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Abstract 

 

A long-term perspective is essential for understanding environmental change. To be able to 

access the past, environmental archives such as marine and lake sediments that store 

information in the form of diverse proxy records are used. Whilst many analytical techniques 

exist to extract the information stored in these proxy records, the critical assessment and 

refinement of current methods in addition to developing new methods is crucial to improving 

our understanding. This study aims to improve our knowledge on diatom species used for 

reconstructing ocean surface conditions, especially temperature and sea ice variability over 

time. We define the distribution and the relationship to sea surface temperature (SST) and sea 

ice concentrations (SIC) of the species Fragilariopsis oceanica, Fragilariopsis reginae-

jahniae and Fossula arctica using diatom training sets from the northern North Atlantic. We 
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further assess the effect of separating these species compared to grouping them under F. 

oceanica, as has been done in the past. Our results suggest that while these three species 

share similarities such as the preference for stratified waters induced by sea ice or glacier 

meltwater, they also exhibit heterogeneous distributions across the northern North Atlantic, 

with individual optima for SST and SIC. This also affects quantitative reconstructions based 

on our data, resulting in lower SST and higher SIC estimates when the species are separated 

in the surface sediment and down-core diatom assemblages. 

 

Key words: diatoms; indicator species; biogeography; ecology; sea ice reconstruction; 

northern North Atlantic 

 

Introduction 

 

To better understand our present environment, and to be able to project future changes, firm 

knowledge is essential on how the present ecosystems have evolved and what their long-term 

natural variability is. To achieve this, we need to use environmental archives, such as marine 

sediments, which preserve information of the past in the form of physical, chemical and 

biological proxy records. Over the years, a large number of analytical techniques have been 

developed, allowing us to access these records. While many proxies and analytical techniques 

to extract them are part of the routine tool kit of paleo-scientists, proxy development and 

refinement are still required. This is especially true for relatively new biogeochemical proxies 

and sedaDNA (Belt, 2018; Armbrecht et al., 2019; Park et al. 2019), but also for microfossils, 

where individual species’ ecologies are still often poorly known (Van der Zwaan et al. 1999; 

Eynaud, 2011; Heikkilä et al. 2014; Pieńkowski et al. 2017; Oksman et al. 2019). It is also 
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frequently forgotten, that species’ responses to their environment are complex, and can 

usually not be reduced to a single variable.  

In the North Atlantic region — our study area — a prime focus is the reconstruction of 

past climate and ocean variability (e.g., Andersen et al. 2004; Hald et al., 2004; Berner et al., 

2011; Spielhagen et al. 2011; Müller et al., 2012; Miettinen et al. 2012; Pearce et al. 2013; 

Krawczyk et al. 2017; Falardeau et al. 2018). At higher latitudes, due to the rapid decline in 

the extent and thickness of Arctic sea ice and the resulting transition of the Arctic into a 

seasonally sea-ice free region (Stroeve and Notz 2018), much effort has recently gone into 

reconstructing sea-ice changes over longer time scales to better constrain its past natural 

variability (Massé et al. 2008; Müller et al. 2009; Navarro-Rodriguez et al. 2013; Sha et al. 

2014; Cabedo-Sanz et al. 2016). As sea ice is an important climate modulator, such 

information is crucial for building robust climate models (Notz et al. 2016). For this purpose, 

a range of physical (e.g., IRD), biomarker (e.g., IP25) and microfossil (e.g., dinoflagellate 

cysts, foraminifers, diatoms) proxies are available. While each of these proxies has its merits, 

it also has shortcomings (de Vernal et al. 2013). Diatoms are widely used both for qualitative 

and quantitative reconstructions of past sea ice conditions. Despite their wide use, the 

ecologies of most common marine diatom species are still insufficiently known. This is also 

true for sea ice-associated species, which this study focuses on. 

Fragilariopsis oceanica and Fragilariopsis cylindrus were described already in the 19th 

century (Cleve 1873, 1883), and are often cited as sea-ice indicator species in the Northern 

Hemisphere (e.g., Jiang et al. 2001; Justwan & Koç 2008; Sha et al. 2014; Miettinen et al. 

2015; Krawczyk et al. 2017). However, the latter has been shown to have a far more complex 

response to sea ice than previously assumed (von Quillfeldt 2004; Oksman et al. 2019). These 

two species have recently also been used to reconstruct past behavior of tidewater glaciers via 

their freshwater inputs (Oksman et al. 2017). Fragilariopsis reginae-jahniae and Fossula 
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arctica are relatively recently described species (Witkowski et al. 2000 and Hasle et al. 

1996), which may be the reason for the limited information available on their ecological 

preferences, although they generally are considered to be associated with sea ice (von 

Quillfeldt 2000, 2001; Witkowski et al. 2000). Both Fragilariopsis reginae-jahniae and 

Fossula arctica have likely been included in the species count data of Fragilariopsis 

oceanica, particularly in older studies, owing to the similar morphologies of the species (von 

Quillfeldt 2000). Given the growing interest to reconstruct longer-term sea ice variability 

(e.g., Kinnard et al. 2011), we need to both develop new and refine our currently existing 

proxies, which motivates our present work. By studying the biogeography and ecology of 

these potential sea-ice indicator species, we aim to refine our understanding of their responses 

to different ice and cold-water environments, to ultimately make better inferences as to what 

their presence and relative abundances are suggesting in down-core records.  

For this purpose, modern marine diatom training sets are highly useful. These data sets 

consist of both modern species assemblages analysed from surface sediments and 

environmental data collected at the sea surface from the same locations, and they usually 

cover relatively large geographic areas (e.g., Caissie 2012; Sha et al. 2014; Miettinen et al. 

2015, Ren et al. 2016; Krawczyk et al. 2017). Our study focuses on the North Atlantic, which 

hosts to date the largest and geographically most extensive training set in the Northern 

Hemisphere (the North Atlantic training set; Koc et al. 1993; Andersen et al. 2004; Miettinen 

et al. 2015), covering the main areas of the region between 42°N and 79°N. This training set 

was largely collected before the description of Fragilariopsis reginae-jahniae and Fossula 

arctica, hence these morphologically similar species are likely included in the count data of 

Fragilariopsis oceanica. In addition to this training set, we have included available sites from 

the West Greenland (Baffin Bay) training set described in Krawczyk et al. (2017). 
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Our specific aims are to 1) improve the existing ecological knowledge on this group of 

species, 2) assess their value as sea-ice indicators, and 3) determine the importance of 

including these species separately (rather than grouping them under Fragilariopsis oceanica) 

for both qualitative and quantitative down-core reconstructions. 

 

Materials and methods 

 

Training sets & study area  

The large North Atlantic training set (most recent version presented in Miettinen et al. 2015) 

encompasses altogether 183 sites. Of these, 46 sites — where material/microscopy slides 

were available — were re-analyzed for this study. Half of the re-analyzed sites are located to 

the west of Greenland in Baffin Bay and the Labrador Sea, and the other half to the east of 

Greenland in the Nordic Seas (Figure 1). The West Greenland training set (Krawczyk et al. 

2017) consists of 35 210Pb- and 137Cs-dated surface sediment samples that were available for 

this study.  

Within the area encompassed by these two training sets, sea ice extent varies markedly: 

To the west of Greenland, maximum sea-ice extent reaches far southwards into the Labrador 

Sea, with Baffin and Hudson Bays generally freezing over every year (Tang et al. 2004; 

Fetterer et al. 2017). An exception is the North Water Polynya (NOW, in northern Baffin 

Bay), where even during maximum sea-ice extent ~10% is kept open by local winds, 

upwelling of the West Greenland Current (WGC) waters and a well delineated ice bridge at 

the southern margin of the Kane Basin (Tang et al. 2004). To the east of Greenland, 

maximum sea-ice extent is limited to the waters north and east of Svalbard and along the east 

Greenland margin (Fetterer et al. 2017).  
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During the summer sea-ice minimum in the eastern Fram Strait, north of Svalbard and 

the Barents Sea, the median ice edge (1981–2010) is located at 81°N. Sea ice extends 

northwards from 73°N on the Greenland coastline, progressively reaching further seawards 

along the Greenland shelf (Fetterer et al. 2017). Baffin Bay, however, is ice free during the 

summer sea-ice minimum, apart from thin strips of sea ice along the coastlines, particularly 

along Baffin Island (Tang et al. 2004). Sea ice is limited to the west of Devon Island and 

78°N in the Kane Basin (Fetterer et al. 2017). This dichotomous sea-ice extent at parallel 

latitudes is fundamentally attributed to the transfer of heat by the North Atlantic Current and 

the strength of the North Atlantic Oscillation (NAO, Taylor & Stephens, 1998). 

 

FIGURE 1 

Fig 1. Projected coordinate system map of the northern North Atlantic, with data point 

localities superimposed (red circles/white outline: North Atlantic training set; yellow stars/red 

outline:  Baffin Bay coastal training set). Yellow square: location of core AMD15-CASQ1-

BC. Warm currents: NAC - North Atlantic Current, FC – Faroes Current, NwAC – 

Norwegian Atlantic Current, WSC – West Spitsbergen Current, IC – Irminger Current. 

Temperate current: WGC – West Greenland Current. Cold currents: ESC – East Spitsbergen 

Current, East Greenland Current, BC – Baffin Current, LC – Labrador Current. Dashed line: 

Winter sea-ice maximum (March) and continuous line: Summer sea-ice minimum 

(September) (Fetterer et al. 2018). NOW = North Water Polynya, C.Ad = Cape Adair, H. Bay 

= Home Bay, Cu.Pe = Cumberland Peninsula, D. Bay = Disko Bay, Sc.So = Scoresby Sound. 

Sv = Svalbard.  Base map from Google Earth Pro. 

 

Re-analysis of the 46-site subset diatom samples 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



The counting was undertaken with a ZEISS Axio Imager A2 upright light microscope with 

immersion oil at 1000x magnification, and photomicrographs were taken using the ZEN Blue 

software (Figure 2). A total of 100 diatom valves of the species targeted in our study were 

counted per sample, with a maximum scope of 10 transects for slides with low abundances. 

The count sums of the targeted species largely mirrored the training set counts for the 

grouped F. oceanica in Miettinen et al. (2015).  

The different species were identified from their characteristic differences: Fragilariopsis 

oceanica from the characteristic ellipsoidal to lanceolate shape, continuous striae, rounded 

apices and eccentric raphe with a central nodule, Fragilariopsis reginae-jahniae from the 

characteristic elongate, linear valve shape with slightly thicker continuous striae (compared to 

the lanceolate valve shape and striae thickness of the otherwise very similar F. oceanica); and 

Fossula arctica from the characteristic capitate ends (although this is not well developed in 

smaller valves) and thin discontinuous striae (see detailed descriptions in Hasle et al. 1996; 

Lundholm & Hasle, 2010).  The counts of the separated three diatom species Fragilariopsis 

oceanica, Fragilariopsis reginae-jahniae and Fossula arctica were converted into 

percentages relative to what the grouped F. oceanica originally constituted in the assemblage 

of each sample (Miettinen et al. 2015). 

 

FIGURE 2 

 

Fig 2. Photomicrographs of (A) Fragilariopsis oceanica; (B) Fragilariopsis reginae-jahniae; 

and (C) Fossula arctica. Images captured with a ZEISS Axio Imager A2 at 1000x 

magnification. Images from surface sediment sample HU2008-029-036, North Water 

Polynya.  
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Statistical analysis 

To define the relationship of the three species with their environment, we used August sea-

surface temperature (aSST) and April sea-ice concentration (aSIC) for the numerical 

analyses. These have been found to be statistically significant variables (and months, i.e., 

August for SST and April for sea ice) in explaining diatom assemblage distribution in the 

North Atlantic (Berner et al. 2008; Miettinen et al. 2015). In addition, unlike in the case of 

SST and SIC, other environmental data such as nutrient concentrations are not available for 

many marine regions. Thus aSST and aSIC are the most commonly used parameters in 

quantitative diatom-based paleoceanographic reconstructions (Berner et al. 2008, 2011; Sha 

et al. 2014, 2015; Miettinen et al. 2015; Krawczyk et al. 2017). 

The type and significance of the response of each taxon to both aSST and aSIC was 

assessed by fitting a series of Huisman-Olff-Fresco (HOF) hierarchical response models 

(Huisman et al., 1993) following Jansen & Oksanen (2013). This was done using both 

training sets. The procedure fits seven models of increasing complexity, from a null model or 

flat response (i.e., no relationship, model I), through monotone sigmoid (II), monotone 

sigmoid with plateau (III), unimodal symmetric (IV), unimodal skewed (V), bimodal with 

equal peaks (VI) and bimodal with unequal peaks (VII). It then selects the most parsimonious 

model using Akaike information criterion corrected for small sample size (AICc) and a 

bootstrap approach (500 permutations) to ensure model stability. Taxa are deemed to have a 

statistically significant relationship to either aSST or aSIC if the selected response yields 

statistically significant improvement in fit over a null or flat model.  

For multivariate analyses and the creation of transfer functions, only the North Atlantic 

training set samples were used, due to potential differences in taxonomy between the two 

training sets regarding some other species than the Fragilariopsis/Fossula species group. 

Based on the gradient length of the species data in detrended correspondence analysis (DCA; 
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gradient length 1.8 SD units of species turnover), redundancy analysis (RDA) with Monte 

Carlo permutation (999 randomizations) was run and presented as a biplot of species and 

environmental variables. The “grouped” Fragilariopsis oceanica (such as it is in the North 

Atlantic training set) was included as a supplementary variable (Figure 3). RDA was 

undertaken with CANOCO version 5.01 (Ter Braak & Šmilauer, 2012).  

 

FIGURE 3 

Fig 3. RDA species biplot of the most common high latitude diatom species (based on 

Oksman et al. 2019, in black), the grouped F. oceanica (in purple), the separated species (in 

red) and environmental variables aSIC and aSST. The grouped F. oceanica was added as 

supplementary data for comparison, and hence does not affect the distribution of other 

species and the environmental variables. 

 

aSST and aSIC were reconstructed using a weighted averaging (WA) transfer function 

(Birks, 1995) based on a modern calibration dataset consisting of the 46 re-analyzed surface 

sediment samples from the North Atlantic training set. The prediction error was estimated 

using h-block cross-validation (Burman et al. 1994), in which samples closer than a cut-off 

distance (h) from a target sample were excluded from contributing to the prediction of that 

sample. h-block cross validation was selected to allow for spatial dependency in the 

calibration data, which can lead to underestimation of the prediction error because of 

pseudoreplication. The cut-off distance (h) was estimated by assessing the spatial structure of 

the residuals of the surface sample predictions (Trachsel & Telford, 2016). All numerical 

analyses (with the exception of RDA) and Figures 4-6 were produced using the R 3.4.1 

software for statistical computing (R Core Team, 2017). 
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Results and discussion 

 

Species distribution and environmental responses 

 

Fragilariopsis reginae-jahniae Witkowski, Lange-Bertalot & Metzeltin 2000  

 

Distribution in the northern North Atlantic 

 

The diatom Fragilariopsis reginae-jahniae has previously been described as an Arctic sea 

ice-associated species (Witkowski et al. 2000; Jensen, 2003; Lundholm & Hasle 2010; 

Krawczyck et al. 2014; 2017). While it has low to moderate abundances across the northern 

North Atlantic data sets, ranging from 0–14.3% of the total assemblages, our results largely 

confirm this observation.  

East of Greenland, the Greenland Sea is characterized by the dichotomous 

temperature gradient of the warm Atlantic Water dominated Norwegian Atlantic Current and 

West Spitsbergen Current to the east with relatively high average aSST, and the cold Arctic 

Water-dominated and ice-loaded East Greenland Current (EGC) to the west with low aSST 

(Woodgate et al. 1999) (Figure 4). In the Greenland Sea, highest abundances of the species 

(up to 7.2%) occur northwards of 78°N, in the central Fram Strait and on the West 

Spitsbergen Slope close to the winter sea-ice edge. These waters are cold (aSST < 4°C) and 

the spring sea-ice concentrations vary between low to moderate (aSIC 0.5–34 %). The North 

Atlantic Current-derived warmer waters in the eastern Greenland Sea (aSIC < 2.4%, aSST ca. 

5–6°C) generally have low abundances of F. reginae-jahniae (< ca. 3 %).  

South of 75°N in the Greenland Sea, relative abundances of F. reginae-jahniae are 

very low (< 1.2%). These sites are located within the winter sea-ice zone, and exhibit 
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moderate to high aSIC (ca. 40 – 60%) and very low aSSTs (< 2°C). The nearshore Scoresby 

Sound Shelf site (which is the southernmost site east of Greenland, where the species is 

present) is influenced both by the cold and fresher EGC and by the outflow of fresh glacier 

meltwater from the 38,000 km2 system of fjords, and yields a higher abundance (5.5%) at 

very high levels of aSIC (80%). East of Greenland the species appears to be absent south of 

69°N. 

To the west of Greenland, the WGC transports both cold polar water from the EGC 

and temperate Atlantic Water from the Irminger Current (IC) northward, whereas the Baffin-

Labrador Current brings cold fresher Arctic water to the south along the west side of Baffin 

Bay (Ribergaard 2014; Oksman et al. 2017). The general trend of increasing abundances 

northward is repeated, apart from one clear exception: the highest abundance in the whole 

data set (14.3%) is reached at the site off Cumberland Peninsula, which is strongly influenced 

by the cold Baffin Current (BC) and glacier meltwater runoff from land (Cook et al. 2019) at 

very high aSIC (86.9%). This abundance peak is analogous to the peak at the Scoresby Sound 

Shelf east of Greenland.  

In the northern Labrador Sea, the abundances of F. reginae-jahniae are generally very 

low (< 1% apart from two sites at ca. 2.5 and 4%, and with the exception of the Cumberland 

Peninsula site discussed above). The Labrador Sea sites have very variable aSIC consisting of 

drift ice (1–80%, mean = 38% σ = 28%) and they are clearly influenced by warm and saline 

Atlantic Water (aSSTs 4–6.5°C). In the southern and central Baffin Bay the abundances of F. 

reginae-jahniae are clearly higher than in the Labrador Sea (up to ca. 5%). Lowest 

abundances can be found in the middle, where the upwelling of the warmer, saline IC-derived 

waters and less meltwater-induced stratification may explain the lower values (Boertmann et 

al. 2013; Krawczyk et al. 2017; Oksman et al. 2017a). The highest abundances occur along 

the West Greenland coast northward of Disko Bay. Here the sea-ice edge prevails until June 
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(Seidenkrantz 2013), and its proximity may explain the elevated abundances. The two sites 

located nearshore Cape Adair and Home Bay in western Baffin Bay, which also show higher 

abundances compared to the middle parts of the bay, are influenced by meltwater from 

marine-terminating glaciers and by the Arctic water carried by the BC (Cook et al 2019). 

Northern Baffin Bay is influenced by cold Arctic Water from the Arctic Ocean 

transported via the Nares Strait and the Canadian Arctic Archipelago (Tang et al. 2004), with 

very high aSIC (78.7–97.8%) and low average aSST (2.8°C). The combination of currents, 

winds and physical barrier of the ice bridge result in the NOW remaining partially ice-free 

throughout the year (Dunbar et al. 1969; Tang et al. 2004). In northern Baffin Bay, the 

abundances of F. reginae-jahniae are consistently relatively high (4.1–9.6%). The highest 

relative abundances occur in the NOW, likely due to the very high aSIC concentrations 

(>80%) that lead to water column stratification during the early spring melt typical for NOW, 

possibly enhanced by the nutrient-rich waters of the polynya (Barber & Massom, 2007). 

  

FIGURE 4A 

Fig 4. Geographical distribution of Fragilariopsis reginae-jahniae, F. oceanica, Fossula 

arctica and the grouped F. oceanica (dark red shading indicates where abundances are 

highest. The symbol + refers to locations where the taxa were not found.)  

 

Species – environment relationship 

 

Based on the RDA analysis (Figure 3), F. reginae-jahniae is related to relatively high aSIC 

and low aSSTs, similarly to other sea-ice associated species such as Porosira glacialis, 

Actinocyclus curvatulus and Coscinodiscus oculus-iridis (Oksman et al. 2019). Moreover, the 

ecological response curves (Figure 5) verify that F. reginae-jahniae has a statistically 
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significant relationship to both aSST with highest abundances around 3°C, and to aSIC with 

highest abundances at >75%, although the relationship to sea ice shows some scatter, and 

similar abundances can be found at aSIC < 50%. 

Fragilariopsis reginae-jahniae appears to be common but not very abundant at higher 

latitudes, in agreement with previous literature (Jensen, 2003; Krawczyck et al. 2014; 2017). 

The highest average abundances in the NOW and near Lancaster and Jones Sounds, along the 

June sea-ice edge in southeastern Baffin Bay, as well as at the West Fram Strait winter/spring 

sea-ice edge are indicative of F. reginae-jahniae being primarily a marginal ice zone (MIZ) 

species (as also suggested by Limoges et al. 2018), with a preference for cold, fresher waters 

with moderate to high aSIC. In agreement with this interpretation, the highest abundances 

(14.2%) occurred in cold aSSTs (2.7°C) with glacier meltwater influence and very high aSIC 

(86.9%) in the lower latitude site off Cumberland Peninsula. Thus, high abundances of F. 

reginae-jahniae could be interpreted as indicative of a MIZ environment in an Arctic water – 

dominated area that experiences generally high sea-ice concentrations. Additionally, relative 

abundances can also be comparatively high in areas where the meltwater input from tidewater 

glaciers results in a lid of colder and fresher water, similar to MIZ conditions.  

 

FIGURE 5 

Fig 5. Ecological response curves to aSST and aSIC for Fragilariopsis reginae-jahniae, F. 

oceanica, Fossula arctica and the grouped F. oceanica. 

 
Fragilariopsis oceanica (Cleve) Hasle 1965 

(Basionym. Fragilaria oceanica (Cleve), Synonym. Fragilaria arctica Grunow in Cleve & 
Grunow, Nitzschia grunowii Hasle) 

 

Distribution in the northern North Atlantic 
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The separated Fragilariopsis oceanica is a common and relatively abundant (0.5–30%) 

species  in the North Atlantic, averaging in excess of 10% (and up to 19%) of the total diatom 

assemblages above 75°N in the northern Greenland Sea and in excess of 14% (and up to 

23%) north of 74°N in Baffin Bay (Figure 4).  

 Around Svalbard the species shows relatively similar abundances — ca. 10–16% of 

the total assemblage — at a range of sea-ice conditions from the low aSIC in the path of the 

West Spitsbergen Current (0 – ca. 10%), to the moderate aSIC concentrations of up to 33% in 

the path of the cold and fresh East Spitsbergen Current closer to Svalbard. 

Along the East Greenland Margin, the cold EGC accommodates sea-ice formation 

much further to the south than in the eastern Fram Strait. Slightly higher abundances of F. 

oceanica (up to 18.6%) were observed at the central Fram Strait winter sea-ice edge (aSIC: 

15.2–33.8%). South of 75°N in the Greenland Sea, low abundances of F. oceanica (0.7–

3.4%) were comparable to F. reginae-jahniae in the moderate to high aSIC (33.9–59.5%) and 

very low aSST (1.6°C) conditions along the winter sea-ice zone of the East Greenland 

Margin. The highest abundance of F. oceanica (29.4%) recorded for the 46 re-analyzed 

samples of the training set occurred nearshore located on the Scoresby Sound Shelf. The 

influence of fresh meltwater from the marine-terminating glaciers of the Scoresby Sound 

fjord system is likely playing a significant role for this anomalously high abundance, in 

addition to the cold and low-density EGC. A recurring polynya forms at the entrance of the 

Sound (Sorensen 2012), which, as an open-water more productive system (Smith & Barber 

2007) may also play a role for the elevated abundances. East of Greenland, the species is 

largely absent south of 69°N.   

In the northern Labrador Sea, the abundances of F. oceanica are low to moderate (ca. 

3.5 % on average, excluding one anomalous site off Cumberland Peninsula). In addition to 

this anomalous site, two sites (included in the average) show abundances of ca. 10%. The 
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Labrador Sea sites have very variable aSIC (1–80%, mean = 38% σ = 28%) and are clearly 

influenced by warm Atlantic Water. Interestingly, these two sites are at opposite ends 

regarding their aSIC concentrations (1 and 63%). Comparable to F. reginae-jahniae, the 

highest abundance of F. oceanica (19.3%) occurred at the nearshore cold-water ice-laden site 

off Cumberland Peninsula. It is likely that glacier runoff, possibly coupled with iceberg-

derived meltwater, were causal for this high abundance.  

Unlike F. reginae-jahniae, the abundances of F. oceanica were relatively similar 

between the Labrador Sea and the southern and central Baffin Bay, where aSIC is generally 

high (at all sites > 89%) and the average aSST is relatively low (around 3°C). Additionally, 

the abundances of F. oceanica along the West Greenland coast north of Disko Bay are lower 

than those of F. reginae-jahniae, otherwise the overall patterns for these two species are 

similar.  

In the northern Baffin Bay, at the entrance of Lancaster Sound and in the NOW, 

abundances are moderate to high (11.6–22.5%). The stratified water column during the spring 

bloom (possibly coupled with the elevated nutrient concentrations of the polynya) is likely 

the reason for these elevated abundances. Only one site just south of the NOW had a low 

abundance of F. oceanica (5.5%) at very high aSIC (94.4%).  

 

Species-environment relationships 

 

RDA analysis places F. oceanica close to the cold-water species Rhizosolenia hebetata f. 

hebetata, which can be found at a variety of sea-ice conditions, and clearly separated from a 

larger group of species (such as Thalassiosira angulata, Shionodiscus oestrupii and 

Thalassionema nitzschioides) found higher up along the aSST gradient. Fragilariopsis 

oceanica appears less strongly related to higher aSIC compared to e.g., F. reginae-jahniae, F. 
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cylindrus, Fossula arctica, Porosira glacialis and Actinocyclus curvatulus. In line with the 

RDA analysis, the ecological response curves suggest that while F. oceanica is a cold-water 

species with highest abundances at high aSIC (both relationships are statistically significant), 

it does not have a well-defined low temperature optimum like F. reginae-jahniae, but is 

overall abundant below ca. 7°C, and it can be found at a variety of sea-ice concentrations 

with nearly equal abundances at < 25% and >75% aSIC.  

Previous studies have suggested that F. oceanica is associated with pack ice and the 

water column spring bloom coeval to initial sea-ice melt (Von Quillfeldt, 2000; 2001; 

Miettinen et al. 2015 (grouped F. oceanica); Oksman et al. 2019). This tendency for F. 

oceanica to be present in the MIZ where sea ice is melting can be extended to nearshore areas 

where the water column is stratified, with a fresher, colder meltwater layer on the surface. 

The high abundances near Scoresby Sound (29.4%) and off the Cumberland Peninsula 

(19.3%) in addition to the high NOW abundances are suggestive of a relationship to fresh 

meltwater from both sea ice and glacial sources. However, the species appears to be less 

tightly coupled to MIZ-like conditions than F. reginae-jahniae. 

 

Fossula arctica Hasle, Syvertsen & von Quillfeldt 1996 

 

Distribution in the northern North Atlantic 

 

Based on the relatively few existing studies, Fossula arctica seems to be related to Arctic 

waters that are influenced by sea ice, appearing early in the spring bloom, before F. oceanica 

and other Fragilariopsis species (Hasle, 1996; von Quillfeldt, 2000, 2001; Onodera et al. 

2015). Similarly to both F. oceanica and F. reginae-jahniae, it is considered to be associated 

to the cold low salinity conditions of the MIZ (Limoges et al. 2018). 
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The abundance of F. arctica in the northern North Atlantic is very distinctive, with 

low abundances in the Greenland Sea (0–4.3%) and the northern Labrador Sea (0–1.1%), a 

near-absence along the WGC – dominated West Coast of Greenland, slightly higher 

abundances in the southern and central Baffin Bay (up to 8.9%), and a significant increase to 

maximum abundances in the NOW (13.7–26.4%) (Figure 4). Exceptions to this clear general 

pattern were the few coastal sites – Scoresby Sound Shelf, off Cumberland Peninsula and 

Home Bay, where elevated abundances of also the other two species were observed. 

 

Species-environment relationships 

Based on the RDA (Figure 3), Fossula arctica is a sea-ice species related to high aSIC and 

cold aSSTs, similarly to Coscinodiscus oculus-iridis, Porosira glacialis and Actinocyclus 

curvatulus. The affinity for high aSIC appears to be stronger than that of F. reginae-jahniae 

and F. oceanica. Moreover, the environmental response curves (Figure 5) verify that F. 

arctica has a statistically significant relationship to aSST with an optimum at 2.6°C and 

highest abundances at >75% aSIC. The exceptionally high abundances of this species in the 

NOW significantly contribute to its affinity for cold aSST/high aSIC conditions revealed by 

the ecological response curves, however, there may be other environmental factors that 

partially drive these high abundances in the NOW, compared to other sites with similar 

temperature, salinity (fresher surface layer) and sea-ice conditions. Indeed, von Quillfeldt 

(1997) found that F. arctica constituted up to 77.7% of total assemblages from another large 

Arctic polynya, the Northeast Water Polynya (described as ‘Fragilaria sp. 1’). The high 

abundances of F. arctica in both the NOW and the Northeast Water Polynya (von Quillfeldt, 

1997) suggest that F. arctica could be considered as a characteristic polynya species. 

Analysis of diatom assemblages from other polynya environments could further verify this 

finding. In addition to high aSIC and low aSST conditions, the upwelling of the nutrient-rich 
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WGC in the NOW (Melling et al. 2001), coupled with the early season productivity that the 

ice-free area affords (Christie & Sommerkorn, 2012; Meltofte et al. 2013), may be conducive 

to the enhanced NOW abundances of F. arctica in our data set.  

Warm and saline Atlantic Water appears to be unaccommodating for F. arctica as it is 

near absent along the pathway of the West Greenland Current. Comparable to the other two 

species, F. arctica seems to thrive in stratified waters, where a colder, fresher surface layer is 

formed above ambient sea-water temperatures and salinities, such as in the MIZ or close to 

glacier meltwater influence, agreeing with previous studies (e.g. von Quillfeldt 2000; 

Limoges et al. 2018). A noteworthy observation regarding the species’ distribution is the 

significantly higher relative abundance in the NOW compared to other areas with low 

aSST/high aSIC and stratified waters, which suggests that additional environmental factors 

typical of a polynya setting (such as higher nutrient concentrations) play a role. 

Fragilariopsis reginae-jahniae and particularly F. oceanica displayed higher abundances at 

the Scoresby Sound shelf, where a recurring polynya, the “Scoresby Sound Water” forms. 

Fossula arctica, however, is not showing elevated abundances at this site, which may, based 

on our hypothesis that this is a “polynya species”, indicate that the site on the Scoresby 

Sound shelf is not affected by the polynya, but rather by meltwater from the large fjord 

system. 

 

TABLE 1 

 

The effect of the species separation on qualitative and quantitative paleoenvironmental 

interpretations 

 

 

Based on our study on the 46-site subset of the North Atlantic data set, the grouped F. 

oceanica, presented lately in Oksman et al. (2019), included significant abundances of both 
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F. arctica and F. reginae-jahniae. The separated diatom species analyzed here exhibit 

heterogeneous distributions across the northern North Atlantic, with individual maximum 

abundances occurring in different regions with different aSST and aSIC (Figures 4 and 5). 

This indicates that separating the species will increase the accuracy of future ecological 

interpretations. The grouped F. oceanica was present at a temperature gradient ranging 

between 1.2 and 6.6°C, and had a statistically significant relationship to both aSST with 

highest abundances at 2.5°C, and to aSIC with highest abundances at >75% (Figure 5). The 

separated F. oceanica, on the other hand, had clearly less well-defined relationships with the 

two environmental gradients, showing a wide scatter of high abundances at aSSTs between 

1.4 and 7°C and nearly equally high abundances at aSIC <25% and >75%. It appears that the 

grouped F. oceanica showed a stronger affinity to low aSST and high aSIC due to the 

inclusion of F. arctica and F. reginae-jahniae.  

 

FIGURE 6 

Fig 6. Quantitative reconstructions of past aSST and aSIC from core AMD15-CASQ1-BC 

located in the NOW. Solid line = Species separated, dashed line = species grouped. 

 

To explore if the separation of the three species (compared to lumping them together 

under Fragilariopsis oceanica) affects quantitative SST and sea ice reconstructions, we 

created transfer functions for aSST and aSIC (under “grouped” and “separated”) using the 

46-site subset of the large North Atlantic training set. We underline that these two transfer 

functions were created only for the purpose of testing the differences, and are not meant to be 

used for future paleoceanographic reconstructions. We found that the WA-model 

performance differed only slightly between the “grouped” vs. “separated” aSST and aSIC 

transfer functions: r2 = 0.9515 and RMSEP = 1.0226 for the “grouped” and r2 = 0.9513 and 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



RMSEP = 1.0227 for the “separated” aSST transfer functions, and again r2 = 0.5583 and 

RMSEP = 22.8286 for the “grouped” and r2 = 0.5724 and RMSEP = 22.4532 for the 

“separated” aSIC transfer functions. The aSST transfer functions are clearly more robust 

compared to the aSIC models, likely due to a smaller number of species having a well-

defined relationship with sea-ice concentrations in this training set (e.g., Oksman et al. 2019). 

However, the separation of the species had an effect on the down-core reconstruction of both 

environmental variables in core AMD15-CASQ1-BC (77°16.746’ N, 74°21.428’ W, 702 m 

water depth), especially in the case of aSIC (Figure 6). While the difference between the 

aSST reconstructions were only marginal using this training set (the “separated” transfer 

function & core assemblages resulting in lower aSST estimates), the aSIC reconstruction 

showed 5–10% higher sea-ice concentrations when the species were separated. It should be 

noted that some previous aSST reconstructions using the full North Atlantic training set 

where the species are currently not separated have resulted in absolute aSST values higher 

than what is to be expected (e.g., Oksman et al. 2019). Core AMD15-CASQ1-BC was chosen 

as it had relatively high percentage abundances of Fragilariopsis reginae-jahniae and 

Fossula arctica, at average values of 14 and 22%, respectively. Based on this exercise it 

appears that in areas where all three species are abundant, quantitative reconstructions of 

especially past sea-ice concentrations should be carried out using training sets where these 

species have been separated. Further, given the distinct differences in their biogeography and 

relationships with aSST and aSIC (Figures 5 and 6), it is advised to separate these species 

also in qualitative down-core analyses, as this will allow a much more nuanced interpretation 

of past oceanographic conditions in the northern North Atlantic. 

Conclusions 

 The three diatom species analyzed here — Fragilariopsis reginae-jahniae, 

Fragilariopsis oceanica and Fossula arctica — exhibit heterogeneous distributions 
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across the northern North Atlantic, with individual maximum abundances occurring in 

different regions with different aSST and aSIC. 

 All three species appear to thrive in stratified waters caused by sea ice and/or glacier 

melt (cold, fresher surface water resembling MIZ conditions) and are overall most 

abundant north of ca. 70°N. 

 Abundances of F. arctica are suggested to be enhanced by polynya conditions 

(availability of upwelling nutrients) and this species could be a potential polynya 

indicator in paleoceanographic studies. 

 Quantitative aSST and aSIC reconsructions result in lower temperatures and higher 

sea ice concentrations when the species are identified separately rather than combined 

under F. oceanica (which has often been done in the past). 

 We advise to separate these species in future studies, as this will allow a much more 

nuanced interpretation of the past oceanography in the northern North Atlantic. 
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SPECIES MORPHOLOGY ECOLOGY & DISTRIBUTION 

Fragilariopsis 
oceanica 

Ellipsoidal to lanceolate 
shape with rounded apices. 

Continuous striae and 
eccentric raphe with a central 
nodule. Apical axis ~25–45 

μm, transapical axis ~4.5–6 
μm. 

Cold-water species abundant 
below 7°C, found at a variety 

of sea-ice concentrations 
(highest abundances at both 
<25% and >75% aSIC), 

preference for stratified waters 
(cold, fresh surface layer). 

Fragilariopsis 

reginae-jahniae 

Elongate, linear valve shape 

with continuous striae 
(slightly thicker compared to 
F. oceanica). Apical axis 

~40–60 μm, transapical axis 
~5–6 μm with a distinctive 

nodule on the eccentric 
raphe.   

MIZ species, related to 

generally high aSIC (highest 
abundances >75%), and cold 
aSST (highest abundances 

around 3°C), preference for 
stratified waters (cold, fresh 

surface layer). 

Fossula arctica Characteristic capitate ends 
and thin discontinuous striae. 

Larger valves are more 
elongate with clear capitate 

apices, whilst smaller valves 
are elliptical with near-
rounded apices. Apical axis 

~8–50 μm, transapical axis 
~5.5–7.5 μm. 

Sea-ice species, related to 
high aSIC (highest 

abundances >75%) and cold 
aSSt (optimum 2.6°C), 

preference for stratified waters 
(cold, fresh surface layer). 
Potential polynya species 

(affinity for higher nutrient 
availability). 
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• Fragilariopsis reginae-jahniae, Fragilariopsis oceanica and Fossula arctica exhibit 
heterogeneous distributions across the northern North Atlantic  

• All three species thrive in stratified waters caused by sea ice and/or glacier melt and are 

most abundant north of ca. 70°N 

• Abundances of Fossula arctica appear to be enhanced by polynya conditions  

• Separating these species in future studies is essential for accurate quantitative and 
qualitative reconstructions of ocean surface conditions  
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