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Real numbers and projective spaces:
intuitionistic reasoning with
undecidable basic relations

Jan von Plato
University of Helsinki

Abstract: Brouwer introduced in 1924 the notion of an apartness relation for real

numbers, with the idea that whenever it holds, a finite computation verifies it in

contrast to equality. The idea was followed in Heyting’s axiomatization of intu-

itionistic projective geometry. Brouwer in turn worked out an intuitionistic theory

of “virtual order.” It is shown that Brouwer’s proof of the equivalence of virtual

and maximal order goes only in one direction, and that Heyting’s axiomatization

needs to be made a bit stronger.

1. Decidability: a common misconception about intuitionism

In Emile Borel’s version of constructivism from the first decade of the 20th
century, there is a rather clear recognition that the equality of real numbers
cannot be a decidable relation: For example, there is a way of computing
what is known as Riemann’s constant C, and the computation has so far
given 0.4999 . . .. If every successive decimal is 9, we have C=0.5, otherwise
¬C = 0.5 holds. The condition for equality is expressed as a universal
quantification over the decimals.

The same insight as in Borel got a more forceful expression in L. Brouwer’s
ideas about real numbers in the 1920’s: He replaced equality of real numbers
as a basic notion with the apartness of two reals, written a 6= b. That a
and b are in this way distinct requires that there is a positive lower bound
for their difference. Thus, a finite determination of values will verify apart-
ness, though not falsify it, the precise contrary to the case of equality. The
latter notion can now be defined as the negation of apartness. The point
is how to reason with ideal objects and concepts such as real numbers and
their properties and relations. If we follow the ideas of the logical positivists
fashionable in the 1920s, there should be no undecidable basic relations:
Their doctrine of verificationism requires a method for deciding truth, oth-
erwise a notion is not meaningful. If such a method is assumed for the
equality of reals, the law of excluded middle is justified: Then, its use gives
C=0.5∨¬C=0.5 with C Riemann’s constant and there are two cases, with
two different consequences. As long as the value of C remains undecided,
nothing concrete follows from the cases. If instead the classical law is not
allowed to enter, computability is maintained: logical reasoning will never
lead from assumptions with a finitary meaning into something infinitistic.
That is the whole point of constructive or intuitionistic logic.
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The standard view in the 1930s was that finitism and constructivism
contain the requirement by which all basic relations be decidable and all
functions computable. The former is an erroneous view to which one how-
ever could easily be led if one considered only intuitionistic arithmetic that
can be formulated with a decidable equality as the only primitive relation,
instead of also the intuitionistic theory of real numbers that cannot be based
on a decidable equality, or the first intuitionistic axiomatization ever, Arend
Heyting’s 1925 system of intuitionistic projective geometry in which de-
cidability of the basic apartness relations cannot be assumed. One of the
first outside the intuitionist camp to realize the difference was Kurt Gödel
whose lectures on intuitionism in Princeton in 1941 have been preserved
in manuscript form. The extant text begins with two pages of improve-
ments for the lectures, written in his Gabelsberger shorthand. One of the
improvements is: “The belief is put aside that a system of axioms has an
intuitionistic sense only if the basic concepts are decidable.”

From the actual formal work of the intuitionists, Brouwer and his student
Heyting in the first place, it can be seen that they required all functions to
be computable, but not all basic relations to be decidable. So, why was there
such a belief or requirement? One reason lies in the possibility to emulate
operations with added basic relations. For example, one could substitute
the operation of sum in arithmetic by a three-place relation written, say,
Σ(a, b, c) with the intended meaning that c is the sum of a and b.

2. Apartness relations

Brouwer’s 1924 Intuitionistic division of the basic notions of mathematics
contains a replacement of the equality relation of two real numbers by apart-
ness, a 6= b. The properties of apartness are, in logical notation:

1. ¬ a 6= a irreflexivity
2. a 6= b ⊃ a 6= c ∨ b 6= c apartness axiom, co-transitivity

The second axiom is notable in a constructive context because it has a dis-
junction in a part of the formula (positive part) that cannot be rewritten in
a constructively equivalent way without disjunction. It follows that when-
ever we have established a 6= b, any third real number c can be taken and
the two cases a 6= c and b 6= c formed.

By putting a for c in the second axiom, we get a 6= b ⊃ a 6= a ∨ b 6= a,
with the first disjunct negated in axiom 1. Therefore symmetry, a 6= b ⊃
b 6= a, follows.

Equality is a defined notion:

a = b ≡ ¬ a 6= b

Reflexivity of equality is immediate from the definition, and symmetry and
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transitivity follow as contrapositions of symmetry of apartness and of axiom
2, the latter in the “Euclidean” form a = c& b = c ⊃ a = b, by Euclid’s
axiom in the Elements that says: “Two things equal to a third are equal
among themselves.”

The idea with an apartness relation is that one replaces an “infinitely
precise” notion such as the equality of reals by a “finitely precise” apartness,
in the sense that if a 6= b happens to be the case, a finitely precise computa-
tion of the values of a and b verifies a 6= b, whereas the verification of a = b
requires infinite precision, whatever that may be. The “finite precision” idea
validates the apartness axiom: given that a and b are apart, if a 6= c cannot
be decided, c must be apart from b, and similarly for b 6= c.

In the 1924 paper, apartness was written as a# b, most likely to make
a difference to the standard definition as in a 6= b ≡ ¬ a = b. Dana Scott
suggested in 1968 to keep the standard notation, and for good reasons: If
the equality relation happens to be decidable, the diaresis apartness and
slashed apartness relations coincide. Following Scott, we have a uniform
notation for the classical and constructive basic notions, and one just makes
the choice as to which comes first in coneptual order.

3. Virtual order

Three years after the introduction of the apartness idea, Brouwer published
another paper on elementary axiomatics, with the title “Virtual and inexten-
sible order.” The paper is typical of Brouwer in its idiosyncratic terminology
and notation. Brouwer uses a notion of equality as distinct from identity.
A set P , or “species” in Brouwer’s terminology, with an order and equality
relation is called partially projectibly ordered (teilweise geordnet projiziert),
one with order and identity partially ordered, something like the difference
within some of the more pedantic presentations of today between a preorder
and an order. I shall use just an equality relation, as there is no role for a
separate relation of identity, whatever that could be.

Brouwer begins with a basic axiom system, here written with a single
equality relation:

A1. r = r

A2. r = s& r = t ⊃ s = t

A3. r > s& r = t& s = u ⊃ t > u

A4. r > s& s > t ⊃ r > t

A5. ¬(r > s& r = s)

Brouwer has, of course no logical notation. He writes alternatively r > s
and s < r and I follow him as it will make the proofs below handier to write
down. Brouwer’s first axiom gives that identity implies equality. Therefore,
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as identity is taken to be reflexive, his first axiom with equality in place of
identity amounts to the reflexivity of equality. Brouwer’s second axiom is
the standard formulation of the transitivity of equality. As a consequence,
symmetry of equality is not provable, something Brouwer fails to notice. I
have repaired the matter by writing equality in the Euclidean style.

Brouwer’s interest in the paper is to study two “additional axioms” of
virtual order, ones he calls in German Ergänzungsaxiome and that can be
given in terms of equality as:

A6. ¬ r > s&¬ s > r ⊃ r = s

A7. ¬ r > s&¬ r = s ⊃ s > r

By the use of a weak order relation defined as in r6s ≡ ¬ r > s, these can
be written as:

r6s& s6r ⊃ r = s

r6s&¬ r = s ⊃ s > r

Brouwer’s main results are that axioms 6 and 7 follow from a single condi-
tion of maximality, called “inextensibility” of a virtual order P in Brouwer
(Unerweiterbarkeit). We assume that any such set is given by a domain of
objects and a collection, possibly empty, of atomic relations:

Definition 1. Maximal order. A virtual order P is maximal if, when-
ever a relation r = s or r > s can be consistently added to P , it is derivable
by axioms A1–A5.

Brouwer’s Satz 1 states that axiom 6 follows from axioms A1–A5 by the
condition of maximality, and Satz 2 that axiom 7 follows. I shall present
a detailed proof of the latter, just a reading of what Brouwer offers, even if
he would hardly recognize the sameness of the proofs:

Proposition 2. Let a given virtual order P be maximal. Then axiom 7
holds for P.

Proof. We prove axiom 7 in the form of ¬ s < r&¬ r = s ⊃ r < s.
Given r and s, assume ¬ s < r&¬ r = s, and let the closure of the given

relations P with respect to axioms A1–A5 be denoted α. It needs to be
shown that r < s can be consistently added to α.

Let β consist of relations y < z such that: 1. either y < r or y = r is in
α and 2. either s < z or s = z is in α.

Let γ = α+ β.

a) ¬ y = z and ¬ z < y are in α. To prove this assume first y = z. Then we
have four cases each of which turns out impossible:

1. y < r, s < z: y = z gives z < r, so s < r against ¬ s < r.
2. y < r, s = z: y = z gives z < r, so s = z gives s < r.
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3. y = r, s < z: y = z gives s < y, then y = r gives s < r.
4. y = r, s = z: y = z gives z = y, then s = z gives r = s against

¬ r = s.

Next assume z < y, and there are again four cases that turn out impossible:

1. y < r, s < z: Then s < y, so s < r.
2. y < r, s = z: Then s < y, so s < r.
3. y = r, s < z: Then s < y, so s < r.
4. y = r, s = z: Then s < y, so s < r.

b) γ is closed with respect to axioms A2–A4.
All equalities are in α, so closure with respect to axiom A2 follows. For

A3, we need some fresh variables, as in a = b& c = d& a < c ⊃ b < d. If
a < c is in α also b < d is. If a < c is in β, there are four cases as in a):

1. a < r, s < c are in α. Then a = b gives b < r, and c = d gives s < d,
so b < d is in γ.

Cases 2–4 are similar.
If r < s and s < t are in γ they are in α so that closure with respect to

A4 follows.
It follows altogether that if r < s is added to α, the closure is included

in γ.

c) For axiom 5, let a = b be in α, a < b in β. The latter gives four cases:

1. a < r, s < b are in α. Then b < r is in α, so s < r, which is impossible.
Cases 2–4 are similar.

Let a < b be in β, b < a in β. Then:
1. a < r, s < b, b < s, r < a are in α, which is impossible.
2. a < r, s = b, b < s, r < a are in α, which is impossible.
3. a = r, s < b, b < s, r < a are in α, which is impossible.
4. a = r, s = b, b < s, r < a are in α, which is impossible.
Cases 5–8 are symmetric with respect to a, b and b, a.
It follows altogether that if r < s is added to α, the closure is included

in γ.

We have shown that if ¬ s < r and ¬ r = s, then r < s is consistent, and
therefore it is by maximality derivable. QED.

The essential point is the inference from consistency (=not inconsistent) to
derivability by maximality. The classical cases enter when y6r and s6z
are defined by cases: y < r or y = r, and s < z or s = z. These are not
decidable.

A proper intuitionistic formulation of axiom 7 should avoid the positive
conclusion from negative conditions:

¬ s < r&¬ r = s ⊃ ¬¬ r < s
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An alternative writing without the double-negation is

r6s&¬ r = s ⊃ ¬ s6r
Both are easily provable, but Brouwer’s axiom A7 with its positive conclu-
sion from two negative conditions is too strong.

Brouwer’s proof of his Satz 1 is almost identical to the one of Satz 2,
up to the wording. This is strange, because Satz 1 is constructive, Satz 2
instead not. One wonders why Brouwer didn’t base his treatment of order on
the idea of apartness of two real numbers a and b: given that they are apart,
there are two cases as in the refinement of apartness into two constructively
decidable cases, the definition a 6= b ≡ a < b∨ b < a. Here the proper axiom
would be a < b ⊃ a < c ∨ c < b from which the corresponding apartness
axiom 2 in section 1 follows.

Brouwer completes his little article by a third theorem which claims that
the converse to the theorems 1 and 2 holds: A virtual order is a maximal
order. Brouwer’s suggested proof aims to show the equivalence of maximally
and axioms A6 and A7. It goes as follows (p. 408):

Let us assume that the relation r = s (resp. the relation r < s)
can be consistently added to the system α of the relations that
obtain in the ordered projection P . Thence in system α, both
of the relations r < s and r > s (resp. the relations r > s and
r = s) are certainly contradictory [ungereimt]. Then as well,
because the additional axiom 6 (resp. the additional axiom 7)
holds for the relations in the ordered projection P , the relation
r = s (resp. the relation r < s) is contained in system α. c. q.
f. d.

This result is plain wrong, as the following counterexample shows:
Let the relations in P be a = a and b = b. Axiom 5 gives ¬ a < a and

¬ b < b. This collection α is already closed with respect to axioms 1–7,
for the only axioms that can be applied are 1, 2, and 5, but with just two
elements, nothing more follows. The rest of the axioms would need order
relations. If now a = b is added, consistency is maintained and ¬ a < b and
¬ b < a follow, but these were not in the original closure α.

Brouwer states quite clearly that if r = s can be consistently added, its
contradictories by axiom 5 r < s and r > s cannot. With the above example
we would have, say, that the addition of a < b to a = a and b = b leads
to a contradiction. Brouwer’s wording of the crucial erroneous step in the
proof was: “Alsdann sind im System α sicher die beiden Relationen r < s
und r > s ungereimt,” not much of a step of proof to control for correctness,
and Brouwer would have done better to resort to more formal methods in
his proofs, namely those developed by his student Heyting.
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4. Apartness in geometry

Brouwer’s idea of apartness was applied in the work of his student Arend
Heyting, in the doctoral thesis Intuitionistische axiomatiek der projektieve
meetkunde (Intuitionistic axiomatics of projective geometry) in 1925. I have
studied it carefully in connection with my axiomatization of constructive
geometry in 1995, but as most readers would fall short of controlling a dis-
course centered on that presentation, I refer instead to the shorter German
article version, published in 1927 in the Mathematische Annalen with the
title Zur intuitionistischen Axiomatik der projektiven Geometrie. As with
Brouwer, Heyting’s notation and terminology are idiosyncratic; the reason
is in Brouwer’s idea that mathematics has to be purified of old, bad con-
notations through new notation and a new terminology, one that in part
consists of neologisms. Heyting uses the word species for the intuitionistic
notion of a set. He gives an axiomatization for the projective space that
consists of points, with lines, planes, and other geometric objects construed
from these. I describe here the plane part that is structured as follows:

1. The basic objects are points that form the geometric space. Other
geometric objects are given as species of points.

2. There are apartness and equality relations for points A and B, writ-
ten as AωB and AσB, respectively, and definitions of similar relations for
species of points.

Lines are species of points. The geometric axioms are altogether 16, grouped
from I to X; I shall describe the first ten axioms. The axioms for points are
five, after a first one by which the space consists of points (p. 493):

Axiom I. The space is a mathematical species.

Axiom II. (Axiom of separation.)

IIa. AσB (A coincides with B) and AωB (A is apart from B)
are invertible relations between the points A and B.

IIb. AσA for every point A.

IIc. The relations AσB and AωB are mutually exclusive.

IId. If AωB is inconsistent, AσB holds.

IIe. If there is between the points A and B the relation AωB,
then for every point C either AωC or B ωC.

The word for inconsistent in IId is “ungereimt,” Brouwer’s somewhat odd
word construction. No logical notation is used, but it can be seen that
by axioms IIc and IId, coincidence AσB is equivalent to the negation of
apartness AωB, therefore a superfluous notion. Two theorems follow, the
first the usual transitivity of equality, the second the substitution of equals
in apartness, or from AωB and B σC follows AωC.
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There follow now three axioms for lines, after one that produces two
distinct points (ibid.):

Axiom III. Two points separate from each other can be deter-
mined.

Axiom IV. (Axiom of lines.) Lines are point species with the
following properties:

IVa. If point P belongs to line l, then every point that coincides
with P belongs to l.

IVb. Two points apart from each other determine a line that
contains them both (i.e., one can determine a line l that con-
tains both of them, and every line that contains both of them is
identical to l), their connecting line.

IVc. Every line contains at least three points apart from each
other.

These axioms are followed by three lengthy definitions and axiom V (p. 494):

Definition. Point P is apart from the point species α (also: lies
outside the point species α), if it is apart from each point of this
species; we write in this case Pωα.

The point species α coincides with the point species β or ασβ if
every point of α coincides with some point of β and every point
of β with some of α.

The point species α is apart from the point species β if α contains
a point that is apart from β; we write then αωβ. This relation
is not invertible.

Axiom V. A point can be determined outside every line.

The conceptual order of things in the axioms and definitions contains a cru-
cial if somewhat subtle error that makes the axiomatization constructively
too weak, as will be made clear in the next section.

Axiom IVb is clearly a construction postulate. An “infinitely precise”
object is constructed that has some ideal, “infinitely precise” properties.
Axioms III and V are clearly different from construction postulates, as they
don’t determine any unique new geometric objects from given ones. What
to make of these axioms? Axiom IVc instead is formulated in the language
of existence. What difference does that make to axioms III and V? Answers
to these questions will require a little formal work:
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5. Heyting’s error in conceptual order

A formal notation and some logic will be helpful to set things in order: We
take points and lines and their apartness relations as primitives, with a new
basic relation and notation:

a /∈ l point a is outside line l

Heyting had considered this notion in the 1950s but then discarded the idea
as perhaps not worth the effort (see van Dalen). With outsideness as a
primitive, incidence becomes a defined notion, in analogy to equality:

a ∈ l ≡ ¬a /∈ l
Heyting’s 1927 definition of apartness of a point from a species applied to a
and l gives:

∀x(x ∈ l ⊃ a 6= x)

A properly formulated constructive form of the principle of substitution of
equals in the outsideness relation is:

a /∈ l ⊃ a 6= b ∨ b /∈ l
The correctness of this axiom is seen similarly to Brouwer’s apartness axiom.
If a /∈ l and b ∈ l, the conclusion a 6= b of Heyting’s definitional axiom follows
at once, but not the other way around, so we have:

Proposition 3. There is no way to arrive at the constructively correct
disjunctive conclusion a 6= b ∨ b /∈ l from a /∈ l by Heyting’s notion of
apartness of a point from a line.

What Heyting has is in substance a /∈ l & b ∈ l ⊃ a 6= b, analogous to the
substitution axiom a /∈ l & a = b ⊃ b /∈ l. This latter standard substitution
principle of equals in the outsideness relation is constructively too weak.

Connecting lines of two distinct points were originally introduced by a
postulate in Hilbert’s Grundlagen der Geometrie of 1899, with the nota-
tion AB and the condition of non-degeneracy A 6= B. This postulate was
changed into a purely existential axiom in later editions, written in the
present notation as:

∀x∀y∃z(x 6= y ⊃ x ∈ z & y ∈ z)
A formal notation for the line construction is ln(a, b), the connecting line of
points a and b. The connecting line has the ideal properties expressed by
the axioms a 6= b ⊃ a ∈ ln(a, b), a 6= b ⊃ b ∈ ln(a, b). A further property
required is that the constructed object be unique:

a 6= b & a ∈ l & a ∈ m & b ∈ l & b ∈ m ⊃ l = m

Specifically, with m ≡ ln(a, b), we get

a 6= b & a ∈ l & b ∈ l ⊃ l = ln(a, b)
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Heyting’s axioms III and V differ from axioms for constructions; they are
in some sense purely existential, not replaceable by constructions. They can
be formulated as:

III: ∃x∃y.x 6= y and V: ∀x∃y.y /∈ x
In axiom V, the sorts of objects can be read off from the way the rela-

tion is written, with a point as the left member and a line as right in the
outsideness relation.

The standard intuitionistic explanation of the quantifiers gives:

If ∀x∃yA(x, y), there is a function f such that A(x, f(x))

This kind of explanation fails for the axiom ∀x∃y.y /∈ x. Heyting’s axioms III
and V are instead rather like the things required in the proof of Euclid’s first
proposition: “On a given line segment to produce an equilateral triangle.”
The proof starts with: “Let AB be the given line segment.” This is clearly
an existential assumption, and A and B act as eigenvariables in an inference
from the asumption. As a result, the construction applies to any line AB.

Heyting’s axioms III and V express tasks that can be met by “finitary
capacities,” as in:

Two distinct points a,b can be determined.

To mark three points a,b,c such that they form a triangle.

The points a,b,c are “generic,” i.e., the only thing we know about them is
a 6= b and c /∈ ln(a, b)). Existential axioms such as Heyting’s ∃x∃y.x 6= y
and ∀x∃y.y /∈ x have precisely this effect when the existential quantifiers are
instantiated by eigenvariables. Heyting’s geometry gives at the same time
an example of an intuitionistic theory in which the existence property fails;
a formal proof of this failure can be given for the axiom system of the next
Section.

6. The axioms of intuitionistic projective geometry

We finish this note by a summary of the proper axioms of intuitionistic
projective geometry:

Basic relations a 6= b, l 6= m, a /∈ l
Apartness axioms for point and line apartness:

¬a 6= a, ¬l 6= l

a 6= b ⊃ a 6= c ∨ b 6= c, l 6= m ⊃ l 6= n ∨m 6= n

Connecting line and intersection point constructions:

ln(a, b), pt(l,m), conditions a 6= b, l 6= m

Incidence properties:
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a ∈ ln(a, b), b ∈ ln(a, b), pt(l,m) ∈ l, pt(l,m) ∈ m
Substitution of equals:

a /∈ l ⊃ a 6= b ∨ b /∈ l, a /∈ l ⊃ l 6= m ∨ a /∈ m
Uniqueness:

a 6= b & l 6= m ⊃ a /∈ l ∨ a /∈ m ∨ b /∈ l ∨ b /∈ m
The classical contrapositive is Skolem’s axiom, as in 2.4.(C):

a ∈ l & a ∈ m & b ∈ l & b ∈ m ⊃ a = b ∨ l = m

The classical versions of substitutions are:

a ∈ l & a = b ⊃ b ∈ l, a ∈ l & l = m ⊃ a ∈ m
Non-collinearity:

∃x∃y∃z(x 6= y & z /∈ ln(x, y))

The last axiom is purely existential; still, the existence property obviously
fails. Assume it held, and there would be a derivation of a 6= b & c /∈ ln(a, b)
for some three points a, b, c. Then even a 6= b would be derivable. By the
general result of my second paper, such a derivation would have the subterm
property: all terms in the derivation are visible in the open assumptions, here
none, or the conclusion. It is seen at once that there can be no derivation
with this property for the formula a 6= b, and we have:

Proposition 4. Intuitionistic plane projective geometry does not have the
existence property.
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