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Abstract
The current problem of increasing antibiotic resistance and the resurgence of numerous infections indicate the need for novel 
vaccination strategies more than ever. In vaccine development, the search for and the selection of adequate vaccine antigens is 
the first important step. In recent years, bacterial outer membrane proteins have become of major interest, as they are the main 
proteins interacting with the extracellular environment. Trimeric autotransporter adhesins (TAAs) are important virulence 
factors in many Gram-negative bacteria, are localised on the bacterial surface, and mediate the first adherence to host cells 
in the course of infection. One example is the Neisseria adhesin A (NadA), which is currently used as a subunit in a licensed 
vaccine against Neisseria meningitidis. Other TAAs that seem promising vaccine candidates are the Acinetobacter trimeric 
autotransporter (Ata), the Haemophilus influenzae adhesin (Hia), and TAAs of the genus Bartonella. Here, we review the 
suitability of various TAAs as vaccine candidates.
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Introduction

Vaccination against human pathogens was first introduced 
in medicine in 1796 by Edward Jenner (Fig. 1). He realised 
that milkmaids who had suffered earlier from cowpox were 
not infected by smallpox, demonstrating that the inoculated 
vaccinia virus leads to immunological protection against 
the variola virus [1]. Nowadays, vaccination represents a 
life-saving, scientifically accepted, and low-cost procedure 
to efficiently avoid human infections [2, 3]. Very recently, 
the national German government announced a program to 
increase the rate of measles vaccination in the population 
[4]. Although prophylaxis of infections by vaccination is 
very effective, there is, unfortunately, only a limited number 
of licensed vaccines available, most of which target viruses 
(Fig. 1). Current vaccines do, therefore, not cover most of 
the infectious diseases and, on top of that, many diseases 
for which vaccination strategies would be desirable, are on 
a resurgence (e.g., whooping cough) [5–10]. Novel vaccine 
formulations or alternative approaches must be investigated 
and a promising way forward is the use of recombinant vac-
cine components, developed from, e.g., reverse vaccinology 
approaches [3, 11]. However, the development of vaccines 
against emerging infectious diseases including Gram-nega-
tive bacteria decelerated in the last decades. Noteworthy is 
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that new vaccines against only three bacterial agents were 
developed since 1927 (Fig. 1). In this review, we focus on 
the immunogenicity and vaccine candidacy of trimeric 
autotransporter adhesins (TAA) as one particular group of 
outer membrane proteins (OMPs) of Gram-negative bacteria 
[12–17]

Principally, the most important conditions necessary to 
be an effective vaccine component are (i) the in vivo expres-
sion of surface epitopes, (ii) a high strain coverage, and (iii) 
immunogenicity and induction of a protective immune 
response in the host [18, 19]. In general, bacterial mem-
brane proteins such as TAAs perform numerous important 
functions in pathogenesis, of which the first interaction 
with the extracellular environment in the mammalian host 
is of crucial importance. The extent of virulence of patho-
genic organisms depends on various characteristics of both 
the organism itself (i.e., capacity of entering, infiltrating, 
and spreading through the host) and the host defence (i.e., 
immune status and metabolic conditions) [20–22]. It has 
become evident that TAAs play a prominent role in bac-
terial pathogenicity, where quick adaptation to changing 
conditions is crucial. As such, the modular composition of 
TAAs and their highly repetitive nature makes it possible 
for rapid adaptation to the host to occur [16, 23]. Moreover, 
attachment of bacteria via TAAs to the host is the first and 

absolutely required step in the infection process. Therefore, 
TAAs are highly suitable as vaccine candidates [12, 23–25].

Trimeric autotransporter adhesins

TAAs are a family of obligate homotrimeric, non-fimbrial, 
non-pilus bacterial adhesins that have numerous biologi-
cal functions such as bacterial autoagglutination, binding 
to extracellular matrix (ECM) proteins and host cells, and 
the induction of distinct host cell responses. They are wide-
spread in α-, β-, and γ-proteobacteria and primarily ensure 
the initial adhesion to specific molecular components of both 
abiotic and biotic surfaces (Fig. 2b) [16, 23, 26]. Former and 
alternative designations for TAAs are non-fimbrial adhesins 
(NFAs) and oligomeric coiled-coil adhesins (Ocas) [27–29] 
of which the latter refers to the presence of coiled coils in the 
structure of prototypical members of this class [30].

In general, all TAAs share a common lollipop-like surface 
structure (Fig. 2a). The C-terminal anchor domain (trans-
location unit) forms a 12 stranded ß-barrel transmembrane 
domain followed by a passenger domain consisting of a 
neck/stalk domain and an N-terminal head domain. The head 
domain often has a globular structure and is responsible for 
the majority of the TAA’s biological functions [24, 29, 31]. 
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Fig. 1   Timeline of the development of human vaccines showing the 
scarcity of newly developed bacterial vaccines since 1927. Viral vac-
cines are shown above, while bacterial vaccines are shown below the 
timeline. Only the first developed vaccine against each viral or bac-
terial species is depicted (except for typhoid fever, N. meningitidis 
spp. and S. pneumoniae because of the different vaccine composi-

tions). Not all invented, produced or updated vaccine formulation are 
included, only the major developments. Noteworthy is that vaccines 
against only three bacterial agents (N. meningitidis spp., S. pneumo-
niae, and H. influenzae) were developed since 1927 (light blue part in 
timeline) [1, 135, 251–253]
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The anchor domain, which defines the family, is conserved 
in all TAAs and ensures the autotransporter activity [16, 
24, 30].

Type V secretion systems are autotransporters containing 
a ß-barrel transmembrane domain [32]. Five different type V 
secretion systems have so far been identified (type Va, Vb, 
Vc, Vd, and Ve), all of which are used to transport proteins 
across the outer membrane in Gram-negative bacteria [26, 
33, 34]. The type Vc secretion system is also termed TAA. 
Several models for the autotransporter mechanism exist, 
but the details remain unknown [32, 34, 35]. After translo-
cation, the passenger domain remains covalently attached 
to the anchor domain (Fig. 2a). Previously, it was thought 
that the translocation of the passenger domain across the 
outer membrane occurred without any external source of 
free energy (ion gradients, chaperone proteins, or adenosine 

triphosphate) [27]. However, recent experimental research 
on TAAs has demonstrated that the ß-barrel assembly (Bam) 
complex is likely to catalyse the translocation of the pas-
senger domain across the outer membrane [36], on top of 
its known function to integrate the ß-barrel anchor domain 
into the outer membrane. This theory challenges the cur-
rent ‘autotransporter’ hypothesis, however, does not change 
the fact that translocation is driven by the free energy of 
protein folding. The Bam complex consists of five proteins 
and catalyses the insertion of almost every ß-barrel in the 
outer membrane of Gram-negative bacteria [33, 34, 37–40].

The use of type V(c) secretion in vaccinology

Even though the exact secretion mechanism of TAAs is still 
unclear, the Vc secretion system is a potentially valuable 
feature in the development of multivalent recombinant bac-
terial vector vaccines [41–44]. For instance, it was suggested 
for HIV-1 envelope glycoprotein subunits (e.g., gp120) that 
soluble stabilised trimers generate a stronger immunogenic 
response in mice compared to monomeric exterior immuno-
genic glycoproteins [45, 46]. This may be due to the higher 
stability of trimers in vivo, the presence of multiple, cross-
linked epitopes and, in this case, the more faithful repre-
sentation of the functional envelope glycoprotein complex 
[45]. In contrast to the type Va secretion system, the type Vc 
secretion system manages to expose stable trimeric polymers 
on the outer membrane of Gram-negative bacteria, showing 
its potential in future vaccine development [23].

In case of the type Va secretion system, autotransport of 
recombinant heterologous expressed proteins has already 
been demonstrated to optimise antigen delivery in oral live-
attenuated vaccine strains, increasing the immunogenicity 
and improving the specific immune response [47–49]. Fur-
thermore, Jong et al. emphasized the potential of autotrans-
porter adhesins as a valuable platform to display antigens for 
the development of multivalent recombinant vector vaccines 
by successfully expressing various heterologous antigens via 
the Escherichia coli autotransporter Hbp (type Va secretion 
system) both in E. coli and in an attenuated Salmonella 
enterica serovar Typhimurium vaccine strain [50].

Reverse vaccinology and outer membrane 
vesicles

A more recent vaccine delivery platform is the use of outer 
membrane vesicles (OMV) because of their high immuno-
genicity and virulence during infection [42, 51–53]. Recom-
binant vaccine antigens, such as TAAs, that can be added 
on OMVs, are primarily selected via reverse vaccinology, 
which includes in silico genome screening for open reading 

Fig. 2   Electron microscopy of B. henselae adhesin A and adherence 
of B. henselae Marseille to human endothelial cells. a ‘Lollipop-like’ 
surface structure of the long filamentous BadA with the globular 
N-terminal head domain (arrow with star), followed by the passenger 
domain consisting of a neck/stalk domain (black line) and the mem-
brane anchor (not visible) spanning the outer membrane (arrow). b B. 
henselae Marseille (blue coloured) adhering to the surface of human 
umbilical vein endothelial cells (red coloured) 30 min upon infection. 
Scale bare: 7 µm
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frames that likely encode for antigenic OMPs [53–55]. 
OMVs do not replicate, which makes them safer and thus 
more attractive candidates as vaccine components [56, 57]. 
However, they do not guarantee broad strain coverage and 
often mediate protection only against closely related strains 
[53, 58, 59]. In addition, lipopolysaccharides (LPS) are 
abundantly present in OMVs causing numerous inflamma-
tory side effects in OMV-based vaccines [60].

TAAs as vaccine (sub)units

The most extensively investigated TAA is the Yersinia 
adhesin A (YadA) from Yersinia enterocolitica, the pro-
totypical example of this class of adhesins [16, 26, 30]. 
Furthermore, Neisseria adhesin A (NadA) from Neisseria 
meningitidis is already one of the main vaccine antigens 
in the respective multicomponent vaccine, 4CMenB [61]. 
Other interesting TAAs and potential vaccine antigens are, 
inter alia, Haemophilus influenzae adhesin (Hia) (H. influ-
enzae) [62], Acinetobacter trimeric autotransporter (Ata) (A. 
baumannii) [63], Salmonella adhesin A (SadA) (S. enter-
ica) [64], and the ubiquitous surface proteins (UspA1 and 
UspA2) of Moraxella catarrhalis [65]. The proven immuno-
genicity of several TAAs makes them a potential target for 
vaccine development and their use in clinical diagnosis [23, 
66]. Below, we discuss the vaccinology prospects of most 
of the well-studied TAAs (Table 1).

Yersinia spp. TAA​

YadA is a TAA present on the bacterial surface of Y. entero-
colitica and Yersinia pseudotuberculosis. Yersinia pestis 
harbours the yadA gene, but the TAA is not expressed due 
to a frameshift mutation in the yadA gene [67].

Infections of Y. enterocolitica and Y. pseudotuberculosis 
are caused by the ingestion of contaminated food or water 
and can cause acute enteritis and lymphadenitis (pseudoap-
pendicitis) in the gastrointestinal tract [68, 69], sometimes 
followed by sequelae such as arthritis and septicaemia [70]. 
Subsets of Y. pseudotuberculosis are the causative agent of, 
e.g., Far East scarlet-like fever [69].

Currently, there are no licensed vaccines targeting Y. 
pestis and Y. pseudotuberculosis [71]. Earlier human vac-
cines comprising live-attenuated Yersinia strains or killed 
whole-cell bacteria [72] often caused severe side reactions 
or proved to be too reactogenic, respectively [72–75]. Some 
vaccines are in clinical trials (e.g., rF1-V and RYpVax) and 
seem the ideal approach to overcome more outbreaks of Y. 
pestis by providing pre-exposure prophylaxis to combat 
infection for individuals with a high risk of exposure [71]. 
Important to note is, however, the fact that Y. pestis does 

not express YadA precluding its use as a potential plague 
vaccine candidate.

Successful first attempts to develop effective vaccines 
against Y. enterocolitica were established using different 
Yersinia proteins. In 1996, Noll and Autenrieth used heat 
shock proteins (Yersinia HSP60) with IL-12 as adjuvant in 
their vaccine development [76]. They suggested that micro-
bial heat shock proteins would be promising vaccine can-
didates. Palmer et al. demonstrated the ability of Y. entero-
colitica to modulate the immune response via OMPs [77]. 
More recently, the effective use of a bivalent fusion protein 
consisting of immunologically active regions of Y. pestis 
LcrV (i.e., a 35 kDa secreted protein that mediates the trans-
port effector proteins into the host cell [71, 75]) and YopE 
proteins gave mice immunogenic protection upon delivery 
of lethal Y. enterocolitica [78]. New screening approaches 
for the development of vaccine candidates are still necessary, 
for instance, in vivo signature-tagged mutagenesis to target 
genes for novel virulence factors [79] or the use of reverse 
vaccinology to screen for antigenic OMPs.

The immunodominant YadA of Y. enterocolitica has a 
monomeric molecular weight of approximately 47 kDa [31, 
38] and the yadA gene is located on the 64-75 kb Yersinia 
virulence plasmid (pYV) [80, 81]. Although discovered in 
1981 as ‘protein 1’ [82, 83], YadA is still investigated to 
unravel its complex structure, to clarify the autotransporter 
mechanism and to identify its biological functions [16, 36].

Between the different Yersinia strains, highly homologous 
YadA proteins exist [84]. Different pathogenic and virulence 
functions are attributed to YadA in Y. enterocolitica and Y. 
pseudotuberculosis [80, 85]. For example, a short amino 
acid sequence was identified within the N-terminal head 
domain of YadA from Y. pseudotuberculosis that mediates 
uptake in human cells and promotes binding to the ECM 
protein fibronectin [84]. Later, it was shown that a similar 
stretch also exists in distinct strains of Y. enterocolitica, but 
only in those of serotype O:9. There, the stretch was crucial 
for efficient binding of the serum protein vitronectin [86]. 
Furthermore, the YadA-passenger domain confers serum 
resistance and is important for the pathogenicity of Y. enter-
ocolitica [30, 87]. In addition, Schütz et al. demonstrated 
that the trimeric stability of YadA is crucial for full patho-
genicity of Y. enterocolitica [88]. YadA itself induces the 
production of proinflammatory cytokines, including inter-
leukin-8 (IL-8) and this process is triggered via the adhesion 
to β1-integrins [89, 90].

Some research has been carried out towards the immu-
nogenicity of YadA. For example, poly- and monoclonal 
antibodies against YadA were obtained and antigens were 
identified upon immunisation with live bacteria [91–93]. 
According to Tahir et al., it is of interest to use purified 
YadA or killed Y. enterocolitica instead of live bacteria in 
vaccines [94]. They indicated that live Y. enterocolitica can 
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prevent the hostfrom recognising other than N-terminal 
epitopes of YadA. Finally, in 2017, Tsugo et al. immunised 
mice subcutaneously either with recombinantly expressed 
YadA (group 1), with inactivated Y. pseudotuberculosis 
strongly expressing YadA (group 2), or just with phosphate-
buffered saline (group 3—control). Survival rates after expo-
sure to pathogenic Y. pseudotuberculosis were 100% (group 
1), 60% (group 2), and 0% (group 3), respectively [95]. How-
ever, the recombinantly expressed YadA proteins did not 
induce mucosal immunity as measured by IgG secretion. 
The authors concluded that YadA shows promising results as 
a vaccine component, but more research towards its safety, 
immunogenicity, and protective properties is necessary [95].

Neisseria meningitidis TAAs

The Neisseria adhesin A (NadA) and the Neisseria Hia/Hsf 
homologue A (NhhA) are both OMPs belonging to the class 
of TAAs. Both adhesins are present on certain genetic line-
ages of the Gram-negative bacterium Neisseria meningitidis 
[16, 96, 97].

Neisseria meningitidis is a human-specific Gram-negative 
pathogen and is the causative agent of meningococcal men-
ingitis and sepsis [98, 99] with over 500,000 meningococcal 
cases each year worldwide [61, 100–102]. Twelve meningo-
coccal serogroups have been classified based on their cap-
sular polysaccharides. The serogroups A, B, C, W-135, X, 
and Y are most associated with invasive diseases [102–104]. 
Currently, serogroup B meningococci (MenB) causes most 
of the epidemic and endemic meningococcal diseases and 
is responsible for one-third of the meningococcal infections 
[52, 105]. Despite antibiotic treatment and partially effective 
vaccines, the progression of the disease is quick and has high 
mortality rates (5–15%) [98, 100].

In general, three types of meningococcal vaccines are 
available: polysaccharide vaccines, polysaccharide–protein 
conjugated vaccines and vaccines based on OMPs (devel-
oped via reverse vaccinology) [13, 103]. In the case of poly-
saccharide vaccines, bi-, tri-, or tetravalent vaccines exist, of 
which only the tetravalent vaccine is still available in Europe 
[103]. Effective tetravalent conjugate polysaccharide vac-
cines, combination vaccines, or monovalent vaccines against 
N. meningitidis serogroups A, C, W-135 and Y have been 
available since the early 1990s, are licensed, and are in clini-
cal use [103]. The MenB capsular polysaccharide, however, 
shows high similarities with N-acetyl neuraminic acid on the 
surface of human fetal neural tissues and is, therefore, poorly 
immunogenic [25, 106, 107]. A protective capsular poly-
saccharide-based vaccine against serogroup B is thus not 
being pursued [52, 98]. Nevertheless, recently, two protein-
based MenB vaccines were approved and licensed in several 
countries [105]. In 2013, the four component MenB vaccine 
4CMenB (Bexsero®), using an OMV and three recombinant 

proteins [two protein–protein fusions and a single antigen 
(NadA)] was approved by the European Union (EU) [13, 
103, 108]. Later, the recombinant protein vaccine MenB-
FHbp was licensed in the USA (2014) and the EU (2018). It 
contains two variants of the meningococcal surface protein 
factor H-binding protein (FHbp) [58, 109].

Neisseria meningitidis adhesin A

NadA is a phase-variable ca. 43 kDa OMP of which the 
expression is mainly regulated by the transcriptional regu-
lator NadR [96, 110, 111]. NadA plays a crucial role in the 
attachment of N. meningitidis to epithelial cells via ß1-inte-
grins and in its subsequent invasion during the infection 
process [112, 113]. NadA is immunogenic, induces a pro-
tective bactericidal response, and has self-adjuvanting activ-
ity [114–116]. Furthermore, two genetically distinct groups 
of NadA exist that share only 46–50% identity and that do 
not show immunological cross reactivity [117, 118]. Group 
I (sharing ca. 95% sequence identity) consists of the vari-
ants NadA1, NadA2, and NadA3, while Group II (sharing 
ca. 90% sequence identity) consists of the variants NadA4, 
NadA5, and NadA6 [98, 118, 119]. Variants are classified 
based on their main variant group and small mutations [118, 
119]. For example, NadA4 is mainly associated with car-
riage strains [98, 119, 120]. The crystal structures of NadA5 
and NadA3 are available and provide valuable information 
for further investigations on their biological functions and on 
the effectiveness and structure of NadA as a vaccine antigen 
[61, 98, 121].

The nadA gene is present in approximately 30% of N. 
meningitidis isolated strains and in 75% of hypervirulent N. 
meningitidis serogroup B lineages [112, 117, 122]. Coman-
ducci et al. demonstrated via dot-blot hybridization and 
PCR that 47% of 150 representatives of disease-associated 
isolates harbour the nadA gene [25]. In case of commen-
sal strains derived from healthy carriers, nadA is present in 
16.2% of 154 isolates [117].

Currently, NadA is the only TAA that is used as a com-
ponent in a licensed vaccine, as NadA3 is a major antigen in 
the multicomponent vaccine 4CMenB [61, 96, 98]. In 2002, 
Comanducci et al. were the first to propose NadA as a vac-
cine candidate against MenB by demonstrating the strong 
inducement of antibodies upon immunisation of mice with 
NadA and showing protective features in an infant rat model 
[25]. Two years later, NadA was proven to be the only anti-
gen out of 23 selected meningococcal proteins that elicits 
a strong antibody response in convalescent infant patients 
suffering from a meningococcal infection [123]. In 2006, 
Giuliani et al. described a universal vaccine against MenB 
that makes use of 5 antigens discovered by reverse vaccinol-
ogy and aluminium hydroxide as an adjuvant [124]. In 2013, 
the 4CMenB vaccine was approved by the EU, promptly 
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followed by a vaccination campaign in infants in the UK 
[13, 96]. Summarised, NadA and its discovery via reverse 
vaccinology, its analysis as an essential pathogenicity factor 
of N. meningitidis, and the further development as a vaccine 
component serve as a role model to expedite the develop-
ment of TAA-based vaccines.

Neisseria meningitidis Hia/Hsf homologue A

NhhA was the first vaccine candidate against MenB and was 
described using whole genome sequencing to identify pos-
sible vaccination targets [54]. NhhA shows high similarities 
withthe TAAs Hia and Haemophilus surface fibril (Hsf) of 
Haemophilus influenzae, is immunogenic in humans in con-
jugation with other antigens (e.g., TbpA, Omp85, or NspA), 
and facilitates bacterial attachment to host epithelial cells 
during infection by binding heparan sulphate and laminin 
[97, 99, 125, 126]. Furthermore, NhhA mediates serum 
resistance, induces macrophage apoptosis, reduces phagocy-
tosis, and protects the bacteria against complement-mediated 
killing [99, 127]. Moreover, the nhha gene is highly con-
served in all meningococcal strains [19, 97].

All these features suggest that NhhA is a promising vac-
cine candidate [23, 111]. Peak et al. immunised mice with 
OMVs containing various NhhA constructs, demonstrating 
protective properties of truncated NhhA against heterolo-
gous NhhA-expressing N. meningitidis strains [97]. A later 
study showed an enhanced immunogenicity against NhhA 
when its membrane anchor domain was coupled to the 
Moraxella IgD-binding protein providing a more effective 
vaccine [52].

However, it was found that a subset of clinical isolated 
MenB strains only (partially) express the monomeric form 
of NhhA, caused by a single natural mutation (glycine to 
aspartic acid) in the C-terminal passenger domain. Accord-
ingly, loss in trimerization, surface exposure and adhesive 
features was observed. These findings question the vaccine 
candidacy of NhhA because of the need for broad strain 
coverage [128].

Haemophilus spp. TAAs

Two different TAAs are expressed on the outer membrane 
of H. influenzae, H. influenzae adhesin (Hia), and H. surface 
fibril (Hsf) [129, 130].

Haemophilus influenzae is a human specific, Gram-nega-
tive pathogen categorised into two different groups, the poly-
saccharide encapsulated (serotypes a–f), and the unencapsu-
lated group often referred to as non-typeable H. influenzae 
(NTHi) [129, 131, 132]. H. influenzae serotype b (Hib) 
encapsulated strains are considered most virulent and are a 
major agent of respiratory tract systemic infections. Infec-
tions can lead to acute epiglottitis, sepsis, acute meningitis, 

and pneumonia. NTHi mainly causes local diseases such as 
bronchitis, otitis media, and sinusitis [131, 133, 134].

Current vaccines are mainly against the most virulent 
Hib. The earlier polysaccharide-based vaccines showed only 
short-term protection for children under 18 months after 
various trials were undertaken in 1977 [135]. The first con-
jugate vaccine was introduced in 1992. In total, four different 
conjugate vaccines have been licensed, each with different 
immunologic properties [136]. In 2012, it was concluded 
that the invasive disease caused by Hib had been virtually 
eliminated since the introduction of the vaccine [136, 137]. 
However, Hib vaccines do not protect against other sero-
types. There are currently no approved vaccines against the 
remaining capsulated H. influenzae nor against NTHi, and 
so research is thus needed [138–140]. For instance, recent 
studies on the prevention of chronic obstructive pulmonary 
disease (COPD) focused on the immunogenicity of various 
vaccine formulations consisting mainly of NTHi and Morax-
ella catarrhalis surface proteins [141].

Two relevant candidate vaccine antigens are the surface 
proteins Hia and Hsf. Both TAAs contain several repetitive 
domains, are homologous in their N- and C-termini, and 
show an overall sequence identity of 81% and 72%, respec-
tively [132].

Haemophilus influenzae surface fibril

Hsf has a monomeric molecular weight of 243 kDa [132], 
represents a major virulence factor of H. influenzae, and 
is presented in all encapsulated serotypes and a subset of 
NTHi [132]. The binding of vitronectin by Hsf inhibits the 
formation of the membrane attack complex and thus facili-
tates the invasion of lung epithelial cells [131]. Furthermore, 
Hsf mediates adherence to host epithelial surface integrins 
via bridge formation with vitronectin. Hsf is not frequently 
mentioned as potential vaccine antigen, but Hallström et al. 
demonstrated reduced survival of a Hsf-deficient mutant 
when incubated with human serum [129, 142].

Haemophilus influenzae adhesin

In contrary with Hsf, Hia is only present in 25% of NTHi 
clinical isolates and has a monomeric molecular weight of 
114 kDa [130, 131, 133]. Hia is a major adhesin in NTHi 
strains and performs a crucial role in the infection and colo-
nisation of the upper respiratory tract [143]. In addition, Hia 
is highly immunogenic in humans and a strong antibody 
induction was observed during naturally acquired infections 
[144, 145]. However, to qualify as a vaccine antigen, a broad 
strain coverage is required. A vaccine that comprises Hia, 
combined with both surface adhesins HMW1 and HMW2, 
would be active against 95% of all NTHi [130, 133, 144, 
146]. HMW1 and HMW2 are both immunogenic surface 
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adhesins expressed by approximately 75% of NTHi strains 
[130, 146]. Winter and Barenkamp demonstrated in 2017 
the protective ability of OMVs, overexpressing HMW1 and 
HMW2 or Hia, as vaccine antigens in a rodent otitis media 
model [62].

Haemophilus ducreyi serum resistance A

The TAA of Haemophilus ducreyi called the ‘ducreyi serum 
resistance A’ (DsrA) is a proven virulence factor and thus 
a potential target as vaccine antigen [147]. H. ducreyi is a 
pathogen that causes the genital ulcer disease chancroid, for 
which no vaccines are available [148]. Fusco et al. dem-
onstrated the immunogenic and protective properties of a 
recombinant form of the N-terminal passenger domain of 
DsrA (rNT–DsrAI), administered bi-weekly in Freund’s 
adjuvant against infection with experimental H. ducreyi 
in swine [66]. It was subsequently found that the humoral 
immune response in mice upon intramuscularl administra-
tion of rNT–DsrAI with alum is highly persistent and of 
superior quality and quantity compared to subcutaneous 
administration [149]. Furthermore, a Th2-type immune 
response was observed using Freund’s adjuvant, alum, or 
imiquimod as adjuvant [149]. Nonetheless, H. ducreyi is 
divided into two clonal populations with varieties in the pas-
senger domain of DsrA, meaning that antibodies recognising 
class I DsrA do not recognise class II DsrA [147, 149, 150].

Acinetobacter baumannii TAA​

Ata is a TAA present on the bacterial surface of the Gram-
negative A. baumannii, one of the majorcausative agents 
of hospital-acquired infections worldwide [151, 152]. Char-
acteristically, A. baumannii strains possess the ability to 
acquire resistance genes rapidly against all commonly used 
antimicrobial compounds. The dissemination of carbape-
nem-resistant and in general multidrug-resistant Acineto-
bacter spp. strains is one of the most urgent health risks of 
our time and threatens to undo a century of medical pro-
gress [153]. Consequently, A. baumannii is the number one 
pathogen on the ‘WHO priority pathogens list for R&D of 
new antibiotics’ [154]. Effective antibiotic treatment is thus 
complicated and alternative therapy strategies are urgently 
needed [63, 151, 152, 155].

Vaccination can become a valuable alternative for short-
coming antibiotic treatments against multi-resistant patho-
genic strains. Currently, no vaccines against A. baumannii 
are licensed. However, promising vaccine candidates with 
immunogenic and protective properties have been described, 
including outer membrane complexes, OmpA and Ata itself 
[155–157].

Ata was first described in 2012 while searching for novel 
virulence factors of A. baumannii [158]. The ata gene was 

detected in 44 out of 75 collected A. baumannii isolates of 
which 43 showed additional Ata expression on its outer 
membrane [158]. More recently via phylogenetic profil-
ing, 78% of monophyletic A. nosocomialis, A. seifertii, and 
A. baumannii showed presence of the ata gene [159]. Ata 
mediates binding to ECM proteins, under static and dynamic 
flow conditions [160], plays a crucial role in biofilm forma-
tion, mediates virulence in vitro and in vivo, and is hence an 
important virulence factor [63, 158, 159]

Bentancor et al. demonstrated in a pneumonia infection 
model in immunocompetent and immunocompromised mice 
the promising bactericidal, opsonophagocytic, and protec-
tive features of Ata-induced antibodies against inter alia two 
heterologous unrelated multidrug resistant A. baumannii 
strains [63]. Nevertheless, to increase the efficacy and strain 
coverage, the combination of Ata proteins from various iso-
lates was suggested. In addition, the use and effectiveness 
of reverse vaccinology in the search for potential vaccine 
antigens against A. baumannii were recently re-emphasized 
[55, 156].

Moraxella catarrhalis TAAs

Moraxella catarrhalis expresses two different TAAs on its 
outer membrane, the ubiquitous surface protein A1 (UspA1) 
and the ubiquitous surface protein A2 (UspA2) [18, 161].

Moraxella catarrhalis is a Gram-negative and a human-
specific bacterium of the respiratory tract [162, 163]. It 
was previously classified as Micrococcus catarrhalis, Neis-
seria catarrhalis, and Branhamella catarrhalis [164]. M. 
catarrhalis is a commensal coloniser of the nasopharynx 
and represents a causative agent of otitis media in (young) 
children. The role of M. catarrhalis as causative agent of 
COPD has long been underestimated, however, is a frequent 
pathogen in the acute exacerbation phase of the disease [141, 
165]. Other related illnesses are meningitis, sinusitis and 
pneumonia [18, 162]. Diseases caused by M. catarrhalis 
are a serious burden for health systems worldwide [166, 
167]. Moreover, M. catarrhalis produces ß-lactamases and 
is thus resistant against various important antibiotics [18]. 
Alternative therapies, such as M. catarrhalis vaccines, are, 
therefore, highly desirable [168].

Currently, no licensed vaccines are available to prevent 
M. catarrhalis-associated diseases, but several candidate 
vaccines are being developed [165, 168, 169]. Potential M. 
catarrhalis vaccine antigens are adhesive proteins (e.g., 
OMP CD, Moraxella IgD-binding protein, UspA1 and 
UspA2), proteins involved in nutrient acquisition (e.g., 
oligopeptide permease protein A, transferrin-binding pro-
teins, and OMP E), lipooligosaccharides, or other Moraxella 
surface proteins [18, 170, 171]. Numerous OMPs includ-
ing UspA1 and UspA2 are main virulence factors of M. 
catarrhalis and play an important role in the first adherence 
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to the epithelial host cells, during the infection process, and 
the subsequent disease development [163].

UspA1 and UspA2 are TAAs with a predicted molecular 
weight of ca. 83.5 and ca. 59.5 kDa, respectively [172]. They 
are immunogenic [161, 173] and play an important role in 
serum resistance [174]. In addition, UspA1 and UspA2 are 
identified as one of the main targets of antibodies to surface 
epitopes in patients with COPD [175, 176]. Earlier, UspA1 
and UspA2 were considered as promising vaccine candidates 
[18, 171, 173, 177]. However, a high degree of sequencing 
diversity in the uspA1 and uspA2 genes was demonstrated 
[163, 178] resulting in strain-specific differences and vari-
able phenotypes [179]. In addition, to evade acquired immu-
nity from the host while maintaining serum resistance and 
adhesive features, regions of uspA genes can swap between 
other uspA genes from the same strains [180]. Consequently, 
both TAAs lately lost major interest as potential vaccine 
antigens [18]. A possible solution might be to target con-
served motifs of known function that are present in both 
UspA proteins [e.g., domains responsible for binding with 
ECM proteins or proteins from the carcinoembryonic anti-
gen related cell adhesion molecule (CEACAM) subfamily] 
[180].

Escherichia coli TAAs

Four different TAAs have been characterised from patho-
genic Escherichia coli, in particular the E. coli immunoglob-
ulin binding (Eib) proteins [181], the Shiga toxin-producing 
E. coli auto-agglutinating adhesin (Saa) [182], the uropatho-
genic E. coli adhesin G (UpaG) [183], and, most recently, 
the enterohemorrhagic E. coli adhesin G (EhaG) [184].

Currently, no broadly protective vaccines against path-
ogenic E. coli are available[185, 186], but some vaccines 
have reached clinical trial status [187–189]. Most research 
concerning vaccine development against pathogenic E. coli 
is done for the enterotoxigenic E. coli (ETEC) expressing 
enterotoxins and colonisation factors (i.e., usually fimbriae 
or fibrillae) upon infection [190], as this bacterium is an 
important cause of bacterial diarrhoea (travellers’ diarrhoea) 
in developing and middle-income countries [187]. ETEC 
vaccine development is currently one of the WHO priori-
ties [191, 192]. Two vaccines against ETEC are in phase II 
clinical trials. To broaden the vaccine coverage, novel immu-
nogenic, conserved and virulent antigens must be reviewed, 
e.g., non-fimbrial surface adhesins [193]. Promising research 
to identify potential protective antigens is ongoing [185, 
194–196].

Escherichia coli immunoglobulin binding proteins

Eib proteins are mostly found in intimin-negative, shiga 
toxin-producing enterohaemorrhagic E. coli (EHEC) 

strains [197, 198]. Shiga toxin-producing E. coli (STEC) 
causes severe diseases in humans such as haemorrhagic 
colitis or haemolytic–uremic syndrome (HUS) [199]. Eib 
genes occur in various pathogenic and multidrug-resist-
ant E. coli strains, for example enteroaggregative E. coli 
(EAEC), extraintestinal pathogenic E. coli (ExPEC), and 
verotoxigenic E. coli (VTEC) [199–201]. No licensed 
vaccines against STEC-associated diseases are available 
[196].

Currently, six homologous Eib proteins are described 
(EibA, EibC, EibD, EibE, EibF, and EibG) [181, 197, 
198]. They are all TAAs and mutually share a high simi-
larity in their passenger domain and C-terminus. Eib pro-
teins are major virulence factors, as they (i) mediate serum 
resistance; (ii) play a major role in adherence to epithelial 
cells; and (iii) are receptors for IgAs and IgGs, binding 
non-immunologically to the Fc portion of immunoglobu-
lins (Ig) [197, 198, 202]. To the best of our knowledge, no 
research has been carried out on their potential as vaccine 
components.

Shiga toxin‑producing E. coli auto‑agglutinating adhesin

In 2001, the gene for Saa was isolated from a large, viru-
lence-related plasmid in a STEC strain negative for the locus 
for enterocyte effacement. Saa mediates autoaggregation and 
adherence to human epithelial type 2 cells, shows variation 
in size for different STEC strains, and has just ca. 25% iden-
tity with the Eib proteins. Furthermore, Saa was not proven 
to contribute to serum resistance. Nevertheless, in vitro 
adherence of saa-positive STEC strains was inhibited upon 
application of a polyclonal antiserum that was raised against 
purified Saa, emphasizing its potential as a vaccine antigen 
[182].

Uropathogenic E. coli adhesin G

Escherichia coli UpaG, was identified by Durant et  al. 
via reverse vaccinology [195]. UpaG, characterised in the 
uropathogenic E. coli (UPEC) strain CFT073, mediates 
binding to ECM proteins and bladder epithelial cells, and 
promotes bacterial cell aggregation and biofilm formation 
[183]. The upaG gene in UPEC shows extensive sequence 
variation with the upaG gene in ExPEC strains [184].

Furthermore, UpaG was proven to induce protective anti-
bodies in a mouse model against lethal sepsis due to viru-
lent extraintestinal isolates of E. coli [195]. UpaG shows a 
wide strain distribution and is present in both commensal 
and pathogenic strains (e.g., in ExPEC strains) [203], sug-
gesting that it is important in efficient colonisation of the 
urinary tract [183].
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Enterohaemorrhagic E. coli adhesin G

The most recently identified TAA is EhaG which occurs 
in EHEC strains. EhaG is a positional orthologue of UpaG 
[184, 204], but has significant sequence differences in the 
passenger domain and has some divergent functional char-
acteristics. EhaG also mediates bacterial binding to ECM 
proteins, autoaggregation, and biofilm formation. Other 
than UpaG, EhaG promotes adherence to intestinal epithe-
lial cells. In addition, EhaG is highly conserved in diarrhea-
genic E. coli strains [184]. Some of these features indicate 
that EhaG is suitability as a potential vaccine candidate, but 
more research on it is certainly necessary.

Salmonella enterica adhesin A

Salmonella adhesin A (SadA) is a TAA expressed in vivo on 
the bacterial surface of the pathogenic Salmonella enterica 
(serovar Typhimurium) during infections [64, 205].

Salmonella enterica causes significant morbidity and 
mortality worldwide in humans and cattle [206]. Moreover, 
Salmonella is the most frequent bacterial cause of food-
borne disease in the US and is responsible for the majority 
of foodborne outbreaks in the European Union [207]. Infec-
tion with S. enterica can result in enteric salmonellosis and 
sometimes manifests as septicaemia. When not self-limiting, 
Salmonella-infected patients are treated via antimicrobial 
therapy. Consequently, multidrug-resistant S. enterica are 
on the rise [206, 208].

Currently, three types of licensed Salmonella vaccines 
exist: (i) a whole-cell live-attenuated vaccine (Vivotif®); (ii) 
a polysaccharide unconjugated vaccine; and (iii) a polysac-
charide-conjugated vaccine (the latter commercialised under 
several names), all against one S. enterica serovar Typhi 
[209]. Furthermore, vaccination therapy against Salmonella 
spp. does exist for livestock breeding; for instance, an attenu-
ated S. enterica serovar Typhimurium was designed provid-
ing higher cross protection against Salmonella serovars in 
swine [210]. Despite various studies and existing vaccines, 
there is still a need for safer and well-defined Salmonella 
vaccines.

The TAA SadA has an approximate trimeric size of 
426 kDa and promotes biofilm formation and autoaggrega-
tion, but does not mediate serum resistance and does not 
bind ECM proteins. In addition, no distinction in virulence 
was observed between wild-type S. enterica and SadA-defi-
cient S. enterica. SadA, nonetheless, plays an important role 
in adherence to and invasion of intestinal epithelial cells. 
Large surface structures such as LPS or fimbria inhibit the 
function of SadA, suggesting a specific role during certain 
conditions in colonisation and infection of epithelial cells. 
Moreover, SadA is highly conserved within S. enterica 
strains and is considered as a positional orthologue of UpaG 

and EhaG in E. coli, but with some different functions [64, 
204]. Animmunological IgG response was observed upon 
immunisation of mice with purified SadA (and Alum as 
adjuvant). However, IgG antibodies to SadA give only a lim-
ited protection compared to the PBS control, and therefore, 
the development of an effective vaccine against S. enterica 
might involve multiple antigens in parallel [64].

Bartonella TAAs

Bartonella quintana, B. bacilliformis, and B. henselae 
are clinically the three most important Bartonella species 
each expressing one or more TAAs [211, 212]. B. quintana 
expresses four variably expressed outer membrane proteins 
(VompA–D) [213], B. bacilliformis the B. bacilliformis 
adhesins A, B, and C (Brps, also designated as BbadA–C) 
and B. henselae the B. henselae adhesin A (BadA). Anti-
microbial treatment of Bartonella spp.-associated diseases 
depends solely on the clinical situation and immunological 
status of the patient and less on the infective species. Conse-
quently, no general treatment recommendation does exist for 
all Bartonella spp.-associated diseases [212, 214].

Variably expressed outer membrane proteins

Bartonella quintana is transmitted via the human body louse 
and is the causative agent of trench fever. Infections with B. 
quintana can lead to endocarditis, bacillary angiomatosis 
and peliosis hepatis in immunocompromised patients [211, 
215–217]. Until now, no vaccines exist or are being devel-
oped against B. quintana infections [212].

Bartonella  quintana expresses four TAAs called 
VompA–D, which are encoded by four genes (vompA, 
vompB, vompC, and vompD) and are tandemly arranged in 
a 12.8 kb gene locus [213]. The domain structure of the 
four ca. 100 kDa VompA–D is highly conserved, except for 
the major variable region in the N-terminal half of the stalk 
[213]. This region might be responsible for the variable phe-
notypes amongst the VompA–D which causes diversity in 
adhesion specificity, e.g., expression of VompA mediates 
autoaggregation of B. quintana [218]. Vomps are involved 
in bacterial cell adhesion to endothelial HUVEC cells [219], 
but do not seem important for bacterial adherence to epithe-
lial HeLa-229 and phagocytic THP-1 cells [215]. Vomps are, 
therefore, important virulence factors and are crucial for the 
course of infection [213, 218].

The immunogenicity of Vomps and their suitability as a 
vaccine antigen have been described. While analysing pro-
tective and diagnostically relevant B. quintana antigens, 
24 immunoreactive membrane proteins were identified 
of which, among others, VompA and VompB were most 
frequently recognised by sera from B. quintana-infected 
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patients [220]. Further research to classify both TAAs as 
vaccine antigens is, however, necessary.

Bartonella bacilliformis adhesins A–C

Bartonella bacilliformis is the causative agent of Carrion’s 
disease, a biphasic illness restricted to the South American 
Andes [221]. The pathogen can infect human erythrocytes 
causing a serious acute hemolytic anaemia called ‘Oroya 
fever’ with high mortality rates in untreated patients. In 
a second chronic phase, B. bacilliformis infects endothe-
lial cells and stimulates cell proliferation which results in 
the formation of blood-filled nodular haemangioma-like 
lesions in the skin known as ‘verruga peruana’ [221].

Currently, no vaccine is available for B. bacilliformis. 
However, vaccines against B. bacilliformis infections 
should be effective, as indigenous people in B. bacilli-
formis endemic regions seem less susceptible to infections 
and hemolytic diseases compared to non-indigenous peo-
ple [222]. In addition, antiflagellin antiserum significantly 
reduced in vitro human erythrocyte invasion by the patho-
gen as compared to the controls [223].

One of the few attempts to prepare a vaccine against 
the Carrion’s disease was performed in 1943 by Howe and 
Hertig. The vaccine contained a formalin suspension of 
four B. bacilliformis strains. Twenty-two Peruvian guards 
working in a region notorious for frequent incidents of 
Carrion’s disease were subcutaneously vaccinated. The 
vaccine did not prevent infection, but alleviated the sever-
ity of the Carrion’s disease [221, 224]. Nonetheless, as the 
highly deadly Carrion’s disease affects mostly indigenous 
people with only limited medical care, the most promising 
and effective strategy to fight this disease is the devel-
opment of a vaccine evoking both humoral and cellular 
immune responses [221, 225, 226].

In B. bacilliformis, three genes encoding for putative 
TAAs were identified [211]. The B. bacilliformis adhes-
ins A–C (BbadA–C), originally called Bartonella repeat 
proteins (Brps), share common domain features with other 
TAAs of the genus Bartonella. The 130 kDa monomeric 
BbadA shows a highly similar head structure compared 
to BadA of B. henselae. In contrast, BbadB and the much 
shorter BbadC have more in common with the VompA–C 
of B. quintana. The role of B. bacilliformis adhesins dur-
ing the infection process remains unclear.

Among other candidates [226, 227], the TAAs 
BbadA–C have been described as potential antigen candi-
dates in vaccines [226]. More research towards antigenic 
candidates is, however, necessary and ongoing.

Bartonella henselae adhesin A

Bartonella henselae is the etiologic agent of cat scratch 
disease (CSD) and vasculoproliferative disorders. CSD is a 
self-limiting disease, but can be life-threatening for immu-
nocompromised patients [29, 211]. Cats and dogs are the 
main reservoir of B. henselae, and the role of ticks in the 
transmission of B. henselae to humans remains unclear [29, 
228, 229].

Unlike research towards clinical serodiagnostic tools 
including immunogenic proteins of B. henselae [230–233], 
and towards the development of feline vaccines [234–237], 
there has been no research towards the development of 
human vaccines preventing B. henselae infections. One pos-
sible obstacle in this research is the variable gene pool of B. 
henselae strains promoting antigenic variation and defining 
the specific immune response [238].

An important pathogenicity factor of B. henselae is the 
TAA BadA. BadA is a large (ca. 240 nm and ca. 328 kDa 
monomeric) outer membrane protein primarily responsible 
for the first interaction of the pathogen with endothelial 
host cells and ECM proteins (e.g., collagen, fibronectin, 
and laminin)(Fig. 2). Expression of BadA correlates with 
the secretion of angiogenic cytokines and activation of 
hypoxia-inducible factor (HIF)-1, the key transcription fac-
tor involved in angiogenesis [24, 219, 239, 240]. Despite 
length variations in the neck-stalk region, BadA seems to be 
highly conserved within B. henselae strains [241].

BadA is an immunodominant and immunogenic protein 
and regularly found in sera of patients (75%) infected with 
B. henselae [231, 240]. A mixture of immunodominant pro-
teins including BadA seems the most plausible approach to 
develop an effective vaccine [232, 238].

Other TAAs

The Brucella suis trimeric autotransporter F (BtaF) and E 
(BtaE) are described as a promising immunogenic target 
for vaccination against mucosal B. suis infections [242]. 
Other research concerning the vaccine development target-
ing melioidosis and glanders caused by Burkholderia pseu-
domallei and Burkholderia mallei, respectively, is ongoing 
and describes various expressed TAAs with immunogenic 
properties such as BPSL2063 [243] and BimA [244, 245].

Finally, vaccine development against animal pathogenic 
bacteria expressing TAAs is of high veterinary importance. 
For example, AhsA (designated according to gene locus 
ahsA) of Mannheima haemolytica A1, the principal cause 
of bovine pneumonic pasteurellosis, promotes colonisation 
and subsequent infection via its ability to bind collagen and, 
more importantly, is suggested to be immunogenic in calves 
[246]. Furthermore, the TAA HMTp210 is the major hemag-
glutinin antigen of Avibacterium paragallinarum, which 
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can cause infectious coryza in poultry. A variable region 
within HMTp210 is proposed as a candidate for recombi-
nant vaccine production [247–249]. Lastly, Actinobacillus 
pleuropneumoniae adhesin 1 (Apa1) and 2 (Apa2) are two 
TAAs expressed on the bacterial surface of Actinobacillus 
pleuropneumoniae, the causative agent of porcine pleuro-
pneumonia. The main functional head domain, Apa2H1, 
activates dendritic cells and provides effective protection 
in mice against lethal infections with A. pleuropneumoniae 
by both reducing bacterial colonisation and dissemination 
[250].

Conclusion

Remarkably, it is still only NadA of all TAAs that is used 
as a main vaccine antigen in the respective multicompo-
nent vaccine 4CMenB. Nonetheless, TAAs largely ful-
fil the requirements to be considered as potential vaccine 
antigens. Immunogenicity was demonstrated for many of 
the TAAs (Table 1). Moreover, seven out of nine already 
assessed TAAs (YadA, NadA, DsrA, Ata, UspA1-2, UpaG, 
and SadA) induced a protective host response upon infection 
with the respective pathogen.

The reason for this ‘scarcity’ of TAAs as vaccine (sub)
units may be that research on TAAs itself is still fairly new, 
especially research towards their applicability as potential 
vaccines. The current trend to use OMVs in vaccines (as in 
4CMenB) and to apply reverse vaccinology to identify new 
vaccine antigens might give a boost for the usage of TAAs 
as vaccine antigens.

TAAs showing the highest potential as vaccine targets are 
Hia of H. influenzae, DsrA of H. ducreyi, Ata of A. bauman-
nii, UpaG of uropathogenic E. coli and EhaG of enterohaem-
orrhagic E. coli. TAAs that are no longer of major interest as 
vaccine targets are NhhA of N. meningitidis and UspA1 and 
UspA2 of M. catarrhalis due to their irregular expression 
patterns and high degree of diversity, respectively. Other 
TAAs, including YadA of Y. enterocolitica, Saa of Shiga 
toxin-producing E. coli, BbadA–C of B. bacilliformis, and 
VompA and VompB of B. quintana show promising results 
as potential future vaccine candidates. In conclusion, more 
extensive research bringing more insights in the functional-
ity and effectiveness of TAAs as vaccines is necessary.
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