicrobial action of Sphagnan, a reactive glycuronoglycan with tanning and sequestering properties. Carbohydrate Polymers 15, 123–142. doi:10.1016/0144- 8617(91)90028-B
 815 816 817 818 819 820 821 822 823 824 825 	D259–D264. doi:10.1093/nar/gky1022 Orwin, K.H., Kirschbaum, M.U.F., St John, M.G., Dickie, I.A., 2011. Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: A model-based assessment. Ecology Letters 14, 493–502. doi:10.1111/j.1461-0248.2011.01611.x Painter, T.J., 1991. Lindow man, tollund man and other peat-bog bodies: The preservative and antimicrobial action of Sphagnan, a reactive glycuronoglycan with tanning and sequestering properties. Carbohydrate Polymers 15, 123–142. doi:10.1016/0144- 8617(91)90028-B Perotto, S., Daghino, S., Martino, E., 2018. Ericoid mycorrhizal fungi and

827	Phytologist 220, 1141–1147. doi:10.1111/nph.15218
828	Pinsonneault, A.J., Moore, T.R., Roulet, N.T., 2016. Effects of long-term
829	fertilization on peat stoichiometry and associated microbial
830	enzyme activity in an ombrotrophic bog. Biogeochemistry 129,
831	149–164. doi:10.1007/s10533-016-0224-6
832	Pritsch, K., Courty, P.E., Churin, J.L., Cloutier-Hurteau, B., Ali, M.A.,
833	Damon, C., Duchemin, M., Egli, S., Ernst, J., Fraissinet-Tachet, L.,
834	Kuhar, F., Legname, E., Marmeisse, R., Müller, A., Nikolova, P.,
835	Peter, M., Plassard, C., Richard, F., Schloter, M., Selosse, M.A.,
836	Franc, A., Garbaye, J., 2011. Optimized assay and storage
837	conditions for enzyme activity profiling of ectomycorrhizae.
838	Mycorrhiza 21, 589–600. doi:10.1007/s00572-011-0364-4
839	R Core Team, 2017. R: A language and environment for statistical
840	computing. R Foundation for Statistical Computing. Vienna,
841	Austria. URL http://www.R-project.org/.
842	Read, D.J., Leake, J.R., Perez-Moreno, J., 2004. Mycorrhizal fungi as
843	drivers of ecosystem processes in heathland and boreal forest
844	biomes. Canadian Journal of Botany 82, 1243–1263.
845	doi:10.1139/B04-123
846	Sheppard, L.J., Crossley, A., Leith, I.D., Hargreaves, K.J., Carfrae, J.A., van
847	Dijk, N., Cape, J.N., Sleep, D., Fowler, D., Raven, J.A., 2004. An
848	automated wet deposition system to compare the effects of
849	reduced and oxidised N on ombrotrophic bog species: Practical
850	considerations. Water, Air, and Soil Pollution: Focus 4, 197–205.

- 851 doi:10.1007/s11267-004-3030-4
- 852 Sietiö, O.M., Tuomivirta, T., Santalahti, M., Kiheri, H., Timonen, S., Sun,
- 853 H., Fritze, H., Heinonsalo, J., 2018. Ericoid plant species and Pinus
- 854 sylvestris shape fungal communities in their roots and surrounding
- soil. New Phytologist 218, 738–751. doi:10.1111/nph.15040
- 856 Smith, S., Read, D., 2008. Mycorrhizal Symbiosis. Academic press.
- 857 doi:10.1016/B978-0-12-370526-6.X5001-6
- 858 Thormann, M.N., 2006. Diversity and function of fungi in peatlands: A
- 859 carbon cycling perspective. Canadian Journal of Soil Science 86,
- 860 281–293. doi:10.4141/s05-082
- 861 Thormann, M.N., Rice, A. V., 2007. Fungi from peatlands. Fungal
- 862 Diversity 24, 241–299.
- 863 Timonen, S., Sen, R., 1998. Heterogeneity of fungal and plant enzyme
- 864 expression in intact Scots Pine Suillus bovinus and Paxillus
- 865 involutus mycorrhizospheres developed in natural forest humus.
- 866 New Phytologist 138, 355–366. doi:10.1046/j.1469-
- 867 8137.1998.00103.x
- 868 Tipping, E., Benham, S., Boyle, J.F., Crow, P., Davies, J., Fischer, U.,
- 869 Guyatt, H., Helliwell, R., Jackson-Blake, L., Lawlor, A.J., Monteith,
- 870 D.T., Rowe, E.C., Toberman, H., 2014. Atmospheric deposition of
- 871 phosphorus to land and freshwater. Environmental Sciences:
- 872 Processes and Impacts 16, 1608–1617. doi:10.1039/c3em00641g
- 873 Upson, R., Read, D.J., Newsham, K.K., 2009. Nitrogen form influences
- 874 the response of Deschampsia antarctica to dark septate root

$\overline{\mathbf{n}}$			D	re	51	\sim	
υι	1111	aı		17	<u>.</u>	U.	

875	endophytes. Mycorrhiza 20, 1–11. doi:10.1007/s00572-009-0260-3
876	van Breemen, N., 1995. How Sphagnum bogs down other plants. Trends
877	in Ecology & Evolution 10, 270–275. doi:10.1016/0169-
878	5347(95)90007-1
879	Velmala, S.M., Rajala, T., Heinonsalo, J., Taylor, A.F.S., Pennanen, T.,
880	2014. Profiling functions of ectomycorrhizal diversity and root
881	structuring in seedlings of Norway spruce (Picea abies) with fast-
882	and slow-growing phenotypes. New Phytologist 201, 610–622.
883	doi:10.1111/nph.12542
884	Vohník, M., Albrechtová, J., 2011. The Co-occurrence and Morphological
885	Continuum Between Ericoid Mycorrhiza and Dark Septate
886	Endophytes in Roots of Six European Rhododendron Species. Folia
887	Geobotanica 46, 373–386. doi:10.1007/s12224-011-9098-5
888	Vohník, M., Pánek, M., Fehrer, J., Selosse, M.A., 2016. Experimental
889	evidence of ericoid mycorrhizal potential within Serendipitaceae
890	(Sebacinales). Mycorrhiza 26, 831–846. doi:10.1007/s00572-016-
891	0717-0
892	Wang, R., Balkanski, Y., Boucher, O., Ciais, P., Peñuelas, J., Tao, S., 2015.
893	Significant contribution of combustion-related emissions to the
894	atmospheric phosphorus budget. Nature Geoscience 8, 48–54.
895	doi:10.1038/ngeo2324
896	Wei, T., Simko, V., 2016. Visualization of a Correlation Matrix: Package
897	"corrplot." Retrieved from https://github.com/Taiyun/Corrplot 1-
898	17.

899	Weiß, M., Waller, F., Zuccaro, A., Selosse, M.A., 2016. Sebacinales - one
900	thousand and one interactions with land plants. New Phytologist
901	211, 20–40. doi:10.1111/nph.13977
902	White, T.J., Bruns, T., Lee, S., Taylor, J., 1990. AMPLIFICATION AND
903	DIRECT SEQUENCING OF FUNGAL RIBOSOMAL RNA GENES FOR
904	PHYLOGENETICS. PCR Protocols. Elsevier, pp. 315–322.
905	doi:10.1016/b978-0-12-372180-8.50042-1
906	
907	
908	
909	
910	
911	
912	
913	
914	
915	
916	
917	
918	
919	
920	
921	
922	

923 Figure Captions

924	Figure 1. Total observed ericoid mycorrhizal (ERM) and dark septate
925	endophyte (DSE) occurrence in <i>C. vulgaris</i> and <i>E. tetralix</i> roots as
926	determined by light microscopy and the magnified intersections
927	method. Error bars indicate ±1 standard deviation, n=3.
928	
929	Figure 2. Microscopically observed frequencies of potential ericoid
930	mycorrhizal morphotypes (ERM1-4) in <i>C. vulgaris</i> and <i>E. tetralix</i> roots.
931	Error bars indicate ±1 standard deviation, n=3. Different superscript
932	letters indicate significant differences (P<0.05) compared with the other
933	treatments.
934	
935	Figure 3. Microscopically observed frequencies of dark septate
936	endophyte morphotypes (DSE1-4) in <i>C. vulgaris</i> and <i>E. tetralix</i> roots.
937	Error bars indicate ±1 standard deviation, n=3. Different superscript
938	letters indicate significant differences (P<0.05) compared with the other
939	treatments.
940	
941	Figure 4. Correlation analysis of Calluna vulgaris root enzyme activities
942	(Leu: leucine aminopeptidase, Glr: β -glucuronidase, Xyl: β -xylosidase,
943	Cell: cellobiohydrolase, Gls: β -glucosidase, Nag: N-
944	acetylglucosaminidase, Pho: acid phosphatase), root associated fungal
945	morphotype categories ERM1-4 and DSE1-4 (Table 1), surface peat (0-
946	20cm) pH, plot water table depth (WT), C. vulgaris abundance (Cv), Erica

947	<i>tetralix</i> abundance (Et), <i>Eriophorum vaginatum</i> abundance (Et), other
948	vascular spp. abundance (OV), Sphagnum abundance (Sph), and other
949	moss spp. abundance (OM). Statistically significant and indicative
950	correlation values are indicated by asterisks (** for p<0.01, * for p<0.05,
951	and + for p<0.1) values, with a greyscale ranging from lighter shades
952	indicating positive correlation coefficients to darker indicating negative
953	correlation coefficients, n=15.
954	
955	Figure 5. Correlation analysis of Erica tetralix root enzyme activities
956	(Leu: leucine aminopeptidase, Glr: β -glucuronidase, Xyl: β -xylosidase,
957	Cell: cellobiohydrolase, Gls: β -glucosidase, Nag: N-
958	acetylglucosaminidase, Pho: acid phosphatase), root associated fungal
959	morphotype categories ERM1-4 and DSE1-4 (Table 1), surface peat (0-
960	20cm) pH, plot water table depth (WT), Calluna vulgaris abundance
961	(Cv), E. tetralix abundance (Et), Eriophorum vaginatum abundance (Et),
962	other vascular spp. abundance (OV), Sphagnum abundance (Sph), and
963	other moss spp. abundance (OM). Statistically significant and indicative
964	correlation values are indicated by asterisks (** for p<0.01, * for p<0.05,
965	and + for p<0.1) values, with a greyscale ranging from lighter shades
966	indicating positive correlation coefficients to darker indicating negative
967	correlation coefficients, n=15.
968	
969	Figure 6. <i>C. vulgaris</i> and <i>E. tetralix</i> root surface enzyme activities
970	according to treatment means (Leu: leucine aminopeptidase, Xyl: eta -

		100			
	2		B 1 K		
vouu				.	

971	xylosidase,	Glr: β-glucuronidase	e, Cell: cellobioh	ydrolase). Error bars
-----	-------------	----------------------	--------------------	-----------------------

- 972 indicate ±1 standard deviation, n=3.
- 973
- 974 Figure 7. *C. vulgaris* and *E. tetralix* root surface enzyme activities
- 975 according to treatment means (Nag: N-acetylglucosaminidase, Gls: β-
- 976 glucosidase, Pho: acid phosphatase). Error bars indicate ±1 standard
- 977 deviation, n=3. Letters above error bars indicate statistically significant
- 978 differences.
- 979
- 980 Figure 8. Ericaceous root enzyme activities (Leu: leucine
- 981 aminopeptidase, Glr: β-glucuronidase, Xyl: β-xylosidase, Cell:
- 982 cellobiohydrolase, Gls: β-glucosidase, Nag: N-acetylglucosaminidase,
- 983 Pho: acid phosphatase) for individual root pieces with identified fungal
- 984 sequences, as well as the mean activities for root samples without
- 985 sequencing (Black X Symbol, 20<n<25, per treatment). Error bars
- 986 indicate ±1 standard deviation of the samples without sequencing. Not
- 987 shown; Acrodontium crateriforme: Xyl=0.61, Nag=7.5, (C. vulgaris,
- 988 NH₄Cl+PK). *Pseudogymnoascus* sp.: Cell=0.87, (*C. vulgaris*, NaNO₃+PK).

Calluna vulgaris Correlations

Erica tetralix Correlations

- Long-term effects of N/NP on ericaceous root fungal colonization & enzymatic activity
- ERM intracellular colonization unchanged, ERM hyphae increased & DSE hyphae decreased
- Loss of recalcitrant fungal biomass in melanized DSE may reduce peatland C sink
- Nitrate reduced C. vulgaris root enzyme activity, suggests host/symbiont sensitivity

Declaration of interests

 \boxtimes The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Journal Prerk