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Visualization is an indispensable method in the exploration of genomic data. However, the current
state of the art in genome browsers – a class of interactive visualization tools – limit the exploration
by coupling the visual representations with specific file formats. Because the tools do not support the
exploration of the visualization design space, they are difficult to adapt to atypical data. Moreover,
although the tools provide interactivity, the implementations are often rudimentary, encumbering
the exploration of the data.

This thesis introduces GenomeSpy, an interactive genome visualization tool that improves upon the
current state of the art by providing better support for exploration. The tool uses a visualization
grammar that allows for implementing novel visualization designs, which can display the underlying
data more effectively. Moreover, the tool implements GPU-accelerated interactions that better
support navigation in the genomic space. For instance, smoothly animated transitions between loci
or sample sets improve the perception of causality and help the users stay in the flow of exploration.

The expressivity of the visualization grammar and the benefit of fluid interactions are validated with
two case studies. The case studies demonstrate visualization of high-grade serous ovarian cancer
data at different analysis phases. First, GenomeSpy is being used to create a tool for scrutinizing
raw copy-number variation data along with segmentation results. Second, the segmentations along
with point mutations are used in a GenomeSpy-based multi-sample visualization that allows for
exploring and comparing both multiple data dimensions and samples at the same time. Although
the focus has been on cancer research, the tool could be applied to other domains as well.
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1. Introduction

The Human Genome Project and later efforts employing next-generation sequencing
technologies have generated vast amounts of DNA-sequence data, which have been re-
fined into detailed knowledge of our genome [28]. Researchers not only exploit this
existing knowledge to decipher the mechanisms of diseases but also use the same tech-
niques to generate even more data.

Although computational and statistical methods form the foundation of the ge-
nomic data analysis, visualization has an indispensable role in the sense-making pro-
cess. This is especially true in the initial exploratory phase when an investigator is
building a mental model of the data and forming new hypotheses [4]. Consequently,
numerous tools have been developed for researchers to visualize sequence data at dif-
ferent points of the analysis processes. However, the tools have often been developed
in an ad-hoc manner to fulfill very definite needs [27]. Yet, comprehensive exploration
of high-dimensional data calls for generality.

Because the human genome is vast, static visualizations have limited use in ex-
ploration. Genome browsers are a class of interactive genome visualization tools that
allow for exploring coordinate-based genomic data by zooming and panning. However,
they couple the visual presentation with specific file formats, limiting how the data
dimensions can be visualized and explored. On the other hand, although the tools pro-
vide interactivity, the implementations are often rudimentary. For instance, the lack of
animation in transitions between zoom levels necessitates users to reorient themselves
after each zoom interaction [7], encumbering the exploration process.

This work aims to improve the exploration of coordinate-based genomic data.
I approach the challenge on two fronts: First, I break away from the specificity and
rigidness by introducing abstractions that decouple the visual representation from the
underlying file formats. In other words, the first goal is to allow the users to explore
the visualization design space and implement visualizations that properly display the
underlying data. Second, I develop and implement interaction designs that allow users
to explore the vast genomic space more efficiently. In other words, the second goal is
to provide a user experience that excites the user to explore the data, and ultimately,
experience insights that lead to new hypotheses.
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2 Chapter 1. Introduction

To design the abstractions and allow for more flexible visualization authoring, I
apply the theory of declarative, grammar-based [46] visualization authoring. A gram-
mar consists of building blocks and rules for combining them. Although visualization
grammars are widely utilized in statistical graphics [44] and static genome visualiza-
tions [47], no genome browser has embraced the grammar-based approach so far.

To design the interactions, I apply the guidelines of fluid interactions [10], which
include themes such as smoothly animated transitions between views and avoidance
of indirection by direct manipulation [37]. Prior research suggests that animation has
potential to improve the perception of causality, keep the viewers oriented, and provide
an emotionally engaging experience [16]. Thus, proper use of animation could increase
productivity. However, animating data items of large datasets such as genomic data
is challenging. Yet, the challenge has been overcome in other disciplines, such as
geospatial visualization, by using graphics processing unit (GPU) powered rendering
[1].

The research materializes into GenomeSpy, a flexible genome-browser-like tool
that allows researchers to build interactive visualizations with greater expressivity than
what is generally possible with the current state-of-the-art. Also, the visualizations
provide fluid interactions that facilitate exploration. Finally, I apply GenomeSpy to
different phases of cancer genome analysis, demonstrating its practical utility.

The key contributions of this thesis are as follows:

1. A visualization grammar optimized for genomic data. The grammar is heav-
ily inspired by related work but adds support for genomic coordinates, sample
metadata, and means for a side-by-side comparison of multiple samples and data
dimensions, both at the same time.

2. An interaction design for a genome browser. The design improves upon the state
of the art by introducing zoom behaviors that help managing overplotting, and
a user interface and animated transitions for sorting and filtering multiple (up to
thousands of) samples.

3. A software architecture that utilizes a GPU in rendering the visualization. Based
on a grammar-based specification, data translates into geometric primitives that
are handled by the GPU in a highly parallel manner. GPU is utilized for imple-
menting smooth animations that support the fluid interactions.

4. A novel visualization design and GenomeSpy-based implementation for multidi-
mensional cancer genomics data. The design allows biologists to observe copy-
number variation, loss of heterozygosity, and point mutations simultaneously and
compare them between samples or to various annotations.
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The rest of the thesis is organized as follows:
Chapter 2 introduces the human genome and common genomic alterations in

cancer and features the state-of-the-art in genome browsers. The chapter continues
by surveying prior work that this thesis builds upon, including popular visualization
grammars, visualization toolkits that exploit the graphics processing unit for high
rendering performance, and the principles of fluid interactions.

Chapter 3 outlines the design and architecture of GenomeSpy. The first half
present the visualization grammar and the latter half focuses more on the interaction
design.

Chapter 4 presents two practical case studies that demonstrate GenomeSpy’s
applicability to real biological research problems. The latter case study introduces a
novel visualization design, implements it using GenomeSpy, and summarizes the results
of a user study conducted during a workshop.

Chapter 5 discusses the limitations of the current design and sketches future
research and development plans, including a concept of “fluid analysis”.





2. Background

This chapter briefly explains the application domain of this work, discusses the current
state of the art, and covers the research and technologies this work builds upon.

2.1 Biological Background

2.1.1 Human Genome

All cells on earth use deoxyribonucleic acid (DNA) as the hereditary material, a medium
that stores and passes the blueprints of the cells to next cell generations [2]. DNA is
a polymer, a long chain of nucleotides that consist of a sugar-phosphate backbone
and four different bases, which are commonly symbolized as letters: A, C, G, and T.
These successive letters similarly encode information as the English language with its
26 distinct letters. The nuclear DNA is stored in cells as discrete chromosomes, which
form the genome of the cell. Except for the sex chromosome, humans normally have
two copies of each chromosome.

Parts of the DNA contain genes, nucleotide sequences that encode proteins. Three
consecutive nucleotides form a codon, which is translated into amino acid, a building
block of proteins. Several different codons translate into the same amino acid. Thus,
the code has redundancy. Because the chromosomes appear as pairs, humans have two
copies of each gene. If the two copies are not identical, they are called heterozygous.

Genome Assemblies

Just two decades ago, researchers could only give genes an approximate location based
on the chromosomal banding pattern, which is visible in stained chromosomes, and
nearby genes. For example, the locus (location) of the tumor suppressor gene TP53
could be written as 17p13.1, which means chromosome 17, p arm, and band 13.1.

Today, the loci can be expressed precisely. The Human Genome Project delivered
a reference genome assembly, which is not only a substrate for sequence alignment but
also provided a coordinate system for expressing the exact locations of genomic features

5



6 Chapter 2. Background

such as genes [35]. For instance, using the GRCh38 reference assembly, the locus of
the TP53 gene can now be written as chr17:7661779-7687550. The numerical values
are ordinal numbers of the nucleotides.

2.1.2 Genomic Alterations in Cancer

Cancer is a result of deregulated cell proliferation and metastasis [15]. More precisely,
cell division and growth in normal tissues are carefully controlled, but mutations affect-
ing critical genes may disturb this orderliness and lead to uncontrolled proliferation.
Sometimes the neoplastic (abnormal) cells gain means to escape their original tissue
and continue proliferation at new sites, forming metastases. The next subsections
introduce the mutation types that are relevant for this thesis.

Point Mutations

As cells proliferate, they need to replicate their DNA, i.e., make a copy of it. Although
the replication machinery has sophisticated error detection mechanisms, an incorrect
nucleotide or two may sometimes end up in the nascent DNA strand. On the other
hand, environmental radiation and chemicals may damage the DNA and evade the
cell’s repair mechanisms.

The substitution of a single nucleotide is called a point mutation. Because the
genetic code has redundancy, the substitution may be synonymous – it does not change
the amino acid. If the mutation occurs in a critical location, such as the active site of
a protein, the protein function is altered.

Small Insertions and Deletions

Sometimes a mutation leads to a missing or extra nucleotides in the DNA. These
kinds of mutations are called indels (insertion-deletion). Because the DNA sequence
is interpreted in frames of three nucleotides, an indel may garble all the subsequent
codons, leading to a malfunctioning protein.

Structural Alterations

If the DNA double-strand breaks for some reason, the cell tries to fix it. Occasionally
the fix fails, and the free ends find incorrect mates. A direct consequence may be a
fusion gene that contains parts from two genes.

More commonly, incorrectly joined breaks cause problems in further cell divisions.
Each daughter cell should inherit two sets of homologous chromosomes. However, the
deformed chromosomes segregate incorrectly and may lead to even more breaks. Thus,
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one of the daughter cells gets excess DNA, and the other one too little. Such copy
number alterations usually affect the expression of multiple genes, i.e., too much or
little protein is produced.

Development of Cancer

The progression of cancer is a multi-step process. Traits emerging from mutations and
epigenetic changes give cells a selective advantage to outgrow from the local tissue
environment [15]. However, getting the ability to metastasize cancer needs multiple
genetic alterations. Still, most mutations are only passengers and have no role in tumor
development. Finding the drivers needs scrutiny of the genome, and data visualiza-
tion is a crucial method in this challenge. In the next section, we continue with the
taxonomy of genomic features in order to better understand how the genome could be
visualized.

2.2 Genomic Features

The reference genome consists of roughly 3.2 billion nucleotides. Such a string of letters
per se is of little interest. More often, the focus of interest is in genomic features, which
are data items derived from or associated with the reference genome and having specific
coordinates.

Nusrat et al. [27] describe a taxonomy of genomic features, allowing for abstract
understanding of the genomic data. Features are data items that can be mapped to
a single nucleotide (point feature) or a range of nucleotides (segment feature). The
features may be associated with any number of attributes, which may be nominal
(categorical), ordinal, or quantitative. A feature without attributes contains only its
genomic coordinates. However, it might as well have multiple attributes, such as a
name and the role in cancer, if it represents a gene, for example.

A feature set contains features that belong to the same entity. For example, all
point mutations of a single sample, or all genes in the human genome are feature sets.
A set may be sparse, such as point mutations here and there, or it may be contiguous,
such as the GC-content in windows of one thousand bases over the whole genome.

The feature sets may have associated metadata. For example, if a feature set
contains point mutations, its metadata might include attributes such as the patient id,
anatomical site, or type of disease.
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2.3 Genome Browsers

Genome browsers are a group of interactive visualization tools that display genomic
features using a linear layout [27]. They map the genomic coordinates onto the hori-
zontal axis and allow the user to navigate around the genome by zooming and panning.
Commonly the visualization consists of multiple stacked tracks that may display var-
ious types of feature sets. Usually, one of the tracks displays gene annotations, which
give positional context for the other features.

The linear layout of genome browsers is not ideal for all genomic data. Notably,
if the genomic coordinates are not relevant for the research question, a more abstract
visual representation may be better. For instance, when comparing the mutational
status of a set of genes between several samples, a matrix view like Oncoplot [24]
displays the data more concisely.

The next subsections survey some state-of-the-art genome browsers.

2.3.1 UCSC Genome Browser

One of the earliest genome browsers is the University of California Santa Cruz (UCSC)
Genome Browser [17] (Figure 2.1), which is still developed and widely used [21]. It is a
web-based service that allows the user to build a visualization from a large number of
available tracks, which display data hosted at the UCSC or external track hubs located
outside the UCSC. Users may also visualize their own data by first uploading it to the
service or making them available on a publicly accessible web server.

Some tracks, such as the Genome Base Position and Vertebrate Multiz Alignment
& Conservation, support a single, specific dataset. The former displays genomic axis
ticks, the reference sequence, and the amino acids in three reading frames. The latter
displays the sequence conservation between different species.

Some other track types are more generic; for example, the GC Percent in 5-Base
Windows track uses the bigWig track type, which displays contiguous, quantitative
features. The data must be provided in any of the three file formats that support a
single quantitative variable, namely wiggle (WIG), bigWig, or bedGraph. Wiggle is a
text-based format, which supports both variable and fixed-width elements. BigWig
is an indexed binary format, which has superior performance on large datasets but
supports only fixed-width elements. BedGraph is similar to wiggle, but supports sparse
data, i.e., it may have gaps.

Figure 2.2 displays the configuration page for the GC Percent track. The user
can configure settings such as the height of the track, data domain, and smoothing.
Default track settings can be provided in the header of the data file. Thus, the track
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UCSC Genome Browser on Human Dec. 2013 (GRCh38/hg38) Assembly
move <<< << < > >> >>>zoom in 1.5x 3x 10x basezoom out 1.5x 3x 10x 100x

chr17:7,610,446-7,739,445 129,000 bp. enter position, gene symbol, HGVS or searchterms go

move start
< 2.0 >

Click on a feature for details. Click or drag in the base position track to zoom in. Click side bars for
track options. Drag side bars or labels up or down to reorder tracks. Drag tracks left or right to new
position. Press "?" for keyboard shortcuts.

move end
< 2 . 0 >
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Scale
chr17:

Chromosome Band

Alt Haplotypes

OMIM Alleles

DNase Clusters

Rhesus
Mouse
Dog

Elephant
Chicken

X_tropicalis
Zebrafish
Lamprey

Common dbSNP(153)
COSMIC Regions

50 kb hg38
7,620,000 7,630,000 7,640,000 7,650,000 7,660,000 7,670,000 7,680,000 7,690,000 7,700,000 7,710,000 7,720,000 7,730,000
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Reference Assembly Fix Patch Sequence Alignments

Reference Assembly Alternate Haplotype Sequence Alignments
GC Percent in 5-Base Windows

UCSC annotations of RefSeq RNAs (NM_* and NR_*)
NCBI RefSeq Select+MANE subset: one representative transcript per protein-coding gene - Annotation Release NCBI Homo sapiens Updated Annotation Release 109.20190905 (2019-09-10)'

OMIM Allelic Variants
H3K27Ac Mark (Often Found Near Regulatory Elements) on 7 cell lines from ENCODE

DNase I Hypersensitivity Peak Clusters from ENCODE (95 cell types)
100 vertebrates Basewise Conservation by PhyloP

Multiz Alignments of 100 Vertebrates

Short Genetic Variants from dbSNP release 153
Catalogue of Somatic Mutations in Cancer V82

17p13.1
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SHBG

ATP1B2 TP53
WRAP53
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DNAH2
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C

Figure 2.1: A screenshot of the UCSC Genome Browser with a custom set of tracks. The following
tracks are discussed in the main text: (A) Genome Base Position, (B) GC Percent in 5-Base Windows,
(C) Vertebrate Multiz Alignment & Conservation, (D) Catalogue of Somatic Mutations in Cancer

is defined by its track type, the default settings, and the data shown on the track.
The Catalogue of Somatic Mutations in Cancer track uses BED, another generic

track type. It displays sparse segments that may have a limited set of attributes, namely
a name, score (0-1000), and a red-green-blue (RGB) color. The score can be visualized
as different shades of gray. The track type also supports a few other attributes that
are useful if the data represents genes with exons. The data can be provided in the
text-based BED file format or as the binary bigBed format, the latter being optimized
for large datasets.

The technology stack of the browser is old-fashioned and has changed little since
the initial release. The graphics are drawn at the server and are delivered to the
user’s web browser as images. When the user clicks the navigation buttons or pans
the viewport by dragging, the server draws a new graphics and delivers them to the
web browser. Although such an approach is lightweight for the web browser, the
user experience is sub-par by modern standards. There is a considerable delay after
each navigation action, and the viewport changes abruptly, without animation, when
zoomed. Thus, the user has to scan the viewport carefully to find the new locations of
the features.

The UCSC Genome Browser is written in the C programming language. Although
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GC Percent Track Settings

GC Percent in 5-Base Windows ( All Mapping and Sequencing tracks)

Display mode: full Submit

Type of graph: bar

Track height: 36 pixels (range: 16 to 128)
Data view scaling: use verticalviewing range setting Always include zero: OFF

Vertical viewing range: min: 20 max: 80 (range: 0 to 100)
Transform function: Transform data points by: NONE

Windowing function: mean Smoothing window: 3 pixels
Negate values:

Draw y indicator lines: at y = 0.0: OFF at y = 0 OFF

Graph configuration help

View table schema

Data last updated: 2018-08-10 20:15:53

Figure 2.2: Screenshot of the GC Content settings.

the application is provided primarily as a web-based service, the user can also install
it on a local Linux server. Despite being insurmountable for an average user, that may
be necessary if sensitive data is visualized.

2.3.2 Integrative Genomics Viewer

The Integrative Genomics Viewer (IGV) (Figure 2.3) is a genome browser that is
designed specifically to visualize users’ own data [42]. It allows for integrating clinical
and phenotypic metadata, which can be used to dynamically group, filter (Figure 2.4),
and sort (Figure 2.5) the datasets. The user can study correlations between distant
loci by opening multiple viewports that display different genomic regions. With some
exceptions, the user can overlay tracks; for instance, point mutations can be shown on
top of copy-number variation.

File format support of IGV and the UCSC Genome Browser is comparable. How-
ever, because IGV is a desktop application running on the user’s computer, opening
and viewing local data files is much faster. As in the UCSC Genome Browser, some
tracks are very specific; for example, BAM files, aligned next-gen sequencing read data,
are displayed in a sophisticated “pileup” view along with a coverage plot. The generic
data tracks support a single contiguous attribute, which IGV can render as a bar plot,
line plot, points, or heatmap. The user can adjust the data domain and colors. Nega-
tive and positive values can be assigned different colors, except in the heatmap, which
supports a three-level threshold scale with interpolated colors.

IGV is written in the Java programming language. The IGV development team
has also written a web-based JavaScript library, igv.js, that supports many of the same
file formats and track types as the IGV. However, it has no support for metadata, and
it is overall less mature.
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A B C

D

Figure 2.3: Screenshot of the Integrative Genomics Viewer with copy-number variation data. Com-
ponents of the user interface: (A) track names, (B) sample attributes (metadata), (C) segmented
copy-ratios, blue: deletion, white: neutral, red: amplification, (D) gene annotations

Figure 2.4: Screenshot of the IGV filter dialog where the user can filter the tracks by multiple sample
attributes. However, the functionality is not integrated into the visualization and poses a cognitive
load on the user. For instance, the dialog does not provide a dropdown list for the values of the
nominal attribute histological_type – instead, the user has to remember and type the value into the
text field.
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Figure 2.5: Screenshot of the IGV sort dialog where the user can choose up to three sample attributes
for sorting the tracks. When sorting just by a single attribute, the user can click the attribute headers
in the main window.

2.3.3 HiGlass

HiGlass is a web-based visualization tool (Figure 2.6) for exploring chromosomal con-
tact matrices along with one-dimensional genomic tracks [18]. Contact matrices allow
investigators to study the spatial organization of the genome in the nucleus and, for
example, its effect on gene regulation. Although HiGlass is designed primarily for
two-dimensional data, we focus here on the one-dimensional genomic tracks.

HiGlass supports vast datasets by using a multiscale architecture. All data are
binned using their genomic coordinates and tiled at multiple resolutions. Thus, as the
user zooms into the data, only the required tiles with an appropriate resolution are
loaded. BigWig files support such a data access and can be directly viewed in HiGlass.
Just as in the IGV, the user can display the contiguous, quantitative data as a bar
plot, line plot, points, or heatmap.

Sparse features are supported through the BED file format. However, sparse data
with possibly overlapping segments cannot be aggregated by computing, for example,
averages or sums for each bin. Instead, each feature must be assigned an “importance
value”, which is used for choosing the representative feature for each bin. HiGlass uses
this scheme on the gene annotation track – each bin contains only the gene that has
the most citations in the literature. Thus, as the user views the whole genome with
all its chromosomes, they likely see familiar genes. When the user zooms closer, less
known genes become visible.
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Figure 2.6: Screenshot of HiGlass.

Whereas the IGV supports multiple viewports, HiGlass provides a more flexible
concept of composable linked views. The user can create a complex layout of views that
may have synchronized axes or have an overview-detail relationship. For example, the
visualization might contain several contact matrices that represent different cases; as
the user zooms or pans one of them, all the others respond similarly. This concept can
be applied to one-dimensional tracks as well, resulting in the same behavior as in the
UCSC Genome Browser and IGV with their stacked tracks. However, HiGlass does
not support sample attributes and, thus, does not allow the user to filter and sort the
tracks by them.

HiGlass consists of a server written in the Python programming language and
the client written in JavaScript. The user cannot directly open their own data files
but, instead, has to “ingest” them into a locally installed HiGlass server. Setting up
a local installation is straightforward with the provided Docker container. Moreover,
the HiGlass website provides a client and a number of hosted datasets for exploration.

To provide a smooth user experience with support for continuous zooming and
panning, HiGlass uses WebGL (section 2.5) to render the graphics.
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2.4 Grammars of Graphics

Visualization tools often provide the user with a predefined set of different chart types,
such as bar charts, pie charts, and multi-series line charts. However, for the user
of a visualization software, no matter how extensive, the variety of predefined chart
types may be insufficient [46]. On the other hand, when a developer of a visualization
software focuses on chart types:

..., our package will have no deep structure. Our computer program will
be unnecessarily complex, because we will fail to reuse objects or routines
that function similarly in different charts. And we will have no way to add
new charts to our system without generating complex new code. ([46])

In his book The Grammar of Graphics [46], Leland Wilkinson outlines a vocabu-
lary and grammatical rules for creating graphics, perceivable graphs. While a language
consists of words, grammar is a formal system that defines the lawful sentences that
can be formed from these words. Words are analogous to components of a graphic:
scales, guides, and graphical marks with various visual properties. A grammar defines
how these components can be used in a structured way to specify graphics. The variety
of possible graphics is no longer limited to predefined sets of chart types.

Although Wilkinson originally introduced the concept, no freely available imple-
mentation exists. Thus, I focus on two more recent and widely used grammars, both
of which are heavily influenced by The Grammar of Graphics. Because the Grammar
of Graphics refers to Wilkinson’s grammar, I use the term visualization grammar for
such grammars in general.

2.4.1 ggplot2

Ggplot2 [44] is an implementation of the Grammar of Graphics for the R statistical
programming language [29]. However, ggplot2 develops Wilkinson’s ideas further, in-
troducing a layered grammar with a hierarchy of defaults. Moreover, as the grammar
is embedded in the R programming language, some of its components are already pro-
vided by the language. This subsection presents a very brief introduction to ggplot2,
along with the central concepts of visualization grammars.

Tidy Data

The creation of a visualization usually begins with data. A grammar allows us to
specify how the data should be transformed into a graphic. However, there are nu-
merous ways to organize data in a table. While many of the ways may be practical
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Patient Treatment Result

001 A 0.53

001 B 0.23

002 A 0.85

002 B 0.42

Observation
(or data item, datum)

Variable
(or attribute, field, dimension)

Figure 2.7: An example of tidy data. This data frame is called treatments in the examples.

for presentation purposes or for entering the data in a spreadsheet, few are practical
for visualization. Tidy data is organized in a specific, standardized way that makes
analysis and visualization uncomplicated [45].

Figure 2.7 displays an example of tidy data. Each row represents an observation
and each column represents a variable. Data organized in such a way are easy to
manipulate by filtering, aggregating, and by deriving new variables from the existing
ones. Variables of tidy data are straightforward to map to visual properties such as
size, color, or symbol.

Creating a plot with ggplot2 starts by specifying the data:

1 ggplot(data = treatments)

However, this code produces just an empty plot because we have yet to specify
how the provided data should be visualized.

Geometries and Aesthetics

Marks are geometric objects used as building blocks in a graphic [26]. They have
properties that influence their appearance. For example, a rectangle might have a
width, height, color, opacity, and so on. On the other hand, the properties could be
parameterized differently – instead of having a width, a rectangle could have its left and
right coordinates as properties. These properties are generally called visual channels.
The Grammar of Graphics and ggplot2 call them aesthetics, however.

In ggplot2, a geometry is a parameterization of a graphical mark and an associated
statistic. For instance, geom_rect parameterizes a rectangle using its four corners.
geom_col, on the other hand, uses the x and y channels to parameterize a rectangle that
has a position on the x axis and a height. Such a parameterization allows for creating a
graphic that is known as a bar chart. Both of these geometries use identity statistic.
geom_bar, however, uses the count statistic, which aggregates the observations and
calculates grouped counts. Thus, the height of the bar is based on the number of
observations.
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1 ggplot(data = treatments) +
2 geom_col(aes(x = patient,
3 y = result,
4 fill = treatment),
5 position = "dodge") 0.0

0.2
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0.8

001 002
patient

re
su

lt

treatment

A

B

Figure 2.8: Using geom_col to create a bar chart. The aes function “quotes” its arguments so
that they can be evaluated in the context of the data frame. The fill aesthetic maps a variable to
geometry’s fill color. The positions are “dodged” to prevent them from overlapping.

1 ggplot(data = treatments,
2 mapping = aes(x = patient,
3 y = treatment)) +
4 geom_tile(aes(fill = result)) +
5 geom_text(aes(label = result))
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Figure 2.9: The same data as in Figure 2.8 but displayed as rectangles that are parameterized
in a different way. The geom_tile creates a heatmap. The exact values are layered on top of the
heatmap and displayed using geom_text. The aesthetic mappings (x and y) that are common to both
geometries are passed to the ggplot function, keeping the code succinct.

Sometimes the marks can obscure each other. For such cases, ggplot2 allows for
adjusting their positions using various strategies. For instance, jitter dislocates point
geometries randomly a little bit, whereas stack and dodge strategies adjust bar and
col geometries by stacking them or placing them tightly next to each other.

In Figure 2.8, geom_col is used to display the observations in our treatments
data as a bar chart. Figure 2.9 displays the same data as a heatmap using geom_tile,
which parameterizes the rectangles using their center points.

Scales

In Figures 2.8 and 2.9, the variables of the data have been mapped to various visual
channels of the rectangles. For example, in Figure 2.8 the fill color of a bar depends
on the treatment variable. However, a treatment does not naturally map to a color –
we need a function that has its domain based on the variable, and its range based on
the visual channel (or aesthetic). Such functions are called scales. Treatments could
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be converted to colors with a scale function such as:

f(x) =

“red”, if x = “A”

“cyan”, if x = “B”
(2.1)

The type of a treatment is a nominal (categorical) variable, and can be converted
to colors by using a simple lookup table. Such functions are often called categorical
color schemes.

The treatment result, on the other hand, is a quantitative variable, which could
be converted to heights with a function such as:

f(x) = x−min(x)
max(x)−min(x) × canvas_height (2.2)

This function represents a linear scale. The scales could implement different
types of transformations, and allow the user of the grammar to create visualizations
with, for example, logarithmic axes.

The axes and legends in a graphic are guides that allow the user to map the visual
channels back to the data domain visually. For example, the legend allows the viewer
to see the meaning of each color.

Ggplot2 tries to infer the types of the variables and choose sensible default scales
automatically. The user can change the scales, but the defaults allow for succinct
specification for common cases.

Facet

Sometimes it may be practical to partition the data by some categorical variable, and
display the partitions juxtaposed side-by-side. Such a design is known as small multi-
ples and the partitioning as a method is called faceting [26]. For example, in a scatter
plot, observations belonging to multiple classes could be separated by a color. However,
each class of observations could alternatively be displayed as a separate scatter plot
side-by-side with the other classes. Figure 2.10 displays how our simplistic example
dataset could be faceted with ggplot2.

2.4.2 Vega-Lite

Vega-Lite [33] is a high-level grammar of interactive graphics. The grammar allows for
succinct visualization specifications, facilitating quick exploration of the design space.
The Vega-Lite library compiles the specification to Reactive Vega [34], a lower level
but more expressive grammar. Interactive Vega-Lite visualizations can be embedded
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1 ggplot(data = treatments) +
2 geom_col(aes(x = "",
3 y = result)) +
4 facet_grid(cols = vars(patient),
5 rows = vars(treatment))
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Figure 2.10: Faceting by two variables. The dataset has been partitioned into four parts: each
patient-treatment pair forms a subplot that contains a bar chart, albeit with just a single bar.

on web pages and applications. This section covers the central concepts of Vega-Lite,
but omits irrelevant parts, such as interactivity.

Syntax

The listing in Figure 2.11 displays an example of a Vega-Lite view specification. The
specification is a JavaScript Object Notation (JSON) document. Curly brackets denote
an object (dictionary), square brackets denote arrays (list). The JSON specification is
more verbose than the equivalent ggplot2 code (Figure 2.9), but the syntax allows for
easier programmatic parsing and production.

Data input

Vega-Lite loads the data from a URL (line 3 in Figure 2.11) as delimited (CSV, TSV) or
JSON format. Alternatively, the data can be embedded in the specification as a JSON
array. Vega-Lite also includes sequence generators, which create numerical sequence
data of arbitrary length.

Vega-Lite infers the file format from the file extension. However, in bioinformat-
ics, tabular data is commonly stored as tab-separated values, but the CSV file extension
is (incorrectly) used. In such cases, the user can specify the file format explicitly (line
4 in Figure 2.11).

Marks and Channels

Marks in Vega-Lite analogous to geometries in ggplot2. However, their parameteriza-
tion has some differences. For instance, although the rect mark allows for creating
arbitrarily sized rectangles, Vega-Lite uses categorical positional scales to compute
their widths and lengths automatically.
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1 {
2 "data": {
3 "url": "treatments.csv",
4 "format": { "type": "tsv" }
5 },
6 "encoding": {
7 "x": { "field": "patient", "type": "ordinal" },
8 "y": { "field": "treatment", "type": "ordinal" }
9 },

10 "layer": [
11 {
12 "mark": "rect",
13 "encoding": {
14 "color": { "field": "result", "type": "quantitative" }
15 }
16 },
17 {
18 "mark": "text",
19 "encoding": {
20 "text": { "field": "result", "type": "quantitative" }
21 }
22 }
23 ]
24 }
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Figure 2.11: Creating a heatmap with Vega-Lite, replicating the ggplot2 example in Figure 2.9. The
hierarchical specification consists of a composite layer view (line 1) and two unit views (lines 11 and
17) that have associated marks. The unit views inherit the encodings and data from their parent (the
layer view). The Vega-Lite compiler uses rule-based defaults for scales. For example, a rect mark
with a quantitative color field results in a green-blue color scheme.
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Vega-Lite provides a number of marks, some of which are: rect, text, point,
line, and arc. All the marks support a basic set of visual channels (equivalent to
aesthetic in ggplot2), which represent the mapping between the visual properties of
the marks and the data fields. Some marks have specific channels: the text mark
has a text channel. A channel can also be assigned a constant visual value such as a
specific named color.

Vega-Lite expects the data type to be specified explicitly (line 7 in Figure 2.11
for each data field to avoid ambiguity. For instance, a string of digits may represent
a patient code or a quantity. However, the former is categorical data, and must be
presented accordingly.

Scales

By default, Vega-Lite uses rule-based defaults for scales. The field type, visual channel,
and mark are taken into account. The data domain is automatically extracted from
the data. However, the user can change the scale function and adjust the domains and
ranges. The scales are categorized as continuous (e.g., linear, pow, log), discrete (e.g.,
ordinal), and discretizing (e.g., quantile, threshold). Listing 1 displays an example of
a custom scale.

1 {
2 ...,
3 "color": {
4 "field": "segMean",
5 "type": "quantitative",
6 "scale": {
7 "type": "threshold",
8 "domain": [0],
9 "range": ["blue", "red"]

10 }
11 }
12 }

Listing 1: A custom scale in Vega-Lite. The color channel uses a threshold scale. Values below
zero are shown as blue, values equal to or greater than zero are shown as red.

Data Transforms and Expressions

With transforms, the users can filter the dataset or derive new data. Ggplot2 does not
provide any transforms by itself because it is integrated into a programming language.
Vega-Lite, however, provides a number of transform operations that allow for manipu-
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lating the data prior to visual encoding. Listing 2 displays a chain of transforms with
Vega-Lite.

1 {
2 "data": { ... },
3 "transform": [
4 { "calculate": "2*datum.b", "as": "b2" },
5 { "filter": "datum.b2 > 60" }
6 ],
7 ...
8 }

Listing 2: A chain of transforms in Vega-Lite. First, a calculate transform uses an expression to
compute a new value, which is introduced as new field b2. Next, only the data items with b2 > 60
are retained. Vega-Lite infers the intended transform operations from the object property names.

Hierarchical Composition

Ggplot2 improved the Grammar of Graphics by introducing layers. Vega-Lite takes
a step further with the concept of hierarchical view composition. Instead of only al-
lowing for a flat list of superimposed layers, Vega-Lite provides several composition
operators, including layering, concatenation, and repeating. The operators can be com-
bined hierarchically. For example, multiple layered views can be concatenated to create
a dashboard.

Data propagates down the hierarchy and can be transformed at any node. Thus,
the architecture allows for reusing, deriving, or replacing the data at any node. De-
pending on explicit configuration or rule-based defaults, data domains and scales are
pulled towards the root and merged, ensuring concordant visual encoding.

The specification in Figure 2.11 has a simple view hierarchy, which contains a
single composition operator. Figure 4.7 displays a higher hierarchy.

Facet

Vega-Lite provides a specific facet composition operator for faceting. Alternatively,
facet, row, or column channels can be used.



22 Chapter 2. Background

Architecture

Vega-Lite is a JavaScript library, which uses Reactive Vega, a lower-level library, to
process the data and render the graphics. The architecture can be outlined as follows:

1. Vega-Lite parses the visualization specification into a data structure

2. The compiler applies rule-based defaults to ambiguities

3. The compiler performs optimizations and creates a Reactive Vega specification

4. Reactive Vega parses the specification and creates a data flow graph

5. The data flow graph is executed, and data is read, and it is transformed into a
scene graph

6. The scene graph is rendered using the HTML Canvas or transformed into SVG
graphics

Interactivity is handled by the Reactive Vega runtime. When the visualization is
altered by interaction, the runtime updates parts of the scene graph and subsequently
re-renders the graphics.

2.5 GPU Rendering

Modern graphics processing units (GPUs) have a programmable pipeline, which can
parallelize the computation to hundreds of processor cores [3]. However, the computa-
tion power comes with a cost – its programming model is more difficult than traditional,
imperative “pen-and-plotter” models (Listing 3).

1 var ctx = canvas.getContext('2d');
2

3 // Draw a filled rectangle
4 ctx.fillRect(25, 25, 100, 100);
5

6 // Draw a path
7 ctx.beginPath();
8 ctx.moveTo(75, 50);
9 ctx.lineTo(100, 75);

10 ctx.lineTo(100, 25);
11 ctx.stroke();

Listing 3: “Pen-and-plotter” drawing with the HTML canvas API. The programmer issues drawing
calls that are performed sequentially. The model is straightforward for the programmer, but difficult
to parallelize.
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Figure 2.12: Geometric pipeline. Adapted from [3].

While pen-and-plotter application programming interfaces (APIs) provide high-
level drawing commands, GPU APIs are low level – they allow the programmer to
upload floating-point arrays to the GPU memory, compile shader programs, and is-
sue drawing commands that render graphical primitives (triangles, lines, and points)
defined by the vertices.

Figure 2.12 displays a schematic diagram of a GPU pipeline. The pipeline inputs
vertices as vectors. Vertex processor does geometric transformations independently for
each vertex. Clipping and Primitive Assembly constructs primitives that fall into the
clipping volume (viewport). Rasterizer turns the primitives into fragments (“potential”
pixels), which are rendered as colorized pixels by the Fragment Processor. Both the ver-
tex and fragment processor are fully programmable with shader programs. Thus, they
are not limited to specific geometric transformations or predefined texture mapping
methods. Instead, they can be used flexibly and even employed for general-purpose
computing on GPU (GPGPU). Because each vertex and fragment are computed inde-
pendently, and the computations mainly consist of vector and matrix operations, they
parallelize effectively, allowing for high performance graphics rendering.

WebGL is a GPU API available in web browsers. It allows for transferring data
between the application and the GPU and orchestrating the rendering pipeline. Be-
cause of its complexity and low-level nature, it is not covered in more detail here.

2.5.1 State-of-the-art Examples

Kepler.gl [1] (Figure 2.13) is a WebGL-powered spatial data analysis tool. It has some
similarities to Vega-Lite – for instance, the user can choose how data are mapped to
different visual channels of the provided layers (analogous to the graphical marks) and
which color schemes to use. The data can be filtered and aggregated interactively.
Kepler.gl provides basic interactions such as panning, zooming, and details on demand
by hovering with the mouse cursor.

Stardust [30] is a WebGL visualization library, which mimics the API of the widely
used d3 [5] library. The API allows JavaScript programmers to create interactive
visualization from components such as marks and scales. The marks and scales are
compiled to shader programs for efficient rendering. P4 [22] develops the GPU usage
further, extending it to data processing (transforms), providing efficient aggregation
functionality. It also introduces a visualization grammar with JSON syntax. DXR
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Figure 2.13: kepler.gl, a geospatial data visualization tool

[38] implements part of Vega-Lite grammar and renders the visualization specification
using the GPU-accelerated Unity (https://unity.com) game engine. All of the three
are mainly research projects and not used widely.

2.6 Fluid Interactions

Advancements in GPU performance and multi-touch displays have contributed to the
development of user interfaces that are responsive, aesthetic, and enjoyable to use.
That is especially apparent in consumer-oriented mobile phone applications. Elmqvist
et al. introduced the concept of fluid interactions, which helps to characterize such
user interfaces in the context of information visualization:

“ Fluidity in information visualization is an elusive and intangible concept char-
acterized by smooth, seamless, and powerful interaction; responsive, interactive and
rapidly updated graphics; and careful, conscientious, and comprehensive user experi-
ences. ” ([10])

They hypothesize that comprehensive expression of fluidity in an information
visualization tool makes the sense-making process enjoyable and insightful, helping the
user stay in the flow of exploration. To promote further research and help designers
to build more efficient information visualization tools, they compiled a set of design
guidelines for fluidity. I apply the guidelines in this work.

https://unity.com


3. Design and Architecture of
GenomeSpy

This chapter presents the rationale, design, architecture, and some implementation de-
tails of GenomeSpy, a grammar-based genome visualization tool that I have developed.

The most important interaction method in genome browsers is navigation by
zooming and panning. Navigation allows the user to change the viewpoint in a large
and complex dataset [26], transitioning from an overview to details and back. On
the other hand, investigators work with large cohorts of patients and samples, trying
to find patterns by filtering, grouping, and sorting. GenomeSpy provides interactions
that allow the visualization end-users to perform these tasks with pleasure, immersing
themselves into the flow of exploration. The interactions comprise of navigation by
zooming and panning, and manipulating the sample set by sorting and filtering. The
navigation interactions are facilitated by two zoom behaviors that help in managing
overplotting.

What is being visualized in GenomeSpy and how it is encoded into a graphical
representation is up to the visualization designer. The designer may be a data sci-
entist creating an interactive website for the scientific community, or it may be the
end-user, such as a bioinformatician validating their analysis results. GenomeSpy pro-
vides a grammar and a set of combinatorial blocks for exploring the design space and
implementing new visualizations. A visualization specification defines how the data is
presented to the end-user. The visualizations are not limited to specific file formats
that are displayed in a specific, sometimes suboptimal way. Instead, designers can
focus on the data, the essential attributes, and conceive a design that is able to present
the data in an adequate way. However, it makes no sense always to create new designs.
For common cases, the designs can be reused and even packaged into components that
can be imported to other GenomeSpy visualizations.

GenomeSpy provides the interactions, and the grammar allows for specifying what
is being visualized. However, instead of inventing yet another visualization grammar,
GenomeSpy is heavily inspired by Vega-Lite (subsection 2.4.2). Providing users with
a familiar grammar lowers the threshold to start using a new tool. On the other hand,

25
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designing a concise yet extendable grammar is difficult. Although Vega-Lite is less
popular than ggplot2, it has characteristics that make it particularly suitable for ge-
nomic visualization – perhaps not out of the box, but through extensions. Its main
strengths are independence of a programming language and the powerful view compo-
sition algebra. However, the architecture of Vega-Lite, as a software package, makes it
difficult to apply to interactive genome-scale visualizations. The most severe obstacle
is the performance with large datasets. Vega-Lite supports up to some tens of thou-
sands of data items, but millions or more are required in genomic visualizations. On
the other hand, while Vega-Lite allows for specifying visualizations with sophisticated
interactions, it does not adapt to the interactions that I have designed for GenomeSpy.
Thus, extending the Vega-Lite software was not a feasible choice. Instead, Genome-
Spy is an independent implementation of a subset of Vega-Lite’s visualization grammar.
GenomeSpy also extends the grammar to better support common genome visualization
needs.

GenomeSpy exploits GPU in rendering to implement the interaction design.
GPU-programming is difficult if compared to immediate mode graphics APIs such as
HTML Canvas. The grammar provides an abstraction that allows visualization design-
ers and application developers to exploit the GPU declaratively in their visualizations,
without having to get acquainted with low-level graphics APIs.

Sections 3.2 and 3.3 focus mainly on the visualization grammar. Focus of sections
3.4 and 3.5 is more on the interaction design, which consists of handling multiple
samples and navigation around the genome.

3.1 JavaScript Library

GenomeSpy is not an application that can be opened by choosing an item from the
start menu or by browsing to a WWW-address. Instead, it is a JavaScript software
library that can be used as a building block for other applications. Section 4.2 presents
a GenomeSpy-based application that allows users to visualize their own, albeit very
specific type of data. Section 4.3 describes a use case where a GenomeSpy visualization
has been embedded on a web page for others to consume. The application programming
interface (API) of GenomeSpy is not discussed in this thesis, as it is available in the
documentation.

GenomeSpy itself uses a few other libraries. Parts of D3 [5] are used for data pro-
cessing. The expression language, scales, and data loading employ Vega [34] libraries.
A Tiny WebGL helper Library (TWGL, https://twgljs.org/) is used for making
the WebGL API less verbose.

https://twgljs.org/
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3.2 The Grammar

As the visualization grammar of GenomeSpy is heavily inspired by Vega-Lite many of
the concepts have already been introduced in Subsection 2.4.2. This section briefly
describes the building blocks (data input, marks, view composition) the grammar pro-
vides. However, some parts, such as scales and expressions, are omitted because they
are virtually identical to their Vega-Lite counterparts.

3.2.1 Data Input

Genome browsers generally input specific file formats such as BED or bigWig. However,
GenomeSpy only supports generic delimited formats such as comma-separated values
(CSV), tab-separated values (TSV), or specially crafted JavaScript object notation
(JSON) files. The reasons are twofold. The focus of GenomeSpy has been on visualizing
custom data for which no standard formats exist. On the other hand, the specific file
formats, such as BED, can be easily converted to the generic delimited formats.

Currently, the data input is identical to Vega-Lite. However, it can be later
extended with custom loaders that automatically convert the more specific formats
into the internal tabular layout, streamlining the usage.

3.2.2 Graphical Marks

GenomeSpy supports three graphical marks, namely the point, rect, and rule. All the
marks support the basic channel set: Positional (x, y), color, and opacity. The marks
are presented below.

Point

The point mark displays each data item as a symbol with optional x and y coordinates.
Points are often used in scatter plots to display the relationship of two variables using
two-dimensional Cartesian coordinates.

The size of a point does not generally depend on the mapping between the data
domain and the range of the x or y channels (for an exception, see Section 3.5). Instead,
the size may be constant, or it can be mapped to a data field. The size in pixels is
defined as the area of the symbol’s bounding rectangle.

Figure 3.1 displays an array of points with varying visual channels. However,
some of the channels are most useful for stylistic purposes and should not be used for
visual encoding. For instance, gradientStrength controls the amount of the radial
color gradient inside the symbols. Although it could be mapped to a data field, color
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Figure 3.1: An array of points demonstrating multiple visual channels. In addition to the positional x
and y channels, size, shape, and gradientStrength vary horizontally, strokeWidth varies vertically,
and color varies diagonally.

Figure 3.2: A heatmap built with rect marks.

would be better choice, as it is perceptually more effective.

Rect

The rect mark displays each data item as a rectangle. Because rectangles have a width
and a height in addition to their position, they can be used flexibly to build various
visualization such as heatmaps (Figure 3.2) and bar charts (Figure 3.3). To allow for
defining the width and height, rect mark supports two additional positional channels:
x2 and y2.

Rule

Rule mark displays a data item as a horizontal or vertical line with optional endpoints.
Although one could create such lines with the rect mark, its width or height would
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Figure 3.3: A bar chart built with rect marks.

Figure 3.4: An example of rule marks. Their vertical position is mapped to a nominal y field and
the endpoints to a quantitative y field. The stroke width has been defined in pixels. When a data
item in GenomeSpy is hovered with the mouse cursor, a tooltip reveals all its attributes, including
those that are not mapped to any visual channel.

be specified using the data domain. Rule, however, allows for specifying the width
as pixels. This distinction is specifically important when the visualization is zoomed.
With the rule mark, the line width stays constant, whereas with the rect mark, it would
change. Figure 3.4 displays an example of rule marks.

3.2.3 Data Transforms

The transform grammar of GenomeSpy is based on Vega instead of Vega-Lite. While
Vega-Lite is more succinct (Listing 2), Vega is easier to extend because the transform
type is defined explicitly.

GenomeSpy currently supports a basic set a transforms: filter filters rows using
an expression, formula derives new field using an expression, stack computes a stacked
layout, gather pivots data to tidy format, regexExtract derives new fields using a
regular expression, and flattenDelimited flattens field that contain delimited values,
i.e. creates new rows for them. The first three are identical to their Vega counterparts,
the rest are specific to GenomeSpy. Transforms in GenomeSpy are discussed in more
depth in the sample-comparison case study in Section 4.3.
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Figure 3.5: View composition by layering. The arrows consist of layered rules and points with
various symbols. The x axis ticks are implicitly added using concatenation. The view specification
for this example can be found in Section A.1.

3.2.4 View Composition

GenomeSpy partially replicates the hierarchical view composition of Vega-Lite. How-
ever, only layering and vertical concatenation (analogous to tracks) are supported. As
the data and encodings propagate down the tree, the specification stays succinct. The
hierarchy also allows for specifying whether scales should be shared among the views
or not.

In addition to just displaying multiple datasets, visualization designers can use
layering to create new composite marks. For example, Figure 3.5 displays a “lollipop
plot”, which consists of layered vertical rules and points. Lollipops are often used
in genomic visualizations to display variants [21]. The potential of hierarchical view
composition is explored more thoroughly in the case study in section 4.2.
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Figure 3.6: Concatenating the discrete chromosomes to create a contiguous, linear coordinate system.

3.3 Supporting Genomic Data

This section describes how GenomeSpy extends the visualization grammar to better
support genomic data.

3.3.1 Concatenated Genomic axis

Most genome browsers handle chromosomes as discrete units, i.e., the user has first
to choose which chromosome they would like to explore. For instance, IGV has a
separate view that displays the whole genome by concatenating (Figure 3.6) all the
chromosomes onto the horizontal axis. However, the view is not freely zoomable, and
during exploration, the user has to jump between the whole-genome view and individual
chromosomes.

GenomeSpy allows for continuous zooming from the whole-genome view to the
nucleotide level. Technically, it uses an approach similar to HiGlass’: the chromosome-
position pairs are mapped to coordinates on a single concatenated x-axis. Although the
mapping would be straightforward to implement as a separate transform step, such
an approach would complicate trivial cases excessively. Instead, GenomeSpy extends
the grammar by providing a shorthand in the encoding block (Listing 4).

3.3.2 Built-in Annotation Tracks

GenomeSpy provides several built-in annotation views (tracks) that the user can im-
port into their visualization. They are currently implemented in an ad-hoc manner,
disregarding the visualization grammar as it needs to be first developed further. For
example, the text mark has not been implemented yet. The built-in views can be im-
ported using the import directive as shown in Listing 5. The import mechanism also
allows for including external specification in the visualization, promoting reuse.
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1 {
2 "genome": { "name": "hg38" },
3 ...,
4 "encoding": {
5 "x": {
6 "chrom": "Chr",
7 "pos": "Pos",
8 "offset": -1.0,
9 "type": "quantitative"

10 },
11 ...
12 }
13 }

Listing 4: Specifying the coordinate mapping in the encoding block. The genome property specifies
the genome assembly to use for coordinate transformation. The offset property allows for adjusting
for different interval indexing schemes.

1 {
2 "genome": { "name": "hg38" },
3 "concat": [
4 { "import": { "name": "cytobands" } },
5 { "import": { "name": "geneAnnotation" } },
6 { "import": { "name": "genomeAxis" } }
7 ]
8 }

Listing 5: An example of a view specification with all three built-in annotation tracks. The resulting
visualization can be seen in Figure 3.7 and Figure 3.8. The import directive can also be used for
importing track specifications from local files or remote URLs.

Gene Annotations

The geneAnnotation track displays RefSeq [28] gene annotations. The user first sees
only the gene symbols∗, but transcription directions, gene bodies, and exons become
visible as the user zooms closer (Figure 3.7 and Figure 3.8).

GenomeSpy uses the citation-count-based prioritization introduced in HiGlass to
display only the most important genes at each zoom level (Subsection 2.3.3). Thus, in
the the whole-genome view, the best-known genes act as landmarks aiding the user in
navigation. As the user zooms closer, less-known genes become gradually visible.

∗Gene symbols are short identifiers for genes, usually abbreviations
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Figure 3.7: An example of the built-in annotation tracks. The top track displays the chromosome
bands (cytobands). The middle track displays RefSeq gene annotations. The bottom track displays
chromosome-aware coordinate ticks.

Figure 3.8: The same tracks as in Figure 3.7 but zoomed into the chromosome 13. The gene
annotation track now displays the transcription directions, gene bodies, and exons. The axis track
displays intra-chromosomal coordinates.

Chromosome-aware Axis Ticks

The genomeAxis track displays the chromosome names and boundaries. When the
user zooms in, the intra-chromosomal coordinate ticks become visible.

Cytobands

The cytobands track displays the chromosomal bands (subsection 2.1.1) that aid in
navigation around the genome.

3.4 Faceting Multiple Samples

One of the motivations in the development of GenomeSpy was to allow for explor-
ing and comparing multiple samples, e.g., multiple patients or treatment outcomes.
Although genome browsers generally support multiple tracks, they rarely provide pow-
erful tools for manipulating a large set of samples by filtering and sorting. The IGV
(Subsection 2.3.2) and the University of California Santa Cruz XENA [12] are the
two most competent tools for handling multiple samples. However, their visualization
capabilities are limited.

Support for multiple samples in GenomeSpy builds upon the facet operation of
existing visualization grammars, combines it with familiar concepts from IGV, and
equips it with fluid interactions [10] for smooth and engaging user experience. The
next subsections discuss how faceting is specified in GenomeSpy and how the user can
interactively manipulate the sample set.
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3.4.1 Facet View

Although the grammar of GenomeSpy tries to follow Vega-Lite faithfully, faceting is
an exception because:

“ When faceting a composite view, only the dataset targeted by the operator is
partitioned; any other datasets specified in sub-views are replicated. ” (Satyanarayan
et al. in [33])

In other words, Vega-Lite does not allow for creating layered views that display
multiple types of data. An example of such a view is copy-number variation overlaid
with point mutations. See the case study in Section 4.3 for further details.

A faceted layout in GenomeSpy is activated by defining the sample channel in
the encoding block (Listing 7). The sample channel of GenomeSpy is analogous to the
row channel of Vega-Lite — each subset is displayed as a row (Figure 3.9). However,
in GenomeSpy, a special type of track gathers the sample identifiers from the view
hierarchy and creates an own virtual subtrack for each sample. The view hierarchy
may contain multiple datasets representing different types of data. This design does
not support nested faceting, but on the other hand, allows for faceted layering of
multiple datasets.

1 {
2 ...,
3 "encoding": {
4 ...,
5 "sample": {
6 "field": "sampleId",
7 "type": "nominal"
8 }
9 }

10 }

Listing 6: Specifying faceting using the sample channel.

3.4.2 Sample Attributes as a Metadata Heatmap

GenomeSpy supports sample attributes (metadata) with a visual representation similar
to the IGV (Figure 3.9). The data source and optional scales for the attributes can be
specified as shown in Listing 7.
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A B C D E

Figure 3.9: A faceted visualization as the user focuses on a subset of samples. (A) The dataset has
been partitioned into facets using the sample identifiers. (B) A heatmap displays the metadata. (C)
A layered visualization design displays the genomic data. (D) A smoothly animated transition wave
reveals the new set of samples as it travels through the view. (E) The original sample set that the user
is filtering disappears under the wave. This visualization is discussed in more detail in Section 4.3.

(a) Nominal attribute (b) Quantitative attribute

Figure 3.10: Context menus for different types of sample attributes.

3.4.3 Sorting and Filtering Samples

Vega-Lite is not only a grammar of graphics but a grammar of interactive graphics
[33]. However, while the grammar of GenomeSpy tries to follow Vega-Lite, it has a
much narrower scope and more specific interaction requirements. Thus, implementing
generic and abstract support for interactivity in GenomeSpy is not practical. Instead,
it provides a predefined set of interactions, such as sorting and filtering, and does not
support the declarative interactivity features of Vega-Lite.

GenomeSpy allows the user to sort and filter the samples (facets) by their meta-
data or actual data, such as copy-ratios. The user can, for example, focus on a specific
patient, a mutational signature, or both of them.
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1 {
2 "samples": {
3 "data": { "url": "samples.tsv" },
4 "attributes": {
5 "OS": {
6 "type": "ordinal",
7 "scale": {
8 "domain": ["<=6", "6 - 12", "12 - 24", ">100"],
9 "scheme": "orangered"

10 }
11 }, ...

Listing 7: Including metadata in a faceted view with the samples property. The data file must con-
tain a sample field, which identifies the sample, and any number of attributes. By default, GenomeSpy
auto-infers the data type and uses a discrete or continuous color scheme accordingly. The user can
override the inferred data types and domains and specify a custom scheme. In this example, the OS
(overall survival) is declared as ordinal and the values are enumerated in the correct order.

The user interface and interaction design follow the guidelines of fluid interactions
[10] to provide a user experience that makes the sense-making process illuminating and
joyful, letting the user immerse into the flow of exploration. For instance, all transitions
between the sets of samples are animated smoothly (Figure 3.9), providing immediate
feedback that helps the user understand the relationship between the previous and
current views [16]. The user can clearly see how the set of visible samples changes when
it is filtered or sorted: the transition is animated as a wave that travels from left to right,
gradually revealing the new configuration. The interface supports direct manipulation
[37] to minimize indirection: the user can open a context-menu (Figure 3.10) by right-
clicking an intersection of a sample and attribute in the heatmap. The context menu
allows the user to choose actions such as removing samples with a specific property.
All the actions are reversible. Thus, the user can perform multiple actions, backtrack
a step or two, and explore another path.

The interaction design differs significantly from the IGV, which requires, for ex-
ample, the user to open a dialog for entering the filtering rules (Figure 2.4). Moreover,
the IGV does not have the backtrack functionality, nor are the transitions animated.
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Figure 3.11: The fisheye tool. The focal point of the distortion follows the mouse cursor, allowing the
user to focus on individual samples quickly. The samples outside the distorted area provide context
and may display patterns spanning the whole sample set.

3.4.4 Focus+Context with “Fisheye” and “Peek”

When an investigator compares multiple samples, they may wish to observe patterns
that span the whole set. On the other hand, it may be that the few outliers are the
focus of interest. Genome browsers typically have a scrollable viewport and an option
to adjust the height of individual tracks (samples). Thus, the user can minimize the
track heights to view all the samples, and conversely, increase the heights to see less
cluttered visualization but with fewer samples. However, such an approach for toggling
between the bird-eye and close-up views is burdensome in exploration.

GenomeSpy uses different approach; the faceted views (analogous to tracks) al-
ways fill all the available vertical space. Thus the user can always see the whole sample
set and the spanning patterns. When the user filters the sample set, the smaller set
again uses all the available space, revealing more details because the individual views
are now higher. However, the user may not always want to filter the samples. Instead,
they may just want to scan them and briefly focus on some interesting outliers visible
in the mass of samples. To support such a task, GenomeSpy provides two interactions:
the “fisheye” and “peek”.

Fisheye is a method where the visualization is distorted geometrically to reveal
more details about the focused area while the surrounding is preserved as the context
[6, 46]. Often the fisheye is implemented as a two-dimensional distortion. However, in
GenomeSpy, the fisheye is one-dimensional, as it enlarges the samples under and near
the mouse cursor (Figure 3.11). The user can quickly check the interesting looking
samples in more detail by just moving the mouse cursor on them. The fisheye can
be activated from a toolbar. However, using a keyboard shortcut is more efficient as
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Peek!

Figure 3.12: The peek tool. When the user activates peek, the viewport is zoomed vertically with
a quick animated transition. The sample under the mouse cursor is preserved, helping the user stay
focused. During an active peek, the user can scroll the viewport vertically with the mouse wheel.

the user does not need to move the cursor to the toolbar and back. Fisheye, however,
has problems with target acquisition [6]. Interacting with individual graphical marks
becomes gradually more difficult as the number of samples approaches several hundreds

“Peek”, a transient vertical zoom, is an alternative to the fisheye. When the user
activates peek with a keyboard shortcut, the view is zoomed vertically with a quick
animated transition. The viewport is translated so that the sample under the cursor
is preserved, helping the user maintain their focus (Figure 3.12). While normally the
mouse wheel changes the zoom level, in an active peek it scrolls vertically. While
such mode changes should be avoided [10], it allows the user to quickly scroll through
thousands of samples and interact with graphical marks with high precision to get, for
example, details on demand.

3.5 Avoiding Overplotting while Zooming

In genome browsers, the features are either point features representing single locus, or
they are segment features representing an interval between two loci (Section 2.2). Point
features are often visualized as graphical marks that have a constant size, i.e., they do
not depend on the feature size or zoom level. Thus, they behave similarly to scatter
plots. However, overplotting is a common issue in scatter plots: when the opacities of
overlapping points add up and exceed the available dynamic range, information is lost
[25].

Figure 3.13a displays a scatterplot of a bimodally distributed bivariate dataset.
However, severe overplotting completely obfuscates the bimodal nature of the data.
The problem can be mitigated by adjusting the opacity (Figure 3.13b) or point size
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Figure 3.13: (a) Overplotting obfuscates the bimodal nature of the data. (b) Reduced opacity
reveals the narrow peak, but the possible outliers are virtually invisible. (c) Reduced point size in
behaves similarly to reduced opacity. However, interacting with pixel-sized points is difficult.
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(a) A scatter plot
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(b) Geometric zoom
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(c) Non-geometric zoom

Figure 3.14: Geometric and non-geometric zoom. (a) A scatter plot with some generated data.
(b) Geometric zoom changes the point size proportionally to the zoom level, behaving similarly to a
camera that moves closer or further [26]. (c) In non-geometric zoom the point size stays constant.
Thus, the closer the plot is zoomed, the sparser it becomes.

(Figure 3.13c) or by sampling the data. Finding an acceptable compromise requires
trial and error, although cost-based optimization methods have been proposed [25].
Moreover, an interactive visualization with a zoomable viewport bears new challenges
that are tightly intertwined with the overplotting problem. The next subsections
present two methods that GenomeSpy provides for combating the overplotting chal-
lenges in a zoomable visualization.

3.5.1 Semi-geometric Zoom

Geometric zoom (Figure 3.14) resembles a camera that moves closer or further from
the visualization [26]. Thus, the distances between objects and the diameters of the
objects change in the same proportion. Also, the ratio between the background and
object coverage stays constant. Conversely, in the non-geometric zoom, the diameters
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of objects stay constant, and the background-coverage ratio changes.
Point features are usually zoomed non-geometrically, but displaying thousands

or even millions of points leads to severe overplotting. Commonly, genome browsers
display data in the whole-genome view as binned or aggregated or prompt the user to
zoom closer.

For use cases where the point features in a feature set are of equal importance, and
their value is encoded as a position on the y axis, GenomeSpy provides semi-geometric
zooming: a zoom-level dependent scaling factor is applied to the point size.

The zoom level is defined as domain width
visible domain width , which can be conveniently expressed

as a power of two. For example, at 20 the whole genome is visible, at 212, 1
1024 is visible.

The scaling factor (3.1) of the point diameter depends on the current zoom level
(levelcurrent) and the level where the points should reach (levelbound) their specified size.
Because only one axis is zoomed, the square root ensures that the background-coverage
ratio stays roughly constant – the area of the points is scaled proportionally to the
zoom level of a single axis.

C =

√√√√min
{

1,
levelcurrent

levelbound

}
(3.1)

With semi-geometric zooming the visualization may display millions of points in
the whole-genome view. As the user zooms in, the point size grows gradually until a
specific point size is reached. Zooming even closer behaves like non-geometric zoom.
Thus, the user can observe large-scale phenomena in the whole-genome view, quickly
zoom into details, and easily interact with individual points. Section 4.2 presents such
a scenario in practice.

3.5.2 Score-based Semantic Zoom

Strip plot is a specialization of scatter plot: it has just a single positional dimension.
For instance, point mutations displayed as points on the x axis would qualify as a strip
plot if their vertical position is constant.

Using semi-geometric zoom with a strip plot is unpractical because the points
would shrink into an invisibly thin line when zoomed out. If the data items are not
equally important, a better approach to reduce overplotting is displaying fewer points,
only the most important ones. GenomeSpy provides score-based semantic zooming for
such cases.

Let us assume that data items are uniformly distributed on the x axis. If some
fraction of the data is randomly sampled, they are still uniformly distributed. When
zooming closer and displaying only, for example, one fifth (levelzoom = 5) of the data
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Figure 3.15: Choosing the threshold score for semantic zoom by using quantiles. The dashed lines
represent the equalized score 0.2 mentioned in the main text. (a) Displays a histogram of an arbitrary
but non-uniform score. (b) The score can be equalized and normalized by computing p-quantiles. As
the function is strictly monotonic, it is invertible, and the lookup can be performed in either direction.

but multiply the sampling fraction by the same number, the data are still uniformly
distributed and, more importantly, have the same density. Thus, by making the sam-
pling fraction inversely proportional to the zoom level, the visualization has always an
equal number of uniformly distributed data. That rule, of course, breaks when the
view is zoomed so close that there is not enough to sample.

If data have a score that is nearly uniformly distributed, it can be subset by the
score instead of sampling randomly. For example, if the range of the score is [0, 1],
one fifth of the data can be “sampled” by choosing data that has score < 1

5 . However,
scores are seldom uniformly distributed. In such cases, quantiles can be used instead:
use the p-quantile 0.2 as the threshold (Figure 3.15). For simplicity, lower scores are
assumed to be more important here. Thus, with an equalized score that has been
quantile-transformed, a specific fraction of the most important data can be chosen.

By making the equalized score inversely proportional to the zoom level, Genome-
Spy implements semantic zoom. Only the most important data are shown in the
whole-genome view. As the user zooms in, less important data become gradually vis-
ible. Google Maps works similarly: in the whole-globe view, only the country names
are visible. As the user zooms in, cities, towns, and villages appear. Zooming even
closer reveals street names. Section 4.3 demonstrates how the score-based semantic
zoom can be used with point mutations to reduce overplotting.

The semi-geometric and semantic zooms support efficient and enjoyable explo-
ration. As the point sizes and filtering are connected to zooming, users can focus on
the data without becoming interrupted to adjusts visualization and filtering parameters
that reduce overplotting or make points large enough to be accessible.
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3.6 Architecture

GenomeSpy is an independent implementation of Vega-Lite’s grammar. However, the
architecture differs considerably from Vega-Lite and Reactive Vega.

3.6.1 Initialization

The initialization process is divided into the following steps:

1. Read the JSON-formatted view specification

2. Process imports

3. Create an internal data structure for the view hierarchy, based on the specification

4. Resolve scales (shared or independent) and apply defaults

5. Load and parse data, execute the transform chains, extract data domains (if not
specified explicitly)

6. Flatten the view hierarchy to tracks that may have layers

7. Apply scales and convert data items to geometric objects (points, rectangles),
upload them to the GPU

8. Use WebGL to orchestrate the rendering process

Except for the horizontal genomic axis, GenomeSpy performs scale transformation
before uploading the data to the GPU memory. Concatenated genomic coordinates are
uploaded as-is and transformed in a vertex shader. Thus, zooming and panning along
the genomic axis is efficient.

3.6.2 Rendering with WebGL

The scale-transformed data is translated into geometric objects. Each point mark in-
stance translated into a single vertex. Rectangles translate into triangle strips that
consist of adjacent triangles. Each rectangle requires at least six vertices. Long rect-
angles are tessellated into smaller triangles, allowing for smooth geometric distortions
during animated transitions.

Point marks are rendered using signed-distance-field (SDF) primitives in a pixel
shader [14]. The technique allows for crisp edges regardless of the symbol size. It also
allows efficient computation of effects such as strokes and shadows.

WebGL is used for orchestrating the rendering process. The layers are rendered
from bottom to top. Because the WebGL API imposes significant performance penalty
to GPU draw calls, their number has been optimized to be as low as possible.
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Emulating 64 Bit Floating-Point Numbers

Handling the over three billion bases long genome with WebGL requires special ar-
rangements. Precise addressing of the genome requires 64-bit floating-point numbers,
but shaders in WebGL only support 32-bit numbers. However, a 64-bit number can be
emulated with two 32-bit numbers, albeit with substantial performance penalty [41].
On the other hand, because the computation can be limited to a linear transforma-
tion of a single dimension, the penalty is acceptable. GenomeSpy uses the emulation
approach when the genomic axis is zoomed so close that the imprecision would cause
visual artifacts.





4. Validation

This chapter demonstrates the utility of GenomeSpy with two case studies. In Case
Study I, I use GenomeSpy as a software library to build an easy-to-use visualization
tool for the assessment of copy-number segmentation results. The case highlights the
expressivity of the visualization grammar and demonstrates the semi-geometric zoom-
ing. In Case Study II, I create an interactive visualization that allows for comparing
hundreds of samples having multiple data dimensions. The case highlights the inter-
actions in sample sorting and filtering and demonstrates the semantic zooming.

4.1 Data

Ovarian cancer is the seventh-most common and the eighth-most lethal cancer in
women [11]. High-Grade Serous Ovarian Cancer (HGSOC) is the most common sub-
type, representing three-quarters of the cases, and its ten-year survival is less than
30% [20]. HGSOC is molecularly diverse and has few commonly recurring mutations
other than the TP53 tumor-suppressor gene [23]. The genomes are unstable, having
large-scale amplifications and losses of genes [23].

The data consists of 375 HGSOC samples collected from 74 patients at diagnostic,
mid-treatment, and relapse phases of the disease. The data were analyzed by other
members of the research group except the copy-number segmentation in the Case Study
I, which was analyzed by me. The analyses are explained to the extent that allows the
reader to understand what is being visualized.

4.2 Case Study I: Copy-Number Segmentation As-
sessment

This case study validates the expressivity of the visualization grammar by replicating
and improving an existing visualization design. The utility and performance of inter-
actions, including the semi-geometric zoom, is demonstrated with a use case where the
user explores a large dataset to find anomalies.

45
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Figure 4.1: Next-generation sequencing platforms produce reads, short DNA sequences, which are
aligned against a reference genome [43]. Coverage (or read count) means the number of reads at
any given locus. The green boxes inside the reads portray variants, nucleotides that differ from the
reference. The number of variants divided by the number of reads at a specific locus is called variant
allele frequency (VAF) [39]. As the reads are essentially a random sample from the genome, the
coverage varies along its length. The layout in the bottom part of the figure is called pileup, and is
used in many genome browsers to visualize alignment results.

Genome Analysis Toolkit version 4 (GATK) [8] allows for detecting copy-number
variants from next-geneneration sequencing data. Besides providing the results as
tabular data, GATK also includes a rudimentary visualization tool that produces static
whole-genome plots. The aim is to improve upon the tool by exploiting GenomeSpy.

4.2.1 Copy-Number Segmentation

Investigators usually want to examine copy-number alterations (subsection 2.1.2) as
segments, i.e., stretches of DNA having the same copy number. Boundaries of the
segments imply breaks that have occurred in cells’ ancestors, and may thus reveal
broken genes and give hints about their phylogeny in the cancer. Moreover, segmented
data are easier to manage, analyze, and visualize.

Analyses performed with GATK consist of multiple, consecutive pipelines. In the
first stage, the raw DNA sequence data is aligned (Figure 4.1). In later stages, two
essential pieces of information can be extracted from the aligned data: read counts and
allele frequencies. The read count indicates how much DNA was found for any specific
locus, and thus, allowing for inferring the copy number. However, the data is noisy
and unusable without further processing. Allele frequencies allow for inferring whether
a locus is heterozygous or homozygous, i.e., are the copies different or identical.

To find the breakpoints and determine the segments, GATK inputs the noisy
read-count and allele-frequency data, performs denoising and normalization, and em-
ploys a multi-phase segmentation algorithm. The toolkit has numerous tuning pa-
rameters that may require adjustment. The final results can be visualized with the
PlotModeledSegments tool, which produces a plot similar to the one shown in Fig-
ure 4.2.
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Figure 4.2: Output of the GATK PlotModeledSegments tool. The visualization consists of two
subplots, both of which display the same segments on the concatenated genomic axis. The plots have
three layers: a scatter plot displaying the raw data, rectangles encoding the 95% credible intervals
of the segments, and horizontal rules (line segments) encoding the posterior means of the segments.
The alternating colors in the scatter plots emphasize the segmentation – a continuous color means
continuous segment. The upper plot displays normalized read counts (copy ratios). The genome
has been divided into bins of one kilobase and the points represent mean copy ratios of the bins. The
lower plot displays variant allele frequencies of select heterozygous loci. Values near 0 and 1 mean
homozygous, whereas 0.5 means heterozygous. The visualization gives a rough overview of both the
state of the genome and the segmentation quality. However, being non-zoomable, it does not allow
for scrutinizing important details such as the exact breakpoint locations.
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4.2.2 Zoomable Visualization

Adjusting the segmentation parameters requires close inspection of the segmentation
results. However, the PlotModeledSegments tool cannot reveal the critical details
at kilobase-scale resolution. Moreover, the read counts may correlate with the GC-
content, expressing wave artifacts that may disturb the segmentation process [9].
GATK can perform GC-correction that reduces the correlation to some extent, but
its performance is difficult to assess without a juxtaposed GC-content plot. The
PlotModeledSegments tool does not provide such.

The GATK Best Practices documentation recommends the IGV and R for more
demanding visualization tasks. However, the IGV poorly supports scatter plots, does
not allow for rendering horizontal line segments, and has no means for displaying the
credible intervals. Many genome-aware plotting packages exist for R, but scrutinizing
numerous samples without interactivity is laborious. Because these shortcomings are
trivial to address with GenomeSpy, I used it to create an easy-to-use visualization
application that allows for examining the segmentation results in more detail. The
design principles and architecture of SegmentModel Spy are described below.

4.2.3 Task Abstration

Although I had a pre-existing visualization design as a template, I identified the fol-
lowing tasks to better understand its limitations and to ensure that the new, improved
design and implementation are adequate.

T1 Explore to get an overview of the copy-number status of the genome.

T2 Compare the raw and segmented data to assess the segmentation quality.

T3 Locate suspicious breakpoints to reveal problems in the segmentation.

T4 Compare the raw copy ratios to GC-content to ensure that no prominent
correlation exists.

PlotSegmentModels supports the tasks 1-3 to some degree, but a static plot has
insufficient resolution to reveal the critical details. However, a zoomable visualization
would fully support these tasks.

4.2.4 Implementation

SegmentModel Spy is an easy-to-use frontend that uses GenomeSpy as a visualization
library. The application presents the user with a welcome screen (Figure 4.3) that
allows for loading the GATK result files for visualization. When the user loads the
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Figure 4.3: The welcome screen of SegmentModel Spy. The application inputs the same data files
as PlotModeledSegments. If the user selects a genome assembly, the visualization will be augmented
with annotation tracks.

data files by dragging them to the application window, the files are parsed and their
types are detected automatically. Once the user has provided all the required files,
the application generates a visualization specification and displays it with GenomeSpy
in the same window (Figure 4.4). Although the application is web-based, all data
processing takes place securely in the user’s web browser. No external servers are
involved. Figures 4.4, 4.5, and 4.6 demonstrate a use case where the user explores the
genome by navigation (T1), assesses the segmentation quality (T2, T3), and observes
GC-correlation (T4).

The full dynamically generated JSON view specification is too large to be in-
cluded in this thesis. However, its structure is summarized in Figure 4.7. With four
million data items, on a MacBook Pro (13-inch, 2018) and a Radeon Pro 580 eGPU,
the visualization is able to maintain constant 60 FPS performance at all zoom levels,
ensuring fludity with smooth and continuous zooming.

The application is accessible at https://genomespy.app/segmentmodel/ and
its source code is freely available at https://github.com/tuner/segment-model-spy
with an open-source license.

https://genomespy.app/segmentmodel/
https://github.com/tuner/segment-model-spy
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Figure 4.4: SegmentModel Spy after the user has chosen a reference genome and loaded the data
files, which contain approximately four million data items. The visualization consists of six tracks:
Cytobands aid in navigation. GC-content in 250 kilobase windows. Log2 copy ratio and Alternate-
allele fraction are familiar from PlotModeledSegments. However, the copy ratio is log2-transformed.
Some of the analyzed samples have segments with remarkably high copy ratios, which are difficult to
display using a linear scale. Genome axis displays the chromosomal coordinates. Gene annotation
displays RefSeq genes, allowing the user to see whether genes are affected by a breakpoint or segment.
The user can navigate around the genome by using the mouse wheel or trackpad to zoom. Dragging by
mouse or mouse gestures pan the viewport. The user can also double click chromosomes, cytobands,
genes, or marks in the visualization to zoom in quickly.

Figure 4.5: The user has zoomed into the chromosome seven to see the details more clearly. The
GC-wave artifacts in the copy ratio are now more clearly visible. The user can compare the raw
data to the GC-content and judge whether the waves are artifacts or represent a true copy-number
alteration in the genome. Too sensitive segmentation parameters may result in breaks to the steepest
parts of the waves. The user can easily discover these cases with the interactive visualization. New,
less cited genes have appeared onto the gene annotation track.
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Figure 4.6: The user has noticed a segment with a relatively large credible interval in the alternate-
allele fraction and zoomed closer. The breakpoints look reasonable, but the status of heterozygosity
is uncertain. The visualization uses semi-geometric zooming, and the points in the scatter plot are
now clearly visible. The user could hover the points with the mouse cursor for exact attribute values.
At this zoom level the gene annotation track displays gene bodies, exons, and direction in addition
to the gene symbols. The user has been interested in the nearby RTN4 gene and hovered it with the
mouse cursor. A tooltip reveals details such as the full name of the gene and a concise summary.
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4.3 Case Study II: Multidimensional Sample Com-
parison

This case study validates the expressivity of the grammar with a novel visualization de-
sign that employs faceting to display multiple samples. Moreover, the implementation
and interaction design of GenomeSpy are validated with a user study.

Many genomic aberrations have a joint effect on the phenotype. The most striking
example in HGSOC is the co-occurrence of TP53 mutation and loss of heterozygosity
in chromosome 17 [20]. This case study presents a GenomeSpy-based visualization,
which displays copy-number variation (CNV), loss of heterozygosity (LOH), and point
mutations for multiple samples at the same time. The CNV and LOH dimension
were analyzed with the pipeline explained in Section 4.2. Mutations were analyzed
using another GATK pipeline and various annotation tools, such as CADD [19], which
computes scores for the mutations. The score is based on allelic diversity, functional
annotations, and various other sources, reflecting mutations’ functional significance.

4.3.1 Task Abstraction

Based on discussions with domain experts, I identified the following tasks that guided
the visualization design, and more broadly, the design of the interactions in GenomeSpy.

T1 Explore the genome to get an overview of the dataset.

T2 Compare multiple data dimensions to better understand their joint effect.

T3 Compare multiple samples to reveal outliers or patterns spanning the patient
cohort or different subsets of the samples.

T4 Compare genomic data to metadata. The user might, for example, want to
investigate whether a clinical attribute correlates with a genomic feature.

T5 Manipulate the sample set by filtering and sorting by metadata and the actual
genomic data. Users may want to, for example, focus on individual patients and
choose the samples that have the highest purity (a sort of quality metric).

T6 Lookup features and coordinates to quickly navigate to the focus of interest.
The user may be interested in a specific gene or region. For example, the user
wants to quickly check whether a reported finding is also visible in his/her data.

T7 Compare genomic data to annotations such as RefSeq genes and COSMIC
Census. Genomic aberrations impact the disease through genes. Thus, users are
interested to see how aberrations located with respect to them.
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Figure 4.8: Layered visualization design for multiple data dimensions (T2). The design consists of
three layers, which represent the different data dimensions: the two bottom layers consists of rectangles
with left and right edges marking the start and end coordinates of the copy-number segments. The
colors of the full-height bottom rectangles encode the copy-ratios using a conventional blue-white-red
(deletion-neutral-amplification) color scheme. The heights of the dark, translucent rectangles in the
middle layer encode the loss of heterozygosity. The point symbols represent point mutations and indels.
Three visual channels have been utilized: Color encodes functional category, a nominal variable that
indicates mutation’s effect on transcription and translation. Size (area) encodes allele-frequency, a
quantitative variable with the domain of [0, 1]. Reading an exact value from an area is difficult, but
comparing the value to nearby data items is sufficient for the users. The exact value is available in a
tooltip. Shape encodes whether the mutation is somatic (circle) or germ-line (diamond).

4.3.2 Visualization Design

This subsection describes the visualization designs I developed for faceted multidimen-
sional samples (T2) and COSMIC Cancer Gene Census [40] annotations (T7).

Multidimensional Samples

Case Study I presented a visualization design that displays copy-number variation and
B-allele frequency (BAF) using the positional y channel. However, such a design is
inadequate when hundreds of samples are shown at the same time: heights of the facets
become too small. Figure 4.8 displays the visualization design for T2. In addition to
CNVs and BAF, the design incorporates third data dimension: point mutations and
indels.

The bottom layer displays the CNVs using a convention that is familiar from
the IGV and other existing tools. Color is perceptually less accurate than positional
channels, but it allows for pre-attentive search of outliers and easily reveals patterns
in the data [26].

The middle layer displays the BAF. However, instead of directly encoding the
BAF, it is first transformed to loss of heterozygosity (LOH) using the formula:

LOH = 2 |BAF − 0.5| (4.1)
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Genomic axis

Figure 4.9: Visualization design for COSMIC Cancer Gene Census track (T7). The design consists
of rectangles with left and right edges marking the start and end coordinates of the genes. The
color encodes the role in cancer : orange for tumor suppressor genes, green for fusion targets, blue for
oncogenes. If a gene has multiple roles, the colors are stacked.

LOH better highlights the deviation from the normal status. When a segment is
fully heterogenous (BAF is 0.5), LOH is zero. Conversely, when it is fully homogenous
(BAF is 0 or 1), LOH is one. In this design, LOH is displayed as a translucent rectangle
with its height encoding the LOH. Height is a positional channel allowing for perception
of the value with precision. When hundreds of samples are visualized, height becomes
inaccurate. However, the translucent black rectangle influences the luminance of the
underlying CNV rectangle, allowing for perception of LOH as a component of the color
channel.

The top layer displays point mutations and indels. Because they only affect a sin-
gle or a few nucleotides, they are displayed as points. As color allows for pre-attentive
search, it is reserved for functional category, the most important attribute, which de-
scribes mutation’s effect on the transcription and translation process. Size (area) is
relatively inaccurate channel, but allows for approximate but sufficient perception of
the allele frequency. When the user has found a mutation, they are interested to know
whether it is somatic or germ-line. The shape channel does not support pre-attentive
search, but is suitable for this purpose. Thus, the visual encodings have been chosen
so that the most effective channels are used for the most important attributes.

COSMIC Cancer Gene Census Annotation

The Cancer Gene Census (CGC) is a catalogue of genes that have been associated
with cancer. By comparing genomic features to the census genes, investigators may
get evidence for feature’s association with cancer. An evidence is not a proof, but it
can steer the exploration process.

Figure 4.9 displays the visualization design for the census track. Color is used for
encoding the role in cancer. Other attributes are accessible through tooltips.
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Figure 4.10: The view hierarchy of the multidimensional sample comparison. Some transforms have
been omitted for clarity.

4.3.3 Implementation

Figure 4.10 displays the view hierarchy of the visualization specification. The Results
view implements the visualization design for multidimensional samples. The nested
SNPs and Indels view uses the CADD score for score-based semantic zooming: a
dynamic filter adjusts the score threshold as the users zooms in or out, preventing
excess overplotting. An approximately constant number of mutations are always visible
even though the CADD score is exponentially distributed.

The census view implements the design for the Cancer Gene Census track. It
uses the fattenDelimited transform to split rows having multiple roles in cancer to
multiple rows. The stack transform computes a normalized stacked layout for the
colored rectangles. The full view specification for the census track can be found in
Section A.2.

Figure 4.11 displays the the final visualization with multiple samples (T3). It is
implemented as a web page that uses the GenomeSpy JavaScript library to parse the
visualization specification and embed it as a full-screen application on the page. Thus,
the user only needs to browse to a URL and start exploring. Subsection 3.4.3 demon-
strates the metadata and filtering interactions (T4, T5) using the same visualization.
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Figure 4.11: The multidimensional sample comparison visualization displaying HGSOC data. The
user has navigated (T1) to chromosome 17 to view the co-occurence of TP53 mutations (A, visible as
a column of points) and loss of heterozygosity (dark translucent rectangles). (B) A tooltip provides
details on demand for the data items. (C) The Cancer Gene Census track displays the locations of
well-known cancer-related genes. (D) The toolbar displays the genomic coordinates of the current
view and allows the user to lookup loci and genes quickly (T6). The toolbar contains a button for
reverting the sorting and filtering actions. Other buttons allow for activating the fisheye and peek.
This screenshot displays only a small subset of the samples to better illustrate the visualization designs.
When hundreds of samples are visible, the user can use the fisheye and peek tools to quickly focus on
specific samples (subsection 3.4.4). The user can also filter and sort the samples to better investigate
more focused subsets (subsection 3.4.3).
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4.3.4 User study

To validate the visualization and interaction designs I had created, I conducted a small
user study. In practice, we organized a genetics workshop that consisted of two parts.
We began by teaching the lab members some cancer genetics. Next, we instructed
the participants to complete a number of exercises using the GenomeSpy visualization
described in this case study. The participants were a heterogeneous group of post-docs
and students from fields such as biology and bioinformatics. After the workshop, we
collected feedback using Google Forms. At the time of the workshop, some features,
such as semantic zoom and peek, were not yet implemented.

Workshop Exercises

First half of the exercises introduced the participants to the visualization. An example
problem: “ Find the basic elements of the user interface / visualization: 1) Location
/ search bar, 2) Cytobands, 3) . . . ” The second half comprised of real biological
questions that the participant had to work out by using the GenomeSpy visualization.
Example problems: “ Look at MYC gene in patient A123, compare interval and
primary samples. Do you think the difference is reliable? ” and “ Can you detect
some patients, who seem to have or have had higher genomic instability than others?
Is there any clues whether it happened earlier or is the process still ongoing? ” I
formulated the user-interface related exercise. The domain experts (a senior scientist
and a geneticist post-doc) created the biology exercise.

Feedback Results

Table 4.1 displays the feedback results. The answers reflect participants views on the
user-experience of GenomeSpy in general and the effectiveness of the specific visualiza-
tion described in this case study. Although not all participants felt that GenomeSpy
has utility in their research, it was considered easy to use. The visualization design
presented the underlying data effectively. However, several participants discovered that
although the filtering functionality is practical, it has a limitation:

“ I would like to be able to filter samples on a range of values instead of only
larger than or smaller than a threshold. In other words an easier way to keep the
extremes for some attribute. ”

Currently, filtering by a quantitative attribute is only possible by choosing a single
threshold value. Thus, removing values between two thresholds is impossible.

All the verbal responses can be found in Appendix B.
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Table 4.1: Feedback questions and answers. n = 9. The scale is (1) disagree - (5) agree.

Answers
Question 1 2 3 4 5 Mean

1 Navigation around the genome is easy 0 0 0 2 7 4.78
2 Sample sorting and filtering is easy 0 1 0 6 2 4.00
3 Overall, the tool feels intuitive to use 0 1 0 4 4 4.22
4 The visualization presents the underlying data effectively 0 0 0 6 3 4.33
5 The visualization is aesthetic 0 0 1 1 7 4.67
6 Observing multiple dimensions the same time, e.g. CNV,

LOH, SNPs, is practical
0 0 0 6 3 4.33

7 The Fisheye feels more practical than a vertically
scrollable viewport (which GenomeSpy does not have)

0 0 2 1 6 4.44

8 I plan to use GenomeSpy in my research 1 0 4 1 2 3.38
9 I plan to use GenomeSpy in my research if certain

missing features are added. (Please specify below)
2 0 1 1 4 3.62



5. Discussion and Conclusions

GenomeSpy is a visualization software library that can be used as a building block in
other applications. In the current form, it may be inaccessible to users of traditional
genome browser applications that allow for opening a data file from the local disk and
viewing it in a familiar, specific way. However, as the SegmentModel Spy (section 4.2)
demonstrated, GenomeSpy could be used as a foundation for a higher-level applica-
tion that provides a simple point-and-click interface and familiar visual encodings for
common file formats.

When it comes to users wishing to explore the design space and author novel
visualizations, they have to provide the specification as a JSON document. However,
a designer application with a graphical user interface and drag-and-drop interactions
could be built on top of the grammar [32]. Such an approach would make visualization
authoring accessible to a broader audience.

5.1 Increasing Expressivity

Although the case studies demonstrated the grammar’s expressivity, the current set of
building blocks is rather limited: only three graphical marks and a few data transforms
have been implemented. However, new building blocks can be added without altering
the general structure of the grammar. For instance, introducing an arc mark gen-
eralized as a Bézier curve would enable visualization designs for structural variation.
A pileup transform would allow designs for sequence alignment data (Figure 4.1),
and a coverage transform would enable coverage computation directly in the visual-
ization [47]. Although the building blocks could be built primarily with just one use
case in mind, an adequate level of abstraction ensures that they can be adapted and
repurposed for new visualization designs creatively.

The intended application domain of GenomeSpy is coordinate-based genomic
data. However, to some extent, it can also be used as a general-purpose visualiza-
tion tool. By implementing a zoomable vertical axis, the GPU-accelerated architecture
of GenomeSpy could be used to visualize, for example, large scatter plots displaying
dimensionally reduced data.

59
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5.2 Shortcomings of the Architecture

Currently, GenomeSpy loads the whole dataset to memory when the visualization is
launched. Later discussions with domain experts have clarified the requirements and
indicated that dense, gigabyte-scale data needs to be supported. For instance, some
usage scenarios require coverage plots with the resolution as high as a single base.
However, the current design is not flexible enough. To support such use cases, zoom-
level dependent lazy-loading of data needs to be implemented. Data processing must be
asynchronous and multi-threaded to ensure the responsiveness of the user interface [36].
The implementation would necessitate redesigning of certain parts of the architecture
and requires further research.

The architecture has one particular design flaw, which impedes lazy loading.
Except for the horizontal genomic axis, all scale transformations are computed by the
CPU. The approach has several consequences. Firstly, the data cannot be uploaded
to the GPU before it is transformed. However, data cannot be transformed before
the scale function’s domain is known. If the domain is extracted from the data, all
involved data must be loaded first. Thus, dynamic lazy-loading of data is incompatible
with the current architecture. Secondly, changing the data domain dynamically – by
the user, for instance – requires that all scale transformations are re-computed, and
the results are re-uploaded to the GPU memory. A better approach would be to move
all scale transformations to the GPU by using shader programs [30, 22, 31]. In other
words, instead of uploading scale-transformed data to the GPU, the raw data should
be uploaded. An added benefit is that the raw data could be used for efficient data
filtering. The score-based semantic zoom uses such design already.

5.3 Insights from the User Studies

Although the user study (subsection 4.3.4) indicated that the implemented interactions
support the identified tasks, it also revealed some severe shortcomings in the sample
filtering interactions. It is currently virtually impossible to remove samples having
a quantitative metadata attribute within a specific range, e.g., retain only cases in
the top and bottom 10%. Current filtering interaction only supports subsetting the
current set of samples by using a single threshold. A solution that embraces the direct
manipulation principle needs further research. Moreover, later discussions have also
revealed a need for freely sortable samples. The users would like to drag and drop the
samples to arrange them in a specific order.

A geneticist in the research group considers the GenomeSpy-based multidimen-
sional visualization (section 4.3) invaluable in her research and uses it daily. She
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appreciates the interaction design, which allows for quickly seeking answers to specific
research questions. Although this work aimed to improve exploration, GenomeSpy is
also applicable to specific questions.

The usability of the visualization grammar has not been evaluated rigorously. I
arranged a mini user study by recruiting two members of the research group to visualize
their own data with GenomeSpy. With some help, they succeeded. They also found
some bugs and were able to push the tool to its limits. A real user study would likely
provide valuable feedback to guide further development.

5.4 Towards Fluid Analysis

In the future, one possible research direction is the integration of elementary analysis
support into GenomeSpy. Currently, when the user finds an interesting observation
using the visualization, they have to load the data into external software for further
analyses. By providing functionality for grouping and aggregating the samples and per-
forming statistical tests between the groups, the user could conduct the initial analyses
directly in GenomeSpy. Moreover, the analyses could be exploited in a recommen-
dation engine, which finds regions with significant differences between groups in the
genome. The system could guide the user in the exploration process.

The “fluid analyses” would benefit from recording provenance data, as it facili-
tates replicability, allows users to explore multiple paths in the analyses, and allows for
more accurate communication of the results [13]. GenomeSpy already records a linear
history of sample filtering and sorting actions, but it could be extended further.

5.5 Concluding Remarks

This thesis presented GenomeSpy, a genome-browser-like visualization tool that im-
proves upon the existing state of the art by supporting more extensive and efficient
exploration. Its visualization grammar allows for exploring the design space, and the
interaction design supports more efficient exploration of the genomic space of multiple
samples. Two case studies validated the expressivity of the grammar and the benefit
of the GPU-accelerated interactions.

GenomeSpy is freely available at https://genomespy.app/.

https://genomespy.app/
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Appendix A. Code examples

A.1 Layering a Lollipop Plot

1 {
2 "description": "Lollipop Plot Example",
3 "layer": [
4 {
5 "name": "Baseline",
6 "data": { "values": [0] },
7 "mark": "rule",
8 "encoding": {
9 "y": { "field": "data", "type": "quantitative", "axis": null },

10 "color": { "value": "lightgray" }
11 }
12 },
13 {
14 "name": "Arrows",
15

16 "data": {
17 "sequence": {
18 "start": 0,
19 "stop": 6.284,
20 "step": 0.39269908169,
21 "as": "x"
22 }
23 },
24

25 "transform": [
26 { "type": "formula", "expr": "sin(datum.x)", "as": "sin(x)" }
27 ],
28

29 "encoding": {
30 "x": { "field": "x", "type": "quantitative" },
31 "y": {
32 "field": "sin(x)",
33 "type": "quantitative",
34 "scale": { "padding": 0.1 }
35 },
36 "color": { "field": "sin(x)", "type": "quantitative" }
37 },
38

39 "layer": [
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40 {
41 "name": "Arrow shafts",
42

43 "mark": {
44 "type": "rule",
45 "size": 3.0
46 }
47 },
48 {
49 "name": "Arrowheads",
50

51 "mark": "point",
52

53 "encoding": {
54 "shape": {
55 "field": "sin(x)",
56 "type": "quantitative",
57 "scale": {
58 "type": "threshold",
59 "domain": [-0.01, 0.01],
60 "range": ["triangle-down", "diamond", "triangle-up"]
61 }
62 },
63 "size": { "value": 500 },
64 "strokeWidth": { "value": 0 }
65 }
66 }
67 ]
68 }
69 ]
70 }
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A.2 Cancer Gene Census Track

1 {
2 "name": "cosmic",
3 "title": "Cancer Gene Census",
4 "description": "COSMIC Cancer Gene Census, https://cancer.sanger.ac.uk/census",
5 "styles": { "height": 18 },
6 "data": { "url": "Census_allWed Apr 10 16_11_43 2019.tsv" },
7 "transform": [
8 {
9 "type": "regexExtract",

10 "field": "Genome Location",
11 "regex": "^(X|Y|\\d+):(\\d+)-(\\d+)$",
12 "as": ["chrom", "startpos", "endpos"],
13 "skipInvalidInput": true
14 },
15 {
16 "type": "flattenDelimited",
17 "field": "Role in Cancer",
18 "separator": ", "
19 },
20 {
21 "type": "stack",
22 "groupby": ["chrom", "startpos"],
23 "sort": { "field": "Role in Cancer" },
24 "offset": "normalize"
25 }
26 ],
27 "mark": {
28 "type": "rect",
29 "tooltip": {
30 "skipFields": [ "chrom", "startpos", "endpos", "y0", "y1", "opacity" ]
31 },
32 "minWidth": 2.0,
33 "minOpacity": 0.4
34 },
35 "encoding": {
36 "x": { "chrom": "chrom", "pos": "startpos", "type": "quantitative" },
37 "x2": { "chrom": "chrom", "pos": "endpos", "offset": 1 },
38 "y": { "field": "y0", "type": "quantitative", "axis": null },
39 "y2": { "field": "y1" },
40 "color": {
41 "field": "Role in Cancer",
42 "type": "nominal",
43 "scale": { "scheme": "category10" }
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44 },
45 "opacity": {
46 "expr": "datum.Tier == 2 ? 0.2 : 1",
47 "type": "quantitative",
48 "scale": { "type": "identity" }
49 }
50 }
51 }



Appendix B. Verbal Workshop Feedback

Which features did you find very useful or practical?

1. NA

2. Region/gene selection, sorting, filtering

3. NA

4. All the features related to the progression of the disease

5. The genome navigation is really intuitive. Culling by significance is very useful.

6. NA

7. fisheye, zooming, filtering etc.

8. Sorting and filtering is always very useful, given tha number of samples as well as
their variable usefulness (e.g. purity, or number of samples per patient). Being
able to zoom-in to and search by genes is also a welcome addition.

9. Sample sorting and filtering.

Which features were confusing or hard to use?

1. NA

2. NA

3. Lack of threshold to find for example top 5 percent of good or bad responders. I
did it yesterday just by removing other samples to keep the best and worst re-
sponders for example. (I mean the columns which are not representing continuous
values like sample, patient columns)

4. There are two marker called phase and this confuse me

5. Doing more elaborate filtering etc. is tricky or impossible.

6. NA

7. Hovering over small points such as the annotations or snps was hard. Some fil-
tering options were not implemented yet, like filtering based on cnv amplification
or deletion, so that was hard. Hand picking genomes one by one was hard since
the annotations were so small.
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8. PrimOutcome seemed to have multiple colours for what was essentially the same
value (but with different capitalisation), e.g. pink "Partial Response" and purple
"partial response". A togglable legend would also help with the high number
of data types sharing the same colour codes, as well as a glossary in case there
are any entries not immediately clear, such as PFI_prog_noprog. The top- and
bottom-most patients are slightly more difficult to hover over when in fish-eye
view. This is only a problem before extensive filtering. The mismatching names
of same samples made a few samples to have missing data, but I suppose this
will be addressed later with the sample renaming.

9. NA

What new data would you like to see integrated into GenomeSpy? Why?

1. NA

2. DNA methylation and CHIP-Seq

3. NA

4. NA

5. Expression data would be useful to see if the genomic aberrations have an effect
on the phenotypes, but I’m not sure how I would want it to be visualized.

6. NA

7. methylation

8. Sample-specific attributes: Later on it might be interesting to add CNV sig-
natures, double-base and indel as well as structural variation signatures on the
left-hand side. Some of them are associated with HRD or platinum treatment. If
there are too many columns of data, please consider adding an option to toggle
them (would also make the view less cluttered).

Viewport: I expect that multiple base substitutions and indels will also be vi-
sualised (provided they have a high enough CADD). You may have to truncate
REF or ALT for >20bp indels as the hover box would start stretch too wide
otherwise.

9. methylation data and maybe expression data.
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What new features (related to user interface or analysis) would you like to
see?

1. NA

2. Visualization of additional features when zooming in, possibility to select/drop
ranges

3. NA

4. NA

5. Most useful for me would be showing custom data, e.g. input using a BED
file with genomic coordinates + score from 0 to 100, which maps to the bar
color/height. I usually want to visualize something that is not standard and
experiment with it.

6. NA

7. Selecting genomes by hand one by one could be made easier with some kind of
mouse select-tool. Small point mutations and annotation boxes could be high-
lighted when hovered over to make it easier to hit them. Filtering based on just
amplified/deleted cnvs to study only samples with similar patterns etc. Auto-
completed suggestions for genes in the search bar if that is possible? I think these
would make the tool more fluidic, easier to use.

8. I would like to be able to filter samples on a range of values instead of only
larger than or smaller than a threshold. In other words an easier way to keep the
extremes for some attribute. Furthermore, filtering by segMean, BAF, ASCAT
copy number (nMajor + nMinor) of a locus as well as sorting by ASCAT copy
number. Box-selection for selecting genomic location or choosing samples to filter
would be a very intuitive and simple method for the user to navigate or filter as
opposed to using multiple clicks. A redo to go with undo or a possible drop-down
list of previous history states would help (in case of undoing too much). Later it
may be nice to let the user control the CADD threshold with a slider. Hotkeys
for sorting attributes or filtering samples would be nice to have.

9. More flexible sample filtering, e.g. set whatever threshold on one feature or
combination of features can filter out samples on the ends and retain samples in
between.
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General feedback

1. NA

2. NA

3. NA

4. I like GenomeSpy but there is a problem in manage a lot of data, in particular it
would be useful the possibility to analyze only the selected samples and not only
belonging to the one sample or the first for each patient.

5. NA

6. NA

7. Overall a nice tool with lots of potential. When perfected it will probably make
a lot of things easier and more intuitive. The workshop was also good.

8. I was unsure whether it is the area or the radius of the SNV circles that is linearly
associated with VAF.

9. GenomeSpy is a very flexible efficient tool and I will definitely use it in my
research.
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