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CONTEMPORARY REVIEW

Maternal Obesity and Diabetes Mellitus as 
Risk Factors for Congenital Heart Disease  
in the Offspring
Emmi Helle, MD, PhD, MSc (Econ); James R. Priest, MD

ABSTRACT: Congenital heart disease (CHD) is the most common anatomical malformation occurring live- born infants and an 
increasing cause of morbidity and mortality across the lifespan and throughout the world. Population- based observations 
have long described associations between maternal cardiometabolic disorders and the risk of CHD in the offspring. Here 
we review the epidemiological evidence and clinical observations relating maternal obesity and diabetes mellitus to the risk 
of CHD offspring with particular attention to mechanistic models of maternal- fetal risk transmission and first trimester dis-
turbances of fetal cardiac development. A deeper understanding of maternal risk factors holds the potential to improve both 
prenatal detection of CHD by identifying at- risk pregnancies, along with primary prevention of disease by improving precon-
ception and prenatal treatment of at- risk mothers.
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Among anatomical malformations present at birth, 
congenital heart disease (CHD) is the most com-
mon, occurring in 0.8% to 1% of live- born infants, 

and is increasing in prevalence worldwide.1 In the cur-
rent practice of neonatal and pediatric cardiothoracic 
surgery and perioperative care, the survival of children 
with CHD approaches 95% to 99% depending on the 
severity of disease.2 However, childhood survivors 
of CHD are impacted by neurodevelopmental differ-
ences,3 whereas adult survivors of CHD are burdened 
with adult- onset cardiovascular disease,4 neuropsy-
chiatric disease,5 and cancer.6 From infancy through 
adulthood, CHD continues to be an important and in-
creasing proportion of the population at increased risk 
of morbidity and mortality.

Although the past decade has seen advances in 
our understanding of the genetic basis of CHD,7 mater-
nal diabetes mellitus occurring during early pregnancy 
has been recognized as a risk factor for disease for 
many decades.8 More recently, population- based ob-
servations have described associations between risk 
of CHD in the offspring with other maternal cardiomet-
abolic disorders such as obesity.9 The significant 

phenotypic overlap between diabetes mellitus, obe-
sity, and cardiometabolic risk is complex; it is not yet 
established which of these factors is causal for risk to 
the fetus when present in the mother during early preg-
nancy (Figure).

GENERAL RELATIONSHIP: 
MATERNAL OBESITY
Mirroring trends in the general population, both the 
rate and severity of maternal obesity has increased 
at an alarming rate during recent years.10 In European 
countries, 7% to 25% of expectant mothers are over-
weight,11 and in the United States only 45% of moth-
ers have a normal weight when becoming pregnant.10

Maternal obesity is associated with adverse preg-
nancy outcomes, neonatal complications, and morbid-
ity. These include stillbirth,12 macrosomia,13,14 shoulder 
dystocia,14 preterm delivery,15 and congenital malfor-
mations, such as neural tube defects,16,17 omphalo-
cele,17,18and CHD.17–22 Moreover, a dose- dependent 
association has also been observed whereby severity 
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of maternal obesity is directly associated with risk for 
adverse neonatal outcomes.9,23

Several recent meta- analyses consistently report 
a general association between maternal overweight 
and obesity and risk for congenital heart defects in 
the offspring.24–26 The increased risk associated with 
maternal obesity includes a wide range of different 
cardiac defects, including septal defects,9,22,27 aor-
tic arch defects,9 persistent ductus arteriosus,9,21 
conotruncal defects,9,27–30 left ventricular outflow 
tract obstruction defects,29 and right ventricular out-
flow tract defects.21,28 The association of risk regard-
ing specific CHD subtypes, however, has not been 
universally consistent in different studies. One source 
of bias could be the fact that body mass index (BMI) 
estimations in many of these studies were based on 
retrospective of self- reported data, which are asso-
ciated with recall bias. In addition, many of the stud-
ies report only prenatally or neonatally diagnosed 
defects. Given that noncritical CHD may not cause 
symptoms at birth and diagnosed later in life, these 
studies might be under- reporting CHD rates. Finally, 
many of the studies are case- control studies, which 
provide estimates of risk that may be less reliable than 
prospective, population- based cohort studies for es-
timating prevalence.

The largest single study thus far, including a na-
tional cohort of 2 050 491 live- born singleton infants 

in Sweden, showed that maternal obesity measured 
at the first antenatal visit increased the risk to off-
spring for transposition of great arteries in those 
with a BMI of 35 to 40 and >40 kg/m2, aortic arch 
defects in those with a BMI of 30 to 35, 35 to 40, 
and >40 kg/m2, single- ventricle heart in a group of 
mothers with a BMI of 30 to 35  kg/m2, and atrial 
septal defect and patent ductus arteriosus in moth-
ers with a BMI of >25  kg/m2. In addition, the risk 
for pulmonary valve defects was increased in off-
spring of mothers with a BMI of 30 to 35 kg/m2.9 The 
strengths of this study included a population- based 
design with prospectively collected data on both 
exposure and outcome in a country with publicly 
funded health care, but did not take into account 
pregnancies with CHD that resulted in termination 
or stillbirth.

The risk for CHD also appears to increase with the 
severity of obesity. The study by Persson et  al from 
Sweden demonstrated that the risk for congenital mal-
formations, including CHD, progressively increased 
with BMI from overweight to severe obesity.31 When 
focusing on specific CHD groups, aortic arch defects, 
atrial septal defect, and patent ductus arteriosus pre-
sented with a dose- responsive association.9 In addi-
tion, a similar dose- responsive association has been 
reported in hypoplastic left heart syndrome and right 
outflow tract defects.21

Figure. Potential mechanisms for transmission of maternal metabolic risk for congenital heart 
disease (CHD) in the fetus. 
Illustration of potential mechanisms of transmission of maternal factors during pregnancy influencing risk 
for CHD in offspring. Maternal diabetes mellitus and obesity share a variety of intermediate phenotypes 
(bidirectional gray arrow), which could be transmissible from mother to fetus in the blood across the 
placenta (red arrow) or transmitted genetically at the time of conception by pleiotropic variants, conferring 
risk for both metabolic phenotypes and CHD (green arrow). Specific differences in placental function 
related to maternal obesity may also contribute to risk (purple arrow). Experimental models have suggested 
a variety of potential mechanisms by which maternal metabolic factors may disturb development of the 
heart, which occurs early in pregnancy during the first trimester.
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POTENTIAL MECHANISMS OF RISK 
IN MATERNAL OBESITY
The precise mechanism by which maternal obesity 
impacts critical stages of cardiac development is 
not known and is hypothesized to be multifacto-
rial. Whereas the mechanisms of maternal obesity 
in later gestation on placental function and fetal 
growth have been under active research during 
recent years, early pregnancy has received less 
attention.

Maternal prepregnancy obesity is known to be 
associated with increased risk for gestational diabe-
tes mellitus,32 and it is likely that some of the effect 
in obese individuals may be mediated by glycemic 
dysregulation. However, the CHD- risk increase has 
remained significant even after adjusting for glu-
cose levels, suggesting that abnormalities in glucose 
metabolism do not fully explain the risk in obese 
mothers.27 In addition to glycemic dysregulation, 
a wide range of metabolic abnormalities are pres-
ent in obese individuals. Obesity is associated with 
hyperinsulinemia and insulin resistance,33,34 dys-
lipidemia,33,35 and oxidative stress.35 In pregnancy, 
gestational diabetes mellitus increases low- density 
lipoprotein susceptibility to oxidation, and obesity 
has been further shown to exacerbate this effect.36 
Compared with nonobese women, obese mothers 
may display differential fat distribution, where non-
obese women accumulate fat in the lower body 
whereas obese women accumulate fat in the upper 
body.37 Upper- body obesity is associated with re-
duced uptake and storage of fatty acids, along with 
increases in lipolysis.38 In contrast, lower- body fat 
accumulation is associated with more- favorable 
lipid and carbohydrate metabolic dysregulation39 
and an overall lower- risk metabolic profile.40 Thus, 
the potential negative effects of adverse metabolic 
changes related to fat accumulation during preg-
nancy are more profound in obese individuals, which 
may contribute to increased levels of adverse effects 
in the fetus.

Fetal macrosomia associated with maternal obesity 
has been proposed to arise from an increased placen-
tal nutrient transfer, related, at least partly, to adiponec-
tin levels. Circulating adiponectin levels are lower in 
obese individuals41 and remain lower in obese individ-
uals throughout pregnancy.42 Lower adiponectin levels 
during pregnancy have been associated with placental 
insulin resistance43,44 and adverse placental function, 
in terms of increased placental nutrient transfer45–47 
and increased fetal growth.48 Development of the pan-
creas and production of insulin do not occur until the 
beginning of the second trimester; therefore, during 
the period of heart development during the early first 
trimester, the fetus is unable to regulate glucose and 

may be susceptible to adiponectin- related dysfunction 
in placental glucose transport.49

Endothelial cell dysfunction in mice lacking endo-
thelial nitric oxide synthase during embryogenesis 
has been shown to cause CHD in mice.50,51 Obesity 
causes chronic pre- existing endothelial activation and 
impairment of endothelial function,33,52–54 as well as 
inflammatory upregulation.33 Bioavailability of nitric 
oxide, a regulator of vascular tone, is decreased in en-
dothelial cell dysfunction. Insulin55 and adiponectin56 
activate endothelial nitric oxide synthase, whereas in 
obesity and diabetes mellitus these protective mech-
anisms are diminished. Maternal obesity is associated 
with increased abnormalities in placental vascular sup-
ply, and it has been shown to have an adverse effect 
on fetal vascular circulation.57 Thus, the endothelial 
dysregulation present in obese mothers may extend 
to the fetal circulation to impact developmental path-
ways in the fetus. Moreover, the effect may persist after 
birth, given that it has been observed that offspring of 
nonhuman primates exposed to a high- fat diet during 
pregnancy have impaired endothelial function >1 year 
after birth.58

Finally, it has been proposed that some of the CHD 
risk increase is mediated by a lower diagnostic rate 
in pregnancy screenings in obese individuals, given 
that cardiac views during pregnancy are suboptimal 
in obese mothers. Decreased sensitivity of ultrasound 
for cardiac anatomy has been documented in obese 
mothers.59–61 Whereas rates of pregnancy termination 
are difficult to ascertain and compare between stud-
ies, it is possible that differences in diagnostic rates 
could affect termination rates, leading to a higher share 
of CHD pregnancies carried to birth in obese mothers 
with lower diagnostic rates. However, in a recent study 
of an advanced nation- wide CHD screening program 
within a country with universal health coverage, obe-
sity or other maternal risk factors for offspring severe 
heart disease did not appear to affect prenatal detec-
tion as such.30

IMPACT OF TREATMENT AND 
PRENATAL CARE
Lifestyle interventions aiming to restrict weight gain in 
obese women during pregnancy are seen as a means 
to reduce adverse outcomes related to obesity. A 
healthier diet during the year before pregnancy has 
been shown to decrease the risk for conotruncal and 
septal defects in the offspring,62 and one-carbon- 
rich dietary pattern during pregnancy, characterized 
by a high intake of fish and seafood, has been asso-
ciated with a reduced risk of overall CHD.63 Maternal 
malnutrition and especially folate deficiency has 
been associated with CHD in the offspring,64 and 
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there is evidence that obese mothers may have an 
insufficient response to folic acid supplementation 
for primary prevention of congenital anomalies.65,66 
Lifestyle interventions for expectant mothers with 
obesity and/or previous gestational diabetes mel-
litus during pregnancy have not, however, resulted 
in an effect on gestational weight gain, or obstetric 
or perinatal outcomes.67 It has been suggested that 
obesity could be associated with a lower compli-
ance for following nutritional recommendations.68 
Moreover, prepregnancy BMI is a stronger predictor 
for adverse outcomes as compared with gestational 
weight gain.69 These results indicate that lifestyle in-
terventions should be increasingly aimed at mothers 
planning pregnancy. Interestingly, certain genetic risk 
variants have been shown to modify the effective-
ness of lifestyle interventions,70 which might affect 
targeting of such interventions in the future.

Several animal studies have addressed interven-
tions to improve the outcome of obese pregnancies. 
Exercise has been shown to prevent adverse effects 
of maternal obesity on placental vascularization and 
fetal growth.71 In a mouse model, exercise in obese 
pregnancy was beneficial to offspring cardiac function 
and structure.72 Adiponectin levels are lower in obese 
mothers, and adiponectin supplementation of mice 
during late pregnancy reversed the adverse effects 
of maternal obesity on placental function and fetal 
growth.73,74 Moreover, although these interventions 
showed to be beneficial in terms of maternal and fetal 
health, none of these studies specifically addressed 
CHD as an outcome.

GENERAL RELATIONSHIP: GLYCEMIC 
REGULATION
The association between maternal diabetes mellitus 
and CHD in offspring has been recognized for almost 
80 years.8 The underlying pathology of diabetes mel-
litus is a mismatch between insulin production and 
response to insulin resulting in elevated glucose lev-
els. Type 1 diabetes mellitus is attributable primarily 
to the absence of pancreatic insulin secretion origi-
nating from autoimmune destruction of beta cells. 
Type 2 and gestational diabetes mellitus arise from 
an increased requirement for insulin for intracellu-
lar transport of glucose in peripheral tissues, a now 
well- described physiological phenomenon of insulin 
resistance implicated in the pathophysiology of a 
variety of adult- onset diseases.75 Maternal diabetes 
mellitus is a risk factor for adverse maternal and fetal 
outcomes, including anatomical malformations such 
as CHD.76,77 Risk for CHD in offspring is present in 
mothers with all types of disease, such as type 178,79 
or 279,80 diabetes mellitus existing before pregnancy, 

along with gestational diabetes mellitus developing 
during pregnancy.81,82

In large, population- based studies, maternal diabe-
tes mellitus appears to be a strong risk factor for any 
and all subtypes of CHD.81,83 Individual studies hint at 
a higher risk for conotruncal and laterality subtypes of 
CHD83,84; however, comparisons between subtypes 
are limited by low prevalence of individual malforma-
tions present even in large cohorts. For syndromic 
causes of CHD with a known genetic etiology, such 
as Down syndrome, maternal diabetes mellitus is not 
recognized as a cofactor for cardiac malformation in 
the fetus.85 On a population level, exposure to prepreg-
nancy diabetes mellitus was estimated to be responsi-
ble for up to 4.2% of CHD within a regional Canadian 
health system.80

Cardiac development occurs during the first tri-
mester and is largely complete by the sixth week of 
pregnancy; thus, maternal physiology and metabo-
lism during the early first trimester is most relevant 
to the developing fetal heart. Hemoglobin A1C val-
ues measured during the first trimester are associ-
ated with risk for CHD in offspring,86,87 and women 
with pre- existing diabetes mellitus who experienced 
a greater number of diabetic complications or had a 
greater hemoglobin A1C appear to be at increased 
risk of having a child with CHD.78,83 Our own recent 
data suggest that risk for CHD extends to pregnan-
cies of women who may not carry a clinical diag-
nosis of diabetes mellitus; abnormalities of glucose 
metabolism below standard diagnostic thresholds 
for diabetes mellitus are associated with measurable 
risk for CHD in offspring.88,89 Thus, risk of CHD in 
offspring is directly correlated with abnormalities in 
glucose metabolism in pregnancies with and without 
diabetes mellitus.

MECHANISM OF RISK
The mechanism by which presence of maternal 
diabetes mellitus during critical stages of cardiac 
development is not clear. The earliest experiments 
simply treated chicken and rodent embryos with ex-
ogenous glucose, which resulted in malformations in 
many organ systems including cardiac defects.90,91 
Experimentally supported mechanisms proposed to 
alter cardiac development include glucose- mediated 
disturbances of left- right patterning,92 increased 
apoptosis resulting from oxidative or other cellular 
stress,93,94 deficiencies in nitric oxide signaling,95 im-
paired autophagy,96 and alterations of neural crest 
cell formation and migration.97,98 Deriving from early 
descriptions of the teratogenic potential of glucose 
alone, ex vivo models of cardiac development have 
substituted treatment with supraphysiological levels 
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of glucose as a proxy for maternal diabetes mel-
litus. However, alterations in maternal glucose are 
accompanied by changes in downstream metabo-
lites of glycolysis, such as beta- hydroyxbutyrate,99 
and the impact of downstream metabolites of glu-
cose upon cardiac development remains relatively 
unexplored.100–102 Accompanying these mechanistic 
hypotheses, experimental models of maternal dia-
betes mellitus have also described the disruption of 
canonical signaling pathways during mesodermal dif-
ferentiation and cardiac development.103 The variety 
of proposed cellular models and molecular mecha-
nisms, none of which are mutually exclusive, high-
lights the need for further research into how  maternal 
diabetes mellitus disturbs fetal heart development 
(Figure).

IMPACT OF TREATMENT AND 
PRENATAL CARE
Like maternal obesity, maternal diabetes mellitus 
is associated with a variety of adverse pregnancy 
outcomes, including pre- eclampsia, prematurity, 
fetal demise, and stillbirth.77 These outcomes have 
prompted public health efforts to improve precon-
ception and prenatal diagnosis and treatment for dia-
betes mellitus. In a meta- analysis studying prenatal 
care, standard treatment of maternal diabetes mel-
litus resulted in ~75% reduction in risk of anatomical 
malformations in offspring inclusive of CHD.104 Newer 
technological approaches to diabetes mellitus care, 
including continuous glucose monitoring and contin-
uous subcutaneous insulin injection, are in common 
use by women of childbearing age,105 and rand-
omized controlled trials using these technologies 
demonstrate incremental improvements in measures 
of glucose control and improvements in some meas-
ures of pregnancy and fetal outcome.106 Simulations 
suggest that in the US population, achieving glyce-
mic control in all women before pregnancy has the 
potential to reduce rates of CHD by 3.8% or 2670 
cases per year.107

In addition to standard care of diabetes mellitus be-
fore and during pregnancy, other routine interventions 
have been trialed in pregnant women with maternal 
diabetes mellitus with the goal of preventing adverse 
fetal and maternal outcomes. Exercise during preg-
nancy is safe and reduces maternal glucose levels,108 
but there is inadequate evidence to assess any impact 
of maternal exercise on fetal outcomes.109 Trials to 
gauge the impact of dietary interventions during preg-
nancy upon maternal and fetal outcomes are ongo-
ing.110 Conversely, observational studies suggest that 
exposure to either metformin or beta- blockers during 
pregnancy, both of which reduce glucose levels, may 

actually increase the risk of certain types of CHD in the 
fetus.111,112 In summary, routine adjunctive interventions 
targeted at glucose reduction in maternal diabetes 
mellitus have yet to demonstrate improvements in fetal 
outcomes, such as CHD, in appropriately controlled 
trials.

Novel interventions centered on proposed mecha-
nisms of disease have arisen from experimental animal 
models of maternal diabetes mellitus. Pharmacological 
agents, which ameliorate oxidative stress, have been 
reported to prevent cardiac malformations; in a chick 
model of maternal diabetes mellitus, coinjection of 
 N- acetyl cysteine with glucose prevented heart mal-
formations caused by injection of glucose alone.113 In a 
mouse model of type 1 diabetes mellitus, neural tube 
defects (also associated with maternal diabetes melli-
tus) were prevented by maternal ingestion of trehalose, 
a polysaccharide with antioxidant properties.114 Nitric 
oxide is a key vascular signaling molecule synthesized 
in the smooth muscle and endothelium, which is dis-
turbed in diabetes mellitus115; oral supplementation of 
diabetic mice with a cofactor for nitric oxide synthase 
reduced the rates of CHD in offspring.95 However, 
given the observation that even clinically accepted in-
terventions to reduce maternal glucose fail to impact 
the rate of fetal malformations during pregnancy and 
an absence of consensus on the mechanism of risk, 
the prospect of prenatal interventions derived from 
experimental animal models should be viewed with 
caution.

KNOWLEDGE GAPS AND FUTURE 
DIRECTIONS
CHD causes high levels of physical, emotional, and 
economic burden for the patient, their family, and 
society at large. Although maternal obesity and glu-
cose metabolism are clearly associated with the risk 
of CHD, the mechanisms by which risk is transmitted 
from mother to fetus and the causal factors which dis-
turb fetal cardiac development remain poorly defined 
(Figure). Understanding the causal factors and mecha-
nism of transmission will provide the necessary frame-
work for addressing 2 important real- world outcomes; 
primary prevention of CHD and improving prenatal 
screening for CHD.

Given that neonatal and childhood surgery are 
likely to be the mainstay of treatment for the foresee-
able future, and that cardiopulmonary bypass and 
perioperative disturbances in physiology may contrib-
ute to the adverse health outcomes in long- term sur-
vivors of CHD,116,117 primary prevention of disease is 
an important goal with potentially significant benefit to 
public health. Obesity and diabetes mellitus are both 
potentially modifiable maternal risk factors for CHD, 
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each with effective evidence- based therapies gener-
ally and in the context of maternal health.118,119 With a 
clear understanding of the mechanism of risk trans-
mission from mother to fetus, large- scale trials of pub-
lic health interventions focused upon causal factors 
underlying maternal obesity and glucose metabolism 
with specific attention to fetal outcomes are needed. 
Where possible, fetal outcomes data inclusive of car-
diac malformations should be scrutinized from ongo-
ing trials of dietary interventions110 and innovations in 
glucose control106 in order to guide efforts prospec-
tive interventions for CHD. Lifestyle factors, such as 
weight, physical activity, and dietary habits, represent 
potential targets for preconception and prenatal inter-
ventions for CHD prevention.

A key component of prenatal care is the in utero 
identification of pregnancies with CHD as early as pos-
sible. An improved understanding of the maternal risk 
factors for carrying a pregnancy impacted by CHD 
holds the potential to improve both prenatal screening 
and postnatal care. Improved risk stratification of preg-
nant women may allow for better selection of pregnan-
cies at the greatest risk of CHD for prenatal screening 
by fetal echocardiogram,120 particularly in health sys-
tems with less- organized screening programs.30,121 In 
pregnancies with CHD which are carried to term,122 
prenatal detection also allows early referral to a tertiary 
center to optimize the delivery and early care, and thus 
improved prenatal screening is likely to improve early 
survival and long- term outcomes of children affected 
with CHD.123,124

Although the significance of maternal glucose me-
tabolism and obesity as risk factors for CHD is clear, 
the mechanisms underlying these risks are not. A deep 
mechanistic understanding of causal maternal factors 
holds the potential to improve both prevention of CHD 
by preconception and prenatal treatment of causal 
maternal factors, and to improve prenatal screening 
and in utero identification of CHD by measuring causal 
maternal factors to identify pregnancies at highest 
risk. The molecular mechanisms of maternal risk and 
potential genetic modifiers of these factors represent 
an outstanding opportunity where advances from 
basic, translational, and clinical research are poised to 
yield real- world applications to reduce the burden of 
disease.
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