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1. INTRODUCTION 
 

Agave sisalana (sisal), native to Central America, is a perennial succulent, widely introduced 

to the tropics and subtropics as a crop plant (Singh, 2013). The main product from the sisal crop 

is a hard fibre extracted from its leaves and used for ropes, clothes, carpets, and as a reinforcing 

composite i.e. in automotive industry. Global production of sisal peaked over 600 000 Mg in 

the 1960s, after which competition with synthetics fibres led to sharp decline in its production. 

In the 2000s, the demand has seen a new growth, due to revived interest in natural, 

biodegradable fibres (FAO, 2020). According to the Food and Agriculture organisation of the 

United Nations (FAO) the annual production of sisal in 1998–2018 averaged 320 000 Mg.  This 

places it 6th among natural fibres in terms of production, accounting for about 2% of global 

plant fibre production and 70% of the world's hard fibres. The total area under sisal cultivation 

in 1998–2018 was 359 357 ha on average. 

 

Research literature has addressed sisal’s physical properties and use as a composite (Sahu & 

Gupta, 2017), as well as its chemical composition and use in chemical and pharmaceutical 

industries (Debnath et al., 2010; Santos et al., 2015). Recently, there has also been a growing 

research interest for sisal and other Agave plants as a biofuel feedstock, reflecting the increasing 

need for sustainable energy sources (Davis et al., 2011; Escamilla-Treviño, 2012; Terrapon-

Pfaff et al., 2012; Pérez-Pimienta et al., 2017; Niechayev et al., 2019). Currently in the sisal 

industry there is a largely untapped potential to channel the waste-products of the fibre 

production towards biofuel production, as the fibre comprise only a small part of sisal’s biomass 

and the residue is traditionally considered waste (Singh, 2013). Agave’s drought tolerance and 

high biomass yield, in semiarid and arid environments, could also create opportunities to grow 

them for biofuel production in marginal lands, labelled unsuitable for agriculture and thus 

without competition from the food production (Von Cruz & Dierig, 2015). 

 

Currently, there exists no research on quantifying the biomass of sisal. In agriculture, biomass 

is an important parameter for monitoring the crop status, growth and yield (Serrano et al., 2000; 

Lemus and Lal, 2005; Ahamed et al., 2011). Furthermore, quantifying biomass can be used as 

a means to estimate carbon sequestration (Zan et al., 2001). At field level, allometric equations, 

which can be used to predict plant’s mass from its dimensions, such as the height and diameter, 

are a practical non-destructive way to assess biomass (Chave et al., 2014). Precise predictions, 

however, require equations that are specific to species or plant functional type (Paul et al., 

2016). On larger scales, assessing biomass with field measurements is resource-intensive and 

time consuming. Remote sensing, i.e. measuring objects from a distance with satellites, 
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provides a solution for repeating and upscaling the biomass estimations in a more efficient way 

(Ahamed et al., 2011). 

 

Despite the rapid development of remote sensing technology and its growing use in crop 

biomass mapping (Chao et al., 2019), it has not yet been tested for assessing the biomass of 

sisal, or any other plant in Agave-genus. Using remote sensing to assess crop biomass is, 

however, a relatively quick and cost-effective method and advantageous for two reasons. 

Firstly, it can be used for yield predictions and for large-scale monitoring of the crops in almost 

real-time, providing valuable information for resource planning and yield optimization 

(Ahamed et al., 2011; Battude et al., 2016; Chao et al., 2019; Serrano et al., 2000). Secondly, 

remote sensing crop biomass can be used to derive information of carbon cycle and crop’s role 

in climate change mitigation (Lemus & Lal, 2005; Sartori et al., 2006). 

 

Multispectral satellites, such as the European Space Agency’s (ESA) Sentinel-2 have shown 

their potential for large scale biomass estimation in different environmental contexts (Castillo 

et al., 2017; Sibanda et al., 2015) and have also been used to map crop biomass (Battude et al., 

2016). A common way in multispectral biomass modelling is to calculate spectral 

transformations, called vegetation indices (VIs), which can be used as indicators of plant 

biophysical characteristics, such as biomass (Serrano et al., 2000). Because of the unique 

spectral and structural characteristics of different plant species, vegetation indices’ sensitivity 

is often plant specific (Marshall & Thenkabail, 2015). The success of crop biomass models can 

also vary between species and the environmental context (Prabhakara et al., 2015). Species-

specific research is thus required, to evaluate the feasibility of such modelling approach for 

species that have not yet been studied.  

 

In this thesis, the objective was to assess the biomass of sisal. First, by using field-

measurements, and then by up-scaling the assessment with remote sensing methods. More 

specifically there were three objectives:  (1) to develop an allometric biomass equation for sisal 

leaves, (2) assess the utility of medium-resolution multispectral satellite imagery in estimating 

sisal leaf biomass, and (3) to model sisal leaf biomass at plantation level. These objectives were 

translated into the following research questions: 

 

1) What are the allometric relationships for predicting the biomass of Agave sisalana 

leaves? 

2) What is the relationship between multispectral vegetation indices and the leaf biomass? 

3) What is the spatial distribution of the leaf biomass in the study area? 



   
 

  3 

2. BACKGROUND 
 
2.1 Plant biomass and crops 

Biomass is plant material formed when plants absorb the sun’s energy through photosynthesis, 

to convert carbon dioxide (CO2) and water into nutrients (Field & Raupach, 2004). 

Aboveground biomass (AGB) refers to all the biomass above the ground, or more specifically 

to all living biomass above the soil including stem, stump, branches, bark, seeds, and foliage 

(IPCC, 2006). The carbon content of AGB is 45–50%, depending on the plant species (Ma et 

al. 2017). Recent decades have seen a surge of interest in quantifying AGB stocks of various 

terrestrial biomes, due to their functioning as a part of the global carbon cycle and therefore 

their integral role in the climate system and its change (Field et al., 2008; Saatchi et al., 2011).  

In the global carbon cycle plants belong to terrestrial biosphere, which contains the organic 

carbon stored in land-living-organisms and in the soil. In the terrestrial cycle plants act both as 

a carbon sink and source (Field & Raupach, 2004). Plants bring carbon to the terrestrial 

biosphere through photosynthesis and release it back to the atmosphere through respiration, 

decomposition and fires. Also human actions, such as land use practices e.g. conversion of 

natural vegetation to croplands cause carbon to be released (Pellikka et al. 2018). In addition to 

the carbon that is sequestered and released in the form of AGB, plants control also the soil 

organic carbon (SOC) input by translocation carbon trough their root system (Mathew et al., 

2017). Overall, the soils of the world contain more carbon than the atmosphere and living plants 

combined (P. Smith, 2006). On long timescales, such as decades or centuries, the balance 

between the gains and losses determines how much carbon is stored in the all the biosphere. 

Consequently, this balance has a significant effect on atmospheric CO2 levels and climate 

system. On average, the terrestrial biosphere has been a carbon sink, but anthropogenic 

activities such as land-use changes have reduced the total carbon uptake of the biosphere (IPCC, 

2019). This, together with increased atmospheric CO2 due to fossil fuel combustion, are the 

main drivers of the climate change.   

Globally, agricultural lands are one of the main SOC stocks (Kell, 2012). Since biomass is one 

of the key determinants of SOC sequestration, quantifying crop AGB has been used as a means 

to estimate carbon sequestration in agricultural lands (Lemus and Lal, 2005, Mathew et al 

2017). However, crop biomass has also the function of food and bioenergy stock. It is therefore 

a fundamental parameter in agriculture, used as an indicator of crop growth, status, yield and 

response to agricultural management practices (Lemus & Lal, 2005; Serrano et al., 2000). 

Consequently, the methods for measuring crop biomass non-destructively have been a 

continuing research interest (Tucker, 1980; Chao et al., 2019). Such research has encompassed 
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both food crops such as maize and wheat (Serrano et al., 2000; Battude et al., 2016), as well as 

energy crops like perennial grasses grown for biofuel production (Youkhana et al., 2017).  

2.2 Crop biomass assessment 
 
2.2.1 Plant allometry 
 
Allometry, a foundation for plant biomass assessment, is a study of plant growth. More 

specifically, it is a study of the statistical relationships in the dimensions of the plant that are 

correlated with changes in the overall size and structure, due to the similarity in individual's 

ontogenetic development  (Niklas, 2004). Such dimensional relationships can be employed for 

biomass estimation, as it has been shown that the proportions between plant height, diameter 

and biomass follow statistical rules, which are same for certain plants, growing under similar 

conditions (Chave et al., 2014). Once these relationships are established into allometric 

equations, they can be used to non-destructively estimate plant biomass in the field. The 

relationship is usually established by regressing a dependent variable (biomass) against one or 

several independent variables (i.e. plant diameter and height), but also non-linear approaches 

have been used (Litton et al., 2006). 

 

A commonly used approach in allometric biomass modelling is logarithmic-transformation of 

variables, followed by linear regression (Mascaro et al., 2011). Log-transformation often allows 

the relationship between variables to be described with simple linear equation, while also 

normalising the error structure. This approach has been criticized by Packard and Boardman 

(2008), who argued that analyses should be performed on the original scale, since log-

transformation can lead to “biased and misleading estimates”, as such models operate in 

geometric rather than arithmetic space. However, others such as Kerkoff and Enquist (2009) 

and Mascarov et al. (2011) have pointed out, that biological growth is “multiplicative by 

nature” and therefore log-transformation is fully acceptable, since it accounts for proportional 

rather than an absolute variation.  

 

A vast number of biomass equations that use height, diameter and stem volume as predictors 

have been formulated for both tropical and boreal trees (Chave et al., 2014; Peichl & Arain, 

2007). For herbs and shrubs, the stem and foliage diameter have been used as predictors (B. W. 

Smith & Brand, 1983). In crop allometry, Youkhana et al. (2017) used stem diameter in a simple 

power model to predict napiergrass, energycane, and sugarcane biomass with good accuracy 

(coefficient of determination (R2) = 0.96–0.99). For soybean, Reddy et al (1998) found a log-

log linear dependency between both height and diameter and mass. Currently, no research has 
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been done on sisal allometry and hence it is unknown how the dimensional variables relate to 

its mass. 

 

As allometric models are formulated based on certain size range determined by the sample 

minimum and maximum values, using them to predict values outside of this range can result in 

biased estimates (Picard et al., 2014). The allometric theory also states that the models are 

applicable for plants growing under similar conditions (Niklas, 2004). However, Paul et al. 

(2016) have tested the generality of various allometric shrub- and tree-models across different 

ecoregions and found no significant bias in their prediction accuracy. 

 

2.2.2 Remote sensing 

During the recent decades, remote sensing has emerged as a feasible and widely used method 

to assess biomass (Ahamed et al., 2011; Kumar et al., 2015). Remote sensing refers to a process 

of studying the characteristics of objects or areas from a distance, by measuring the reflected 

and emitted radiation (Jensen, 2014). The most essential remote sensing methods for biomass 

estimation include satellite and airborne imagery, light detecting and ranging (LiDAR), 

synthetic aperture radar (SAR) and recently also unmanned aerial vehicles (UAV) (Ahamed et 

al., 2011). These methods, either individually or combined, can be applied to quantify and 

monitor biomass, from local to regional scales, each with their strengths and weaknesses.  

Multispectral satellites, from high-resolution (3–5m) satellites such as RapidEye and 

PlanetScope, to medium resolution (10–30 m) satellites like Sentinel-2 and Landsat 8, are some 

of the most common data sources for large scale remote sensing of crop biomass (Ahamed et 

al., 2011). Their strengths include global coverage, good spatial resolution and quick revisit 

time (1-5 days), which facilitates biomass estimations over large areas with good temporal 

resolution and precision (Battude et al., 2016). Being open access products, Sentinel-2 and 

Landsat 8 are also accessible even with limited budget. Multispectral satellites have been 

successfully used in large scale biomass modelling of forests (Castillo et al., 2017), grasslands 

(Sibanda et al., 2015) and crops such as maize (Battude et al., 2016), but have not yet been 

tested for modelling the biomass of Agave-crops. 

Despite the quick revisit time, the temporal resolution of multispectral satellites is, in reality, 

limited by cloud coverage, which can make the availability of data unpredictable (Asner, 2001). 

Another challenge is that the transferability of the multispectral biomass models across regions 

can be challenging, due to varying external factors across different environments (Foody et al., 

2003). Because multispectral biomass estimations also require a large number of in situ sample 
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data, to calibrate, validate and assess the accuracy of the models, building site specific models 

can be time-consuming and expensive, even if the image data were free (Lu, 2006). 

Nonetheless, because of simplicity, availability and interpretability, multispectral satellites 

have become a standard data source for biomass estimation (Chao et al., 2019). Especially the 

new generation satellites such as Sentinel-2, equipped with a sensor designed to be specifically 

sensitive to vegetation characteristics, have proven their suitability (Sibanda et al., 2015; 

Battude et al., 2016). In addition to their applicability for simple multispectral models, 

multispectral data can be used in synergetic multi-source models, that combine different data 

types (Chang & Shoshany, 2016), or multiple spatial scales (Gnyp et al., 2014; Riihimäki et. 

al. 2019). Furthermore, multispectral data can be fed into crop models, which are used to predict 

the growth and production (Claverie et al., 2012). 

2.2.3 Principles of multispectral satellite remote sensing 
 

Multispectral satellites orbiting the Earth are equipped with sensors that observe and record 

information from the Earth’s surface, without direct contact to it. This information, whether it 

is the condition, structure, or state of an area or object, is transmitted to the sensor in the form 

of electromagnetic radiation (Eamu et al., 2016). The basis of an accurate interpretation and 

effective application of multispectral data is in understanding the physical principles of how 

the electromagnetic radiation interacts with the Earth’s surface. It is this interaction that 

provides us information about the surface, when we interpret the signal the sensor has detected. 

 

The electromagnetic radiation can be conceptualized as continuous waves (or frequencies) 

which transmit energy from one location to another  (Jensen, 2014). The distance between two 

successive peaks of a wave is called a wavelength. The whole range of wavelengths (or 

frequencies) constitutes the electromagnetic spectrum, ranging from gamma rays to radio waves 

(Fig. 1). Only a small portion of this spectrum is visible, or detectable with human eye. The 

basis of remote sensing is that the electromagnetic signal, received by the sensor, will be 

uniquely different across the wavelength range for different types of surfaces on the Earth. 
 

 
Fig. 1. Electromagnetic spectrum (NASA, 2013). 
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The source of the electromagnetic radiation that a passive remote sensing sensor detects is the 

Sun (Eamus et al., 2016). When the Sun’s energy is incidence to the surface of the earth, three 

processes occur: the energy can either be reflected, transmitted or absorbed. The proportions of 

these processes are a function of the unique characteristics of the surface and differ with 

wavelength. These variations provide us information about the surface, by giving objects or 

areas their unique spectral signatures. The spectral signatures are produced by the optical 

properties of the biophysical and biogeochemical constituents, moisture condition, and the size, 

shape and geometry of an object. With an accurate interpretation of these signatures, we can 

derive information about physical, chemical, and biologic state of the objects and surfaces. It 

has been shown, for example, that by analysing the spectral properties of plants, we can 

accurately assess their nitrogen and chlorophyll content (Schlemmera et al., 2013), relative 

water content (Raymond et al., 1987), species richness (Gould, 2000), as well as biomass 

(Serrano et al., 2000; Li et al., 2016; Wang et al., 2016).  

 

The Sun, the source of the electromagnetic radiation, emits energy across most of the 

electromagnetic spectrum, at wavelengths of gamma rays (~0.0001 nm) to radio waves (~10 

m) (Jensen, 2014). Multispectral satellites are equipped with an optical sensor, which means 

they detect information at wavelengths ranging from the visible to the shortwave infrared region 

of the electromagnetic spectrum (400–2500 nm). Depending on the sensor, this wavelength 

range is furthermore split into a varying number of spectral bands (also known as channels), 

which detect the signal at specific wavelength ranges. These bands usually include at least blue 

(central wavelength near 490 nm), green (560 nm), red (665 nm) and near-infrared (NIR) (830 

nm) bands, and varying number of shortwave infrared (SWIR) bands (1500–2000 nm). By 

exploring the differences of object’s signal on different wavelength bands, we can acquire 

information about the characteristics of vegetation. An effective method for doing this is the 

calculation of spectral transformations, known as vegetation indices (Silleos et al., 2006) 
 

2.3.4 Plant spectra and vegetation indices 
 

The absorption of a green vegetation is controlled by its chemical, moisture and physical 

properties (Eamus et al., 2016). Leaf pigments (chlorophylls, carotenoids, xanthophylls and 

anthocyanins) absorb electromagnetic radiance in the visible wavelengths (400–700 nm) for 

photosynthetic purposes, which results in low reflectance at those wavelengths (Fig. 2). 

Relatively less absorption occurs in the green wavelength (500–600 nm), than in blue (450–500 

nm) and red (600–750nm), creating a reflectance-peak in the green spectral region, which is the 
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reason why plants are perceived as green by the human eye. In healthy green leaf the reflectance 

in the NIR region (700–1200 nm) typically increases drastically, because plants do not use this 

energy and have therefore adapted to reflect and transmit it, to avoid warming that would harm 

the plant. This process is also referred to as NIR-scattering. The water content of the leaf 

likewise affects the reflectance properties since water is a strong absorber of energy. This is 

evident on all wavelengths, but especially in SWIR region (1300–2500 nm), where reflectance 

decreases the most with increasing moisture. Because of reflectance responses within visible, 

near-infrared and middle-infrared regions and their relation to vegetation’s biophysical state, 

data from these regions is used in remote sensing to calculate vegetation indices. 

 

 

Vegetation indices (VIs or more specifically broadband VIs in the case of multispectral sensors) 

are dimensionless, radiometric values that indicate crop biophysical characteristics such as 

abundance and activity of green vegetation, chlorophyll content, absorbed photosynthetically 

active radiation and biomass (Jensen, 2014). When plants grow and photosynthetic activity 

increases, the reflectance in the red wavelength region decreases, while the NIR reflectance 

increases (Eamus et al., 2016). Therefore, signal from these two regions has been widely used 

to formulate VIs, such the Simple Ratio (SR) (Birth & McVey, 1968), which is simply the ratio 

of red reflectance (ρred) to near-infrared reflectance (ρnir):  

 

SR = 
ρred

ρnir
	 

Fig. 2. Leaf spectra of Arrhenatherum (Helsen et al., 2020) and the main determinants of vegetation 
spectral (Eamus et al., 2016). Spectral data retrieved from an open dataset by Helsen et al. 2020.  
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Another widely used VI is a nonlinear transformation of SR called normalized difference 

vegetation index (NDVI) (Rouse et al., 1974):  

 

NDVI = 
ρnir − ρred 

ρnir + ρred
 

 
NDVI is functionally equivalent to SR and they are both known to be sensitive to biomass 

variations of e.g. wheat (Serrano et al., 2000), corn, soybean (Kross et al., 2015) and barley 

(Bendig et al., 2015). NDVI tends to saturate at high biomass values (Goswami et al., 2015), 

but this can be overcome if the bands used are narrow enough (Mutanga & Skidmore, 2004). 

In addition to NDVI and SR, a vast number of VIs have been used for biomass estimation 

(Silleos et al., 2006; Panda et al., , 2010; Tilly et al., 2015), but most of them are essentially 

transformations of red and NIR reflectance. 

 

VIs used for the assessment of leaf chlorophyll content and leaf area index (LAI, one-sided leaf 

area per unit ground) have utilized also the reflectance from the green spectral region (Gitelson 

et al., 2011). This can be applicable for biomass estimation as well, as these plant parameters 

are highly related (Filella & Peñuelas, 1994). In addition to ratio and normalized ratio 

transformations, also the subtraction of reciprocal reflectance’s has proven to be useful for 

chlorophyll estimation. For instance, anthocyanin reflectance index: 

 

ARI = '
ρgreen

−	 '
ρred-edge

 

 

 which Merzlyak et al. (2003) found to be proportional to anthocyanin concentration. 

 

An important wavelength region for VIs is also the red-edge, a rapid increase between red and 

near-infrared wavelengths (700-800 nm) (Jensen, 2014). Horler et al. (1983) have shown that 

the red-edge position, the point of the maximum slope (or the first derivate of reflectance) in 

the red-NIR region, is mainly controlled by chlorophyll concentration, with additional effects 

from species, developmental stage, leaf layering and leaf water content. Thus, it can be used as 

an indicator of plant status (Filella & Peñuelas, 1994). Because the red-edge position varies 

between plants and growth stages, the new generation multispectral satellites such as Sentinel-

2 have narrow red-edge bands between the red and NIR wavelengths, positioned at slightly 

different central wavelengths. Recent studies have shown that Sentinel-2 red-edge bands have 

the potential to slightly increase the precision biomass estimations, compared to other 
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multispectral satellites and other Sentinel-2 bands (Sibanda et al., 2015; Forkuore et al., 2018; 

Pandit et al., 2018). However, there are also examples where the red-edge indices did not result 

in significant improvement (Kross et al., 2015).  

 

Because of the unique spectral features of different crops, as well as varying external factors, 

models that use multispectral VIs to estimate crop biomass have shown performances ranging 

from low to high. For example, Prabhakara et al. (2015) achieved R2 of 0.86 for different winter 

crops using hand-held spectrometer, red and NIR based VIs and regression models. For corn 

and soybean, Kross et al. (2015) used RapidEye NDVI and red-edge based VIs in regression 

models, which resulted in R2 of 0.86–0.88. For wheat biomass, Wang et al. (2016) used random 

forest regression and multiple HJ-1 (Huan Jing-1: Environmental Protection & Disaster 

Monitoring Constellation) based VIs and achieved R2 of 0.79 between the observed and 

predicted biomass. The performance of VIs in assessing sisal biomass is not known, since 

multispectral data has not been applied for that purpose. 
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3. STUDY AREA 
 
3.1 Teita Sisal Estate 
 
The study area – Teita Sisal Estate (3°30´ S, 38°24´ E) – is located in the town of Mwatate, in 

Taita-Taveta County in the Coast Province of Kenya, and right next to the Taita Hills (Fig. 3). 

Taita Hills are the northernmost part of the Eastern Arc Mountains, a chain of ancient mountains 

across the Eastern parts of Tanzania and Kenya (Pellikka et al., 2013; Platts et al., 2011). The 

semi-arid climate in the area is determined by the tropical location, variations in the elevation 

and proximity to the Indian Ocean (Fig. 4). Rainy seasons take place in March-June and 

October-December and orographic rains cause variability in precipitation throughout the year. 

According to the Teita Sisal Estate’s own rainfall record, the mean annual rainfall in 1960–

2018 was 610mm. 

Fig. 3. Location of the study area (Teita Sisal Estate). Sentinel-2 RGB image from 
28.9.2019 as a base map. 
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The Estate is an important employer in the area, employing up to 2000 people on average (E. 

Mrombo, personal communication, 19 May, 2020). It is also one of the largest sisal plantations 

in the world, with a cultivable area of 8851ha. The monthly fibre production is 800 Mg on 

average, which means it accounts for over one third of the total sisal production in Kenya, the 

third largest sisal producing country in the world. Total sisal fibre production in Kenya in 1998–

2019 averaged 22 975 Mg a year (FAO, 2020). 

 

3.2 The cultivation of sisal 
 

Most of the Estate’s 8851ha of cultivable area is in active use. Elevation of the fields ranges 

700–950m above sea level and the slope is 0–7°. Mainly three different sisal varieties are 

cultivated at the plantation: Agave sisalana, Agave hildana and Agave hybrid 11648, of which 

the last one occupies most of the area (E. Mrombo, personal communication, 19 June, 2019). 

The crop is grown from small saplings, with a plant population of 4995 per hectare. The 

management practices differ between the field blocks. Generally, herbicides are applied for 

young plants for weed control, while the weed control for the older plants is minimal and some 

of the fields have not received herbicides at all. Also grazing (mainly cows) is practiced in the 

fields. Varying management practices mean the field blocks are heterogeneous in terms of the 

understory vegetation (Fig. 5). Younger fields have no or just little weeds, while the older fields 

have a varying cover of weeds and shrubs. Also the fertilization practices are varying. Some 

fields have received fertilizers, such as NPK 171717 (nitrogen, phosphorous, potassium) and 

sisal waste, produced during the fibre extraction, while other fields have not received fertilizers. 

Fig. 4. Average temperature and rainfall by month in Mwatate in 1982 – 2012. Source: 

https://en.climate-data.org. 
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Sisal plant forms a rosette of leaves around its stem. The harvesting starts at the age of 2.5–3 

years when the oldest leaves, lowermost in the rosette, are cut manually. After harvesting, the 

leaves are taken to the processing site where the fibre is extracted, dried in the sunlight and 

prepared for shipping (Fig. 6). Harvesting continues regularly up to 10–15 years, after which 

the plant grows a flower stalk, which can also be harvested, and used as a construction material. 

What is left after all the leaves and the stalk have been harvested, is a leftover stump, which 

consists of a stem, bits of leaf bases and the base of a flower stalk (Fig. 7). It is also referred to 

as sisal ball and used as a manure by burning and ploughing it into the soil (Terrapon-Pfaff et 

al., 2012).  

 

 

 
  

Fig. 5. (A) Sisal saplings ready to be planted. (B) 1-year-old plants with little understory. (C) 3-year-old plants with no 
understory. (D) 7-old-plants and dry weeds. (E) 13-year-old plants, with flower stalks and little understory. (F) Old 
field, where the weeds have taken over. 

A B C 

D E F
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Fig. 6. (A) Mature field, where the harvesting has started. (B) Leaves are transported to the processing site for fiber 
extraction. (C) The fiber is dried in the sunlight. (B) Processed fiber ready to be shipped. 

A B 

C D 

A B 

Fig. 7. (A) Sisal flower. (B) Mature sisal field with flower stalks and sisal balls by the road. 
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4. DATA & METHODS 
 

Data and methodology are summarized as a workflow in Fig. 8, which also presents the 

resulting outputs. Subsequent chapters describe the workflow in a more detail. 

 

 
Fig. 8. Research workflow, which shows the data, main methodology and the resulting outputs. 

 
4.1 Biomass assessment at leaf and plot level 
 
4.1.1 Leaf sampling 
 

For the development of the allometric model a sample of sisal leaves (n = 38) was harvested in 

August 2019 (Fig. 9). All the leaves were harvested from individual plants and the sample 

included two sisal varieties: Agave hybrid and Agave hildana (Fig. 10). Sampling covered only 

the leaves, since they are the main stock of sisal’s biomass and the part of the plant that is 

regularly harvested during its 10–14-year life cycle. Picard et al. (2012) suggest stratified 

sampling as a sound approach to explore the variability in a study area and to increase the 

precision of the modelling. Therefore sites (i.e. land parcels) for the sampling were subjectively 

chosen based on NDVI-values, as well as prior knowledge of the planting time, to cover the 

whole range of leave sizes. Plants in the proximity of roads were avoided, but otherwise the 

plants for the sampling were chosen randomly at the sites. Plant height, number of overlapping 

leaves in the rosette, and the position of the leaf within the rosette were recorded. To standardise 

the measurements, all the leaves were cut along the narrowest width at the leaf base. 
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C D 

Fig. 9. Measuring leaves for allometric modelling. (A) The whole leaf sample. (B) Sub-sampling a 
leaf for drying. (C) Sub-sample weighing. (D) Subsamples placed in the oven for drying. 

Fig. 10. Distribution of the two sisal varieties in the sample. 
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After harvesting, the leaves were taken to a laboratory at Taita Taveta University to be measured 

and dried. A few chosen leaves were weighed immediately after cutting and at the laboratory, 

to ensure that the leaves had not lost any weight by evaporation while being transported. At the 

laboratory the leaves were first weighed for their fresh weight with a table-scale (d = 0.01g) 

and measured for their length and maximum diameter. Before drying, the leaves were 

subsampled to fit all the samples into the oven. To account for possible density differences 

along the leaf axis, the subsampling was done by dividing each leave into four parts of equal 

length and by taking 5 cm samples from the middle of each part (Fig. 9B). The samples were 

then weighed, placed on dishes and put into the oven to 70Cº (Fig. 9C-D). Chosen samples 

were weighed every day until a constant weight was reached after 72 hours. After this, all the 

samples were measured for their dry weight. The dry weight to wet weight ratio was then 

calculated for all the samples and used to calculate the dry weights of the whole leaves. 

 
4.1.2 Allometric modelling 
 

The relationship between the leaf biomass and dimensions was formalized with linear 

regression, which is suggested as an appropriate method when the aim of the allometric 

modelling is prediction (Warton et al., 2006). Two linear regression models were fitted in R-

Studio version 1.2.5019 (R Core Team, 2020) using the least squares method. Dry biomass was 

used as a response variable and leaf maximum diameter (D), plant height (H) and leaf length 

(L) were combined to D2H and D2L, to represent volume approximations and used as single 

explanatory variables. Natural log-transformation was used for both response and explanatory 

variables. Such transformation is convenient, as it can render the relationship between variables 

linear, and tune the error structure of the model, to meet the assumptions of linear regression 

(Picard et al., 2012). This is often applicable for allometric models, which tend to have 

multiplicative error structure. Consequently, the linear models were fitted as  

 

log(𝑌) = 	𝛽. +	𝛽' log(𝑋) + 	𝜀 

 

where X is the explanatory variable, Y the response variable,  𝛽. the y-intercept the line, 𝛽' its 

slope and 𝜀 the error term. 

 

The assumptions of linear regression were tested visually with diagnostic plots and more 

formally with Breusch-Pagan and Shapiro-Wilk tests for normality and homoskedasticity 

(Breusch & Pagan, 1979; Shapiro & Wilk, 1965). Furthermore, the models were cross-validated 

using the leave-one-out method (Ruppert, 2004) and by calculating the root mean square error 
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(RMSE) and R2 between the predicted and observed values. In the leave-one-out cross 

validation one observation at the time is left out and used as a validation set, while the model 

is trained with all the other observations. The process is repeated until all the observations have 

been used for validation, which results in a prediction size equal to the sample size. RMSE is 

calculated as  

 

RMSE  = 1
∑ (𝑦4 	− 𝑦54)6
47'

𝑛  

 

where y is the observed value, 𝑦5 is the predicted value, and n is the number of observations. R2  

is calculated   as  

 

R2 =		1
∑(𝑦4	 − 𝑦5)9

∑(𝑦4	 − 𝑦:)9
 

 

where 𝑦5 is the predicted value of y and 𝑦: is the mean value of y. Before the RMSE and R2 were 

calculated the predicted values were transformed back from a logarithmic scale to the original 

scale with bias correction recommended by Baskerville (1974). The correction factor (CF) is 

calculated as 

 

CF =	;
𝑆𝐸
2 ?

9

	 

 

where 𝑆𝐸 is the standard error of the regression. All the figures for this and the subsequent 

models were produced using ggplot2-package (Wickham, 2016) in R-Studio. 
 

4.1.3 Field plots 
 

Field plots (n = 58) were established at Teita Sisal Estate between August 22 and 29, 2019 (Fig. 

11). Locations of the plots were chosen subjectively based on NDVI values calculated from a 

Sentinel-2 image (acquisition date 16 April 2019) and prior knowledge of the planting age, to 

cover the range of plant sizes and spectral properties in the study area. Furthermore, seven of 

the plots were positioned next to a gas-chamber measurements sites (at these sites CO2, N2O 

and CH4 fluxes were measured over 12-month period for a University of Helsinki research, to 

be published). At the plantation sisal is planted in double-rows, with a 3.75m spacing between 
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double rows, 0.7m between single rows and 0.9 m between the plants (E. Mrombo, personal 

communication, 19 June, 2019). The 20m2 square plots were established with two sides parallel 

to the rows, so that four double-rows were inside the plot (Fig. 11). Plot locations were recorded 

with a GNSS receiver (Trimble GeoXH) by measuring the centre and the four corners of the 

plot. On average, the location of the centre was logged 326 times. A differential correction was 

applied to the measured locations, in relation to a GNSS base station recording. The location of 

base station was determined using Trimble RTX post-processing service. Plot polygons (20m2) 

were digitized afterwards in QGIS 3.4.5 (QGIS Development Team, 2020) using a square-

drawing tool. Centre location was used as the exact centre of the polygon and the orientation 

was guided by the corner locations. 

 

Proximity to roads was avoided and homogeneity preferred, when choosing the plot locations. 

The number of plants in the two midmost double-rows was counted and multiplied by two, in 

order to estimate the total number of the plants in the plot. Plant height, the number of leaves, 

leaf length and maximum diameter were measured from one subjectively determined median 

sized plant in the two midmost rows. Mean values of these two plants were calculated, in order 

to constitute representative plot-specific plant metrics. If a considerable variance in plant sizes 

was observed, then plants were divided into two size-class categories which were measured 

separately. Some sites had shoots growing on the ground and they were included only if they 

were higher than 50cm. Furthermore, presence of the understory vegetation and flower stalks, 

as well as the harvesting status were noted. Information on plant age and variety was received 

from plantation’s books (E. Mrombo, personal communication, 19 May, 2020). 
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Plot level biomass was predicted in R-Studio using the new allometric model (see chapter 

5.1.1). First, the plot specific plant metrics (plant height and leaf maximum diameter) were used 

to predict the biomass of a representative leaf, which was then multiplied by the number of 

leaves in the plant, and then by the number of the plants, to estimate the total leaf biomass in 

each plot. 

 

4.2 Biomass modelling and mapping using Sentinel-2 data 
 
4.2.1 Sentinel-2 satellite image data 
 

Sentinel-2 is a satellite mission developed and operated by the European Space Agency (ESA). 

It is a constellation of two satellites, Sentinel-2A and Sentinel-2B with a 5-day revisit time. The 

satellites were launched in 2015 and 2017. The MSI (Multi-Spectral Instrument) sensor aboard 

Sentinel-2 satellites has 13 spectral bands with spatial a resolution of 10-60m (Table 1). 

 

Sentinel 2 image with acquisition date 9 September 2019 was downloaded from Sentinel open 

access hub as level 2-A product (https://scihub.copernicus.eu/). Of the cloud-free Sentinel-2 

images from the study area, this was the one with the nearest date to the field data collection. 

Level 2-A products are analysis-ready bottom of atmosphere (BOA) reflectance images, 

Fig. 11. Field plot locations on top of Sentinel-2 RGB-image and the plot design. 
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corrected with the SEN2COR procedure (Sentinel-2 User Handbook, 2019). The bands used 

were all the bands with 20m spatial resolution (B2, B3, B4, B5, B6, B7, B8A, B11, B12). In 

the subsequent chapters, they will be referred to as B, G, R, RE1, RE2, RE3, NIR, SWIR1 and 

SWIR2. Sentinel-2 has two NIR bands and the one used here was the narrow near infrared band 

(8A). 
 

Table 1. Sentinel-2 spectral bands. 

Band 
 

Spectral Band 
Central 
wavelength (nm) 

Band width 
(nm) 

Spatial 
resolution 

B1 Coastal aerosol 443 20 60 
B2 Blue, B 490 65 10 
B3 Green, G 560 35 10 
B4 Red, R 665 30 10 
B5 Red-edge, RE1 705 15 20 
B6 Red-edge, RE2 740 15 20 
B7 Red-edge, RE3 783 20 20 
B8 Near infrared 842 115 10 
B8A Near infrared narrow, NIR 865 20 20 
B9 Water vapor 945 20 60 
B10 Shortwave infrared 1380 30 60 
B11 Shortwave infrared, SWIR1 1910 90 20 
B12 Shortwave infrared, SWIR2 2190 180 20 

 

Plot specific reflectance values were calculated from the Sentinel-2 image by taking an area 

weighted average of the pixels that fell under the plot polygon. The pixel weights were based 

on the area of the pixel inside the plot polygon. The calculation was done with purpose-build 

script in Python programming language (Python Software Foundation, 2019) 
 

4.2.2 Modelling biomass with vegetation indices 
 

VIs were calculated from the plot reflectance values of Sentinel-2 data. All possible two band 

combinations of three common vegetation index forms were calculated: 1) ratio based spectral 

index (RS	 = 	 BC6D	E
BC6D	B

 ), 2) normalized difference spectral index (NDSI	 = 	 (BC6D	E	I	BC6D	B)
(BC6D	E	J	BC6D	B)

 ) and 

3) reciprocal difference vegetation index (RDSI	 = 	 '
BC6D	E

−	 '
BC6D	B

 ). In addition, a selection 

of published VIs were tested as a reference (Table 2.). These included NDVI and SR, which 

are traditional NIR to red ratios, still widely used in vegetation studies (Ahamed et al., 2011). 

OSAVI and EVI are also based on NIR to red ratio, but with additional parameters that are 

meant to account for atmospheric and background effects. Rest of the reference indices (CCCI, 
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IRECI, MCARI, S2REP) take advantage of the bands which are positioned in the red-edge 

spectral region, usually near 700 nm (Gitelson et al., 1996). 
 
Table 2. Vegetation indices used as a reference. 

Index Formula Reference 

CCCI 

 

𝑁𝐼𝑅 − 𝑅𝐸1
𝑁𝐼𝑅 + 𝑅𝐸1
𝑁𝐼𝑅 − 𝑅
𝑁𝐼𝑅 + 𝑅

 
(Barnes et al., 2000) 

EVI 
2.5	

𝑁𝐼𝑅 − 𝑅𝐸𝐷
(𝑁𝐼𝑅 + 6𝑅𝐸𝐷 − 7.5𝐵𝐿𝑈𝐸) + 1 

(Huete et al., 1999) 

IRECI 

(𝑁𝐼𝑅 − 𝑅)

W𝑅𝐸1𝑅𝐸2X
 

(Frampton et al., 2013) 

MCARI Y(𝑅𝐸1 − 𝑅) − 0.2(𝑅𝐸1 − 𝐺)\ ;
𝑅𝐸1
𝑅 ? (Daughtry et al., 2000) 

NDVI 
𝑁𝐼𝑅 − 𝑅𝐸𝐷
𝑁𝐼𝑅 + 𝑅𝐸𝐷 (Rouse et al., 1974) 

   

OSAVI 
(𝑁𝐼𝑅 − 𝑅)

(𝑁𝐼𝑅 + 𝑅 + 0.16) (Rondeaux et al., 1996) 

SR 
𝑁𝐼𝑅
𝑅𝐸𝐷 (Birth & McVey, 1968) 

   

The relationships between the biomass and VIs were analysed with Generalized Additive 

Models (GAM) in R-Studio using mgcv-package (Wood, 2017). With GAMs, there is no need 

to identify polynomial terms or predictor transformations to improve model fit (Wood, 2017). 

They are also flexible in approximating responses and have relaxed assumptions of predictor-

response relationship. Thus, they have the potential to achieve better fits than purely parametric 

models. Without prior knowledge of the relationships between the leaf biomass and numerous 

VIs (61 in total), this modelling approach seemed plausible. In remote sensing GAMs have 

been used e.g. to model fractional vegetation cover (Riihimäki et al., 2019) and leaf-area-index 

(Korhonen et al., 2017), with multispectral data. 

 

GAM is a semiparametric generalized linear model that fits the response curves as a sum of 

smoothing functions (Wood, 2017): 
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𝑦 = 	𝛽. +	]𝑓_YΧ_\ + 𝜀
a

_7'

 

 

where 𝑦 is the response vector, 𝛽. is the model intercept, 𝑓_YΧ_\ the smooth function and 𝜀 is 

the residual. In GAMs, the relationship between the linear predictor and the mean of the 

dependent variable is provided by a link function. Here, Gaussian-error structure was used with 

an identity link function. Smoothing function, which sets the upper limit on the degrees of 

freedom associated with the smoothing, was set to k = 3, which is considered conservative and 

should avoid overfitting (Wood, 2017). The models were evaluated based on deviance 

explained (D2), which is calculated as 

 

D2 =		 (bcdd	Def4C6ge	I	hei4DcCd	Def4C6ge)
bcdd	Def4C6ge

	. 

 

The modelling included two steps: 1) GAMs were calculated for all the VIs, and 2) the reference 

VIs and two VIs with highest D2 from each group (RS, NDSI, RDSI) were selected for further 

inspection. The performance of these indices was tested with leave-one-out cross-validation 

and by calculating RMSE between observed and predicted values. Also normalized RMSE 

(NRMSE %) was calculated as 

 

𝑁𝑅𝑀𝑆𝐸 = 	
𝑅𝑀𝑆𝐸
𝑦:

∗ 100 

 

where 𝑦: is the mean of the predicted biomass. NRMSE facilitates the comparison between 

models with different scales. 
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5. RESULTS 
 
5.1 Leaf and plot biomass 
 
5.1.1 Allometric model for sisal leaf biomass 
 

Summary of the sampled leaves is shown in        Table 3. The water content of the leaves varied 

between 87–76%. Visual exploration showed that the leaf variables had non-linear relation to 

leaf dry biomass, all with non-constant variances (Fig. 12). When the single variables were 

combined into D2L and D2H and log transformed, their relation to log(biomass) became linear 

and the variance close to constant (Fig. 13). 

 
       Table 3. Summary of the sampled sisal leaves. DW = dry weight, WW = wet weight. 

 
Wet weight           

(g) 

Dry weight 

(g) 

DW to 

WW ratio 

Length 

(cm) 

Maximum 

diameter (cm) 

Plant height    

(cm) 

Plant 

age 

1st. Quantile 111.74 21.5 0.15 57.2 16.3 84.4 
3 

Median 272.3 53.8 0.17 81.2 20.7 140.0 8 
Mean 330.82 56.3 0.17 79.2 19.9 139.1 8 

3rd. Quantile 503.9 89.5 0.19 105.8 24.5 189.3 13 
Maximum 839.22 159.0 0.24 132.5 28.4 250.0 14 

 
 

 
 

 

 

 

 

Fig. 12. The relationship between sisal leaves dry biomass and (A) maximum diameter, (B) length and (C) plant height. 
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Fig. 13. Relationship between log(biomass) and (A) log(D2L) and (B) log(D2H) of the leaves. 

 
Two linear regressions were then fitted to predict log transformed dry weight from (1) log 

transformed D2L and (2) log transformed D2H (Appendix 1). Model 2 (log(Biomass) = 

log(D2H)) had slightly higher adjusted R-squared (R2 = 0.99) and lower residual standard error 

(RSE = 0.1217) than model 1 (log(Biomass) = log(D2L), R2 = 0.98 and RSE = 0.17). Both 

models were statistically significant (p < 0.05). Model diagnostic plots (Fig. 14) showed that 

the residual structure of the model 1 was skewed and thus violating the assumptions of linear 

regression. Model 2 had a slight structure with residuals diverging from normal distribution at 

low and high values, but the assumptions can still be considered to be suitably met. Also, 

Breusch-Pagan and Shapiro-Wilk test results (p < 0.05) indicated that model 2 residuals had 

close to equal variance and normal distribution.  

 

Fig. 14. Regression diagnostics for (A) log(Biomass) = log(D2L) and (B) log(Biomass) = log(D2H) 
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Finally, both models were cross-validated using leave-one-out method, which resulted in 

RMSE = 11.49 and R2 = 0.92 for the model 1 and RMSE = 7.69 and R2 = 0.96 for the model 2. 

As the model 2 outperformed the model 1 in both goodness of fit and validation statistics, it 

was chosen for plot level biomass prediction. 

 

5.1.2 Plot-level biomass 
 
Summary of the plot level biomass is shown in Table 4 and a histogram of the plot biomass in 

Fig. 15.  The biomass in the sample plots ranged from 0 to 42 Mg/ha, with mean of 12 Mg/ha.  

The sample distribution appeared to be slightly right skewed.  

 

 
Table 4. Summary of the plot biomass. 

  
 Min.  1st. Quantile Median  Mean  3rd. Quantile Max. 

Leaf biomass (Mg/ha) 0.00 5.09 10.01 12.14 15.99 42.31 

Sisal age 0 3 7 7.5 13 17 

Fig. 15. Sisal leaf biomass distribution in the plots. 
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5.2 Remote sensing and biomass modelling 
 
5.2.2 Modelling leaf biomass with vegetation indices 
 

The relationship between sisal leaf biomass and individual Sentinel-2 bands is presented in Fig. 

16. It shows a relationship that is negative between the biomass and B, G, R, RE1, SWIR1 and 

SWIR2 bands, and positive between the biomass and RE2, RE3 and NIR bands. 

 

 

  

 

 

 

 

 

Fig. 16. The relationship between Sentinel-2 spectral bands and sisal leaf biomass. 
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Fig. 17 shows the explained deviances (D2) of the GAMs fitted with all the possible two band 

combinations for three VI groups (RSI, NDSI, RDSI). In all groups, the best combinations 

included one of the two red-edge bands (RE2, RE3) or the near-infrared band (NIR), while 

combinations without these bands showed lower performance. RSI and NDSI results were close 

to identical and in both groups NIR, RE2, RE3 and B, R, G, RE1 combinations performed better 

than NIR, RE2, RE3 and SWIR1, SWIR2 combinations. The best combination in these groups 

was two red-edge bands RE2 and RE3. The RSI with the best explanatory power, which was 

also best of all the tested VIs was RE2/RE3 (D2 = 0.738), while the NDSI with best explanatory 

power was (RE3-RE2)/(RE3+RE2) (D2  = 0.736). The combinations of RE3, NIR and G and 

RE1 such as NIR/G (D2 = 0.711) and (NIR-G)/(NIR+G) (D2 = 0.704) were the second-best 

choice for RSI and NDSI.  Overall, RDSIs showed lower performance than RSIs or NDSIs, but 

the best band combinations were similar. In RDSI group, the best explanatory power was 

achieved with 1/Green-1/RE3 (D2 = 0.662) and the second best with 1/RE3-1/RE2 (D2 = 0.65). 
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Fig. 17. Explained deviances (D2) of GAM-models fitted with all the Sentinel-2 two-band 
combinations of A) ratio based spectral indices (Band A/Band B), B) normalized difference 
spectral indices ((Band A – Band B)/(Band A + Band B)) and C) reciprocal difference 
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GAMs were fitted also for all the reference VIs. These models and the best performing RSI, 

NDSI and RDSI were cross-validated with the leave-one-out method. The model fit (D2) and 

validation RMSE of the models are presented in the Table 5. Reference VIs with the best 

explanatory power were IRECI (D2 = 0.609) and MCARI (D2 = 0.583). The best RSI, NDSI 

and RDSI, however, outperformed all the reference VIs. Fig. 18 shows best two VIs of all the 

VI groups and reference VIs, as well as NDVI. Fig. 18, RE2/RE3 is shown as 1–(RE2/RE3) to 

make the relation to biomass positive, like the other indices. 
 

Table 5. Explained deviances (D2) and RMSE (root mean squared error) of leave-one-out cross-validation of best RSI, NDSI, 
RDSI and all the reference VIs. 

Index RMSE (Mg/ha) NMRSE (%) D2 

RE2/RE3 4.959 50.2 0.738 
(RE3-RE2)/(RE3+RE2) 5.014 50.8 0.736 
1/G-1/RE3 5.630 57.0 0.662 
IRECI 5.956 60.3 0.620 

MCARI 5.959 60.4 0.617 
EVI 5.936 60.1 0.606 
OSAVI 6.033 61.1 6.033 
CCCI 6.154 62.4 0.577 

NDVI 6.234 63.2 0.560 
SR 6.351 64.3 0.541 



   
 

  31 

 
 

 
 

Fig. 18. Best performing biomass-VI GAMs (orange line). Two VIs from ratio, normalized difference, reciprocal difference 
and reference groups. Also NDVI as reference. D2 = deviance explained. RMSE = root mean squared error (Mg/ha). 

 
 
 
The impact of the additional plot variables (understory, flower stalks, harvesting status, variety 

and age) was analysed visually by colouring the best VI-model with each of the variables (Fig. 

19).  Fig. 19 shows that the highest biomass observations are from the younger fields that have 

not yet been harvested. On the higher end of the range the understory seems to lead to 

overestimation of the biomass, although there are a few observations contradicting this trend. 

The model appears to overestimate biomass also for the youngest fields that have not yet been 

harvested. The flower stalks, the variety or the age do not seem to introduce notable bias. 
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Fig. 19. The best VI-biomass model, with observations colored based on plot variables. 

 
5.3.2 Leaf biomass map for the study area 
 

Leaf biomass was predicted for the plantation area with the best biomass-VI model (Appendix 

2, Fig. 20). Summary of the predicted biomass is shown in Table 6. The biomass in the study 

area ranged from 0 to 45 Mg/ha. The map shows a high amount of intra-and inter-field 

variability in the distribution of the biomass. The total amount of the predicted biomass at the 

plantation was 87 370 Mg. 

 
Table 6. Summary of the sisal leaf biomass in the study area. 

 Minimum  1st. Quantile Median  Mean  3rd. Quantile Maximum 

Leaf biomass (Mg/ha) 0.00 5.61 8.49 9.87 12.16 45.12 
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Fig. 20. Sisal leaf biomass in the study area (29 September 2019). 
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6. DISCUSSION 
 
6.1 Sisal leaf allometry 
 
Allometric relationships between plant structure and mass often provide an effective way to 

estimate biomass, once these relationships are known (Paul et al., 2016). The first objective of 

this research was to develop an allometric model for predicting sisal leaf biomass. It was found 

that leaf length, maximum diameter and plant height were all highly related to biomass. 

Combining diameter and height to constitute an approximation of trunk volume is often used 

in tree allometry to increase the prediction accuracy (Picard et al., 2012). Here, the leaf volume 

was approximated by combining the maximum diameter, with either the length of the leaf, or 

the height of the plant. A strong linear log-log dependency was found between the leaf volume 

and its mass. This relationship, which appears to be stable throughout the plant's life cycle, can 

be expressed with exponential allometric equation which can accurately predict the leaf 

biomass. Similar relationship between volume and mass has been observed for i.e. tropical trees 

(Henry et al., 2010). For crops, volume is not commonly used as a predictor, but linear log-log 

dependency between the mass and length, or the mass and diameter, has been noted for maize 

(Reddy et al., 1998). 

 

The volume-mass relationship for sisal leaf was slightly stronger when the volume was 

approximated using plant height, instead of leaf length. The plant height was measured from 

topsoil to the highest point of the plant, which is the apex of the unfolding leaf which grows 

upwards from the middle of the rosette. The leaf length, on the other hand, was measured after 

the leaves were cut and the cut was done along the narrowest width at the leaf base. It is possible 

that this resulted in small inconsistencies in length measurements, if the location of the cut was 

not constant along the leaf axis, because of structural variation or difficulty of cutting leaves 

from exactly the same spot. This could explain why the use of plant height resulted in slightly 

more accurate prediction. Nonetheless, the result shows that the mass can also be approximated 

using the leaf length, but this leads to slightly lower prediction accuracy. 

 

The allometric model was formulated only for the leaves. Hence, to use it to assess the total 

leaf biomass of a plant, one must also count the number of the leaves of the plant. Therefore, a 

model for the whole plant would be more practical and would also include the stem biomass. 

However, the leaves are the part of the plant that is harvested and used, although the stem could 

also be used for biofuel production (Terrapon-Pfaff et al., 2012). Additionally, allometric 

models for a whole plant are usually formulated and used for intact plants (Sampaio & Silva, 

2005). The use of such model could be problematic for perennial crop like sisal, because the 
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harvesting of the leaves alters the plant structure (i.e. diameter). Then again, including only the 

leaves means that the model omits some parts of the biomass, mainly the stem. In addition, a 

small part of the leaf base was omitted when the leaves were cut. These parts of the plant, the 

stem and the leaf base that is not harvested, are also referred to as sisal ball (see Fig. 7). Dry 

weight of a fully mature sisal ball is approximated to be 5.8kg (Terrapon et al., 2012), which 

with a plant population of 4995 per ha would add up to 2.90 Mg/ha in a fully mature field. 

Traditionally, sisal balls are used as manure by burning and ploughing them into the soil, but 

they could also be used as a feedstock for energy production (Terrapon-Pfaff et al., 2012). 

Future research should quantify the biomass of the sisal ball. Furthermore, from the carbon 

sequestration perspective, assessing the biomass of the root system would also be highly 

relevant (Glover 1939, Rasse et al., 2005) 

 

The allometric theory states, that the scalable relationships are applicable for plants growing 

under similar conditions (Niklas, 2004). This notion has been contested by Paul et al. (2016), 

who tested the generality of the AGB-allometry across ecoregions and plant functional types 

(i.e. shrubs, multi-stemmed trees and trees of different wood densities) at continent scale in 

Australia. They found that generic models based on plant functional type could be used instead 

of species-specific models to predict AGB across ecoregions, with only minor losses on 

prediction accuracy. Conversely, Youkhana et al. (2017) observed that rainfall had an impact 

on AGB growth of tropical perennial grasses and suspected that more biomass was allocated to 

roots due to lower soil moisture. Presumably, the climatic factors across the sisal plantation are 

similar, but the management practises such as fertilization and the use of pesticides introduce 

heterogeneity to growing conditions. Samples of the allometric model had grown under variety 

of management practices, but this did not seem to have an impact on the found relation. Also, 

the sisal variety had no impact. This suggest that the model is applicable regardless of the 

variety or management practises. The effect of climate factors should however be studied, 

because sisal is grown in both tropical and subtropical regions, in countries with different 

climate types (FAO, 2020). 
 
6.2 Modelling sisal leaf biomass with multispectral satellite imagery 
 
Remote sensing is a feasible method for a large-scale assessment and monitoring of crop 

biomass, but the methods and outcomes are often species specific (Ahamed et al., 2011). The 

second objective of this thesis was to assess the utility of medium-resolution multispectral 

satellite imagery in estimating the leaf biomass of sisal. This objective was pursued by 

exploring the relationships between Sentinel-2 VIs and the leaf biomass. The 8851 ha study 

area consists of fields at various growing stages and under different management practises. The 
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results show a strong relationship between multispectral vegetation indices and sisal leaf 

biomass. The best results were achieved with the ratios of RE2 to RE3 and NIR to G bands, 

which outperformed all the reference indices, and other band combinations. 

 

Out of the three VI groups that were tested, ratio indices and normalized difference indices had 

overall stronger relation to biomass than reciprocal difference indices, or reference indices. The 

most valuable single bands for the biomass assessment were found to be RE2, RE3 and NIR. 

Ratios including at least one of these bands resulted in satisfactory model fit, while ratios 

without these bands had low performance. VI with the strongest relation to the leaf biomass 

was RE2/RE3, while second-best ratio VI was NIR/G. Almost identical relations were found 

using the same bands, but the normalized difference formula. The two best ratio indices appear 

to be similar to Red-edge Chlorophyll Index (CIRed-edge = NIR/RE) and to Green Chlorophyll 

Index (CIGreen = NIR/G), while the normalized difference ratio indices are similar to Green 

NDVI (GNDVI = (NIR-G)/(NIR+G)) and Red-Edge NDVI (NDVIre = (NIR-RE)/(NIR+RE)), 

all of which Gitelson and Merzlyak (1994) and Gitelson et al. (1996, 2003) have found to be 

sensitive to LAI and green leaf biomass at leaf and canopy level. The applicability of these 

indices for crop studies, using Sentinel-2 data, have also been demonstrated before (J. G.P.W. 

Clevers & Gitelson, 2013; Viña et al., 2011). 

 

The distinctive feature of the red-edge indices, which showed the highest sensitivity to sisal 

leaf biomass, is that even though they are broadly based on the same spectral regions as in 

previous crop studies, they were calculated using the bands with slightly different positioning. 

Originally, CIRed-edge and and NDVIre were formulated using narrow spectral bands (1 nm) as 

750/700 nm and (750–700 nm)/(750–700 nm), respectively (Gitelson et al., 2003; Gitelson & 

Merzlyak, 1994). Hence, when calculated from multispectral data the band corresponding to 

NIR has usually been used as numerator and the band nearest to 700 nm as denominator. For 

example Kross et al. (2015) calculated NDVIre using RapidEye NIR (760–850 nm) and RE 

(690–730 nm) bands, when estimating the LAI and biomass of corn and soybean. From 

Sentinel-2 data, Clevers et al. (2017) calculated CIRed-edge using RE3 (773–793 nm) and RE1 

(698–713 nm) for retrieving chlorophyll and LAI of potato. Here, the best performing red-edge 

indices were calculated using RE2 (733–748 nm) and RE3 (773–793 nm) bands. Using RE2, 

instead of the band closest to 700 nm as in other crop studies, increased the explained deviance 

by 9.3% at best.  

 

The functioning of the red-edge indices is based on the notion that the red-edge position (point 

of the maximum slope between R and NIR wavelengths) is mainly controlled by chlorophyll 
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concentration, shifting to higher wavelengths with increasing chlorophyll (Horler et al., 1983). 

Therefore it can provide information about various plant parameters. It has been found that 

reflectance near 700 nm is a sensitive indicator of the red-edge position, and furthermore, that 

the ratio of 750 nm to that near 700 nm is directly proportional to chlorophyll content, as well 

as green leaf biomass (Gitelson et al., 1996, 2003). However, these relations were observed for 

maize with leaf biomass of 0 to 3.5 Mg/ha, while sisal leaf biomass in the study area ranged 

from 0 to 42.1 Mg/ha, with the mean of 9.9 Mg/ha. Needless to say, also the structural 

differences at leaf and canopy level between these plants are obvious. Presumably, as a result 

of higher biomass quantities and the consequent expansion of chlorophyll concentration, sisal 

red-edge position can move to longer wavelengths than that of maize. This is supported with 

two notions. The first indication of it is that the RE1 band, centred at 705 nm, had a negative 

relation to biomass, resembling the spectral response of the red band. Secondly, RE2/RE3 (733–

748 nm/773–793 nm), the ratio that was most sensitive to biomass, was found from longer 

wavelengths. 

 

Relatively high biomass values and the structure of the plant are likely to explain why reference 

VIs, all of which included the R band, had weaker sensitivity to biomass. Although NIR/red 

ratios are known to correlate with biomass, they tend to saturate at high values (Holben et al., 

1980). This is because at red wavelengths, the absorption coefficient of chlorophylls is high 

and the depth of light penetration into the leaf is low (Kumar & Silva, 1973; Lichtenthaler, 

1987). Sisal, on the other hand, has high amount of green biomass and consequently high 

chlorophyll concentration, thick leaves and multiple leaf layers. This could explain why the R 

band showed low sensitivity to the biomass. In addition to the R band, the best reference VI, 

IRECI, contained also the RE bands, whereas the reference VIs based solely on the NIR and R 

bands, like SR, showed lower performance. The usefulness of the RE bands over the R band is 

clearly demonstrated also by comparing NDVIre – which was substantially better indicator of 

the biomass – to NDVI, which explained 18% less of the deviance. 

 

In addition to the NIR and RE bands, also the G band was found to be sensitive to the biomass. 

A strong relation, almost as strong as for RE-indices, was found for NIR/G and (NIR-

G)/(NIR+G), known as Clgreen and GNDVI. These indices appear also to be slightly more 

sensitive to lower biomass values than the RE indices. Just like the red-edge position, the 

reflectance at the green spectral region is controlled by the chlorophyll concentration (Gitelson 

and Merzlyak, 1994). In this region, the absorption coefficient of chlorophyll is smaller, and 

light can penetrate deeper into the leaf, than at the red region (Kumar & Silva, 1973; 

Lichtenthaler, 1987). Therefore, the green region does not saturate as easily, and is highly 
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sensitive to changes in chlorophyll concentration (Gitelson and Merzlyak, 1994; Gitelson et al., 

1996). Although the NIR/R combinations have been the go-to-option in vegetation studies, 

Gitelson et al. (1996) have advocated the use of NIR/G combinations, because of the wider 

dynamic range of the G bands. In this study, the G band showed higher sensitivity to biomass 

than the R band, with deviance explained by NIR/G clearly higher than by NIR/R.  

 

One challenge of the VI-modelling approach is how to minimize the impact of the external 

factors and make the relationship to biomass most sensitive (Chao et al., 2019). The 

performance of the best models appears to be slightly lower than in other studies that have used 

multispectral data for crop biomass assessment. For example, Kross et al., (2015) achieved R2 

ranging between 0.86 and 0.88 when mapping corn and soybean biomass with RapidEye 

imagery. With handheld multispectral spectrometer, Prabhakara et al. (2015) achieved R2  of 

0.86 for six winter crops. For wheat biomass assessment, Wang et al. (2016) used HJ1-satellite, 

which resulted in R2 of 0.79. Then again, for biomass assessment of rangeland grasses with 

Sentinel-2, Sibanda et al. (2015) achieved slightly lower R2 of 0.58. 

 

Compared to the crops in the above-mentioned studies (i.e. soybean, corn, wheat), which grow 

in more homogeneous fields, the growing conditions of sisal in the study area are rather 

different. Although it is a monoculture plantation, the varying management practises have 

resulted in fields that are heterogeneous in terms of the understory between the sisal rows. Some 

fields have no, or just little weeds, while in the other fields the 3.75m space between the rows 

is fully covered with tall grass or shrubs, or both. With Sentinel’s 20m resolution, this means 

that the signal is always a mixture of sisal and soil or understory, or both. Spectral regions used 

in the red-edge and NIR to G ratios, which showed highest sensitivity to biomass, have shown 

low sensitivity to soil background (Prudnikova et al., 2019; Viña et al., 2011). Yet it should be 

acknowledged, that the VIs sensitivity to soil background depends on the soil type (Prudnikova 

et al., 2019). Understory, however, is more likely to introduce some uncertainty to the models. 

19A, which shows the RE2/RE3 model with colouring based on presence/absence of 

understory, provides some means to assess this. The trend, although not fully consistent, seems 

to be that for lower biomass values the effect of understory is minor. For higher values, the 

presence of understory seems to lead to overestimation of biomass. The model appears to be 

overestimating the biomass also for 1–2-year-old fields, which have not yet been harvested.  

 

The acquisition date of the Sentinel-2 image was a month apart from the fieldwork dates. 

Therefore, any changes in the field locations due to management practices and harvesting 

cannot be completely ruled out. The changes in the understory vegetation are supposedly small, 
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as both the field campaign and the image acquisition dates fall into the middle of the dry season. 

During a year, however, the seasonality of the rains (Fig. 4) and resulting phenological patterns 

cause the understory to change from dry during the dry seasons to green during the rainy 

seasons. If the understory causes bias as assumed, the models potentially perform worse during 

the rainy seasons, due to the greening of the herbaceous vegetation (Horion et al., 2014). 

Potential sources of error include also positional inconsistencies between the field plots and the 

image. Although they are likely to be minor, considering the plot size and the precision with 

which the locations were measured. Error from the allometric model, which showed a good 

predicting capacity, is also likely to be small. Measuring errors during the fieldwork, on the 

other hand, can have occurred. 

 

The one-month gap, between the field work dates and the acquisition date of the nearest fully 

cloud free Sentinel-2 image of the study area, demonstrates one of the shortcomings of the 

optical satellites. In areas with regular cloud cover the potential benefits of multispectral 

satellites’ frequent revisit time (less than one week for Sentinel-2) can seldom be realized 

(Asner, 2001). This makes the availability of the data unpredictable and hampers the possibility 

of frequent monitoring. Future research should address the use of complementary data sources, 

such as SAR, which is not affected by cloud cover, but can also be used for crop monitoring 

(Wiseman et al., 2014). Combined with multispectral data, in a fusion model, SAR could also 

enhance the model performance (Chang & Shoshany, 2016). Also UAVs are a potential 

complementary or alternative data source for biomass modelling (Han et al., 2019). 

Furthermore, the interactions with the understory seemed to introduce bias into the models and 

hence require further studies. Considering especially the temporal transferability of the model, 

which can be affected by the phenological patterns of the understory (Horion et al., 2014). 

Accounting for seasonal features could enhance the model performance (Liu et al. 2016). Also, 

with UAVs or other data sources with comparable spatial resolution, the background effect of 

the understory could probably be diminished, since earlier research has demonstrated the 

possibility of segmenting Agave crop rows from fine resolution data (Calvario et al., 2017). 

Efforts on minimizing the external factors would also benefit the spatial transferability of the 

model, which adds to the list of future inquiries.  

 

To summarise, a strong relation was found between sisal leaf biomass and multispectral VIs.  

Best performing VI was the ratio of RE2 (733–738 nm) to RE3 (773–793 nm), which resembles 

the Clrededge (A. Gitelson & Merzlyak, 1994). However, with a distinction that in addition to a 

band in the NIR region, it uses a band centred at 740 nm instead of 700 nm. This combination 

do not seem to have been used in earlier multispectral crop studies, which have calculated 
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Clrededge  using the original formula (i.e. in Frampton et al. (2013) and in Clevers et al. (2017)). 

This result underlines the value of the red-edge bands in biomass assessment and also that the 

positioning of the red-edge bands matters. It also shows that to take full advantage of the red-

edge bands all the possible band combinations should be tested, instead of only the conventional 

formulas. In addition to the red-edge ratios, a strong relation to biomass was found from NIR 

(855–875 nm) to G (543–578 nm) ratio, known as CIgreen  (A. Gitelson & Merzlyak, 1994). The 

advantage of this VI, as noted by Clevers et al. (2017), is that it avoids the need for red-edge 

bands, which in Sentinel-2 are available only at 20m resolution. Hence it can be calculated also 

with 10m resolution, although this does not necessarily boost the model performance 

(Riihimäki et al., 2019). Furthermore, unlike the red-edge bands, the NIR and G bands are 

found from all the multispectral satellites, which makes this combination more available and 

interoperable with other optical sensors.  
 
6.3 Sisal leaf biomass in the study area 
 

The final objective of this thesis was to model sisal leaf biomass at plantation level. This was 

done using the best performing VI-biomass model (RE2/RE3). The result is a 20m resolution 

map, which shows the distribution of the leaf biomass across the plantation. The highest 

biomass densities were found from 2–5-year-old fields, where the harvesting has not yet begun, 

or has just started. Fields younger and older than this had lower amounts of biomass. The 

distribution of the leaf biomass is mainly controlled by the plant age and harvesting status. Due 

to the repeated harvesting, the biomass does not increase linearly with age, but the lowest 

biomass densities are found from the oldest and freshly cultivated fields. After planting, the 

biomass increases rapidly during the first years, and reaches the maximum density in 2-5 years. 

At this age the regular harvesting of the leaves begins, decreasing the biomass. As a result, it is 

mainly the fields older than this where the biomass is close to the mean. When the harvesting 

and the plants life cycle approaches the end, the biomass is again at the lower end of the range.  

 

The plantation consists of field blocks, all at the different stage of the growing cycle. The 

resulted map shows that at 20m resolution variations in the distribution of the biomass can be 

detected across the plantation, but also inside the field blocks. Many of the fields appear 

internally heterogeneous with randomly distributed spots of low biomass, and spatial patterns 

indicating more rigorous growth in some parts of the fields. In addition, during the field work 

it was observed that in the older fields some of the plants have been fully harvested, while 

others still have leaves. In the map these areas exhibit irregular patterns. These notions suggest 

that the resolution would be sufficient for monitoring the growth and detecting disturbances in 
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the individual field blocks. By using the NIR to G ratio, the map can be produced at 10m 

resolution, adding even more detail to the distribution of the biomass. 

 
Adjacent of the study area, in the lowlands near the Taita Hills, the main land cover types are 

cropland, grassland and Acacia-Commiphora bushland, of which the latter is closest to natural 

vegetation in the area (Abera et al., 2020; Pellikka et al., 2018; Pellikka et al., 2013). Woody 

AGB of these land cover classes has been assessed by Pellikka et al. (2018) and Amara et al. 

(in prep). In Pellikka et al. (2018) the bushland was further divided into shrubland and thicket. 

The mean sisal leaf biomass at the plantation (9.87 Mg/ha) corresponds to the AGB of bushland 

(9.0 Mg/ha), or shrubland (6.80 Mg/ha) and thicket (11.60 Mg/ha). In the croplands, the mean 

AGB (4.91 Mg/ha in Pellikka et al. (2018) and 5.80 Mg/ha in Amara et al. (in prep.)) is lower 

than the mean leaf biomass at the plantation. However, the internal variation of biomass density 

at the plantation is high. The lowest densities are at the level of the grasslands (1.8 Mg/ha) 

(Amara et al, in prep.), while the largest densities are similar to plantation forests (43 Mg/ha) 

(Pellikka et al., 2018). The temporal changes of the biomass at the plantation require further 

investigation, but the mean value and hence the total amount of stored carbon is likely to be 

stable over time due to the rotational harvesting, assuming the production rates remain steady. 

Thus the carbon stored in the leaf biomass at the plantation appears to be at the same level as 

in the woody AGB of the bushlands, and higher than in the woody AGB of the other croplands. 

 

For a comprehensive understanding of the carbon cycle at the plantation, crop and soil carbon 

fluxes and the belowground carbon dynamics must be considered (Revill et al., 2013; Ferchaud 

et al., 2016). Future research should be done on the carbon fluxes, as well as soil carbon 

sequestration, which in croplands is mainly controlled by the input from the root system, 

management practices and the soil type (Anderson-Teixeira et al., 2013; Sartori et al., 2006). 

The results of this thesis will benefit these future research efforts.  
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7. CONCLUSIONS 
 
In this thesis, the leaf biomass of Agave sisalana was assessed at different scales. First, at leaf 

level by sampling and measuring the leaves. Then, at plantation level using field measurements 

and Sentinel-2 multispectral satellite data with 20m spatial resolution. There were three 

objectives: (1) to develop an allometric biomass equation for sisal leaves, (2) assess the utility 

of medium-resolution multispectral satellite imagery in estimating sisal leaf biomass, and (3) 

to model the leaf biomass at plantation level. 

 

A strong log-log linear relationship was found between the leaf biomass and volume, which 

was approximated using the leaf maximum diameter and plant height. A strong relationship 

was also found between multispectral vegetation indices and sisal leaf biomass. The highest 

performance was achieved with vegetation indices based on the red-edge (R740 and  R783), near-

infrared (R865) and green (R560) regions. Finally, a biomass map was produced, which showed 

the distribution of the leaf biomass at the plantation and revealed that the biomass ranged from 

0 to 45.1 Mg/ha, with mean at 9.9 Mg/ha. The largest biomass densities were found from 2-4-

old fields, which have not yet been harvested, while freshly cultivated fields and the oldest 

fields had the lowest biomass densities. 

 

Because the allometric model included only the leaves, the allometry of the omitted plant parts 

– the stem, the flower stalk and the roots – should be studied in future. The performance of the 

VI-biomass models was slightly lower than in previous crop studies. The main factor reducing 

the model performance appears to be the heterogeneity of the understory vegetation. Another 

limitation of this modelling approach is the irregular availability of the data due to cloud cover 

potential. The model performance could be improved by studying the background effect and 

incorporating other data sources into the model. Testing of complementary data sources are 

recommend also to counter data availability issue. The biomass modelling at plantation level 

showed that the mean leaf biomass and hence the stored carbon is comparable to the semi-

natural Acacia-Commiphora bushlands. For a complete understanding of the carbon cycle at 

sisal plantation, soil and plant carbon fluxes and soil carbon sequestration have to be quantified. 

 

To the authors best knowledge, this was the first study that assessed the biomass of Agave 

sisalana or any other Agave-species using allometric modelling and remote sensing. The leaf 

modelling resulted in an allometric equation that can be used as an accurate tool for non-

destructive leaf biomass assessment. The VI-biomass modelling results showed that 

multispectral data is suitable for assessing the biomass at plantation level and in individual field 

blocks, but the model performance is limited by the background effect of the understory. 
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Nevertheless, the resulted biomass model will benefit future analyses of plant productivity and 

carbon sequestration.   
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Appendix  1. Details of the linear regressions. (A) Model 1, (B) Model 2. 
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Appendix  2. Summary of the RE2/RE3 GAM. 


