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Abstract 

In this work, a series of biocompatible nanocomposite hydrogels was prepared by UV-initiated 

polymerization based on 2-hydroxyethyl methacrylate (HEMA), using ethylene glycol 

dimethacrylate (EGDMA) as a crosslinker and 2-hydroxymethyl-2-methylpropiophenone as a 

photoinitiatior, containing liquid crystals of cellulose nanocrystals (CNCs) doped with 

magnetic nanoparticles. The formation of liquid crystals was achieved thanks to the intrinsic 

property of CNCs to self-assemble above a critical aqueous concentration. By varying the 

preparation conditions, allowing different times for phase-separation between the nanoparticles 

and CNCs and exposing the polymerization mixture to small magnetic field, films with different 

size and orientation of CNC liquid crystal domains were synthesized. Subsequently, the 

hydrogel films were studied by dynamic mechanical analysis (DMA) to evaluate the effect of 

these parameters on the mechanical properties, specifically the Young’s modulus and the 

ultimate strength. Also, the microstructure of the films was studied via polarized optical 

microscopy (POM) and scanning electron microscopy (SEM). The water uptake capacity was 

also analyzed. 

The results indicate that the presence of cellulose nanocrystals modulates the architecture of the 

prepared hydrogels. Cholesteric microdomains were embedded in PHEMA matrix and their 

uniaxial alignment was achieved upon exposure to small static magnetic field, already after 

several hours. Moreover, structural gradient in the distribution of the liquid crystalline 

microdomains, in dependence on their size, was obtained within the material. This originated 

from the direct proportionality between the size and the density of liquid crystals. Finally, it 

was shown that cellulose nanocrystals act as reinforcing structures of the hydrogels, when the 

degree of their self-assembly is sufficient, and therefore the resulting hydrogel exhibits both 

higher resistance to elastic deformation and also higher ultimate strength. Finally, we showed 

that mechanical performance of these nanocomposites can be enhanced by systematic 

orientation of the liquid crystalline domains. 
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 Introduction 

The idea of this project originated from nature-inspired nanocomposite materials1, such as 

bone2,3, wood2 or seashells4, that display outstanding mechanical properties. The prominent 

behavior arises from the fact that they are typically composed of relatively simple components, 

which arrange into complex structures, and due to their synergistic effects, they give rise to 

strong and tough materials. Thus, our objective was to explore hydrogel-based nanocellulose 

nanocomposites, doped with magnetic nanoparticles, exploiting the abundance, affordable 

price, biocompatibility and especially the high mechanical performance of cellulose 

nanocrystals (CNCs).5 

The liquid crystalline6 self-assembly behavior of nanocellulose provides an alternative route for 

the manufacture of reinforced nanocomposites. Furthermore, the possibility of controlling the 

alignment of cellulose7 using high static magnetic field encourages to explore alternative routes 

with smaller magnetic field. Finally, the mechanical and the structural properties are studied as 

a function of the extent of the self-assembly process and of the alignment. 

Cotton-based nanocellulose and magnetite nanoparticles were chosen for the incorporation into 

the matrix of UV-cured poly(2-hydroxyethyl methacrylate), i.e., PHEMA. The ability of 

nanocellulose to self-assemble into cholesteric liquid crystals allowed for the formation of 

anisotropic domains of various sizes throughout the structure of the nanocomposite. Moreover, 

the presence of magnetically active nanoparticles induced specific response to the magnetic 

field. Both parameters were linked to the mechanical properties of the final films. 
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 Literature survey 
2.1 Cellulose 

Cellulose is a fibrous, water insoluble, but biodegradable polymer, that is mainly present in 

higher plants, maintaining the structure of its cell walls. It can also be synthesized by specific 

bacteria and by certain marine animals, algae or fungi.8 

Chemically, it is a high molecular weight homopolymer of -1,4-linked anhydro-D-glucose 

units.9 Each of its cyclic monomer units carries three reactive OH groups and is chiral, meaning 

that the glucose ring comprises of a carbon atom attached to four different atoms, causing the 

molecule to adopt a specific molecular geometry, and therefore exhibit unambiguous packing 

at larger scales. Each cellulose macromolecule has directional chemistry with a reducing group 

at the C1 position at one end (hemiacetal with pendant OH group) and a non-reducing group at 

C4 position on the other end. Its degree of polymerization can be up to 20 000, where wood 

cellulose is around 10 000 and cotton cellulose has usually around 15 000 glucose units.10  

Cellulose is a polymorph, existing in several crystalline allomorphs with physical variations, 

which leads to different reactivity.8,11 The most common is the native type I, having a parallel 

up arrangement, with respect to the directionality of the chain.8,12 Regeneration or alkaline 

treatment of the native type cellulose I irreversibly gives the cellulose type II, with an 

antiparallel12 more stable arrangement. Allomorphs of type III can be reversibly prepared by 

liquid ammonia treatment from both type I and II whereas type IV can be synthesized by 

heating cellulose type III in glycerol.8 

Approximately 36 individual cellulose chains make up one protofibril.13 Protofibers pack 

together into long slim monocrystalline microfibrils, having a structure with left-handed twist, 

which is caused by the intrinsic chirality of the individual building blocks.14 The microfibrils 

then arrange into lattices within the cell walls.5 Due to the chemical structure of the monomers, 

the cellulose chains carry a large number of hydroxyl groups. As depicted in Figure 1, these 

functional groups enable the formation of intramolecular and intermolecular H-bonds, which 

play crucial role in the formation of the organized microfibrils.15 
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Over the process of cellulose synthesis, firstly, the intermolecular forces induce formation of 

glucan sheets, which then stack up onto each other making up a microfibril.16-18 The abundant 

hydroxyl groups, which are present on the fibrils’ surface, also represent available sites for 

surface modifications.18 Yet, the complexity of the stabilizing bonds and their dense network 

makes cellulose insoluble in water and considerably resistant to many organic reagents. This is 

because the solvent molecules cannot properly penetrate the structure.19 

Even though the cellulose microfibrils are tightly packed together, the structure is not fully 

crystalline (Figure 2).20 While ordered regions are stabilized by intra- and intermolecular bonds, 

there are other regions where the chain order is interrupted. These dislocations or distortions of 

the network are caused by internal strains originating from tilting and twisting. Such cellulose 

regions are disordered and they can be selectively treated with acid hydrolysis. In addition, the 

microfibrils also tend to coalesce together. Both the disorder and the coalescence affect the 

macroscopic physical properties of cellulosic materials.5 

Figure 2: Section of a cellulose fiber with crystalline (in blue) and non-crystalline (red) regions 

highlighted 

  

Figure 1: Structure of cellulose depicting both the intramolecular and the intermolecular H-bonds18 
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2.2 Nanocellulose 

Cellulose nanostructures can be classified into 3 types: cellulose nanofibers (CNFs), bacterial 

nanocellulose (BNC) and cellulose nanocrystals (CNCs) (electron microscope images shown 

in Figure 3). All of them are biodegradable and from renewable resources. Thus, they represent 

interesting biomaterials with vast application possibilities.21 While BNC is produced from 

‘bottom up’, CNCs and CNFs are produced from ‘top-down’ mechanisms. A common property 

of CNFs and CNCs is that they demonstrate reinforcing effects in polymer nanocomposites; 

they however differ in length, shape, crystallinity and composition.18 

Figure 3: a) TEM image of CNFs, b) SEM image of bacterial cellulose c) TEM image of wood CNCs21 

2.2.1 Cellulose nanofibrils 

CNFs can be obtained from any raw cellulose source material, usually from wood pulp, but also 

from crops and other plants. They are synthesized by mechanical delamination of cell wall 

fibers by exposing pulp to high shear forces that rip the larger wood-fibers apart.22 This 

exfoliation is achieved through high pressure homogenization, grinding, or microfluidization. 

Commonly, pre-treatments are conducted, mainly to minimize the energy consumption of such 

demanding processes23, but they can also introduce specific properties onto the nanostructures. 

Such modifications can be enzymatic24 (minimizing the energy requirements), mechanical25 or 

chemical (carboxymethylation26 or TEMPO-mediated oxidation27). Twisted or/and entangled 

nanofibrils are then obtained, usually between 5 and 40 nm wide and up to several micrometers 

in length. However, the exact dimensions are strongly dependent on the preparation 

conditions.18 

  

https://en.wikipedia.org/wiki/Micrometers
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2.2.2 Bacterial nanocellulose 

Bacterial cellulose (BC) is an attractive biomaterial. Because it is synthesized by specific 

bacteria, its production has only negligible environmental impact.28 The most effective 

producer is  Acetobacter xylinum28 and it gives long, highly homogeneous and thin 

microfibrils29,30. The potential of BC lies in bioapplications31-33 and nanocomposites34. 

Similarly to other types of cellulose, fibrils contain amorphous regions, which can be selectively 

treated with acid.33 However, the acid hydrolysis of BC gives nanocellulose with significantly 

higher crystallinity than nanocellulose from other sources.28 

2.2.3 Cellulose nanocrystals 

CNCs, also called whiskers, are rigid needle-like rods made up of highly crystalline cellulose. 

These structures are extracted from original cellulose fibers of bulk biomass materials (wood 

pulp, cotton etc.). Though, unlike in the case of CNFs, the isolation process of CNCs is 

chemical, using selective acid hydrolysis, usually sulphuric acid or sodium chlorite.5 

By exposing the raw cellulose to sulphuric acid, the long glucose chains undergo degradation 

at the non-crystalline disordered regions, while the inflexible crystalline domains of 

microfibrils are retained.35 As shown in Figure 4, controlled acid hydrolysis introduces sulphate 

half-ester groups onto the surface of the nanocrystals by esterification reaction of the cellulose 

macromolecules with the sulfate anions5, which then become deprotonated and negatively 

charged, when in neutral aqueous environment. The magnitude of the nanoparticles’ surface 

charge is expressed as ζ- potential. The numerical value of the potential indicates their stability, 

which originates from the electrostatic repulsion forces between the individual nanoparticles.36 

Figure 4: Cellulose with negatively charged sulphate half-ester groups on the surface 

CNCs are usually 3-20 nm in diameter and only ca. 100-600 nm long, meaning that they are 

considerably shorter than CNFs. The specific dimensions vary depending on their source, with 

tunicate CNCs typically the longest.5 In any case, CNCs are rigid structures with anisotropic 

shape, since their length is significantly bigger than their width. The shape anisotropy can be 
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quantified in form of ‘aspect ratio’, which is the ratio between the width and the length.5 These 

properties are crucial for their ability to self-assemble into liquid crystals37, which will be 

discussed further in Section 2.3.1. 

It is due to the rich intramolecular H-bonding network and the tight packing of the cellulose 

chains, that CNCs are strong and rigid with excellent mechanical properties. This can be 

exploited in form of reinforcements for many material applications.38-41 Their Young’s modulus 

along the nanocrystal’s axis is theoretically around 160 GPa42, while experimentally it was 

determined to be in the range of 60-100 GPa43 for cotton-based CNCs. The experimental values 

are comparable to these of Kevlar (85 GPa)44 and E-glass fiber (73 GPa)45, materials used to 

reinforce plastics. The reinforcing effect of rigid CNC structures is substantiated by the 

phenomenon called mechanical percolation46,47, describing the formation of complex network 

of rods, stabilized through H-bonds between the connected CNCs41. 

The majority of CNCs’ prospective applications aims to make use of their morphology, 

exploiting the possibility of structural alignment, in order to improve mechanical or thermal 

properties of materials. CNCs have therefore high potential for applications in composites, 

cosmetics48,49 or in medical field50. Moreover, because dried CNC films with cholesteric liquid 

crystals have photonic band (i.e. a frequency range where photons can’t be transmitted51), they 

also show promising optical properties for functional applications.49 
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2.3 Liquid crystals 

Solids are rigid structures with constituents fixed, due to their low kinetic energy, either in 

a long-range (crystalline solids) or a short-range order (amorphous solids). On the other hand, 

molecules and atoms in gases possess such a high kinetic energy, that any order is prohibited. 

In normal liquids, the constituents are closer than in gases, yet they retain their constant freedom 

of motion.52 Whilst crystalline solids are anisotropic materials, meaning that their properties 

vary with direction, amorphous solids, gases and regular liquids are isotropic and their 

properties do not change with direction. Interestingly, for specific liquids, under specific 

conditions, it is possible to achieve a state with short-range degree of molecular order that is 

called mesophase.53 

Mesophase is a thermodynamically stable state of matter53 and it is defined to be the 

intermediate between liquid (being fluid) and solid (with molecular order), with either 

translational or rotational molecular order, or both. Ordered fluid mesophases originate from 

non-polar or moderately polar organic compounds, or from certain amphiphilic organic 

compounds of geometrically anisotropic structural units.6 Since the compounds or units contain 

non-identical local structural regions, at which they can interact, they can self-assemble into 

liquid crystals. Therefore, the formation of short-ordered structures can be observed mainly due 

to the anisotropy of the molecular shape. By modifying the molecular structure, certain control 

over the LC phases can be achieved. The average orientational order of individual molecules is 

described by a direction, denoted as director, which follows the alignment of the molecular axis 

of the LC-forming compounds.54 

Based on the conditions for LC formation, two types are distinguished. Thermotropic liquid 

crystals are thermally induced and they are formed only by anisotropic molecules. On the other 

hand, lyotropic liquid crystals originate from anisotropic molecules in solvent, and they can be 

controlled by both, temperature and concentration.48 

Based on the orientational arrangement and the symmetry, liquid crystals can be categorized 

into three main groups: nematic, smectic and cholesteric mesophases. In nematic mesophases, 

the molecular long axes are aligned along a preferred direction, but the long-range order of the 

mass centers of molecules is lacking (Figure 5a).48 For smectic LCs, there are several classes, 

still, all of them show layered structure, which is due to the partial translational order of the 

molecules (Figure 5b and c). Smectic LCs however differ in the molecular orientation with 

respect to the layer normal. In cholesteric mesophases (Figure 5d), the LC structure is helical, 
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and it can be correlated to the arrangement of nematic LCs (that is why they are also denoted 

as chiral nematic liquid crystals), though only locally. The cholesteric structure shows periodic 

twisting of molecules, which are arranged in layers, having the director axis to rotate for each 

layer periodically.48 The light reflected by such crystals is dependent on the pitch size, which 

is the distance between the layers that go the full rotation (360˚) of the director.6 

 

Figure 5: Schematic representation of a) nematic order, b) smectic A order, c) smectic C order and d) 

cholesteric order 

In this project, the formation and the properties of lyotropic cholesteric liquid crystals are 

studied and exploited. 
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2.3.1 Liquid crystalline behavior of cellulose nanocrystals 

2.3.1.1 Lyotropic liquid crystallinity of cellulose nanocrystals 

In diluted CNC aqueous suspensions, the electrostatic repulsion among the negatively charged 

sulfate ester groups ensures that the CNC rods are well dispersed and randomly oriented. 

Naturally, charged CNCs have the tendency to minimize their electrostatics interactions.5 When 

the CNC concentration in the suspension exceeds the critical value, the rods’ shape anisotropy 

induces phase separation. This leads to the transformation of the initially isotropic liquid into a 

biphasic system including also anisotropic liquid crystalline regions and upon further increasing 

the concentration, completely liquid crystalline system is achieved.37 Since an aqueous 

environment is required for the liquid crystallinity, the CNC liquid crystals are denoted as 

lyotropic.6 

The critical concentration strongly depends on the CNCs’ shape and on the surface charge. The 

threshold concentration decreases with higher aspect ratio. Similarly to that, the critical 

concentration decreases with the increasing repulsive forces between the particles (i.e. with 

higher surface charge) and vice versa.55 For these reasons, the critical concentration value 

depends on the source, the synthesis conditions and the ionic strength.7 Upon increasing the 

particle concentration, the size of the isolated liquid crystalline domains grow, until a 

continuous liquid crystalline phase can be eventually obtained. 
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The self-assembly process generates microscopically ordered microdomains constituting of 

regularly arranged cholesteric liquid crystals (Figure 6), which are separated from the isotropic 

phase by sharp interface, when in biphasic region.56 The formation of the cholesteric mesophase 

is assumed to originate from the intrinsic chiral nature of cellulose.57 

The isotropic and the anisotropic phase differ in the orientation of the suspended cellulose 

nanoparticles. Since LC phases anisotropically refract light, they appear birefringent when 

observed under polarized optical microscopy (POM) with crossed polarizers (Figure 7).58 

Figure 6: SEM image of PHEMA-CNC-MNP nanocomposite (7.6 wt. % CNC; 0.31 wt. % MNP), after 

12 hours of equilibration on magnet before polymerized, depicts the aligned tactoids, which constitute 

of regularly arranged cholesteric liquid crystals of CNCs (displayed in the focus) 
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The phase-separation process of CNC suspensions, over gradually increasing cellulose 

concentrations, was studied by Ureña-Benavides E. et al.59. They determined the critical 

concentration for phase-separation of cotton-based CNC to be around 3.0 vol. %.  The viscosity 

of the suspension increased significantly between 7 - 10 vol. % and when observed with naked 

eye, the samples were thought to adopt fully cholesteric organization as they appeared 

birefringent. Yet, the POM still revealed presence of isotropic regions. Both Ureña-Benavides 

E. et al.59 and Lagerwall J. PF et al.49 have shown that filter-paper derived CNC suspensions of 

higher concentrations (around 15 vol. %) were highly viscous and a transition from liquid 

crystalline state to gel-like glassy state was observed. Lagerwall J. PF et al.49 have concluded 

that it results from the physical gelation phenomenon and that system of such high CNC 

concentrations can display only the degree of order, which the structure achieved to adopt prior 

to this transition. That is why the high viscosity of concentrated CNC suspensions is an obstacle 

for studies of the phase-equilibration behavior. 

  

Figure 7: POM image of PHEMA-CNC-MNP film (7.2 wt. % CNC and 0.3 wt. % MNP), equilibrated 

for 24 hours before polymerized, depicts birefringent anisotropic regions of CNC tactoids, which are 

sharply separated from the dark isotropic 

https://scholar.google.fi/citations?user=UwqvgH4AAAAJ&hl=en&oi=ao
https://scholar.google.fi/citations?user=UwqvgH4AAAAJ&hl=en&oi=ao
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2.3.1.2 Self-assembly and tactoids 

Resulting from the intrinsic chirality of cellulose molecules, CNCs have the ability to self-

assemble into left-handed helicoids, which then give rise to microdomains of regularly ordered 

nanoparticles. Such a self-assembly of CNCs is observed only when the concentration is 

sufficient.37 The initial liquid crystalline microdomains appear in form of discrete droplets, 

denoted as ‘tactoids’, showing specific fingerprint texture of periodic birefringent bands, 

spontaneously nucleating from the aqueous CNC suspension. The bands originate from the 

helical rotation of the layers and the distance between two neighboring bands is the distance 

between two layers, over which the director rotates 180˚, i.e. half-pitch. The pitch (full rotation 

360˚ of the director) determines the wavelength of the light that is reflected by such crystals.6 

The fingerprint pattern can be observed by POM under crossed polarizers. By increasing the 

CNC concentration49 or by allowing longer time for the suspension to phase separate, bigger 

tactoids with more birefringent bands are formed. The isotropic-to-chiral nematic phase 

equilibrium and the pitch size is also sensitive to the temperature, to the presence and to the 

nature of the counterions in the suspension.49 Eventually, when the tactoids are big enough, 

they can also grow by coalescence, meaning that smaller tactoids fuse to form larger ones 

(see Figure 8).60 

Figure 8: POM image of PHEMA-CNC-MNP film (7.4 wt. % CNC and 0.4 wt. % MNP) 
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As it can be seen in Figure 7 and Figure 8, chiral nematic structures of CNCs can be retained 

and visualized in form of solid films, by locking the LCs in the helical arrangement by drying 

a thin layer of suspension.37 Likewise, by embedding the nanoparticles in a polymer matrix, it 

is possible to capture cellulose liquid crystals within the material structure. Subsequent freeze 

drying of the material allows for visualization of individual CNCs within the tactoids by 

scanning electron microscopy (SEM), as it was done for the specimen in Figure 6. This is 

feasible because the helical arrangement of nanocrystals becomes trapped in the matrix, and so 

the crystalline structure does not collapse.60,61 

2.3.1.3 Magnetic response of nanocellulose liquid crystals 

CNCs are particles that manifest negative diamagnetic anisotropy.7 This means that the CNC 

nanorods have the ability to orientate perpendicularly to the direction of the external magnetic 

field, placing the cholesteric axis in the direction of the field.7,62 

It has been demonstrated that dilute suspensions of tunicate-derived CNCs start to respond to 

strong magnetic fields (7 T) already after few minutes.58 Even better than that, it has been 

proven that it is possible to align the cotton-derived CNCs using only relatively weak magnetic 

fields (0.56 T), over reasonable time scales. Yet, suspensions of high CNC concentrations are 

necessary, in order to achieve the alignment under low magnetic fields, as the Brownian motion 

of the nanocrystals effectively induces relaxation of the particles.7 

It is therefore evident, that CNCs from different sources have different properties, such as 

different aspect ratios (higher for tunicate CNCs over cotton21 - lower concentrations are 

sufficient), crystallinity (also higher for tunicate-based CNCs21) and surface charge (causing 

different diamagnetic susceptibility). This has significant implications on the behavior of chiral 

nematic suspensions of cellulose of different origins. 

In summary, having the possibility to control the CNCs’ orientation using magnetic field in a 

reproducible manner gives us a good platform for the development of novel CNC-based 

materials. Still, it would be useful to develop methods for alignment using smaller magnetic 

field strengths. For that purpose, we will use additional magnetic nanoparticles, to be discussed 

later. 
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2.4 Hydrogels 

Hydrogels are soft rubbery-like hygroscopic polymeric networks swollen with water. The water 

permeability and strong hydrophilicity makes them to possess particularly interesting 

properties, often compatible with of living tissues.63 Thus, when considering inert hydrogels, 

they represent attractive materials for biomedical applications such as matrices for regenerative 

medicine64 or cell encapsulation.65-67 Yet, when compared to other types of materials, synthetic 

hydrogels typically show rather weak mechanical properties.68 

Based on the nature of the hydrogel network, hydrogels can be either physical or permanent 

(also called as chemical). The former type consists of entangled chains, held together by 

secondary forces, while the latter is formed by covalent crosslinking of the network.67 

Moreover, hydrogels can show either homogeneous network mesh sizes or the meshes can 

involve heterogeneous size distribution, or even macroporous sizes. The level of their 

transparency depends on the nature of their morphology. While homogeneous gels are visually 

clear due to the absence of heterogeneities, macroporous hydrogels are typically not transparent 

(often opaque or even white), which is caused by the presence of large amount interconnected 

pores that scatter light. 

2.4.1 Poly(2-hydroxyethyl methacrylate) hydrogel 

Poly(2-hydroxyethyl methacrylate) (PHEMA) is a bioinert polymer made from vinyl monomer 

2-hydroxyethyl methacrylate (HEMA), their chemical structures are depicted in Figure 9. 

Wichterle and Lim63 were the first to suggest PHEMA to be suitable for bioapplications and 

only few years later Wichterle69 patented PHEMA hydrogel for soft contact lenses. 

Figure 9: Chemical structure of 2-hydroxyethyl methacrylate  

and poly(2-hydroxyethyl methacrylate) 
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HEMA monomer can be polymerized by various mechanisms, but for the purpose of this 

project, PHEMA prepared by free-radical photopolymerization at room temperature will be 

discussed, using water as solvent.70 Through this procedure, a soft, flexible, water-absorbing 

plastic is obtained. Besides the monomer, the polymerization mechanism also uses using 

ethylene glycol dimethacrylate (EGDMA) as crosslinker and photoinitiator, both displayed in 

Figure 10. Photoinitiator is a photoactive molecule that absorbs energy of photons. Upon the 

exposure to the electromagnetic radiation, with wavelengths in the UV range, its bonds undergo 

dissociation and the decomposition process gives rise to radicals. These primary radicals then 

attack either the HEMA or the crosslinker monomers, initiating the polymerization reaction. 

Following the scheme in Figure 11, the growing process of the polymer proceeds by repeated 

addition of HEMA or EDGMA monomers onto the growing center, while after each step, the 

growing radical center moves onto the last unit.71 

Figure 11: Scheme of photo-initiated radical polymerization, where the photoinitiator molecule is 

shown as a yellow ball, the HEMA monomers and EGDMA molecules are in grey or black, and the 

primary radical/growing center is marked with the red star 

In case of polymerization in solution, if the water content is above the equilibrium capacity of 

the hydrogel, a phase-separation process takes place, giving rise to pores within the structure.63 

But also other factors influence the degree of the porosity (see Section 2.4.). 

HEMA monomer and the photoinitiator are fully water-soluble. And even though EGDMA has 

low solubility in water, the presence of soluble HEMA helps the dispersion of the crosslinker 

Figure 10: Chemical structure of EGDMA used as crosslinker and 

2-hydroxymethyl-2-methylpropiophenone used as initiator 
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in the aqueous polymerization medium.66 However, over the polymerization process, the 

initially soluble components create water insoluble, yet hydrophilic, PHEMA network.72,73 This 

sudden change in solubility of the environment induces phase separation between the 

macromolecules and water, causing the network to self-assemble and form voids.67 Visually, it 

can be observed when water content is around 45 wt. %,  because the initially transparent 

solution turns turbid. When the water content is increased further, eventually a rather non-

transparent amorphous hydrogel is acquired. The water molecules are either ‘bound’ or ‘free’ 

within the pores. The water is absorbed into the interstitial space and the fraction therefore 

determines the absorption capacity of the hydrogel.67 Scanning electron microscopy can be used 

to study the morphology of the hydrogel structure. 

2.4.2 Hydrogel nanocomposites 

Nanocomposites are materials consisting of homogeneously dispersed nanoscale 

reinforcements within a matrix. To overcome the mechanical weakness of hydrogels, it has 

been  suggested that the incorporation of molecules, which can adopt certain degree of 

molecular order, could lead to the enhancement of their mechanical properties.74 This could be 

achieved for instance by copolymerization with crystalline or liquid crystalline moieties. 

2.5 Magnetic nanoparticles 

Colloidal suspensions of magnetic nanoparticles (MNPs) in a carrier liquid are called 

ferrofluids. Depending on their chemical composition and nanoscale dimensions, magnetic 

nanoparticles can have either permanent magnetic moment or, when at a very small nanoscale 

dimensions (ca. 100 Å), the individual particles represent single magnetic domains.75 The latter 

case renders them the outstanding property of being superparamagnetic. This means that 

without the presence of external magnetic field, they do not show any magnetic moment, but 

they display a large magnetic response when exposed to magnetic field.76 Yet, the size of the 

nanoparticles is critical for the magnetic properties of the ferrofluid. Undesirably, the magnetic 

interactions promote their tendency to agglomerate especially when in vicinity of an external 

magnetic field gradient. Thus, to assure the colloidal stability of magnetic fluids, the prevention 

of their aggregation is required. For this reason, the particles are functionalized with molecular 

ligands or surfactants so that the formation of irreversible aggregates is effectively hindered. 

Moreover, such coatings also enhance the chemical stability, or they may contain functional 
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groups which enable bonding with specific molecules. Typical coating layers are composed of 

small molar mass organic molecules (such as citric acid77), polymers (such as dextran78, PEG79) 

or inorganic compounds (silica80). These species adsorb on the nanoparticles surface either by 

physical interaction (e.g. Coulombic attraction or van der Waals forces) or through chemical 

bonds with the active sites. The desired coatings are obtained by appropriate synthetic 

procedures81 while better stability can be achieved with thicker coatings due to bigger spacing 

between the magnetic domains. 

Due to the MNPs’ distinguished properties, they are used in variety of applications ranging 

from audio or optics devices to biotechnology or biomedicine, for instance in loudspeakers82,  

biomolecule separation83, in targeted drug delivery81, in cell labeling or in magnetic resonance 

imaging (MRI)84, where they act as contrast agents. Most of these applications take advantage 

from the fact that iron oxide MNPs are rather non-toxic, chemically stable, uniform and well 

dispersed. In the proximity of magnetic field, the superparamagnetic grains arrange themselves 

along the direction of the external field so that their moments align and a chain-like structure is 

created85. Such arrangement of magnetic nanoparticles is exploited in this project. 

Iron oxide-based magnetic nanoparticles are common. It is because they greatly withstand 

oxidizing conditions, they have good magnetic properties and on top of that, they have low 

toxicity. Their negligible negative effects on organism have also been recognized by the Food 

and Drug Administration (FDA) and the European Medicines Agency (EMA), and so the use 

of magnetite MNPs has been successfully approved in the medical sector.81 
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2.6 Nanocomposite materials 

Nanocomposite materials are defined as hybrid materials where at least one of the components 

is of nanoscale. Therein it is aimed that the properties are significantly improved from those of 

the original materials, i.e., display synergy leading to enhanced mechanical performance.86 

They are often  anisotropic, meaning that their physical properties vary along different axes, 

both in natural and man-made materials.86,87 

More specifically related to the present work, the presence of cholesteric liquid crystals can 

lead to outstanding mechanical properties of certain tissues and biological nanocomposite 

materials.48,88 It is related to the helical structure, that is present within the matrix, which can 

dissipate the fracture energy and therefore provides the high fracture toughness for the material 

(lobster cuticle89or dactyl club90). Tatsumi et al.91 and MacLachlan et al.60 have shown that 

liquid crystalline helical structures of CNCs can be successfully retained in certain polymer 

matrices by conducting photopolymerization of precursor aqueous suspensions.49 Also, by 

incorporating the CNC tactoids within a polymer matrix, the complex structure of natural very 

tough materials (such as nacre) are mimicked, which may lead to the development of novel 

functional polymer nanocomposites of desired mechanical properties. Moreover, in another 

publication, MacLachlan et al.92 have shown that when exposing the CNC suspensions doped 

with MNP to external gradient magnetic fields, the phase separation process can give discrete 

liquid crystalline tactoids with chiral nematic bands unidirectionally aligned along the magnetic 

field. 

By combining the concepts mentioned above, novel cellulose-based nanocomposite hydrogels 

with of controllable mechanical properties could be designed. 
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 Aims 

In this research we aimed to explore control over the orientation of liquid crystalline 

microdomains of cellulose nanocrystals and subsequently incorporate such ordered system into 

soft hydrogel material. The intention is to design nature-inspired nanocomposite material with 

controllable mechanical properties, which would be non-toxic and biocompatible. 

Firstly, the ability of cotton-based nanocellulose to self-assemble into liquid crystals (LC) by 

phase separating in aqueous environment will be analyzed and the possibility of controlling the 

orientation of LC using superparamagnetic nanoparticles by weak external magnetic fields will 

be exploited. The ordered mesophases of CNCs will be then embedded in PHEMA matrix by 

conducting UV-induced polymerization of the precursor aqueous suspension. 

The extent of phase-separation process of nanocellulose and the orientation of the anisotropic 

phase in the system would be determined by the synthesis conditions and monitored using 

optical microscopy. The formation of ordered and aligned regions in the hydrogel specimens 

would be examined by different electron microscopy techniques. Ultimately, the conceivably 

reinforcing effect of the periodically arranged cellulose nanocrystals would be investigated 

through tensile measurements. Moreover, the varying cellulose distribution could lead to 

differences in water uptake between various hydrogels. 

In this project, the focus is on specific features of nanocomposite hydrogels which contain 

liquid-crystalline structures and superparamagnetic nanoparticles. 
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 Experimental 
4.1 Chemicals  

Sulphuric acid, ferric chloride hexahydrate, ferrous chloride tetrahydrate, ammonium 

hydroxide, nitric acid (68-70%), diethyl ether, sodium citrate as a stabilizer, acetone, 

2- hydroxyethyl methacrylate (HEMA) as a monomer, ethylene glycol dimethacrylate 

(EGDMA) as a crosslinker and 97% 2-hydroxymethyl-2-methylpropiophenone as a 

photoinitiator were purchased from Sigma Aldrich and used without any further purification. 

Deionized Milli-Q (MQ) water was obtained from Milli-Q water system, Millipore. 

4.2 Preparation of cellulose nanocrystals  

Whatman filter paper Grade 1 (Cat no 1001125) was cut into 1cm2 squares and then ground 

using the Wiley mill to obtain 45 g of paper powder. The powder was mixed together with 

848 mL of a 56 % sulphuric acid in a round bottom flask with a stirring rod. The flask with 

suspension was placed in a 45 °C water bath for 45 minutes, stirring at 45 rpm inducing the 

degradation of the cellulose fibers at the amorphous regions. Subsequently, the milky solution 

was diluted with 6 liters of MQ water in a beaker and was let to sediment overnight. The 

supernatant was then removed, the white thick sediment below was divided into tubes and 

centrifuged at 7000 g for 20 min at room temperature. The created supernatant was again 

discarded, the CNC sludge was slightly diluted with water and centrifuged again at 1000 g for 

45 minutes at room temperature. Again, the supernatant was carefully removed and the white 

thick solution was dialyzed against MQ water for several days, until there were no white clumps 

present and the conductivity of the solution was below 5 µS/cm. Finally, the cloudy liquid was 

filtered under vacuum using Buchner flask and Whatman paper no 532. 

A stable cellulose suspension of approximately 5 wt. % was obtained. It was further 

concentrated using rotary evaporator under 65 °C water bath, until the concentration reached 

14 wt. %. The concentration process caused aggregation of the crystal rods and thus it had to 

be sonicated for 10 minutes to disperse the nanoparticles and to obtain a homogeneous 

suspension. 
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4.3 Preparation of magnetic nanoparticles 

The water-based magnetic fluid was prepared by a co-precipitation method from ferric (FeCl3) 

and ferrous salt (FeCl2) in alkali medium (ammonia hydroxide) and sodium citrate was used as 

stabilizer for the nanoparticles. The process followed the modification of protocols of 

Massart, Rene93 and Talbot, Delphine, et al.94 

The magnetite was prepared by dissolving 43.25 g FeCl3·6H2O and 15.9 g FeCl2·4H2O in 

1440 ml MQ water and fast addition of 160 ml precipitant agent NH4OH followed. First, the 

solution was vigorously stirred over 5 minutes at 400 rpm, and afterwards the supernatant was 

discarded by decantation using a permanent magnet that enabled the control of the precipitate. 

Subsequently, 39 mL of HNO3 (68-70 %) were added onto the black precipitate, to oxidize the 

nanoparticles, and the volume was then filled up to 300 mL by MQ water. The solution was 

stirred at 400 rpm for 30 minutes and decanted with magnet. The black particles were washed 

three times with acetic acid and with diethyl ether, then 110 ml of distilled water were added, 

and the remaining ether was removed by heating up the solution to 40 °C. The particles were 

prevented from the aggregation by the addition of 3.9 g of sodium citrate and stirred for 

30 minutes at 80-100 °C. At room temperature, the solution was again washed twice with 

acetone and twice with ether, then re-dispersed with the desired volume of water and again, 

remaining diethyl ether was evaporated. The chemical reaction of the MNPs’ synthesis is given 

in Figure 12. Finally, filtration using 0.2 µm filter paper was carried out and the resulting 

concentration was determined gravimetrically. 

Figure 12: Scheme showing the reaction mechanism of citrate-stabilized magnetite nanoparticles from 

an aqueous mixture of iron(III) and iron(II) chloride salts109 



22 

4.4 Preparation of poly(2-hydroxyethyl methacrylate) 

composite hydrogel 

The hydrogel samples containing CNCs and MNPs were prepared by UV initiated radical 

polymerization of monomer mixtures. Also, a reference sample without any CNCs was 

prepared. The sample codes and their preparation conditions are indicated in Table 1. 

The CNC suspension (14 wt. %) was mixed with HEMA stock solution (monomer, crosslinker 

and initiator) and with MNP dispersion (84 wt. %). The specific contents of chemicals for each 

type of sample are listed in Table 2. The dispersions were then thoroughly sonicated, until no 

clumps were observed. Volume of 900 µL was transferred into quartz glass cuvette, sealed with 

Teflon tape, purged with Argon, carefully closed and taped to minimize the content of oxygen 

inside the flask, which would inhibit the polymerization. Subsequently, the cuvette was 

positioned horizontally as shown in Figure 13, to enable the mixture to cover one full side, to 

give the desired rectangular shape of the thin film. 

Table 1: Denotation of individual specimens, their composition and the preparation parameters 

Table 2: Hydrogel nanocomposites from different starting mixtures –composition in weight percentage 

  

sample name / 

conditions 

starting solution TIME allowed to 

form tactoids 

(hours) 

alignment on 

Magnet 
PHEMA&MNP =  

Hydrogel matrix 
CNC 

H X  0  

HC X X 0  

HC_4h X X 4  

HCmg_4h X X 4 X 

HC_15h X X 15  

HCmg_15h X X 15 X 

sample/chemical 
HEMA  

wt. % 

EDMA 

 wt. % 

initiator 

 wt. % 

Pure CNC 

wt. % 

 wt. % 

pure MNP 

wt. % 

 wt. % 

water 

 wt. % 

H 39.82 0.11 0.04 - 0.73 59.31 

HCmg_4/15h 39.82 0.11 0.04 8.28 0.73 51.02 
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Samples HC and H, hydrogels with or without CNCs, respectively, were exposed to UV directly 

after filling up the cuvette. Samples HC_4h and HC_15h were allowed to equilibrate on flat 

surface for either 4 or 15 hours, before placing into the UV lamp. Whilst specimens denoted as 

HCmg_4h and HCmg_15h were placed for either 4 or 15 hours onto a rectangular magnet, before 

polymerizing with UV (Figure 13). All the suspensions were photopolymerized over 3 hours in 

a UV chamber and thin films were obtained. 

The formed hydrogel films were then carefully removed from the cuvette mold using a spatula, 

washed in water over several days, to remove all the unreacted components and stored in MQ 

water at room temperature until use. 

The permanent magnets used in this projects were Neodymium N40 (NdFeB) with nickel-

plated coating, cuboid in shape, with the longitudinal direction almost equal (only few 

millimeters longer) to the height of the cuvette (see Figure 13). As depicted in Figure 14, 

the individual magnets created inhomogeneous magnetic fields ranging from 65 mT in 

the center, up to 500 mT on the sides. 

Figure 13: Reaction mixture placed horizontally on a rectangular magnet to allow alignment of the 

CNC tactoids 

Figure 14: The strength of the magnetic field produced by magnets which were used in this project 
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4.5 Characterization 

The morphology and the surface charge of CNCs and MNPs was studied with DLS and TEM. 

The tactoids’ arrangement within the matrix and the morphology of the final nanocomposite 

hydrogels was analyzed using POM and SEM. The mechanical properties were studied by 

dynamic mechanical analysis (DMA) that provided information on the tensile properties. Also, 

the water uptake of specimens was evaluated. 

4.5.1 Dynamic light scattering and zeta (ζ) potential 

Dynamic light scattering (DLS) and zeta (ζ) potential measurements were done using a Malvern 

Zetasizer Nano ZS90, Malvern Instruments. Polystyrene cuvettes (product no. DTS0012, 

Malvern Instruments) and folded capillary zeta cell cuvettes (product no. DTS1070, 

Malvern Instruments) were used for DLS measurements and for zeta potential measurements, 

respectively. The suspension concentrations (both CNC and MNP) were 0.01 wt. % in 

1.0 mM NaCl, reducing the repulsive interaction between the particles.95 Measurements were 

made at room temperature. 

4.5.2 Vibrating sample magnetometry 

The vibrating sample magnetometry (VSM) was used to examine the superparamagnetic 

properties. The hysteresis loop of the MNPs was obtained by using a Quantum Design PPMS 

VSM vibrating sample magnetometer. The measurement was performed using standard 

polypropylene cups containing 5–7 mg of the powder sample of MNPs. The vibrational 

frequency and amplitude were set to 40 Hz and 1 mm, respectively, between -10 000 and 

10 000 Oe (-1 T and 1 T) at 300 K. 

  



25 

4.5.3 Transmission electron microscopy 

Transmission electron microscopy (TEM) imaging of CNCs and MNPs was carried out using 

JEM-2800 (JEOL) high-resolution TEM microscope at 200 kV.  

First, the TEM flat 200 mesh copper grids with holey carbon support film (Electron Microscopy 

Sciences) were plasma cleaned (30 s, Gatan Solarus 950) in order to remove the impurities of 

the surface and to ensure perfectly clean and uncontaminated conditions for the analysis. Small 

volume (3 µL) of highly diluted suspension of CNC or MNP (c = 0.01 wt. %) was pipetted on 

the clean grid and incubated for 1 minute at RT so that nanoparticles could attach to the grid. 

Subsequently, the water was gently blotted using the edge of a filter paper and allowed to 

completely dry under ambient conditions. 

4.5.4 Scanning electron microscopy 

The formation of CNC liquid crystals and the hydrogel structure was investigated by scanning 

electron microscopy (SEM). Thin specimens cut from the prepared hydrogels were first dried 

on air and then they were snap frozen by immersion into liquid nitrogen and subsequently 

lyophilized. The freeze-drying process provided a suitable preparation process for 

the investigation of the liquid crystalline and hydrogel morphologies. To be able to observe 

the inner structure, the arrangement and the alignment of the CNC tactoids, a section of 

the dried gel was cut with a scalpel or broken off and mounted on a metal stub with a carbon 

tape so that the desired part could be analyzed. The sample was coated with 6 nm thick layer of 

Pt/Pd alloy using a Leica EM ACE600 high vacuum sputter coater prior to imaging to ensure 

conductivity of the sample and to minimize the charge buildup on the surface. 

The SEM images were obtained using Zeiss Sigma VP scanning electron microscope at 1.5 kV 

acceleration voltage. 
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4.5.5 Polarized optical microscopy 

Polarized optical microscopy (POM) analysis was conducted using Leica DM4500P high-end 

polarization microscope with transmitted light using crossed polarizers combined with a Canon 

EOS 80D DSLR camera. 

The POM samples were prepared by placing a small volume of the analyzed suspension inside 

a Secure Seal imaging spacers (Grace Bio-Laboratories inc.,USA), which were attached on 

a microscope glass slide. The suspensions were then protected with a cover glass and 

the specimen was let still to allow the formation, growth and possible alignment of liquid 

crystals. 

In the case of HEMA-CNC-MNP suspensions, the samples were also polymerized by placing 

into the UV lamp for 3 hours before studying by POM and the effect of the presence of 

superparamagnetic specimens on the behavior of the liquid crystals was studied. 

4.5.6 Tensile test measurements 

TA Instruments Q800 Dynamic Mechanical Analyzer (DMA) was used to measure mechanical 

properties of the studied hydrogel nanocomposites. Used ramp force of 0.5 N/min at RT and at 

35 % RH. Stress-strain measurements were made with a tension fixture measured as a function 

of several parameters: cellulose content, size and alignment of tactoids by recording stress and 

strain values over the measurements. Initial experiments were done on rectangular shaped 

specimens. This shape has however shown to be inappropriate to study our materials. For that 

reason, the hydrogel samples were cut into bone-like shapes using manually curved razor blades 

as the cutting die (Figure 15). The bone-like shape ensures that when tensile force is applied, 

the stress preferably concentrates in the middle of the sample. Such stress concentration results 

in higher probability that the sample will rupture only when reaching maximum of its possible 

tensile loading and the failure would occur in the narrow central region of the sample. If the 

specimen ruptures elsewhere (at the shoulder or right at the place of attachment), the breakage 

was most probably caused by an imperceptible cut of the material, which occurred during the 

sample attachment and the observed stress values do not necessarily represent its maximum 

loading possible. For that reason, all the slipped samples and the samples that broke near the 

clamp, are omitted from the final results.  

Before each measurement, the samples were removed from water 4 minutes before the 

experiment to ensure well controlled equilibrium-swollen state for all of the analyzed samples. 
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Over this time, the dimensions (width and thickness) of the gauge part were measured and the 

specimens were then carefully mounted onto the apparatus attempting to avoid pre-cutting of 

the soft sample during the attachment into clamps. After precisely 4 minutes from removal from 

water medium, the specimens were subjected to a stretching force, until the material fractured. 

Each measurement was repeated successfully at least four times. From the stress-strain curves 

obtained, the stiffness of the material, ultimate tensile strength, yield strength and elongation 

were determined. In our experiment, mainly Young’s modulus (E) was investigated in order to 

evaluate the effect of size and orientation of liquid crystals on the stiffness of the material. The 

numerical value E is determined from the early (elastic) region, where the stress is proportional 

to the strain and it defines the constant of proportionality, i.e., the slope of the curve. The 

differences in ultimate strength (the maximum possible stress before the ruptures) for different 

samples are also briefly discussed. However, other parameters could not be reliably determined 

from the measured data as the values from each experiment differ significantly due to the 

problems with mounting and attaching the samples. 

In case of HCmg_4h and HCmg_15h specimens, the load was applied in the direction of the 

orientation of tactoids, which were embedded in the hydrogel matrix. 

  

Figure 15:Specimen preparation for tensile measurements 
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4.5.7 Water content 

To obtain the water content of hydrogels, firstly, the weight (W0) was measured after 4 minutes 

equilibration on air, in order to simulate the conditions under which the tensile strength 

measurements were conducted. The specimens were then placed into an oven at 40 °C. The 

final weight (Wx) of the dried samples was detected after 24 hours of drying. The mean free-

water content (meanH2O) for each type of sample was calculated according to the Equation 1. 

mean𝐻2𝑂 =

(

 1 −

∑ 𝑊𝑥𝑖

𝑁

𝑖=1

∑ 𝑊0𝑖

𝑁

𝑖=1 )

 ∗ 100 (1) 

where  meanH2O  is average free-water content after 4 minutes of equilibration (%) 

  N  is total number of measurements 

  Wx  is final weight of the dried sample (mg) 

  W0  is weight of the wet sample after 4 minutes of equilibration (mg) 

And the standard deviation for each sample type was calculated using the Equation 2. 

s =
√
∑ (𝑥𝑖 −mean𝐻2𝑂)

2𝑁

𝑖=1

𝑁 − 1
 (2)

 

where  s  is standard deviation of free-water concentration (%) 

xi is free-water content after 4 min of equilibration, sample i (mg) 

meanH2O  is average free-water content after 4 minutes of equilibration (%) 

N  is total number of measurements 
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 Results and discussion 
5.1 Characterization of cellulose nanocrystals 

According to DLS, the size of the spherical particles, which have the same diffusion coefficient 

as CNC rods, was determined to be 164 nm. The ζ-potential of CNCs was detected to be 

−41 mV (Figure 16). Because the DLS measurements were repeated using the same sample 

several times, but the results have not changed over time and because of the high negative ζ -

potential value, it was safe to conclude that the prepared CNC particles are colloidally stable.  

Figure 16: a) Size of a sphere that moves in the same manner as CNC; 

b) Zeta potential of CNC nanorods 
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The TEM image in Figure 17a depicts the CNC nanorods. By conducting a TEM image 

analysis, the mean length and the mean width of the cotton-based CNCs was determined to be 

200 nm and 40 nm (Figure 17b and Figure 17c), respectively. The measured dimensions are in 

accordance with the literature values for cotton-based CNCs (5-10 nm in width and 100-300 nm 

long).5,96 

 

Figure 17: a) TEM image of CNCs; b) average distribution of lenghts of a CNC;  

c) average distribution of the widths of a CNC 
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5.2 Characterization of magnetic nanoparticles 

According to DLS and ζ-potential measurement, the citrate-coated superparamagnetic 

magnetite (Fe3O4) nanoparticles depicted on schematic diagram in Figure 18 are around 20 nm 

in diameter and their ζ-potential is around -10 mV (Figure 19). Since the DLS measurements 

were repeated several times using the same sample, but the results did not change over time, it 

can be concluded that no aggregation or sedimentation has taken place and the particles are 

colloidally stable. 

The TEM image in Figure 20a depicts the individual MNPs and no significant aggregation is 

observed. From TEM image analysis, the diameter of the MNP was determined to be 7 nm 

(Figure 20b). 

Figure 19: a) Size of the Rh of the MNP; b) Zeta-potential of the MNP 

Figure 18: Citrate-coated magnetite nanoparticles 
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Figure 20: a) TEM image of MNPs; b) size distribution of the MNP’s diameter obtained by TEM-

image analysis 

VSM was used to measure the magnetic properties of MNPs. This method is based on the 

oscillation of sample in a uniform magnetic field. The sample vibration induces voltage in the 

detection coils, providing information on the magnetic properties of the sample.97 For our 

MNPs, the measurement provided a curve with no observable hysteresis (Figure 21). This 

indicates that immediately upon the removal of the external magnetic field, their average 

magnetization drops to zero and thus no residual magnetism remains in the particles. This is an 

important property of our particle, because if there was any remanent magnetization detected 

after removing the magnetic field, it would have caused the MNPS to aggregate.98 The result 

of the VSM analysis therefore confirms that our MNPs are superparamagnetic. 

Furthermore, over the duration of the project, no observable sedimentation or modification of 

the particles was observed. Thus, we can confirm that the MNPs retained their stability. 
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Figure 21: Magnetic hysteresis of MNP at room temperature 
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5.3 Preliminary experiments 

Firstly, the formation of chiral nematic crystalline structures from aqueous suspension, when 

containing sufficient amounts of CNCs, was confirmed and analyzed using POM. In general, 

when a liquid crystalline mesophase is analyzed by POM, the anisotropic regions show 

birefringence while the isotropic regions appear black under crossed polarizers. Specifically, 

for cholesteric liquid crystals, the growing microdomains appear as optically anisotropic ovals 

(tactoids), with bright birefringent bands in dark isotropic background. As the equilibration time 

or concentration increases, more CNCs undergo the self-assembly process, the ovals grow 

(increase in the number of bands), which indicates the formation of larger liquid crystals. 

Figure 22 depicts the individual oval tactoids with birefringent bands. These features have 

formed in our CNC suspension (cCNC=7.9 wt. %) after 24 hours of equilibration on a glass slide 

and the bands depict the characteristic fingerprint structure of cholesteric LCs of CNCs. Thus, 

it can be successfully confirmed, that the in-house prepared sulfuric acid-hydrolyzed CNC 

suspension exhibits chiral nematic liquid crystalline nature when above critical concentration. 

Figure 22: POM image of CNC suspension (7.9 wt. %) after 24 hours of equilibration 
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As mentioned previously, with longer phase-equilibration, the LCs grow in size. The liquid 

crystalline film depicted in Figure 23 was achieved after allowing 22 days of equilibration to a 

CNC aqueous suspension (cCNC=7.9 wt. %). 

Furthermore, it was observed that the equilibration conditions determine the tactoids’ behavior. 

Firstly, the effect of the presence of external magnetic fields on CNC&MNP specimens 

(7.7 wt. % of CNCs & 2.05 wt. % of MNPs in water) was observed. As depicted in Figure 24, 

randomly oriented tactoids form when the aqueous solution is let to equilibrate without the 

presence of any external fields. However, from Figure 25, it can be concluded that when the 

same system is exposed to a constant magnetic field (strength ranging between 65 mT and 

500 mT, see Section 4.4) over the same equilibration time, majority of the liquid crystals grow 

oriented along the field. The tactoids’ alignment is indicated by the parallel orientation of the 

tactoids’ bright bands, which are arranged along the direction of the external magnetic field. 

  

Figure 23: POM image of CNC aqueous suspension (7.9 wt. %) after 22 days of equilibration 
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Figure 25: POM image of CNC-MNP suspension (7.7 wt. % & 2.05 wt. %) after 48 hours 

equilibration under a magnetic field 60-500 mT 

Figure 24: POM image of CNC-MNP suspension (7.7 wt. % & 2.05 wt. %) after 48 hours 

equilibration 
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The phenomenon of unidirectionally aligned CNC tactoids could be justified by the 

incorporation of MNPs within the CNC phase. This has been recently thoroughly studied by 

MacLachlan et al.92, who also showed that external magnetic field drives the orientation of the 

CNC chiral nematic bands. The effect of magnetic field drives the dipole-dipole arrangement 

of the magnetic structures to form chains, meanwhile the CNCs are undergoing the self-

assembly process. Since the MNPs are also present within the chiral LC regions, they inaugurate 

the ‘re-rotation’ of tactoids so that the strings of MNP are well aligned along the field, causing 

the LCs to become aligned, too (see Figure 26). Also, by comparing the tactoids’ size in  

Figure 25 and Figure 24, the LCs that formed in the presence of the magnetic field were 

significantly bigger than those that were formed freely over the same period of time. This 

implies, that by exposing CNC&MNP aqueous systems to magnetic fields, besides achieving 

unidirectional alignment of LCs, the growth is enhanced as well. 

It is known that the anisotropic liquid crystalline phase has a higher density than the isotropic 

phase.92 This behavior has also been observed in our systems. When our CNC dispersions were 

allowed to phase separate under static conditions, the tactoids did not remain uniformly 

distributed throughout the whole volume of the material. While the small nucleating LC 

microdomains were detected in the upper part of the material, the bigger tactoids sedimented at 

the bottom. And so, a ‘gradient material’ with a systematic LCs’ size distribution was obtained. 

This arises from the higher density of self-assembled CNC regions and it can be explained by 

the effective packing of cellulose rods, in comparison to the lower density of the isotropic phase. 

The more CNCs are packed closely together, the heavier the phase is and the higher tendency 

to sediment it displays.92 That is why the bigger tactoids are found deeper in the material, while 

Figure 26: Scheme of CNC-MNP suspension tactoid alignment in magnetic field 

a) no magnetic field allows random tactoid orientation, b) when magnetic field of the direction of the 

arrow, the tactoids become aligned parallel to the magnetic field due to MNP orientation effect 
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the smaller ones remain in the upper part. This phenomenon was quantified by POM image 

analysis and the collected values are depicted in Figure 27. The plot in  

Figure 27a shows that in the specimen, which was equilibrated for 30 minutes, the average 

number of birefringent bands in tactoids located at the top of the film was two bands, while the 

size of an average tactoid found at the bottom was 2.5 bands. Similarly, as seen in Figure 27b, 

after allowing the tactoids to grow over 2 hours, the top tactoids had 3.5 bands in average, while 

the sedimented tactoids had more than four bands. 

Figure 27: Comparison of tactoids' size when analyzed from top or from bottom. 

 a) After 30 minutes of equilibration, b) After 120 min of equilibration 

This analysis was done by changing the focus distance of the optical microscope. When moving 

the objective lens towards the film specimen, the first sharp tactoids that appeared were those 

small tactoids on top of the film. As the lens was positioned closer to the film, the last tactoids 

that were in focus, before the whole picture turned blurry, were the biggest ones at the bottom 

of the film. 
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Example of images that provided data for the plots in Figure 27 are displayed in Figure 28. 

5.4 SEM Characterization 

If the CNC concentration is above the critical value and if the time allowed for phase separation 

(i.e. equilibration) is long enough, discrete liquid crystals trapped inside a hydrogel matrix can 

be observed under SEM (see Figure 29). As depicted in Figure 30, under higher resolutions, the 

cholesteric left-handed helical arrangement of individual CNC particles can be visualized. 

Figure 28 POM images of CNC tactoids formed in film of nanocomposite hydrogel after 120 min of 

equilibration on magnet and subsequent polymerization of the stockHEMA-CNC-MNP suspension 

(7.6 wt. % CNC and 0.5 wt. % MNP) 

a.) Observed from top, b.) Observed from bottom of the glass slide 

Figure 29: SEM image of a CNC tactoid doped with MNPs embedded in PHEMA matrix 
(7.63 wt. % CNC; 0.31 wt. % MNP) after 3 hours equilibration on magnet 
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When studying the morphology of our nanocomposites, the increased equilibration time 

allowed for the formation of bigger LC domains. This can be seen when comparing the tactoid 

size from HC_4h to HC_15h (Figure 31 to Figure 33, non-aligned), or HCmg_4h to HCmg_15h 

(Figure 32 to Figure 34, aligned). 

Figure 30: SEM image of individual cellulose nanocrystals in chiral nematic arrangement 

Figure 31: SEM image of tracks of unaligned CNC tactoids in HC_4h specimen  
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Also, it was confirmed that besides the equilibration time, also the presence of external 

magnetic field enhances the phase separation process. Thus, when SEM images from HC_15h 

(Figure 33) and HCmg_15h (Figure 34) specimens are compared, not only they differ in 

orientation of the microdomains, but also the average size of LC domains in HCmg_15h is bigger 

than in HC_15h. 

Figure 33: SEM image of unaligned CNC tactoids in HC_15h specimen 

 

 

1 

Figure 32: SEM image of aligned CNC tactoids in HCmg_4h specimen 
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5.5 Tensile strength measurements 

Initially, the tensile strength properties were analyzed on rectangular specimens by conducting 

uniaxial extension tests. However, all the studied samples broke at the grip and so the collected 

data failed to show the properties of the actual material at the maximum load. Similarly, despite 

the fact that great number of measurements for each batch was carried out, the results were still 

greatly scattered, failing to provide any reasonable conclusion on how the presence, the size, or 

the orientation of cellulose tactoids affects the mechanical properties of the PHEMA hydrogel. 

On the other, bone-like shaped specimens showed to be more appropriate for testing because 

more of the analyzed samples ruptured either in the middle section, or not at the place of 

attachment, indicating that the stress concentration took place in the desired region. In addition, 

because all the measurement gave such shapes of stress-strain curve that only one tangent point 

is found for the secant line, it can be concluded that the samples started flowing at one specific 

location99, at which the material resistance decreases so that the failure eventually takes place 

in this spot. 

All the average stress-strain curves displayed in this section were obtained from the individual 

tensile tests of relevant bone-shaped hydrogel samples. All the original tensile curves, showing 

also the failed measurements (slipped samples and samples that broke near the clamp), are 

Figure 34: SEM image of aligned CNC tactoids in HCmg_15h specimen 
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shown in Figure 46 - Figure 51 in Appendix 1, but only the successful measurements were 

included in the final analysis. 

First, the effect of doping PHEMA with nanocrystalline cellulose was studied. Figure 35 

displays the comparison of the average stress-strain curves of H and HC specimens, PHEMA-

MNP hydrogels and PHEMA-MNP-CNC hydrogels with randomly dispersed nanocrystals, 

respectively. 

From previous studies, the incorporation of CNCs into the polymer matrix should enhance the 

resistance of material to external forces100 through load-transfer mechanism between the soft 

and the rigid phase87,101. Figure 35 confirms this claim.  

Figure 35: Average stress-strain curves for PHEMA-MNP ‘H’ specimens (in black)  
and PHEMA-MNP-CNC ‘HC’ specimens (in red) 
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Since the slope of the initial region of the HC curve is slightly steeper than that of H, it signifies 

that the presence of randomly distributed CNCs enhances the stiffness of the material, 

i.e. increase in Young’s modulus, resulting from the phenomena of mechanical percolation.46,47 

Also, the ultimate strength of the cellulose nanocomposite material HC appears to be more than 

double in comparison to pure PHEMA, H specimen. Yet, this observation is not necessarily 

reliable as the variability of the collected data is significant. The comparison of the Young’s 

moduli and Ultimate Strengths are depicted in Figure 36 and in Figure 37, respectively. 

Figure 36: Average Young's modulus for each type of hydrogel nanocomposite 

Figure 37: Average Ultimate strength for each type of hydrogel nanocomposite 

The numerical values of the average Young’s moduli, the average ultimate strengths of the 

analyzed specimens and the corresponding standard deviation values are summarized in Table 3 

and in Table 4, Appendix 1. 
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In case of nanocomposites, the applied load is shared between the weak matrix phase and the 

reinforcements.87 In our system, the reinforcement structures are represented either by 

individual CNCs (HC), or by cholesteric microdomains of LCs (HC(mg.)_4/15h), both 

distributed in the volume of the softer PHEMA matrix. The load-bearing ability of the 

reinforcing phase is determined not only by its type and volume fraction, but also by its size, 

shape and orientation.87 Thus, prior to the experiments, it was expected that the 4-hours 

equilibrated/aligned hydrogels would show enhanced mechanical behavior in comparison to 

HC and H hydrogels. This is due to the layered structures of CNC’s LCs, which are not only 

bigger than the individual rods, but also hierarchically organized. 

However, on the contrary, the mechanical properties of HCmg_4h and HC_4h specimens have 

shown to be weaker than HC, or at best similar to the H hydrogels (see Figure 38). 

Figure 38: Average stress-strain curves for PHEMA-MNP-CNC ‘HCmg_4h’(in green) in comparison 

to ‘HC_4h’ (in blue), ‘HC’ (in light red) and PHEMA-MNP ‘H’ specimens (in grey) 

Even though the HCmg_4h specimens comprised of cholesteric microdomains, that were formed 

by the self-assembly process of CNCs over 4 hours, were rather small and so they did not 

contribute to the material’s resistance to external forces. When the Young’s modulus of these 

4 hours-equilibrated samples was compared to that of HC (see Figure 36), it actually showed 

decline in the load resistance. This observation can be explained by the fact, that portion of the 

initially randomly distributed rigid CNCs starts to cluster into small organized domains, 

‘consuming’ the particles and leaving the rest of the volume lacking the reinforcement 
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structures. Since the formed tactoids are responsible for the partial depletion of CNCs and their 

size appears to be insufficient to exhibit reinforcing effect, the stiffness of HC_4h 

nanocomposites shows to be analogous to the H hydrogels, which consist of PHEMA-MNP 

only. In HCmg_4h specimens, the deficiency in reinforcing rods is somewhat compensated by 

the tactoids’ alignment along one direction, leading to the enhancement of material anisotropy, 

which results in increased stiffness when load is applied in the direction of the alignment. 

The comparable values of ultimate strength of H and HC_4h, depicted in Figure 37, may be 

explained by their structural similarity, having the majority of the specimen lacking the 

presence of the reinforcing CNC particles. For HCmg_4h, even though that the aligned tactoids 

improve its stiffness, once the film starts to deform plastically, the small liquid crystals are no 

longer able to prevent the fracture. Therefore, this type of hydrogels ruptures sooner than the 

HC films, which contain randomly distributed CNC throughout their whole volume. 

Furthermore, it was also expected that with the increased size of CNC liquid crystals, the 

stiffness of the nanocomposite would be enhanced, since it is expected that bigger rigid LC 

microdomains are more resistant to the applied load.101 Also, as mentioned earlier, the 

alignment is expected to play important role in composite’s mechanical performance. 

The considerably bigger size of tactoids in the HCmg_15h films indeed gave rise to stiffer 

materials. This can be observed both, from the slope of the curve in the linear elastic region in 

Figure 39 and also from Figure 36 (E = 21.3 kPa, Table 3 in Appendix 1).  
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Figure 39: Average stress-strain curves for PHEMA-MNP-CNC ‘HCmg_15h’ (pink), ‘HC_15h’ 

(turquoise) and ‘HC’ (light orange), 
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This mechanical enhancement can be explained by the synergy between the intrinsic 

mechanical properties of individual CNC rods and the hierarchically organized CNC tactoids 

of unidirectionally layered nanocrystals, which are similar to the structure of platelet-reinforced 

polymer films.101 

Bonderer et al.101 have suggested that there is a size limit for reinforcing structures to exhibit 

enhancing effect. It is assumed that when the limit is exceeded, instead of achieving a material 

of extraordinary stiffness, the material would begin to exhibit brittle fracture under tensions 

because of its flaw intolerance. The size limit of cellulose tactoids has not been studied, yet. 

Therefore, it could the subject of research in another project. 

Finally, also the effect of uniform alignment of liquid crystalline regions was studied. From 

Figure 40, the tensile measurements of both HCmg_4h and HCmg_15h showed higher stress 

yields than their respective unaligned samples, though the difference between HC_15h and 

HCmg_15h specimens was not too significant. 

Figure 40: Average stress-strain curves for PHEMA-MNP-CNC ‘HCmg_4h’ (in green) and 

‘HCmg_15h’ (pink), in comparison to ‘HC_4h’ (in blue) and ‘HC_15h’ (cyan) 
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Similarly, the average Young’s modulus of hydrogels with unidirectionally aligned tactoids is 

higher (see Figure 36) (EHCmg_15h = 21.3 kPa and EHCmg_4h = 12.7 kPa from Table 3 in  

Appendix 1) with respect to those that are randomly oriented (EHC_15h = 17.1 kPa and 

EHC_4h = 11.6 kPa). This finding supports our assessment, that when the reinforcing 

microstructures are aligned along a common direction, the material exhibits higher endurance 

towards external unidirectional stresses. This can be linked to the fact, that defects are prevented 

from proceeding fast across the sample diameter perpendicular to the alignment. In addition, 

the synergy effects of the dispersed aligned microdomains, which are randomly distributed 

throughout the volume (if neglecting the gradient distribution due to sedimentation of bigger 

LCs), also play role in the materials’ mechanical properties. 

Figure 41 depicts all the average stress-strain curves characteristic for each type of analyzed 

nanocomposite material. From the profile of the curves of various samples are comparable and 

all the hydrogels (only after 4 minutes of equilibrating on air) were soft and flexible materials. 

  

Figure 41: Average stress-strain curves for all studied hydrogel nanocomposites 
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Even though the average Young’s moduli and Ultimate strength values are improved for 

hydrogels with bigger and aligned CNC tactoids, they are still roughly of the same order of 

magnitude for all the studied nanocomposite films (see Figure 36 and Figure 37). Thus, the 

enhancement of the mechanical performance has not been as significant as anticipated. What 

should be also noted, is that the accuracy of the ultimate strength values is questionable due to 

considerable variations in the individual measurements (significant standard deviation values). 

It can be also noted, that when longer time on air was allowed for the hydrogels before 

conducting the tensile experiments, they quickly dried out and turned into hard, brittle material. 

Such specimens were impossible to analyze under given conditions due to their breakage during 

the mounting process or slippage from the grip of the apparatus during the measurement. 

The displayed average curves were obtained from the individual tensile tests of relevant types 

of hydrogel samples. All the original tensile-test, showing also the failed measurements that 

were excluded from the analysis, are shown in Figure 46 - Figure 51 in Appendix 1. 
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5.6 Possible sources of errors 

The standard deviation values of ultimate tensile strength of the analyzed materials are 

undesirably high. Also, the individual stress-strain curves showed considerable scattering 

(see Figure 46 - Figure 51 in Appendix 1). Such unsatisfactory data can be caused by various 

factors. 

Firstly, the preparation procedure of the samples was not perfectly optimized as alternative tools 

(glass quartz cuvette sealed with Teflon tape and closed with lid of the same material, 

handcrafted cutting die) were used to prepare suitably shaped specimens. Since the cutting was 

done without any template, the individual specimens varied in dimensions. The small 

differences in sizes could lead to unequal water content during the testing, as the water-

equilibration time was kept at 4 minutes for all samples, regardless their size. In addition, since 

the hydrogels still contained water and no chamber was used to control the water content over 

the measurement process, the samples continued drying. This decrease in water content 

inevitably resulted in small changes in dimensions even over the time of their stretching. This 

is a common problem encountered when analyzing hydrogel samples. 

Moreover, due to the specimens’ nature, certain obstacles were encountered over the execution 

of tensile measurements. When samples were handled imprudently, the soft notch-sensitive 

material was pre-cut. This took place for instance when the samples were mounted onto the 

apparatus, or during the attachment into the metal grips. When such defect was detected (for 

instance when bone-shaped sample ruptured at the place of attachment), the corresponding data 

was excluded from the final results. Also, those specimens, that clearly underwent slippage, 

were not included in the final results. Yet, it is possible that some unrevealed slip took place, 

which would contribute to the variations in the collected data. Further, as mentioned in 

Section 5.3, an unintended gradient in the tactoids’ size distribution was obtained, resulting 

from the differences in the density of the phases. 
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Additionally, in the samples that were exposed to magnetic field, a certain degree of aggregation 

of the MNPs was observed (Figure 42). This clustering process was detected at the ends of the 

films, which correlates to the inhomogeneity of the strength of the magnetic field generated by 

the permanent magnet (see Figure 14 in Section 4.4). 

5.7 Water content measurement 

Figure 43 indicates the weight content of water in the studied hydrogels after 4 minutes of 

equilibration on air (to model the conditions of tensile measurements). From the obtained data 

(considering the standard deviation values), the water content does not significantly differ for 

different hydrogels. In all the CNC-containing samples (all besides H specimens), the water 

content of the polymerization mixture (orange line) corresponds to the measured water content. 

This means that no solvent becomes irreversibly incorporated in the matrix and the water used 

as solvent accumulates in pores. Also, this it indicates that no significant absorption takes place, 

despite storing the hydrogels in water for several days. For HC and HC_15h, the water content 

is slightly higher than the amounts used for the reaction. This is probably due to the storage 

conditions of the samples (stored in water) as small additional amounts of water could enter the 

pores. For HCmg_4h specimens, the higher value may be either due to storage conditions, plus 

accidently using a wet flask for mixing the solution, or another explanation may be a systematic 

error in measuring the weight of the specimens. Yet, no observable swelling upon storage in 

water was detected. 

In the case of H specimens, the amount of water used as solvent in the polymerization was 

higher by 8 wt. % (i.e. 59.31 wt. %, see Table 2 in Section 4.4 showing reactants 

concentrations). That is why the reference orange line is placed higher for H hydrogels. The 

MNPs 

Figure 42: Aggregation of MNPs on the edges of the HCmg_15h specimen 
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difference between the measured water content (i.e. the evaporated water) and the initial water 

content of polymerization mixture of H hydrogels suggests that some of the solvent-water 

becomes bound to the hydrophilic groups in the matrix and therefore is not removed by 

evaporation.67 For that reason, the amount of 49.1 wt. % in H samples can be denoted as free-

water, because it was evaporated. The remaining 10.21 wt. % was retained in the H hydrogels. 

According to Figure 43, H samples show more or less the same water content like the other 

specimens. This indicates that if higher amounts of water were used in the polymerization 

mixtures of other CNC-containing samples too, the final nanocomposites would retain some 

water. Maximum water that can be bound by the matrix was calculated according to the 

Equation 3, using the values of H sample. 

𝐻2𝑂𝑏𝑜𝑢𝑛𝑑 𝑚𝑎𝑥 =
59.3−49.1

59.3
∗ 100% = 17.2 % (3)

The numerical values of water in the analyzed specimens and the corresponding standard 

deviations are summarized in Table 5 in Appendix 1. All the hydrogels were stored in water, 

but no detectable additional water uptake (i.e. no increase in weight or swelling) was detected. 

Figure 44 shows that wet hydrogels were rather translucent and not fully transparent. On the 

other hand, Figure 45 depicts the increased transparency of the same, but dried, specimen. This 
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behavior was discussed by Gulsen and Chauhan102 who suggested that when water is inside the 

pores, they are bigger, which reduces the transparency, leading to opaque material. While in 

dry hydrogels, the pores are so small that the light can pass through the material without any 

strong reflection. 

 

  

Figure 44: Wet translucent HC hydrogel nanocomposite 

Figure 45: Dry transparent HC hydrogel nanocomposite 
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 Conclusions and outlook 

Novel nanocrystalline cellulose-based hydrogels were successfully designed in this project. 

Firstly, it was achieved to embed individual CNC rods in PHEMA hydrogel. This showed, that 

the dispersed CNCs provide reinforcement for PHEMA hydrogels, similar to the effect of 

reinforcement of methacrylate hydrogels by bacterial cellulose published by Hobzova et al.100. 

Secondly, the self-assembly behavior of CNCs was exploited. By allowing reasonable times for 

phase-separation, cellulose liquid crystalline tactoids formed in the polymerization solution. 

They were then successfully locked in the PHEMA matrix by UV-induced polymerization. 

Additionally, the liquid crystals’ size was determined by the phase-equilibration times. 

Moreover, by incorporating superparamagnetic nanoparticles into the system, we accomplished 

to control the orientation of cellulose liquid crystals by applying only small DC magnetic fields. 

Even though we faced some difficulties with tensile measurements and despite the fact that the 

quality of the data failed to meet our expectations, the measurements provided promising trends. 

The data showed that the enhancement of the mechanical behavior strongly depends on the size 

and on the orientation of the reinforcing microdomains. It was found out, that only sufficiently 

big liquid crystalline tactoids lead to the improvement of the material behavior. This can be 

explained by the synergistic effect between the individual CNCs and their hierarchical liquid 

crystalline arrangement. Moreover, the distribution of tactoids was not uniform throughout the 

volume of the material. As the liquid crystals grew in size, their density increased, so they had 

higher tendency to sediment at the bottom. This finding could be interesting for further studies, 

which could lead to the development of new materials with gradient structures. 

In future, if the experimental parameters are carefully selected and phase behavior of all 

components is considered, a new non-gradient material with uniformly distributed stiff 

microdomains could be developed. Similar concepts have been previously studied on other 

complex systems.103,104 Also, further optimization of the preparation conditions, such as 

uniform magnetic field, suitable mold and better die cutter tools, are crucial for obtaining more 

consistent and precise data. 

In order to provide a more general outlook, the concept of CNC-based cholesteric liquid crystals 

and hydrogels suggests interesting research potential. The combination of ferromagnetic 

nanoparticles (ferrofluids) and cholesteric liquid crystals, was suggested already in 1970 by 

Brochard F. and De Gennes P. G.105, who predicted complex phase behavior of such systems. 

Thereafter, considerable literature on molecular level cholesteric liquid crystals combined with 
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magnetic nanoparticles was published.106 But, as it was shown in this work, to achieve stable 

one-phase material without phase separation of the lyotropic liquid crystal and the magnetic 

nanoparticle can become subtle. For instance Ménager et al.107 showed that surfactant based 

lamellar phases and magnetic nanoparticles can co-exist in a single phase if the concentrations 

are low, still extremely carefully chosen. This suggests that also in the case of our system, in 

future, we should pay greater attention to the nanoparticle concentrations. In overall, CNC-

based ferrocholesterics seems to be little studied, nevertheless very unprecedented findings on 

these system have been done, such as that ferrocholesterics based on the molecular level liquid 

crystals allow for topological structures, like skyrmions.108 Based on these arguments, systems 

comprising of CNCs, with their inherently large dipole moments, and magnetic nanoparticles 

embedded in deformable hydrogels suggest interesting research possibilities for complex 

responsive materials. 
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 Appendix 1 

Figure 46 depicts stress-strain curves for hydrogels of type H. None of the curves were omitted 

in the final average curve.  

Figure 47 depicts stress-strain curves for hydrogels of type HC. None of the curves were omitted 

in the final average curve. 

0 50 100 150 200 250

0,0

0,5

1,0

1,5

2,0

2,5
 H_01

 H_03

 H_04

 H_02

 H_05

S
tr

e
s

s
 (

M
P

a
)

Strain (%)

0 50 100 150 200 250

0,0

0,5

1,0

1,5

2,0

2,5  HC_1

 HC_2

 HC_3

 HC_4

 HC_5

 HC_6

 HC_7

 HC_8

 HC_9

 HC_10

 HC_11

 HC_12

 HC_13

 HC_14

 HC_15

 HC_16

 HC_17

S
tr

e
s
s

 (
M

P
a
)

Strain (%)

Figure 46: Stress-strain curves for individual H hydrogel nanocomposites 

Figure 47: Stress-strain curves for individual HC hydrogel nanocomposites 
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Figure 48 depicts stress-strain curves for hydrogels of type HC_4h. Curves representing 

specimens 02 and 013 were omitted in the final average curve due to slippage and significant 

deviation of its behavior in comparison to the other samples, respectively. 

Figure 49 depicts stress-strain curves for hydrogels of type HCmg_4h. Curves representing 

specimens 08 and 010 were omitted in the final average curve due significant deviation in 

comparison to the other samples. 
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Figure 48: Stress-strain curves for individual HC_4h hydrogel nanocomposites 

Figure 49: Stress-strain curves for individual HCmg_4h hydrogel nanocomposites 
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Figure 50 depicts stress-strain curves for hydrogels of type HC_15h. Curves representing 

specimens 06 and 013 were omitted in the final average curve due significant deviation in 

comparison to the other samples. 

Figure 51 depicts stress-strain curves for hydrogels of type HC_15h. Curves representing 

specimens 09 and 011 were omitted in the final average curve due significant deviation in 

comparison to the other samples. 
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Figure 50: Stress-strain curves for individual HC_15h hydrogel nanocomposites 

Figure 51: Stress-strain curves for individual HCmg_15h hydrogel nanocomposites 
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Table 3: Average Young's moduli of the studied hydrogels and corresponding standard deviations 

specimen Young’s modulus (kPa) standard deviation (kPa) 

H 12,2 0,1 

HC 15,0 0,3 

HC_4h 11,6 0,2 

HCmg_4h 12,7 0,1 

HC_15h 17,1 0,3 

HCmg_15h 21,3 0,3 
 

 Table 4: Average Ultimate strength of the studied hydrogels and corresponding standard deviations 

 

 Table 5: Mean weight content of free-water in specimens and corresponding standard deviations 

specimen Ultimate strength (kPa) standard deviation (kPa) 

H 494,0 237,4 

HC 811,3 482,9 

HC_4h 532,7 398,0 

HCmg_4h 617,8 189,8 

HC_15h 802,5 387,7 

HCmg_15h 786,7 301,1 

specimen 
mean W0 

(mg) 

mean Wx 

(mg) 

mean solid content 

wt. % 

meanH2O wt. 

% 

std. 

deviation 

H 55,9 28,5 50,9 % 49,1 % 2,5 % 

HC 54,0 25,2 46,6 % 53,4 % 1,8 % 

HC_4h 80,6 39,7 49,3 % 50,7 % 2,1 % 

HCmg_4h 91,7 40,4 44,0 % 56,0 % 2,2 % 

HC_15h 84,3 40,8 48,4 % 51,6 % 2,0 % 

HCmg_15h 78,8 38,7 49,1 % 50,9 % 2,3 % 


