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A B S T R A C T

Individuals of lower socio-economic position (SEP) carry a heavier burden of disease and morbidity and live
shorter lives on average compared with their more advantaged counterparts. This has sparked research interest
in the processes and mechanisms via which social adversity gets biologically embedded. The present study
directly compares the empirical worth of two candidate mechanisms: Allostatic Load (AL) and the Epigenetic
Clock(s) for advancing our understanding of embodiment using a sub-sample of 490 individuals from the Irish
Longitudinal Study (TILDA) who were explicitly selected for this purpose based on their inter-generational life
course social class trajectory. A battery of 14 biomarkers representing the activity of 4 different physiological
systems: Immunological, Cardiovascular, Metabolic, and Renal was used to construct the AL score. Biomarkers were
dichotomised into high and low risk groups according to sex-specific quartiles of risk and summed to create a
count ranging from 0-14. Three measures of epigenetic age acceleration were computed according to three sets
of age-associated Cytosine-phosphate-Guanine (CpG) sites described by Horvath, Hannum and Levine. AL was
strongly socially patterned across a number of measures of SEP, while the epigenetic clocks were not. AL par-
tially mediated the association between measures of SEP and an objective measure of physiological functioning:
performance on the Timed Up and Go (TUG test). We conclude that AL may represent the more promising
candidate for understanding the pervasive link between SEP and health.

1. Introduction

One of the most consistent findings in epidemiological research is
that health is socially patterned and that individuals in lower socio-
economic strata will experience a heavier burden of disease across the
life course (Marmot et al., 2012). On average, they will develop diseases
earlier and die younger compared with their more advantaged peers
(Stringhini et al., 2017). Because the risk of poor health tends to decline
with step increases in socio-economic position (SEP), the relationship
has come to be known as the social gradient in health. The robustness of
these associations and the fact that SEP seems to be important for just
about every disease outcome studied suggests that there may be a
common cause/mechanism underlying the pathogenesis of different

disease types. For example, chronic stress can damage biological sys-
tems directly (e.g. circulating levels of glucocorticoids) as well as in-
directly via its effects on other biobehavioural risk factors (e.g.
smoking, alcohol consumption, sleep quality) that are known to im-
pinge upon health (McEwen, 2008).

While much of the early work in this field was characterized by
heated debate concerning whether material or psychosocial explana-
tions had greater explanatory power in accounting for the social gra-
dient in health (Lynch et al., 2000; Marmot and Wilkinson, 2001), a less
entrenched position is simply to acknowledge that both material and
psychosocial privation can wreak havoc at the biological level. Hence
the conceptual model that informs our approach views SEP as a mea-
sure that includes one or more of a range of risk exposures: material,
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psychosocial, and environmental that predispose to disease through a
number of potential pathways (Adler and Stewart, 2010). Accepting
this, the challenge then is to identify the mechanisms through which
life course social influences get transduced at the biological level to
erode health. Krieger (2005) refers to this process as “embodiment”,
Hertzman (2012) as bioarcheology, while Taylor et al. (1997) ponder
how social adversity “gets under the skin”. A number of candidate
processes and mechanisms have been proposed that provide inter-
mediate frameworks linking SEP and health including, telomere
shortening (Robertson et al., 2012), inflammation (Aiello and Kaplan,
2009), epigenetic modifications (Cunliffe, 2016), and allostatic load
(Seeman et al., 2004). A number of criteria have to be satisfied for any
candidate process to make a claim to mediate the association of SEP
with health. The mediator must be structured according to SEP, the
mediator must be correlated with health, and the addition of the
mediator should lead to a statistically significant reduction in the
magnitude of the SEP-health relationship. In this paper we consider two
of these candidate processes: allostatic load (AL) and epigenetic age
acceleration (EAA).

1.1. Allostatic load

It has been proposed that cumulative lifetime exposure to material,
social, psychological and/or environmental stressors increases the risk
of diseases in later life by disrupting the physiological regulatory sys-
tems that are involved with initiating, maintaining, and inhibiting the
stress response leading to greater ‘wear and tear’ on the body (Seeman,
Epel, Gruenewald et al., 2010). Indeed, a large body of evidence has
accrued showing that social gradients are evident across a large number
of biological parameters that are implicated in the stress response in-
cluding cortisol secretion, norepinephrine, epinephrine, heart rate
variability, and inflammatory markers (Seeman et al., 2010). Re-
searchers have attempted to capture variation in these life-course
stresses using an AL score, which is a multi-system, multi-dimensional
composite index, usually involving neuroendocrine, immunological,
cardiovascular, and metabolic components – that has been used to
quantify stress-induced biological risk (Seeman et al., 2010). AL is so-
cially patterned (Gruenewald et al., 2012; Seeman et al., 2014;
Delpierre et al., 2016) and predicts age-related diseases, frailty, and
mortality independently of age and other risk factors (Karlamangla
et al., 2002; Castagné et al., 2018).

A handful of studies have examined the association of SEP with AL
over the life course (Gustafsson et al., 2011; Gruenewald et al., 2012;
Robertson et al., 2014; Solis et al., 2016; Prag and Richards, 2018).
Comparison of results across studies is complicated by the fact that AL is
not always measured using the same number or composition of bio-
markers, but most of them have concluded that the socio-economic
conditions of childhood and adulthood have separable and additive
effects on AL. Gruenewald et al. (2012) reported significant effects of
childhood, and adulthood SEP on AL using the MIDUS cohort, but the
magnitude of the effect size was about twice as large for adulthood
compared with childhood SEP. They also observed a dose-response
relation between SEP disadvantage score and AL, and a gradient with
life course mobility such that the persistent low SEP had the highest AL
score followed by the downwardly mobile, then the upwardly mobile,
while the persistent high SEP had the lowest score. Robertson et al.
(2014) examined the association of SEP with AL across 3 life stages
(childhood, transition to adulthood, and adulthood) in 3 age cohorts
and compared the goodness of fit of 3 life course models (critical per-
iods, accumulation, social mobility) that have been advanced to explain
the social patterning of health using data from the West of Scotland
Twenty-07 study. Accumulated SEP was the strongest predictor of al-
lostatic load in two of the 3 cohorts (1970’s and 1950’s, but not the
1930’s cohort). In the 1970’s cohort, childhood SEP was also found to
be more strongly associated with AL than adulthood SEP. Gustafsson
et al., 2011 reported bivariate associations of SEP with AL across 4

stages of the life course (16, 21, 30 and 43 years of age) in a Swedish
cohort, but only the most recent measure of SEP was significant when
all stages were entered simultaneously in the same regression model,
suggesting that early life SEP is important because it helps determine
(and may place constraints) on adulthood SEP. A very recent study
using Understanding Society concluded that the effects of childhood
and adulthood SEP on AL were comparable (Prag and Richards, 2018).

1.2. Epigenetics

Variation in gene expression as opposed to gene sequencing is the
key concept within the study of epigenetics. It involves chemical
modifications to DNA that change the way in which genes are expressed
without changing the underlying genetic structure. Interest in the epi-
genome has grown rapidly in recent years because it is exquisitely
plastic - particularly in early life - can be programmed or reprogrammed
by environmental experience (Francis, 2009); and represents a poten-
tial mechanism via which social exposures occurring in early life are
embodied at the molecular level, affecting phenotypic expression. Al-
though many types of epigenetic processes have been identified, the
one most readily researched in the context of SEP has been DNA me-
thylation (DNAm) (Majnik and Lane, 2014). One of the most novel and
exciting applications of DNAm data is in the development of the so
called “Epigenetic Clocks”.

1.3. Epigenetic clocks

Horvath (2013) developed a multi-tissue predictor that allows the
age of most tissues and cell types to be estimated based on DNAm at
353 age-associated CpG sites, while Hannum et al. (2013) developed a
blood-specific DNAm age predictor based on levels at 71 CpG sites.
These clocks track chronological age very closely (r = 0.90 - 0.95 in a
sample with a full age range) and allow estimation of whether an in-
dividual is experiencing accelerated or decelerated ageing by defining
EAA as the difference between DNAm age and chronological age. A
positive residual describes an individual experiencing accelerated
ageing while a negative residual indicates an individual who is ageing
more slowly than their chronological age. Both Horvath's and Hannum's
epigenetic clocks were developed to predict the chronological age with
the maximum possible accuracy. In both cases, the set of CpGs were
selected by elastic net regression using chronological age as the out-
come. The only difference between the two is that Horvath’s clock
works well for all tissues whereas Hannum’s clock works well on blood
samples only. Levine’s epigenetic clock (Levine et al., 2018), which is
the first of the ‘second generation’ clocks, was developed using a
slightly different approach. Specifically, a two-step algorithm was im-
plemented: i) a set of ten biomarkers (albumin, creatinine, glucose, c-
reactive protein, lymphocyte percent, mean cell volume, red cell dis-
tribution width, alkaline phosphatase, white blood cell count and
chronological age) strongly predictive of all-cause mortality were se-
lected and used to estimate the individuals’ phenotypic age; ii) elastic
net regression was then used to select 513 CpGs using the previously
described phenotypic age as the outcome.

Although, both Horvath and Hannum measures exhibit statistically
significant associations with many age-related diseases and conditions,
the effect sizes are usually small. This is because the use of chron-
ological age as the reference favours the selection of CpGs having time-
dependent changes, excluding those signals determining the difference
between chronological and biological age. Levine’s epigenetic clock was
built to address this issue, and this is the reason why it outperforms
‘first generation clocks’ concerning the prediction of many chronic
conditions. These epigenetic clocks have been shown to be associated
with a range of age-related diseases, functional impairments, and
mortality (Horvath and Raj, 2018). Although the clocks are a relatively
recent development, early studies provide at least some tentative sup-
port for the idea that epigenetic processes may be implicated in the
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earlier ageing of socially disadvantaged groups.
A study from the LIFEPATH group involving data for more than

5000 individuals in Italy, Australia and Ireland found that lower socio-
economic rank was associated with EAA (Fiorito et al., 2017). In the
meta-analysis of these cohorts, the epigenetic age of low SEP in-
dividuals was estimated to be 1–2 years higher compared with the
highest SEP group. The LIFEPATH study also examined the impact of
different life course trajectories on EAA by cross-classifying childhood
and adulthood social class, finding that the persistent low SEP group
were epigenetically older than the persistent high SEP group, with the
upwardly and downwardly mobile groups ranking somewhere in be-
tween, although this did not amount to a statistically significant dif-
ference.

Two more recent studies that explicitly examined the impact of life
course SEP on epigenetic ageing found that childhood SEP, but not
adulthood SEP was associated with EAA. Austin et al. (2018) examined
the association of life course SEP with epigenetic ageing of monocytes
among a sample of 335 Canadian participants aged 15–55 years who
were selected on the basis of their life course socio-economic trajectory
into four groups: stable low, upwardly mobile, stable high, downwardly
mobile. They found that participants who experienced low early life
SEP (i.e. parental social class before the age of 5) were significantly
epigenetically older (0.97–3 years) than those who experienced high
SEP in early life, but there was no main effect of adulthood SEP, and the
childhood*adulthood interaction was also non-significant. Hughes et al.
(2018) examined the association between a variety of contemporaneous
and historic measures of SEP and DNAm age, indexed using the Horvath
and Hannum clocks, among a sample of 1099 participants aged 18–99
years in the United Kingdom. They observed no significant associations
of adulthood SEP (i.e. current income, employment status, cumulative
income and employment over a 12-year period) with the epigenetic
clocks, but they did report significant associations between a measure
of childhood SEP (i.e. father’s social class before the age of 16) and EAA
adjusting for age sex, white blood cell count, smoking and body mass
index.

The present study examines the association of a number of measures
of childhood and adulthood SEP with AL and three Epigenetic Clocks
(Horvath’s, Hannum’s, Levine’s) among a sub-sample of 490 TILDA
participants who were chosen specifically on the basis of their life
course socio-economic trajectory. The study contributes to the existing
literature in a number of important ways. We directly compare the
utility of AL and the Epigenetic Clocks for advancing our understanding
of the biological embedding of socio-economic adversity in the same
cohort of participants. Secondly, we examine the association of life
course SEP with a recently developed second-generation epigenetic
clock (Levine’s DNAm Phenoage) (Levine et al., 2018), which has been
shown to outperform the first-generation clocks in the prediction of
many age-related diseases. To the best of our knowledge, this is the first
study to examine the association of SEP with Levine’s clock.

2. Method

2.1. Sample

The Irish Longitudinal Study on Ageing (TILDA) is a large pro-
spective cohort study examining the social, economic, and health cir-
cumstances of 8175 community-dwelling older-adults aged 50 years of
age and older resident in the Republic of Ireland. A detailed description
of study design is available elsewhere (Whelan and Savva, 2013).
Briefly, respondents completed a computer-assisted personal interview
(n = 8175) at home. All participants were subsequently invited to
undergo a comprehensive clinical health assessment at one of two na-
tional centers using trained nursing staff and standard operating pro-
tocols. This analysis uses a sub-sample (n = 490) of the TILDA cohort
who were selected based on their life-course socio-economic trajectory
(described below) and for whom DNA methylation age was available.

2.2. Measurement of allostatic load

A battery of 14 biomarkers representing the activity of 4 different
physiological systems: Immunological (C Reactive Protein (CRP),
Interleukin 1 receptor-antagonist (IL1ra), Interleukin 6 (IL6),
Interleukin 8 (IL8)), Cardiovascular (Systolic Blood Pressure (SBP),
Diastolic Blood Pressure (DBP), Resting Heart Rate (RHR)), Metabolic
(High Density Lipoprotein (HDL), Total cholesterol (TC), Waist-hip
ratio (WHR), Body Mass Index (BMI), Glycated haemoglobin (HbA1c)),
and Renal (Creatinine, Cystatin C) was used to construct the AL score.
An overall AL score was calculated by summing the number of para-
meters for which a respondent fell within the highest risk quartile using
sex-specific cut-offs (range = 0–14). Following Seeman et al. (2014),
we incorporated medication data into the calculation of our AL score.
Medication use was recorded during the course of the household in-
terview and confirmed by cross-checking the labels on the medicinal
packaging. The international non-proprietary name (INN) for any reg-
ularly taken medications was assigned and coded using Anatomic
Therapeutic Classification Codes (ATC). Participants were classified as
high risk in SBP if they were taking anti-hypertensive medication (C02,
C03, C09), high risk in RHR if they were taking beta-blockers (C07) or
calcium channel blockers (C08), high risk in glycated haemoglobin if
taking any diabetes medications, including insulin (A10), and high risk
in cholesterol if taking statins (C10AA, C10BA, C10BX). Participants
taking these medications were included in addition to the highest risk
sex-specific quartile cut-off. As a sensitivity check to ensure that any
observed relationship of AL with SEP was not simply being driven by
the inclusion of those on medications, we also calculated a second
measure of AL that ignores the medication data. We present both sets of
results for comparative purposes. The overall level of missingness with
respect to the AL biomarkers was very small. Only five people were
missing on any biomarker and the maximum number of biomarkers for
which any one person was missing was three or less. Following
Castagné et al. (2018), a conservative approach (maximum bias im-
putation) was taken to those missing on any biomarker; by system-
atically classifying them as ‘not at risk’ if missing on the biomarker.

C-Reactive Protein (CRP) was measured using ELISA Kit (Cat No
CYT298 Millipore), with sensitivity of 0.20 ng/ml. A control serum
from one donor and commercially available LiCheck control (Bio-Rad,
Ref. 591–596) were used as controls on all the plates. The inflammatory
markers, Interleukin 1 receptor-antagonist, Interleukin 6 and Interleukin 8
were measured by Luminex (Bio-Plex 200, Bio-Rad), and spiked serum
as well as two concentrations of known samples were used as controls
on each plate. Two measurements of seated SBP, DBP and RHR were
obtained separated by a 1-min interval using an automatic digital BP
monitor (OMRONTM, M10-IT). The means of the two readings were
averaged to derive SBP, DBP and RHR. Respondents provided a non-
fasting blood sample during the course of the health assessment and
these were sent for immediate analysis (within 24 h) to derive a de-
tailed lipid profile which included HDL, and TC. BMI was calculated
from measured height and weight. Height was measured using a SECA
240 wall mounted measuring rod and weight was measured using a
SECA electronic floor scales. WHR is a measure of distribution of body
fat (both subcutaneous and intra-abdominal). The waist was defined as
the point midway between the iliac crest and the costal margin (lower
rib). The hip circumference was defined as being the widest cir-
cumference over the buttocks and below the iliac crest. HbA1c was
analysed by reversed-phase cation exchange chromatography using an
ADAMS HA-8180V analyser which is traceable to the internationally
agreed standard developed by the International Federation of Clinical
Chemistry. Cystatin C and Creatinine were measured simultaneously
from frozen plasma. Cystatin C was measured using a second generation
particle enhanced immunoturbidimetric assay (Roche Tina-quant™) on
a Roche Cobas 701 analyzer. This assay has a measuring range of
0.40–6.80 mg/L and is traceable to the European reference standard
material (ERM-DA471/IFCC) for Cystatin C. Creatinine was measured
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using an enzymatic method traceable to isotope-dilution mass spec-
trometry (Roche Creatinine plus ver.2, Roche Diagnostics, Basel
Switzerland).

2.3. Measurement of epigenetic age acceleration

For the microarray, DNA samples were extracted from buffy coats
using the QIAGEN GENTRA AUTOPURE LS (Qiagen, Crawley, UK).
Bisulphite conversion of 500 ng of each sample was performed using the
EZ DNA Methylation-Lightning™ Kit according to the manufacturer’s
protocol (Zymo Research, Orange, CA). Then, bisulfite-converted DNA
was used for hybridization on the Infinium HumanMethylation 850k
BeadChip, following the Illumina Infinium HD Methylation protocol.
Briefly, a whole genome amplification step was followed by enzymatic
end-point fragmentation and hybridization to HumanMethylation EPIC
Chip at 48 °C for 17 h, followed by single nucleotide extension. The
incorporated nucleotides were labeled with biotin (ddCTP and ddGTP)
and 2,4-dinitrophenol (DNP) (ddATP and ddTTP). After the extension
step and staining, the BeadChip was washed and scanned using the
Illumina HiScan SQ scanner. The intensities of the images were ex-
tracted using the GenomeStudio (v.2011.1) Methylation module (1.9.0)
software, which normalizes within-sample data using different internal
controls that are present on the HumanMethylation 850k BeadChip and
internal background probes. The methylation score for each CpG was
represented as a β-value according to the fluorescent intensity ratio
representing any value between 0 (unmethylated) and 1 (completely
methylated).

DNA methylation age was computed according to the algorithm
described by Horvath (Horvath, 2013), based on a set of 353 age-as-
sociated CpG sites, the one based on 71 blood-specific age-associated
CpG sites described by Hannum et al.(2013), and the one based on the
513 CpG sites described by Levine et al. (2018). Out of the 889 age-
related CpGs, (6 are in common between Horvath and Hannum, 41
between Horvath and Levine, and 6 between Levine and Hannum) we
detected 867 (more than 96%). The CpGs missing are those that are not
present in the new Illumina 850k methylation BeadChip. Briefly, the DNA
methylation age is computed as a weighted average of the age-related
CpGs, with weights defined using a penalized regression model (Elastic-
net regularization) (Horvath, 2013). The few missing values were im-
puted using the k-nearest neighboring (KNN) imputation algorithm
implemented in the R Bioconductor package impute (Troyanskaya et al.,
2001). Epigenetic Age Acceleration (EAA) was defined as the difference
between epigenetic and chronological age. Positive values of EAA (that
is epigenetic age is higher than the chronological age) indicate ac-
celerated ageing and vice versa. Since EAA could be correlated with
chronological age and white blood cell (WBC) percentage, we com-
puted the so-called ‘intrinsic’ EAA (Chen, Marioni, Colicino et al.,
2016), defined as the residuals from the linear regression of EAA with
chronological age and WBC percentages (Chen et al., 2016). The latter
were estimated using the Houseman et al. (2012) algorithm. Intrinsic
EAA is not dependent on age and WBC by definition. Ten individuals
were missing on epigenetic age and are excluded from the analysis
resulting in a final case base of 490 individuals.

3. Measures of socio-economic position (SEP)

3.1. Life course social class trajectory

The sample was selected based on life course occupational mobility.
We considered using education but chose not to because the meaning of
education varies for different birth cohorts and Ireland introduced two
major educational reforms in 1967 and 1972 which means older co-
horts would have been over-represented among those classified as less
educated. Occupation is favoured as an indicator of SEP in life course
research because it is an individual-level measure that is correlated
with other measures of SEP (e.g. income, education, and environmental

exposures), and is transferrable as the occupational position of the head
of household can be used to describe the likely socioeconomic cir-
cumstances of dependents (Galobardes et al., 2006). During the
household interview, participants were asked to report their father’s
highest occupational position and their own current occupational po-
sition (or highest paying occupation if retired). Childhood and adult-
hood occupation were coded using the Irish Central Statistics Office
social class schema (described elsewhere) (McCrory et al., 2015) and
aggregated to create 3 groups as follows: (1) Professional/Managerial
(2) Non-manual/skilled manual (3) Semi-skilled/unskilled/never
worked. The cross-classification of childhood and adulthood social class
was then used to characterise intergenerational social mobility. The
exclusion of those missing on social class in childhood or adulthood
reduced the sample available for analysis to 5346, of whom 3861
provided a blood sample (Supplementary Table 1). Due to the high cost
of performing DNA methylation analysis, we could select only 500 cases
from the sample of 3861 available for analysis. We decided to sample 4
groups comprising 125 cases each based on respondents’ life course
social class trajectory as follows in order to facilitate statistical com-
parisons across groups:

(1) Stable high – inter-generationally stable in the professional/
managerial class.

(2) Stable low – inter-generationally stable in the semi-skilled/
unskilled class

(3) Steep upward mobility – inter-generationally upwardly mobile
from semi-skilled/unskilled childhood class to professional/managerial
adulthood class

(4) Steep downward mobility – inter-generationally downwardly
mobile from professional/managerial childhood class to semi-skilled/
unskilled adulthood class.

Prior to selection, the sample was pre-stratified by social class tra-
jectory and sex, and 125 cases were randomly selected from within each
category. Only 49 respondents experienced steep downward mobility so
we supplemented the downwardly mobile group by including an ad-
ditional 76 cases who were downwardly mobile by one social class
position: 35 were downwardly mobile from professional/managerial
childhood class to non-manual/skilled manual adulthood class, and a
further 41 were downwardly mobile from non-manual skilled manual
childhood class to semi-skilled/unskilled adulthood class. Of the total
number of eligible cases within each social class trajectory, they are
represented in the following proportions: stable high (125 /
457 = 0.27), stable low (125 / 513 = 0.24) steep upward mobility (125
/ 429 = 0.29), downwardly mobile (125 / 295 = 0.42) with the latter
group being over-represented relative to the others.

3.2. Education

Education is frequently employed as a measure of SEP because it
tends to be completed early in life before the onset of many chronic
conditions thereby reducing the risk of reverse causation. Highest level
of educational attainment is represented as a three-level categorical
variable: primary, secondary, tertiary, corresponding to approximately
10, 12 and 15 years of formal education completed in the Irish edu-
cation system.

3.3. Income tertiles

Respondents were asked to report all income resulting from full or
part-time employment, private or public pensions, and income from
other social welfare transfers. Respondents who could not provide an
exact figure for income were asked to estimate their income using a
banded range: (a) < €10,000 (b) €10,000– < €20,000 (c)
€20,000– < €40,000; (d) €40,000– < €70,000 and (e) ≥€70,000. We
imputed income for those who provided a banded figure (n = 78) and
for those who were missing on income (n = 42) using age, sex, edu-
cation, marital status, employment status, household composition, and
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geographic region, which was implemented using the imputation by
chained equations (uvis) command in Stata 15.0. Household income
tertiles were generated after imputing for income.

4. Health outcome measure

4.1. Timed up and go (TUG)

We used performance on the TUG as our objective measure of
health. It measures the time taken in seconds to rise from a chair
(appro x .46 cms from the ground), walk 3 m, turn around, return, and
sit down. It is frequently used in epidemiological studies as an objective
measure of physical functioning as it involves the co-ordinated action of
a number of different systems including the nervous, cardio-pulmonary,
and musculo-skeletal systems; and serves as a powerful indicator of
health and vitality in older adults (Bergland et al., 2017). A previous
publication from the TILDA team has shown that TUG captures the
components of frailty that become more common with age and iden-
tifies frail members of the population well based on the Fried frailty
phenotype (AUC = 0.87) (Savva et al., 2013). Four participants did not
complete the TUG task reducing the effective sample size to n = 486 for
the mediation analyses.

4.2. Statistical analysis

We used Stata, version 15.0 (Stata, College Station, TX) for all
analyses. The correlation of chronological age with AL and the epige-
netic clocks was examined using Pearson’s correlation coefficient. The
age and sex adjusted association of AL and the 3 measures of EAA with
each measure of SEP was estimated independently using linear re-
gression. We report results for the measure of AL which included the
medications data. Because the measures of SEP were categorical, we
tested whether they were jointly significant using an omnibus F-test
after running the regression. As AL and the epigenetic clocks are ex-
pressed on different scales, we converted them to standard scores (z-
scores) in the analysis to enable direct comparison of SEP associations
across the different measures. We also report the unstandardized esti-
mates to facilitate comparison with other studies. Mediation analysis
was undertaken using the Karlson, Holm and Breen (KHB) Method
(Kohler et al., 2011). It provides a decomposition of the effects of both
continuous and discrete variables and provides analytically derived
statistical tests for determining the significance of mediating variables.
The first model shows the age and sex adjusted association of SEP with
TUG while the second model shows the change in the magnitude of the
association when the mediating variable is entered. It then tests whe-
ther the addition of the mediator leads to a statistically significant re-
duction in the strength of the SEP-TUG association.

5. Results

Table 1 describes the characteristics of the sample. The mean age
was 62.2 years (SD = 8.3), and 50.2% were female. Table 2 shows high
risk cut-points for each component of the AL index separately for men
and women. As expected, the three epigenetic clocks were strongly
correlated with age: Horvath (r = 0.75), Hannum (r = 0.75) Levine
(r = 0.84), while AL was much more modestly correlated with age
(r = 0.32). There was no significant association between childhood SEP
and AL, but AL was strongly associated with contemporaneous mea-
sures of adulthood SEP including, adulthood social class (F(2,
485) = 6.94, p = 0.0011), highest level of educational attainment (F(2,
484) = 4.90, p = 0.0078), and household income tertiles (F(2,
485) = 6.05, p = 0.0025). Participants in lower socio-economic strata
were characterised by a higher AL burden compared with their more
socio-economically advantaged peers (Table 3). Those in the unskilled/
semi-skilled adulthood social class position scored 0.33 (CI = 0.15,
0.50; p < 0.001) of a SD unit higher on AL compared with those in the

professional/managerial position. The primary educated scored 0.34
(CI = 0.12, 0.56; p = 0.002) of a SD unit higher on AL compared with
the tertiary educated, while those in the lowest third of the household
income distribution scored 0.37 (CI = 0.16, 0.58; p < 0.001) of a SD
unit higher compared with those in the top third. In stark contrast, the
EAA measures were not significantly associated with either childhood
or adulthood SEP. These relationships are depicted graphically in
Supplementary Figures 1a – 1e. Table 4 reports the unstandardized
coefficients for comparability with other studies.

The cross-classification of childhood and adulthood social class was
used to explore the impact of different life course socio-economic tra-
jectories on these age-related biomarkers. Participants who were up-
wardly mobile were not significantly different to those in the stable
high position with respect to AL burden, while those who were down-
wardly mobile and stable low were characterised by a higher AL
burden, scoring 0.21 (CI=-0.03, 0.44; n.s.) and 0.38 (CI = 0.14, 0.61;
p = 0.002) of a SD unit higher respectively compared with the stable
high. Once again, there were no significant associations between life
course social mobility patterns and the EAA measures.

As the EAA measures were not structured according to SEP, they
were omitted from the mediation analysis. Table 5 shows the results of
the decomposition analysis where the various measures of adulthood
SEP are treated as exogenous variables, performance on the TUG test
represents the outcome variable and AL is the mediator. Column 1
shows the age and sex adjusted association of the adulthood measures
of SEP with TUG, column 2 shows the extent to which the coefficients
are attenuated when we add AL to the model, and column 3 shows the
percentage of the SEP-TUG association mediated by AL. We see partial
mediation of the SEP-TUG relationship across each measure when we

Table 1
Descriptive characteristics of the sample (n = 490).

All Sample Median Min/Max

Mean (SD) or n (%)
Age 62.2 (8.3) 61.0 50/87
Female 246 (50.2%)
Horvath’s epigenetic age acceleration

(EAA)
0.0 (7.3) 0.0 −18.7/34.1

Hannum’s epigenetic age acceleration
(EAA)

0.0 (7.3) 0.0 −21.6/29.5

Levine’s epigenetic age acceleration
(EAA)

0.0 (5.2) 0.0 −15.2/16.7

Allostatic Load (excluding
medications)

3.39 (2.26) 3.0 0.0/10.0

Allostatic Load (including
medications)

4.06 (2.58) 4.0 0.0/12.0

Childhood Social Class
- Professional/Managerial 204 (41.6%)
- Non-manual/Skilled manual 40 (8.2%)
- Semi-skilled/unskilled 246 (50.2%)

Adulthood Social Class
- Professional/Managerial 248 (50.6%)
- Non-manual/Skilled manual 32 (6.5%)
- Semi-skilled/unskilled 210 (42.9%)

Social Class Trajectory
- Stable high 123 (25.1%)
- Upwardly mobile 125 (25.5%)
- Downwardly mobile 121 (24.7%)
- Stable low 121 (24.7%)

Highest educational attainment
- Tertiary 208 (42.5%)
- Secondary 168 (34.4%)
- Primary 113 (23.1%)
- missing 1

Income Tertile
- Highest 164 (33.4%)
- Intermediate 163 (33.3%)
- Lowest 163 (33.3%)

Tug Time (seconds) 8.81 (2.38) 8.29 4.82/35.2
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add AL to the model. Among measures of SEP that were significantly
associated with TUG, AL mediated between 3.1%–17.5% of the total
effect, significantly so for those in the lowest vs highest income tertile,
and at the 10% level for those with primary vs tertiary education.

5.1. Sensitivity checks

As a check on the robustness of the findings of adult SEP on AL to
early life SEP, we re-ran the models controlling for childhood SEP, but

Table 2
Descriptive statistics and high-risk cut points for individual biomarkers of AL score for men and women.

Biomarker Mean Median Min Max P25 P75 N (%) dysregulated N (%) dysregulated (with meds)

MEN
CRP (ug/ml) 2.39 1.42 0.00 28.8 0.53 2.94 63 (24.9) 63 (24.9)
Interleukin 1-ra (pg/ml) 111.6 44.9 2.74 1727.0 24.0 100.4 63 (24.9) 63 (24.9)
Interleukin 6 (pg/ml) 3.3 1.95 0.01 28.6 0.01 4.85 62 (24.5) 62 (24.5)
Interleukin 8 (pg/ml) 13.5 10.6 2.40 106.7 7.40 17.3 62 (24.5) 62 (24.5)
SBP (mmHg) 139.7 136.5 127.5 209.0 127.5 149.5 62 (24.5) 124 (49.0)
DBP (mmHg) 84.1 83.5 58.5 125.0 77.5 90.0 60 (23.7) 60 (23.7)
RHR (bpm) 67.8 65.5 43.5 115.5 58.5 75.5 62 (24.5) 108 (42.7)
HDL (mmol/L) 1.37 1.34 0.64 2.65 1.12* 1.53 65 (25.7) 65 (25.7)
Total cholesterol (mmol/L) 4.87 4.90 2.40 8.77 4.19 5.60 60 (23.7) 137 (54.2)
Waist-hip ratio 0.96 0.96 0.77 1.16 0.92 1.00 63 (24.9) 63 (24.9)
BMI 29.3 28.8 20.3 59.3 26.2 31.7 63 (24.9) 63 (24.9)
HbA1c (mmol/mol) 33.5 32.0 19.0 65.0 30.0 35.0 56 (22.1) 59 (23.3)
Creatinine (umol/L) 88.4 86.0 49.0 148.0 78.0 95.0 60 (23.7) 60 (23.7)
Cystatin C (mg/L) 0.98 0.94 0.62 2.0 0.86 1.05 59 (23.3) 59 (23.3)

WOMEN Mean Median Min Max P25 P75 N (%) dysregulated N (%) dysregulated (with meds)

CRP (ug/ml) 2.66 1.45 0.00 57.7 0.49 2.95 61 (24.7) 61 (24.7)
Interleukin 1-ra (pg/ml) 90.7 35.7 7.15 1215.4 23.1 63.4 61 (24.7) 61 (24.7)
Interleukin 6 (pg/ml) 3.06 1.95 0.01 37.0 0.01 4.62 61 (24.7) 61 (24.7)
Interleukin 8 (pg/ml) 12.6 11.1 3.59 46.0 8.19 15.3 61 (24.7) 61 (24.7)
SBP (mmHg) 129.5 128.0 88.5 196.0 114.5 140.5 61 (24.7) 109 (44.1)
DBP (mmHg) 80.7 80.3 51.5 117.5 71.0 87.5 61 (24.7) 61 (24.7)
RHR (bpm) 70.2 70.0 46.5 110.5 63.0 77.0 58 (23.5) 95 (38.5)
HDL (mmol/L) 1.71 1.66 0.79 3.6 1.38* 1.97 65 (26.3) 65 (26.3)
Total cholesterol` (mmol/L) 5.41 5.30 2.8 8.1 4.7 6.0 60 (24.3) 123 (49.8)
Waist-hip ratio 0.86 0.86 0.66 1.13 0.82 0.90 61 (24.7) 61 (24.7)
BMI 28.3 27.7 17.2 50.7 24.7 31.8 61 (24.7) 61 (24.7)
HbA1c (mmol/mol) 33.0 32.0 20.0 89.0 30.0 34.0 60 (24.3) 61 (24.7)
Creatinine (umol/L) 71.7 69.0 44.0 116.0 62.0 78.0 59 (23.9) 58 (23.5)
Cystatin C (mg/L) 0.96 0.92 0.64 1.81 0.82 1.06 58 (23.5) 59 (23.9)

* The sex specific cut-points for the determination of allostatic load is > 75th percentile of each biomarker with the exception of high density lipoprotein (HDL)
for which the cut-point is < = 25th percentile.

Table 3
Association of Socio-Economic Position (SEP) with standardized measures of Allostatic Load and Epigenetic Age Acceleration.

Allostatic Load excluding meds (z-
score)

Allostatic Load including meds (z-
score)

Horvath EAA (z-score) Hannum EAA (z-score) Levine EAA (z-score)

B (95% CI) B (95% CI) B (95% CI) B (95% CI) B (95% CI)
Childhood social class
Professional/Managerial REF REF REF REF REF
Non-manual/skilled manual 0.14(-0.19, 0.47) 0.13(-0.19, 0.45) −0.18(-0.52, 0.16) −0.09(-0.43, 0.26) −0.10(-0.44, 0.24)
Semi-skilled/unskilled 0.11(-0.08, 0.29) 0.09(-0.09, 0.26) 0.11(-0.08, 0.30) 0.13(-0.06, 0.31) 0.07(-0.12, 0.25)
Adulthood social class
Professional/Managerial REF REF REF REF REF
Non-manual/skilled manual 0.16(-0.19, 0.52) 0.18(-0.17, 0.52) 0.08(-0.29, 0.45) 0.11(-0.27, 0.48) 0.01 (-0.36, 0.38)
Semi-skilled/unskilled 0.33***(0.16, 0.51) 0.33***(0.15, 0.50) 0.01 (-0.18, 0.19) 0.03(-0.15, 0.22) 0.05(-0.13, 0.23)
Social class trajectory
Stable High REF REF REF REF REF
Upwardly mobile −0.01(0.25, 0.23) −0.03(-0.26, 0.20) 0.01(-0.24, 0.26) 0.08(-0.17, 0.33) 0.11(-0.14, 0.36)
Downwardly mobile 0.22(-0.02, 0.46) 0.21(-0.03, 0.44) −0.11(-0.36, 0.14) −0.02(-0.28, 0.23) 0.07(-0.19, 0.32)
Stable low 0.40***(0.16, 0.64) 0.38**(0.14, 0.61) 0.16(-0.09, 0.41) 0.19(-0.07, 0.44) 0.13(-0.12, 0.38)
Educational attainment
Tertiary REF REF REF REF REF
Secondary 0.05(-0.14, 0.25) 0.06(-0.13, 0.25) −0.08(-0.28, 0.13) −0.16(-0.37, 0.04) −0.04(-0.25, 0.16)
Primary 0.33**(0.10, 0.55) 0.34**(0.12, 0.56) 0.00(-0.24, 0.23) −0.06(-0.29, 0.18) 0.10(-0.13, 0.33)
Income Tertile
Highest REF REF REF REF REF
Intermediate 0.19(-0.02, 0.41) 0.23* (0.02, 0.44) −0.07(-0.29, 0.15) −0.15(-0.37, 0.07) 0.04(-0.18, 0.27)
Lowest 0.31**(0.10, 0.53) 0.37***(0.16, 0.58) 0.08(-0.15, 0.30) −0.01(-0.23, 0.22) 0.14(-0.08, 0.37)

Age and sex adjusted independent association of measures of SEP with AL and the epigenetic clocks.
***significant at the 0.001 level; ** significant at the 0.01 level; * significant at the 0.05 level.
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the estimates were not materially affected (Supplementary Table 2),
which shows that the adulthood associations are not simply due to the
correlation of early life with later life SEP (e.g. Gustafsson et al., 2011).
We also examined childhood health as a possible explanatory factor and
found no differences in associations (Supplementary Table 2). Secondly,
we calculated alternative life course socio-economic trajectories based
on education (i.e. cross-classification of father’s and respondent’s edu-
cational attainment) and material circumstances (i.e. cross-classifica-
tion of self-rated childhood circumstances (pretty well off, about
average, poor) with income tertiles in later life). The results were

entirely consistent with what we observed for social class. Participants
in the stable low educational group (i.e. father and respondent’s highest
level of education = primary) scored 0.42 (CI = 0.13, 0.72; p < .001)
of a SD unit higher on AL compared with the stable high educational
grouping, while the educationally downwardly and upwardly mobile
ranked somewhere in-between. Similarly, those who reported growing
up poor and who were in the lowest income tertile (i.e. stable low) in
later life scored 0.52 (CI = 0.12, 0.92; p < .01) of a SD unit higher
compared with those who were pretty well off in early life and in the
highest income tertile in later life (i.e. stable high). The downwardly
mobile (β = 0.35, CI = 0.03, 0.67; p < .05) also had a significantly
higher AL score compared with the stable high group based on this
classification, while the upwardly mobile (β = 0.08, CI=-0.23, 0.40)
were not significantly different to the stable high. There were no sig-
nificant associations of these alternative social mobility patterns with
EAA. Supplementary tables S3 and S5 report the sample composition
based on life course educational and material circumstances respec-
tively, while supplementary tables 4 and 6 report the results from these
analyses respectively.

6. Discussion

We motivated this paper by noting that individuals from dis-
advantaged backgrounds experience higher levels of disease and mor-
bidity and live shorter lives on average compared with their more ad-
vantaged peers. They represent an accelerated ageing cohort. This has
sparked debate about the mechanisms through which the social en-
vironment gets biologically embedded in the tissues and organs of the
body to precipitate the earlier ageing of those of low SEP. Given that we
cannot directly manipulate social rank in human populations, cohort
studies offer arguably the best vehicle for assessing the impact of SEP
on health over a long span of years as they tend to be broad and om-
nibus in nature, collecting information at the social, behavioural, and
increasingly the biological level, allowing us to examine the ex-
planatory value of different theoretical frameworks.

Consistent with the results of previous studies (Seeman et al., 2010;
Gruenewald et al., 2012; Castagné et al., 2018), we found that AL, a
putative sub-clinical measure of physiological dysregulation across
multiple organ systems was strongly socio-economically patterned by
adulthood SEP. The social gradient in AL burden was evident by

Table 4
Association of Socio-Economic Position (SEP) with unstandardized measures of Allostatic Load and Epigenetic Age Acceleration.

Allostatic Load excluding meds Allostatic Load including meds Horvath EAA Hannum EAA LevineEAA

B (95% CI) B (95% CI) B (95% CI) B (95% CI) B (95% CI)
Childhood social class
Professional/Managerial REF REF REF REF REF
Non-manual/skilled manual 0.32(-0.43, 1.07) 0.33(-0.50, 1.17) −1.34(-3.84, 1.17) −0.63(-3.10, 1.85) −0.54(-2.32, 1.24)
Semi-skilled/unskilled 0.24 (-0.17, 0.65) 0.23(-0.23, 0.68) 0.80(-0.56, 2.17) 0.93(-0.42, 2.28) 0.35(-0.62, 1.32)
Adulthood social class
Professional/Managerial REF REF REF REF REF
Non-manual/skilled manual 0.37(-0.43, 1.17) 0.46(-0.43, 1.35) 0.58(-2.14, 3.30) 0.77(-1.92, 3.45) 0.04(-1.89, 1.97)
Semi-skilled/unskilled 0.76***(0.36, 1.16) 0.84***(0.40, 1.29) 0.06 (-1.30, 1.42) 0.24(-1.10, 1.58) 0.26(-0.70, 1.22)
Social Class Trajectory
Stable High REF REF REF REF REF
Upwardly mobile −0.02(-0.56, 0.52) −0.08(-0.68, 0.52) 0.11(-1.73, 1.94) 0.56(-1.26, 2.37) 0.55(-0.75, 1.86)
Downwardly mobile 0.49(-0.05, 1.04) 0.53(-0.08, 1.14) −0.80(-2.64, 1.05) −0.17(-2.00, 1.66) 0.34(-0.97, 1.66)
Stable low 0.90***(0.35, 1.44) 0.97**(0.37, 1.58) 1.16(-0.69, 3.01) 1.35(-0.48, 3.17) 0.68(-0.64, 1.99)
Educational attainment
Tertiary REF REF REF REF REF
Secondary 0.12(-0.33, 0.56) 0.15(-0.35, 0.64) −0.57(-2.07, 0.93) −1.18(-2.66, 0.30) −0.23(-1.29, 0.84)
Primary 0.74**(0.23, 1.25) 0.88**(0.32, 1.45) −0.03(-1.75, 1.69) −0.40(-2.10, 1.30) 0.52(-0.70, 1.74)
Household Income Tertile
Highest REF REF REF REF REF
Intermediate 0.44(-0.05, 0.92) 0.59* (0.05, 1.13) −0.50(-2.13, 1.13) −1.08(-2.69, 0.53) 0.23(-0.93, 1.38)
Lowest 0.71**(0.22, 1.20) 0.96***(0.41, 1.50) 0.56(-1.10, 2.22) 0.00(-1.65, 1.63) 0.75(-0.42, 1.92)

Age and sex adjusted independent association of measures of SEP with AL and the epigenetic clocks.
***significant at the 0.001 level; ** significant at the 0.01 level; * significant at the 0.05 level.

Table 5
Difference in TUG Speed (Secs) according to Socioeconomic Position (SEP) and
Proportion of the Total Effect mediated by Allostatic Load (n = 486).

Model 1 Model 2 Mediation

Adulthood social class B (95% CI) B (95% CI) %
Professional/Managerial REF REF REF
Non-manual/skilled

manual
0.13(-0.63, 0.89) 0.08(-0.68, 0.84) 39.4%

Semi-skilled/unskilled 0.96***(0.58, 1.34) 0.87***(0.49, 1.26) 9.5%
Allostatic Load – 0.11**(0.03, 0.19) –
Social Class Trajectory
Stable High REF REF REF
Upwardly mobile −0.17(-0.69, 0.34) −0.17(-0.68, 0.35) 2.1%
Downwardly mobile 0.57*(0.05, 1.10) 0.51(-0.01, 1.04) 10.5%
Stable low 0.95***(0.44, 1.47) 0.85**(0.32, 1.37) 11.2%
Allostatic Load – 0.11**(0.03, 0.19) –
Educational attainment
Tertiary REF REF REF
Secondary 0.57**(0.15, 0.99) 0.55*(0.13, 0.97) 3.1%
Primary 0.89***(0.40, 1.38) 0.78**(0.29, 1.27) 12.2%¥

Allostatic Load – 0.13***(0.05, 0.20) –
Household Income

Tertile
Highest REF REF REF
Intermediate 0.13(-0.33, 0.59) 0.05(-0.41, 0.52) 58.1%
Lowest 0.68**(0.21, 1.15) 0.56*(0.09, 1.04) 17.5%*
Allostatic Load 0.13**(0.05, 0.20) –

Adjusted for age and sex.
***significant at the 0.001 level; ** significant at the 0.01 level; * significant at
the 0.05 level.

¥ significant at the 0.10 level.
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adulthood social class, education and income. Analysis of inter-gen-
erational social mobility patterns was insightful as it showed that those
who were upwardly socially mobile had a similar AL burden to those
who were stable high despite experiencing low SEP during childhood.
In contrast, the downwardly mobile and the stable low had a higher AL
burden compared with the stable high group, although only the latter
contrast was statistically significant. Taken together, these results show
that adulthood SEP predominates, at least with respect to AL. The result
for the upwardly mobile group suggests that there are no physiological
‘scarring effects’ of low childhood SEP, while the higher AL burden for
the downwardly mobile group illustrates that high SEP in childhood
does not buffer one against worsening socio-economic circumstances in
later life. The fact that the stable low group had the highest AL burden
suggests that persistent low SEP is associated with a series of life course
biological insults, the cumulative toll of which gradually erodes health.

The epigenetic clocks by contrast were not significantly associated
with childhood or adulthood measures of SEP. The lack of association
between SEP and EAA is not without precedent. Neither Austin et al.
(2018) nor Hughes et al (2018) observed a significant association of
various adulthood measures of SEP with the epigenetic clock estima-
tors. However, both studies did report an association between child-
hood social class and EAA. It should be acknowledged that epigenetic
ageing is not linear; the clock runs fastest in the first year of life and
decreases gradually in a non-linear manner until about 20 years of age
when the rate slows to a constant rate (Horvath and Raj, 2018), so this
may represent a critical/sensitive period effect. In general, we also
observed stronger associations between childhood social class and EAA
compared with contemporaneous social class for those in the semi-
skilled/unskilled social class category. The correlation between
genome-wide average DNA methylation (GWAM) in twin pairs is
highest at birth (˜0.8), decreases with age during adolescence, and re-
mains relatively stable at ˜0.4 throughout adulthood (Li et al., 2018) so
there is good reason to suspect that socio-economic influences on epi-
genetic machinery may be particularly strident at this stage in the life
course. Nevertheless, it should be acknowledged that our understanding
of how SEP affects these epigenetic processes is still rudimentary and
additional studies are needed to determine whether the epigenome
represents a mechanism for understanding biological embedding.

This study was designed to determine whether AL or the epigenetic
clock represent plausible frameworks for understanding the biological
embedding of social adversity. We found that AL was more strongly
associated with the various measures of SEP than were the epigenetic
clocks. In general, the social gradient was evident when AL was used as
the dependent variable in the analysis, but either not present or less
pronounced when the EAA measures were regressed on SEP. AL also
partially mediated the association of SEP with an objective measure of
health – performance on the TUG task. It is noteworthy that neither
Horvath nor Hannum’s clock were correlated with performance on the
TUG task, although Levine’s was (Supplementary Figure 2a). To address
concerns that the results we obtained were not simply due to the use of
TUG as the outcome measure, we also examined the association of AL
and the epigenetic clocks with 2 other commonly used metrics of health
in older populations.

Five objective measures: walking speed, exhaustion, physical in-
activity, unintentional weight loss, and grip strength were used to
construct a Fried frailty phenotype measure (Fried et al., 2001). Scores
of 0, 1–2, and 3 or more, indicate that participants are non-frail, pre-
frail, or frail respectively. As only a small proportion of the sample were
classified as frail, we combined the pre-frail (23.9) and frail (1.6%)
categories to create a binary variable indicating non/frail or pre-frail/
frail status. Disability was measured using the Activities of Daily Living
(ADL’s) scale. ADLs included difficulties with (1) dressing, (2) walking
across a room, (3) bathing or showering, (4) eating, such as cutting up
food, (5) getting in or out of bed, and (6) using the toilet. The total score
on the measure ranges from 0 to 6 (mean = 0.11, SD = 0.46,
median = 0, min = 0, max = 4). We modelled the outcomes using

binary logistic (frailty) and poisson regression (disability) as appro-
priate. Results were similar to those observed for TUG. AL burden was
associated with significantly increased risk of frailty and disability;
Levine’s clock was associated with significantly increased risk of frailty
only, while Horvath’s and Hannum’s clocks were not significantly as-
sociated with either measure. These results are shown in Supplemen-
tary Figures 2b (frailty) and 2c (disability).

On the basis of the results from this study, it would appear then that
AL represents the more promising framework for understanding the
biological embedding of disease. This conclusion should not be inter-
preted as an unequivocal endorsement of AL however, as the AL fra-
mework has been subjected to considerable empirical and theoretical
scrutiny (Dowd et al., 2009; Juster et al., 2010; Delpierre et al., 2016).
One of the most frequent criticisms is that there is little consensus re-
garding the measurement and definition of AL which has been variously
operationalised across studies (Juster et al., 2010), and researchers
continue to debate the number and type of biological parameters that
are integral to the concept. Others have argued that some of the mar-
kers represent clinical (e.g. BMI) rather than subclinical indicators of
disease. Moreover, the AL index used in the present study does not
include measures of neuroendocrine functioning, which are theorised to
play a central role in the physiological cascade leading to biological
dysregulation of inflammatory, cardiovascular and metabolic func-
tioning.

It should also be acknowledged that the study’s null findings on the
lack of relation between childhood SEP and the epigenetic clocks re-
presents something of an outlier in the literature. As a check on the
robustness of our findings, we re-ran the analyses using father’s edu-
cation (supplementary Table 4) and self-reported childhood socio-eco-
nomic circumstances, growing up before the age of 14 (pretty well off,
about average, poor) (supplementary table 6) as independent variables
in the analysis. These supplementary analyses essentially replicated the
findings that we observed for childhood social class suggesting that the
null findings are not simply due to measurement error in the reporting
or coding of childhood social class. Nor is there anything immediately
apparent about the ecology of childhood disadvantage in Ireland (e.g.
universal healthcare, welfare) that can account for the null findings as
the UK also had a similar (arguably better) system of supports that did
not preclude Hughes et al. (2018) from reporting legacy effects of
childhood SEP in their study. One possibility is that the epigenetic
clocks are not particularly well calibrated for older participants (Zhang
et al., 2017). The mean age of TILDA respondents was 62.2 years
compared to a mean age of 58.4 in Hughes study and a maximum age of
55 in Austin’s study. Future studies should be designed to examine the
magnitude of prediction errors at different age ranges to address this
possibility.

6.1. Strengths and limitations

It could be argued that the lack of association between SEP and the
EAA measures is a consequence of insufficient statistical power as our
sample comprised only 490 participants. However, two pieces of evi-
dence militate against this explanation. Firstly, Austin et al. (2018)
observed a significant association of childhood SEP with Horvath’s
clock in a smaller sample (n = 335) of Canadian participants, and
secondly; the small sample size did not preclude us finding strong as-
sociations between SEP and AL. Another possibility is that our age
range was more homogenous (50–97) compared with Austin’s study
and Hughes’ (2018) study, which involved participants in the age range
15–55 and 28–98 years respectively. The epigenetic clock runs fastest in
early life and slows in later life (Horvath and Raj, 2018) so this may
have contributed to null findings with respect to the clocks in respect of
adulthood SEP. Consistent with this interpretation, Hughes et al. (2018)
noted that the youngest people in their sample were “substantially older
in terms of DNA methylation than chronologically, whereas for the
older participants the reverse was true” (p. 11). Differences in blood
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and/or tissue type may also account for the different patterns of results
across studies. Austin et al. measured DNAm levels in monocytes using
peripheral blood mononuclear cells (PBMC’s), while Hughes et al.
measured epigenetic ageing rates using whole blood and the Illumina
850k chip, the same as that used in the present study. We selected the
sample on the basis of 4 equally sized groups, but the downwardly
mobile were over-represented relative to their distribution in the po-
pulation, which may introduce potential bias. Finally, the results of the
mediation analysis should be interpreted with caution as the mediator
(AL) and the outcome (TUG) were measured contemporaneously
making so it is impossible to establish temporal precedence. Long-
itudinal studies will be the ultimate arbiter of such disputes.

These limitations are outweighed by the considerable strengths of our
study. We examined the theoretical and empirical utility of AL and the
epigenetic clocks for advancing our understanding of ‘embodiment’ using
a sample of participants who were explicitly chosen for this purpose
based on their intergenerational life course socio-economic trajectory.
The design of the study also allowed us to examine critical period vs
accumulation effects in the data. Another considerable strength is the
deep phenotyping of the TILDA cohort with each participant completing
a detailed clinical health assessment which was administered by training
nursing staff using standardized operating protocols, so the clinical bio-
markers and processing of bloods was done to a very high standard.
Furthermore, the study included a ‘second generation epigenetic clock’
measure (Levine’s DNAm Phenoage) which is a very recent innovation
and has been shown to outperform the first generation of clocks in the
prediction of many age-related diseases (Horvath and Raj, 2018).

7. Conclusions

AL and the epigenetic clock have both been touted to represent a
potential mechanism for the biological embedding of social adversity.
The results of this study, which directly compared the explanatory
value of AL and 3 epigenetic clocks within a sample of participants
specifically selected for this purpose suggests that the former may re-
present the stronger candidate for understanding the mechanisms
through which social adversity gets “under the skin”. The finding that
those who were upwardly mobile were comparable in AL burden to
those who experienced high SEP suggests that these processes are not
immutable but are responsive to changing socio-economic circum-
stances over the life course.
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