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1 Introduction

1.1 Focus and objectives

Natural Language Understanding has matured to the point where state-of-

the-art models employ deep learning over large amounts of data, yielding

highly generalised representations of language. There is a growing interest in

scaling such systems to benefit not only various natural language processing

tasks, but also handle such tasks in low-resource languages with comparably

little data to contribute to the training stage.

While so-called distributed embeddings on word level have been around since

the beginning of the millennium, sentence representation obtained with neu-

ral network architectures only began to emerge in the last few years. The

ability for a natural language processing system to learn from an entire se-

quence of words is strongly motivated by the linguistic notion of connecting

phrases to human "common sense" (Norman, 1972). As such, the extraction

of meaningful linguistic information from phrases and sentences is a critical

component of quality language understanding systems. As the generalisa-

tion capabilities of systems have accelerated, so has the interest in extending

efforts to cross-lingual natural language understanding, or "XNLU". Noble

humanitarian goals such as overcoming language barriers and enabling global

information access underpin the motivations of scalability to all the world’s

languages, as noted by Hu et al. (2020) and others.

The emergence of multilingual approaches calls for suitable evaluation bench-

marks. The practical component of this project is to integrate cross-lingual

tasks into a new framework based on SentEval – an evaluation suite for assess-

ing the universality of sentence embeddings, published in 2018 by Conneau
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and Kiela. The successful integration would allow for evaluation of multilin-

gual sentence encoders with a special focus on their language-independence.

The transfer of the generalised knowledge encoded in the embeddings to other

tasks or languages can be accomplished either by (a) using the representa-

tions as feature extractors in the task, or (b) by fine-tuning a pre-trained

encoder on the task. These approaches are explained further in section 2.2.

The central questions this thesis aims to explore are:

• Can a feature-based approach to cross-lingual transfer learning feasibly

be implemented as a SentEval adaptation?

• How do the results compare to an approach based on fine-tuning on

similar data?

• How does a well-established multilingual model perform on a novel task

within this framework?

The aim is to create an evaluation library encompassing cross-lingual NLP

tasks with multilingual data-sets that multilingual encoders may be tested

on. The chosen model for this purpose is the Hugging Face implementation of

Multilingual BERT (Wolf et al., 2019), which is combined with the framework

provided by the SentEval toolkit. With the practical framework in place, the

hope is to succeed in extracting quality sentence embeddings from state-

of-the-art models in a feature-based manner, and apply them to existing

cross-lingual evaluation benchmarks as well as produce results for a novel

cross-lingual task.

Originally a practical goal of this thesis project was to provide new cross-

lingual benchmarks as a result; however, towards the end of development,
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a much larger, more extensive multilingual multi-task benchmark was pub-

lished by Hu et al. (2020). The scope of the thesis was narrowed over time

and the main focus of the project shifted to the technical implementation

of this extended toolkit, as as well as the integration of a novel task not

yet included in existing multilingual benchmarks: fine-grained Cross-lingual

Emotion Detection (XED) (Kajava, 2018).

This project received guidance and contributions as follows:

• Supervision by Jörg Tiedemann, Professor of Language Technology

(University of Helsinki).

• Guidance by Aarne Talman (Doctoral Programme in Language Stud-

ies) and Alessandro Raganato (postdoctoral researcher of Language

Technology), University of Helsinki.

• XED contributions by Emily Öhman and Kaisla Kajava (Doctoral Pro-

gramme in Language Studies, University of Helsinki).

1.2 Outline of the thesis

This thesis has seven chapters in total.

Chapter 1 introduces sentence representation, motivates multilingual lan-

guage modelling, and broaches the topic of evaluation benchmarks.

In chapter 2, the background and evolution of distributed representations

in natural language processing is briefly described. The chapter gradually

moves from embeddings of smaller units to embeddings that encode higher-

level linguistic information.
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Chapter 3 outlines the ways in which the quality of embeddings have tradi-

tionally been evaluated, and how the SentEval toolkit fits into the picture.

The multi-language data sets that were used for evaluation within MultiSent,

the modified SentEval library, are presented in chapter 4.

The methods and modification work of SentEval is described in detail in

chapter 5.

Results of the project are presented in chapter 6.

Lastly, chapter 7 is dedicated to closing discussion and conclusions.

6



2 Sentence representation

2.1 From word vectors to sentence embeddings

Distributed representations of words have been used extensively in the field

of natural language processing (NLP) for decades. These representations,

also called word embeddings, are arrays of real values that act as numerical

representations of some linguistic unit, such as a word, sentence, or even

document. In representation learning in general, an embedding can be seen

as point in a n-dimensional space, where n is the number of aspects used to

describe a particular data set. Each unit of the data can then be described

with n different real values, effectively converting the unit to a mathematical

representation that can be processed by machine learning systems such as

neural networks. With distributed word representations, the idea is that each

position in the vector denotes denotes some characteristic of the data. The

properties and concepts associated with the data, however, end up diffused

over the dimensions of the array in a way that is not clear or understood

from a human perspective. That is, linguistic and other characteristics that

inform the feature vectors are distributed over multiple dimensions, and each

dimension connects to various concepts (Al-Rfou’ et al., 2013). It is these

values that allows for relating and connecting the linguistic units to each

other on some semantic level, in accordance with features that have been

specified or automatically learned, depending on the algorithm used.

The underlying assumption of the distributional hypothesis1 is that units

of language with similar semantic or syntactic meaning generally appear in
1The distributional methodology of linguistics can be traced back to Zellig S. Harris

and his 1954 work, "Distributional Structure".
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similar contexts, which corresponds to the resulting vector representations

projecting the linguistic units to similar locations in the embedding space.

Thus, given the assumption of shared contexts, the more meaning two units

share, the closer their vector embeddings are to each other. This allows

for computing similarity in meaning through mathematical means, such as

measuring the Euclidian distance or cosine similarity between the vectors.

Such vector space models have come to be used in various NLP and infor-

mation retrieval applications, as well as parsing and other classification tasks

(Pennington et al., 2014).

Automatically learning a distributed representation of words in the context

of language modeling was first proposed by Bengio et al. in 2003. A stan-

dard approach today, leveraging neural networks to learn a language model

emerged chiefly from this work. The authors used their models experimen-

tally to formulate a probability function for sequences of words based on

the representations they had obtained. This allowed the language model to

take into account a wider context than previously popular n-gram models,

which do not capture relationships between units and are thus ill-suited to

generalisations. Notably, a departure from task-specific engineering was first

suggested by Collobert et al. (2011), with their proposal that vector repre-

sentation spaces be utilised to improve the performance of other language

processing systems.

Word embeddings have since evolved to be more fine-grained, giving rise to

evaluation schemes beyond simply measuring distances or angles between

vectors. Building on the notion of distributional semantics, distributional

representations of words specifically use their surrounding context to inform

the resulting embedding. Mikolov et al. (2013) examine in their work the

finer structures of the word vector space, observing semantic and syntactic
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regularities through constant vector offsets. They show that subtracting the

word vectors for apple and apples yields a result similar to that of subtract-

ing the vectors of other words and their corresponding plural forms. The

popular example equation of King - Man + Woman = Queen to illustrate

the dimensions of meaning originates from this work. Mikolov et al. also

point out the possibility of using semantically and syntactically meaning-

ful representations in other, potentially unrelated tasks, highlighting their

general-purpose potential.

Present-day word embeddings have generally been trained on corpora span-

ning billions of tokens using unsupervised machine learning methods. The

task of embedding can be viewed as finding representations that predict a

word based on its context, or the focus can be on leveraging corpus word

occurrence statistics as the primary source of information. An example of

the latter is GloVe (Global Vectors for Word Representation), a log-bilinear

regression model proposed by Pennington et al. (2014) which captures global

corpus statistics directly through the original co-occurrence matrix. The au-

thors demonstrated the meaningful substructure of the resulting vector space

and also analysed the model properties that give rise to such geometry. While

still not entirely clear, the origin of regularities in the word representation

space was generally not very well understood until this point.

Subsequent efforts brought about various neural word embedding approaches;

Schnabel et al. examine existing evaluation schemes for them in their 2015

paper. The evaluation approaches are divided into one of two categories:

intrinsic and extrinsic. The latter, which will be discussed further in the

context of universal representations, involves using the embeddings as fea-

tures in downstream tasks and measuring changes in the performance of some

model. The downside of extrinsic evaluation is the specificity to a task, and
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that it is unclear how this singular way of measuring the quality would con-

nect to other measures. Intrinsic evaluations, on the other hand, used by

for example Mikolov et al. (2013), involve queries that directly test the word

representations for syntactic and semantic relationships. Such a query can

be an analogy of the form

a is to b what c is to _?,

thus extracting a relation that can be either syntactic and semantic in nature,

depending on how the terms are selected. Schnabel et al. drew attention to

current problems in limited or biased query inventories due to re-purposing

them from other fields, such as psycho-linguistics, and propose instead their

own inventory better calibrated to corpus study.

With the evolution of neural network architectures, the earliest claims of

meaningful phrase representations emerged approximately a decade later,

chiefly within statistical machine translation. In the work by Cho et al.

(2014), for example, the RNN Encoder-Decoder neural network model was

introduced to compute the probability of a target sequence given a source

sequence. Furthermore, the representations were shown to capture linguis-

tic meaning: through qualitative analysis of embedding visualisations, Cho

et al. noted clear clustering of syntactically similar phrases in some parts of

the space and semantically similar in others. However, while capturing the

relationship between words and phrases has by now certainly been shown to

be possible, the connection between the representations and human semantic

intuition has only been informally noted. As Hill et al. point out in their

2016 survey of state-of-the-art distributed sentence representation learning

models, there is no obvious path from this observation to concrete strategies
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of how to obtain the highest-quality or most useful sentence representations.

That is, while the signs are clear, the question of what type of architec-

ture and data to use remains a significant missing link in natural language

understanding systems at large.

While there should no longer be any doubt that obtaining meaningful sen-

tence embeddings is possible, some questions can certainly be raised about

the nature of the representations. Because the models have become rather

complex from a human perspective, it is difficult to tell what sort of linguistic

information is present in the embeddings. Naturally, some of the difficulty

lies in the fact that it is decidedly not always straightforward for humans

to pinpoint what exactly makes a statement subjective or objective. One

problem with previous techniques designed to find out what input sentence

properties carry over to the embeddings has been that they are tailored to

specific encoders. In the example by Conneau et al. (2018a), one such task

might be to attempt to train a tense classifier on the embeddings produced

by a pre-trained task, such as a long-short term memory (so-called LSTM)

encoder for machine translation. If the classifier succeeds, the implication

is that there is evidence of tense having been captured by the encoder to a

certain degree. Thus, the ten probing tasks introduced by Conneau et al.

do not plug into any specific encoder architecture - to maximise generality

and facilitate the interpretation of results, they only require vector represen-

tations of sentences to be used. Existing sentence embeddings have already

been shown to capture for example tense and number, and Conneau et al.

indeed suggest that deeper investigation reveals a bigger and more detailed

picture than previously assumed.
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2.2 Transfer learning and universal representations

Machine learning has traditionally been rather narrowly focused, with data

and methods being tailored and confined to a particular prediction task, such

as classification or parsing. Over the past few years, however, efforts have

been devoted to so-called transfer learning, in which the fruits of some sys-

tem can be leveraged to improve a separate domain or task (Ruder et al.,

2019). As sentence encoding has become increasingly feasible, some of the

scientific community’s interests have therefore shifted to so-called universal

representations. These universal embeddings are meant to encode phrases

on a higher level which are not only useful for a specific task or purpose, but

generic enough to be able to improve any system that makes use of sentence

understanding. A key point to universality is that it facilitates comparison of

different encoders and approaches, which helps streamline the greater evalu-

ation process and further development in the scientific field. Another central

benefit is the mitigation of resource-scarcity for many languages: there is

plenty of data and existing research available for English, especially, but

such is not the case for most languages in use in the world today. With the

development of transfer learning comes the possibility of being able to train

high-quality models on high-resource languages and then use the knowledge

gained to process languages with little or almost no data available what-

soever. The extension of transfer learning to these so-called cross-lingual

approaches will be discussed further in the next section.

As mentioned above, task-specificity has traditionally been a practical re-

quirement for obtaining high-quality representations, but as computing power

increases and encoding schemes become more sophisticated, it seems natural

that the direction should be to pursue representations that are generic enough
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to transcend task borders and be useful in a wider variety of settings. In one

of the early notable attempts at moving away from merely constructing sen-

tence representations on the basis of word embeddings, Kiros et al. (2015)

introduced an approach to obtain highly generic sentence representations

that are not designed for any particular task. Drawing on the skip-gram vec-

tor learning model that uses a word to predict its surrounding context, Kiros

et al. extended this approach to encoding sentences instead of words, calling

the resulting representations skip-thought vectors. They also proposed in this

work the idea of evaluating vectors by "freezing" the model and then using

the encoder as a feature extractor in other tasks, which has since established

itself as a standard method to measure universality.

Another factor that has fluctuated in the best-performing approaches of a

given time is the degree of supervision to be used. With the evolution of

machine learning and increased availability of language data on the web, un-

supervised methods have prevailed over supervised ones in natural language

processing systems for some time. Unsupervised learning typically makes use

of large amounts of raw data to learn patterns automatically on the basis of

the sheer amount of information. There has been some success in obtain-

ing robust sentence embeddings through unsupervised approaches, although

their wider applicability has been called into question (Conneau et al., 2017).

In their recent work, Conneau et al. highlight the need for the scientific

community to reach a consensus regarding standards and best practices for

universal sentence encoding. The two main issues they raise concern firstly

the type of neural network architecture that should be used and, secondly,

what type of task and data the model should ideally be trained on. Conneau

et al. explore sentence embeddings trained on the task of Natural Language

Inference (NLI), which is concerned with determining whether a hypothesis
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sentence is an entailment or contradiction (or neither) given a premise sen-

tence. The motivation for circling back to a more supervised approach is the

call for "deeper" language understanding to reach a higher level of generality,

which the authors hypothesise is gained from the logical-semantic nature of

the inference task. They also highlighted the usefulness of human-annotated

quality data by demonstrating the lower volume of training data and less

computing needed to achieve competitive results compared to unsupervised

methods such as SkipThought.

Jointly with this work Conneau and Kiela also introduce the SentEval toolkit

to assess the transfer learning and measure the universality of their repre-

sentations, which will be discussed in greater detail in the chapter 3.

A common thread in various efforts at universality, however, is the avoidance

of repeatedly reinventing the wheel: instead of starting the process from

scratch with each language modeling task, it seems clear that the ability

to share and build on knowledge already obtained is preferable. Transfer

learning based on supervised learning is one way of realising to this notion,

although success has also been achieved through unsupervised approaches.

As we have seen, pre-trained representations may be used as additional fea-

tures in downstream tasks, but more recently the fine-tuning based approach

has emerged in earnest. These techniques leverage a large amount of un-

labelled data to obtain general language representations that may then be

fine-tuned on specific NLP tasks. The Bidirectional Encoder Representations

from Transformers (BERT) approach expanded on this two-fold method of

pre-training and fine-tuning, in particular through the use of bidirectional

encoding, as opposed to previous unidirectional techniques (Devlin et al.,

2019). Their language modelling strategy is based on the masked language
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model (MLM) objective, in which some units of the input are masked and the

model learns to predict the identity of the masked tokens based on their con-

text. A central concept of this method is thus to have both the left and right

contexts inform the model simultaneously. Due to the multi-layered context

and bidirectional processing, the token masking is introduced to prevent each

word from seeing itself and therefore "cheating" out of the prediction step.

The masking was done for 15% of input tokens, where a token chosen for

masking would be replaced with [MASK] 80% of the time, a random word

10% of the time, and have a 10% chance of being unchanged.

Along with proposing BERT, a key contribution of their 2019 paper was

demonstrating the importance of this bidirectionality. Notably, BERT achieved

state-of-the-art performance on both token and sentence level tasks. The

BERT approach to fine-tuning is to have each task initialised with the same

pre-trained parameters, which are then adjusted using labelled data from the

specific downstream task.

From the perspective of sentence representation, in addition to MLM, cru-

cially the BERT model is trained on the sequence-level task of "next sentence

prediction" (NSP). As BERT is designed to handle a variety of downstream

tasks, it is built to process inputs that may consist of:

• a single sequence, e.g. sentiment classification, or

• a pair of sequences, e.g. the inference task’s premise and hypothesis

sentences.

Because dual input objectives look beyond the boundaries of individual sen-

tences, including NSP in the training process is designed to allow the model

capture the relationship not only between words, but also between sentences.
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In this training procedure, given sentences A and B, 50% of the time sen-

tence B follows sentence A in the corpus, whereas the other 50% of the

time sentence B is a randomly chosen sentence from elsewhere in the corpus.

Therefore, it is essential that the training data consist of large chunks of

contiguous text, where the sentences are meaningfully arranged as a whole.

Conveniently, any monolingual corpus with this property can be leveraged for

this seemingly trivial language understanding objective; however, it demon-

strably improves performance for downstream tasks such as inference and

question answering. The model proposed in Devlin et al. (2019) was trained

on English Wikipedia data as well as a books corpus, amounting to a total

estimated 3,300 million words.

While BERT’s general mode of application is through fine-tuning, it can

also be used in a feature-based way. Fine-tuning is designed to specialise

the model on particular features of the data and task at hand, but as noted

by the authors, not all tasks are equally well suited to Transformer encoder

architectures. Similarly to the approach proposed by Kiros et al. (2015), the

parameters are fixed, and the encoder output can instead be extracted as

features for the downstream task.

A multilingual version of BERT has since been released, which is the subject

of evaluation in the MultiSent framework of thesis project. It is discussed

further in the sections below.

2.3 The pursuit for multilingual sentence encoding

As with single-language representation, the work in multilingual language

encoding started and has as of yet mainly stayed on sub-phrase level. In

keeping with the idea that meaning should be mirrored in the vector repre-
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sentation, the idea of a multilingual neural language model would be for the

word equivalents of the different languages to appear in similar locations in

the embedding space.

As multilingual word embeddings began to emerge through unsupervised

methods, the free Wikipedia encyclopedia2 became a popular source. Still a

widely used resource in NLP today, benefits of Wikipedia include its language

variety, quality text, accessibility, and continued growth (Al-Rfou’ et al.,

2013). Marking a notable effort for its time, Al-Rfou’ et al. trained dis-

tributed word representations for 117 languages3 using data from Wikipedia.

They achieved competitive results when using their embeddings as sole fea-

tures in a part-of-speech tagging task. Wikipedia is considered small from a

present-day perspective, although it is still used for its suitability to multilin-

gual applications (Grave et al., 2018). State-of-the-art fastText multilingual

word embeddings spanning 157 languages have been obtained with data from

Wikipedia as well as the Common Crawl web crawl data repository4.

In their 2016 work on "Massively Multilingual Word Embeddings", for ex-

ample, Ammar et al. project words of as many as fifty languages into a

single shared vector space. They use some amount of supervision in the form

of dictionary look-up and monolingual corpora, but do not rely on parallel

data for the alignment of projections. In terms of transfer learning, such

large multi-language resources can facilitate the handling of unseen words in

cross-lingual tasks, such as machine translation, by seeking out the nearest

vector-space neighbors of the unknown word.

Because sufficiently large amounts of data is not available for nearly all lan-
2www.wikipedia.org
3At the time, 117 languages had Wikipedia versions with at least 10,000 articles.
4commoncrawl.org
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guages or their pairings - much less vast dictionaries or properly aligned cor-

pora - reliance on parallel data can be a limiting factor. Mappings, i.e. typ-

ically linear transformations, can be learned between independently trained

embedding spaces, but this method has been unavailable to source and target

languages for which no bilingual dictionary exists. To address this problem,

there have been attempts at creating shared word embedding spaces using

little or no parallel data: For example, with their proposed self-learning

framework, Artetxe et al. (2017) demonstrate that it is possible to obtain a

competitive model with simple dictionary-mapping methods and very limited

bilingual evidence in general.

In the case of sentence encoding, as discussed in the previous section, in re-

cent efforts the applicability of the embeddings has largely been restricted

to individual tasks - or at least to a single language at a time. It is gen-

erally recognised that to advance natural language understanding at large,

models should be able to learn and generalise from as many languages as

possible, including low-resource ones. There is also a practical need for lan-

guage technology applications in as many languages as there are in use, but

availability of language input data is highly biased toward a small number of

high-resource languages, such as English.

Expanding on the borders of universal sentence representation and task-

independent language understanding to cover multiple languages at once,

cross-lingual language understanding (XLU) can still be said to be an emerg-

ing field. Because collecting sufficiently large amounts of data for all required

languages is, if not impossible, at least infeasible, there is a growing interest

in the scalability of models. If language systems can be tuned to handle un-

seen languages in some way, the need to directly rely on the available volumes

of language data is diminished or even eliminated. In the ideal scenario, a

18



proper XLU model could indeed process languages not seen in training at

all (so-called zero-shot approaches). The hope is that a multilingual model

enriched with additional languages would ultimately outperform even highly

fine-tuned, monolingual encoders.

There are, however, multiple open questions surrounding how this work

should proceed, with some initial proposals guiding current efforts in the

field. The following subsections discuss two major factors: the utilisation of

machine translation and the degree of supervision.

2.3.1 Usage of machine translation

In state-of-the-art language modelling, one consideration is the degree of ma-

chine translation to be employed in training multilingual systems. While ma-

chine translation has evolved rapidly along with machine learning and NLP

in general, and human translation labor is unarguably relatively costly, it

has been argued that having automatic translation in the pipeline adds both

computational intensity and potential inaccuracy (Conneau et al., 2018b).

It is clear that on larger scales, it becomes impossible to assess whether the

performance of a model suffers from poor machine translation quality, and to

which extent. As such, overall accuracy is not only a function of the model’s

effectiveness, but also the machine translation system’s performance.

Causes for translation errors are not limited to differences in syntactic struc-

ture or messy data. In their cross-lingual sentiment analysis study, Smith

et al. discussed the impact of using machine translated data to classify

subjective well-being in the social media domain. They found that source-

language models significantly outperform machine-translated versions, in which

an English model would be used to classify Spanish data translated into En-
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glish, and vice versa. They conclude that cultural differences rather than

language differences led to the translation errors and poorly captured sen-

timent in this case. They speculate that similar results can be expected

for other tasks that require deep semantic understanding, such as emotion

detection.

Apart from the concern of linguistic information lost in translation, includ-

ing machine translation at the development stage is clearly more costly and

resource-intensive than not.

2.3.2 Degree of supervision

For the purpose of modeling deeper language understanding, Conneau et al.

advocate leveraging a feasible amount of supervision consisting of human

annotation and translation. In what they describe as an alternative that

is more elegant than machine translation approaches, Conneau et al. ex-

tend their natural language inference task encompassing a multitude of do-

mains (MultiNLI)Conneau et al. (2017) to multiple languages by employing

human-translated examples for higher-quality training data and making their

encoders cross-lingual instead. The inference classifier is trained on English

examples, and encoders in 14 additional languages are aligned with the En-

glish one using parallel corpora. Each encoder was then made to mimic the

English encoder well enough that the classifier could still successfully process

sentence pairs in any of the system’s languages, thus bypassing the need for

machine translation. The data-set created for the purpose of evaluating this

model, dubbed XNLI (Cross-lingual Natural Language Inference), has since

been used as an evaluation benchmark for further research in this vein. For

the evaluation of transfer learning on the XNLI task, Conneau et al. released
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sets of machine-translated training data for each of the 15 languages.

Another example of multilingual sentence representation that utilises super-

vision is the multi-language paraphrase detection system used for Opusparcus

(Open Subtitles Paraphrase Corpus for Six Languages, Creutz (2018)). In

this approach, only complete phrases - no sub-phrase units or structures - are

used to determine the paraphrase likelihood of two sentences, and partially

supervised annotation is used in the training process.

2.3.3 Deep pre-training

Some efforts at learning joint multilingual sentence embeddings have been

made in recent years, such as the language-agnostic sentence representations

("LASER") by Artetxe and Schwenk (2019), who use a single BiLSTM en-

coder and shared byte-pair encoding vocabulary for all its 93 languages. With

all the languages mapped to the same space, the idea is that a classifier can

be trained on top with labelled data in only one language. The classifier can

then be transferred to any of the represented languages without modification.

As mentioned in section 2.2, however, the BERT model by Devlin et al.

(2019) has dominated the field of language understanding models since its

release. An unsupervised, contextualised system, Multilingual BERT5 (M-

BERT) is pre-trained on large monolingual corpora similar to original BERT,

but in 104 different languages as of this writing. To account for relatively

well-represented languages like English, smoothed weighting was performed

on the data to under-sample high-resource languages and over-sample low-

resource ones.

Because multilingual representations have traditionally relied on parallel data
5https://github.com/google-research/bert/blob/master/multilingual.md
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or bilingual dictionaries to successfully map inputs from multiple different

languages into the same representational space, M-BERT drew a great deal

of scientific attention upon its release. In particular, the M-BERT’s degree of

multilinguality has been studied by e.g. Pires et al. (2019), which is described

further in the next chapter.
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3 Evaluation

This chapter covers the evolution of assessment methods for sentence em-

beddings, starting from early evaluation methods and moving on to modern

strategies of measuring deeper linguistic knowledge and universality. Lastly,

the SentEval evaluation suite developed by Conneau and Kiela (2018) is de-

scribed.

It should be noted that the notion of "quality" or "usefulness" associated

with representations are somewhat nebulous terms. It is necessary to define

the specific criteria that are used to measure the utility or quality of learned

embeddings in a given setting. For example, they can be evaluated based on

applicability to related NLP tasks, as discussed in section 2.2, which would

be a measure of their generalisation capability. Alternatively, as discussed

in section 2.1, the embeddings themselves can be targeted with techniques

designed to probe for characteristics and concepts, shedding light on the

ways in which linguistic properties may be encoded in the representations

(Conneau et al., 2018a).

3.1 Traditional approaches

As pointed out by Conneau and Kiela (2018), there has been a lack of con-

sensus on how to go about evaluating the quality of general-purpose word

and sentence embeddings. The approaches can be roughly divided into two

types: intrinsic and extrinsic.

Historically, intrinsic evaluation has meant human similarity judgements. As

an example, Hill et al. (2015) especially argued for the importance of dis-

tinguishing similarity from mere association or relatedness when measuring
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semantic similarity. By employing the efforts of 500 native speakers, they

constructed the SimLex-999 resource, which is based on pairs of concrete

concepts covering a range of grammatical functions, together with human

similarity ratings. The resource was designed to highlight problematic areas

in the performance of distributional models and guide the improvement of

their architecture.

Extrinsic evaluation refers to indirectly assessing the quality by putting the

representations to use and seeing how they perform. Some have argued that

this is a preferable approach to intrinsic evaluation: Instead of focusing too

much on lexical similarity scores, Nayak et al. (2016) suggested that word

embedding performance on downstream tasks is more relevant and a better

way forward. They propose evaluation a set of standardised downstream

tasks to (1) increase real-world applicability and (2) get a more fine-grained

view of a model’s strengths and weaknesses, such as whether they’re syntactic

or semantic in nature.

Whichever the approach, the literature in the field of representation learning

in NLP was abundant with calls for a unified evaluation methodology by this

time.

3.2 Measuring universality

As touched upon in various points of this thesis, the idea of transfer learn-

ing is that a model is able to capture some general-purpose knowledge that

can be applied elsewhere, in a different but related task. For example, if

the embeddings obtained through the inference task (Conneau et al., 2017)

capture high-level linguistic information that it encodes in the representa-

tions, they should improve the performance of a task that benefits from deep
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sentence-level understanding, such as sentiment classification.

Other examples of downstream tasks include:

• inference – are two sentences logically entailed?

• paraphrase detection – are two sentences paraphrases of each other?

• subjectivity detection – is a sentence subjective or objective?

• bitext mining – identifying parallel sentences in comparable corpora

The goal of universality in transfer learning is that the obtained representa-

tions are generalized enough to be applicable to a wide range of tasks. As

mentioned in section 2.2, in state-of-the-art language modelling, there are

two main approaches to transferring knowledge from one system to another:

feature-based and fine-tuning–based. Peters et al. (2019) compare these two

methods for BERT and ELMo (Peters et al., 2018), finding that in practice,

the best-performing approach seems to mainly depend on the similarity of

the pre-training and target task.

3.3 Assessing multilinguality

Due to its relatively recent emergence, the rigorous study of deep cross-lingual

language modelling is still in its infancy. Cross-language transfer generally

refers to the ability of a system to apply learning from one language to

another. In the work by Conneau et al. (2018b), for example, an inference

classifier is trained on English representations, and the transfer is applied

by aligning encoders in various other languages with the English one (using

parallel corpora) in order to represent the foreign languages in a way that can
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be successfully handled by the English classifier. In this specific study, this

multilingual encoding approach did not outperform techniques that involved

directly translating the samples before encoding them, although the results

were deemed promising.

The BERT model introduced in section 2.2 has been the subject of the scien-

tific community’s interest also with regard to cross-lingual transfer. Following

the zero-shot idea of testing a model on languages not used at the training

stage, Pires et al. (2019) found that the model is clearly capable of trans-

fer across languages, but with certain restrictions. For example, zero-shot

transfer worked to some extent even between languages with different scripts

and thus zero lexical overlap, but there was no sign of M-BERT learning

to systematically accommodate for typological differences such as word or-

der. It should, however, be noted that these properties were present in the

model without training objectives specifically encouraging multilinguality.

Pires et al. theorise that words from different languages end up close in the

representation space indirectly due to globally present tokens such as digits

and URLs, which spread this effect to other nearby words as well.

While zero-shot capability was initially an interest guiding this thesis’ aims,

extensive testing for multilinguality as well as accompanying hypothesis-

ing around language-independence was ultimately beyond the scope of this

project.

3.4 The SentEval toolkit

Because of the lack of a central framework, evaluation pipelines had been

created separately for each project, often with small sets of data and individ-

ually tuned hyperparameters (Conneau and Kiela, 2018). The work by Hill
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et al. (2016), cited in the background section 2.1, is one example of setting

up a particular framework for systematically comparing different encoders

on a multitude of tasks. As noted in the SentEval paper, not only is this

unnecessarily cumbersome, but results obtained from largely similar exper-

iments are not necessarily wholly comparable. To address these issues and

facilitate evaluation, they introduce the SentEval toolkit6. It should be noted

that in the later stages of this project, such a cross-lingual benchmark and

generalisation evaluation framework was released by Hu et al. (2020). This

XTREME benchmark7 includes sentence classification on the XNLI task,

among others.

The purpose of SentEval is to provide a user-friendly means of assessing the

generalisation capability of sentence representations by using them as fea-

tures in other, so-called transfer tasks. As outlined in the section discussing

the measuring of universality, the two main approaches to transfer learning

today are (1) feature-based and (2) fine-tuning. The SentEval suite in itself is

mainly a tool to evaluate the quality of the sentence embeddings themselves,

regardless of how they were obtained. The authors express hope that their

toolkit will be used for centralised and comparable evaluation by the commu-

nity, especially in the vein of probing for a clearer picture of how linguistic

information is encoded.

In the experiment related to this project, the M-BERT embeddings were ob-

tained through a feature-based procedure, which is described in further detail

in chapter 5. The cross-lingual transfer tasks integrated into the framework

are presented in the next chapter.

The basic use case of SentEval consists of the following:
6https://github.com/facebookresearch/SentEval
7https://github.com/google-research/xtreme
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1. Implementing a function that encodes sentences from the task data into

embeddings, one batch at a time

2. Optionally adjusting SentEval and classification parameters

3. Optionally pre-processing the samples by constructing their word vec-

tors (needed for bag-of-word-vector techniques)

4. Specifying with transfer tasks to use for evaluation

For the first step, the user can either implement a sentence encoder in any

Python framework of their own choice, or make use of the example scripts

provided in the repository. These include the InferSent8 inference-based en-

coder released along with SentEval (Conneau et al., 2017); GenSen9 based on

large-scale multi-task learning; and Google’s Universal Sentence Encoder.10

There is also an option to simply evaluate the quality of the average of word

embeddings. Included by default is the option to construct the word vector

vocabulary with either GloVe or fastText.

Once the sentence representations are obtained, SentEval uses the vectors

as input to classifiers trained on top. The user may choose between logistic

regression and a Multi-Layer Perceptron for the classifier type. In the case of

the Semantic Textual Similarity task, however, the cosine distance between

two sentence representations are evaluated against human similarity judge-

ments for a correlation score. (Both of the cross-lingual tasks used in this

thesis project are classification-based.)

SentEval also provides a script for automatically obtaining the task data

from their known locations and applying pre-processing such as tokenisation
8https://github.com/facebookresearch/InferSent
9https://github.com/Maluuba/gensen

10https://tfhub.dev/google/universal-sentence-encoder/4
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to it.

In terms of additional Python libraries, SentEval’s functionality requires

NumPy, SciPy, PyTorch and scikit-learn.
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4 Data

Because the original SentEval version included data and tasks in English

only, the main objective was to find suitable cross-lingual tasks and build

their data into the SentEval framework, resulting in a new, multilingual li-

brary of tasks. The chosen tasks – XNLI (Conneau et al., 2018b) and XED

(Kajava, 2018) – represent the objectives of inference and emotion detec-

tion, respectively. These can be seen as a more advanced type of sentence

classification that require relatively deep natural language understanding for

a model to successfully accomplish. They also represent both single and

dual sentence input: for emotion detection, one sentence at a time is pro-

cessed, whereas entailment classification comprises a pair of sentences and

the semantic-logical relationship between them.

4.1 XNLI: Cross-lingual Natural Language Inference

The task of Natural Language Inference involves taking two sentences as

input and deciding whether they are entailed, contradictory, or neither (neu-

tral). The pair of sentences is referred to as the premise and the hypothesis.

The Stanford Natural Language Inference corpus was first introduced as a

sufficiently large high-quality NLI corpus for modern language understanding

systems by Bowman et al. in 2015. The SNLI corpus consists of over 570

000 sentence pairs written and labeled by humans. A crowd-sourced corpus

modelled on SNLI was later released which spans multiple genres of both

spoken and written text. The resulting corpus comprises approximately 433

000 sentence pairs and is dubbed MultiNLI.11 For each premise sentence,
11https://cims.nyu.edu/ sbowman/multinli/
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there is a corresponding hypothesis representing each of the inference labels.

As an example from the XNLI corpus, given the premise of He didn ’t get

to go ., the hypothesis sentences are as follows:

• Entailment: He wasn ’t allowed to attend .

• Contradiction: He was the first to be invited and enjoyed the

experience .

• Neutral: He wasn ’t allowed to go to the museum ’s opening .

The multi-language XNLI set was similarly constructed by creating 7,500

human-labelled development and test samples in 15 different languages, mak-

ing for a total of 112,500 sentence pairs. It is specifically designed to function

as a benchmark set for cross-lingual language understanding, and has since

been actively utilised in related research. For example, it is included as one

of the nine tasks in the recently published XTREME benchmark (Hu et al.,

2020) mentioned in section 2.3. Notably, the English sets are not copies or

derivatives of the MultiNLI or SNLI data, but newly created for the XNLI

task and professionally translated into each of the languages. Because the

labels were copied over from English as such, the preservation of meaning

in translation is acknowledged as a potential issue. Measures were taken to

ensure that such discrepancies were rare enough to be negligible.

The XNLI languages are: Arabic (ar), Bulgarian (bg), German (de), Greek

(el), English (en), Spanish (es), French (fr), Hindi (hi), Russian (ru), Swahili

(sw), Thai (th), Turkish (tr), Urdu (ur), Vietnamese (vi) and Simplified

Chinese (zh). The motivation behind the particular set of languages is to

invite diversity over a range of typological metrics, such as language family,
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syntactic structure, and writing system. Among these, Swahili and Urdu are

cited as low-resource languages (Conneau et al., 2018b).

4.2 XED: Cross-lingual Emotion Detection

Emotion detection can be seen as a subgroup of sentiment analysis, which

is a buzzing area of classification in NLP. Extracting opinions and predict-

ing behaviors of people based on the data they generate is valuable from

various commercial and societal perspectives. Because sentiment analysis is

generally done on phrase level, as a task it is well suited to testing language

models for their semantic understanding. The emotion-annotated data used

for this project was adapted from Kaisla Kajava’s Master’s Thesis titled

"Cross-Lingual Sentiment Preservation and Transfer Learning in Binary and

Multi-Class Classification" (University of Helsinki, 2018). Some of the cen-

tral findings include that sentiment is generally preserved in translation well

enough at least for binary classification, although reliable multi-dimensional

classification requires a larger amount of data. Only the fine-grained multi-

class component was considered for this project. The data set was dubbed

Cross-lingual Emotion Detection (or "XED" for short) for the purpose of its

usage as a downstream task.

The data originates from the Open Parallel Corpus of automatically aligned

movie subtitles (Tiedemann, 2012). English was chosen as the source lan-

guage; the data in the other languages are translations thereof. The data

was manually filtered for misalignments, rendering mistakes, and other noise.

The original target languages are Finnish, French and Italian. Only the lat-

ter two were included in this experiment due to difficulties with obtaining

enough data in a suitable format. Each sample has been human-labelled
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XED: Class distribution

ang ant dis fea joy sad sur tru

Frequency (%) 14 13 13 11 15 11 10 13

Table 1: Proportion of samples within each emotion class.

as expressing one of eight emotions based on Plutchik’s theory of emotion:

anger, disgust, fear, sadness, anticipation, joy, trust, and surprise (Kajava,

2018).

The distribution of classes is not even, but it is stratified across the splits

of the data set, meaning that the proportions of samples belonging to each

class is the same within each split. See table 1 for the approximate frequency

distribution. In the sets used for this project, there is minor variation (±0.5

points) in the frequencies due to the random extraction of the development

sets from the training sets.
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5 Methodology

The following sections describe the components of my experiment: the envi-

ronment I used, and the data sets which the models were trained and tested

on. Detailed are also the modifications made to the SentEval fork, which was

entitled MultiSent.12

5.1 Objectives

The chief goal of the project has been to evaluate multilingual encoders on

cross-lingual tasks by setting up a reusable evaluation framework modelled

on the SentEval toolkit, which is designed to evaluate sentence embeddings

for universality Conneau and Kiela (2018). Originally the tasks considered

for transfer in MultiSent included Opusparcus (Creutz, 2018), although they

were ultimately narrowed down to XNLI and XED. The practical integration

of these tasks is detailed in sections 5.4. Another initial goal was to train a

multilingual model from scratch, or fine-tune a model on multilingual data;

however, due to time constraints, the pre-trained Multilingual BERT model

was evaluated in a feature-based manner (outlined in section 5.3).

The work started with studying current language understanding tasks and

their feasible extension to multiple languages, with SentEval’s architecture

as the template. The practical work consisted of the following main steps:

• Adjusting the MultiSent interface to allow selection of languages to

include in the transfer evaluation

• Setting up a data structure for each transfer task and adjusting the
12https://github.com/Helsinki-NLP/MultiSent-Benchmark
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SentEval engine accordingly

• Combining a suitable Multilingual BERT implementation with Multi-

Sent

• Implementing a multi-language CBOW baseline encoder

5.2 Computing setup

MultiSent is part of the Language Technology at the University of Helsinki

research project.13 The storage, processing and computing was conducted

on the IT Center For Science (CSC) Puhti supercomputer.14 Running the

models and evaluation was generally done on Puhti’s GPU nodes, which

feature NVIDIA Volta V100 GPUs.

The BERT implementation used for this project is provided by Hugging

Face Transformers15, which is an extensive library of natural language under-

standing architectures. Hugging Face Transformers library contains PyTorch

and Tensorflow implementations, usage scripts, and a host of state-of-the-

art models that can be trained from scratch or imported with pre-trained

weights.

5.3 Model: Multilingual BERT

Preexisting SentEval examples use monolingual encoders and tasks to obtain

and evaluate sentence embeddings. Because the goal was set on cross-lingual

evaluation, an implementation of a pre-trained multilingual model was fused
13https://github.com/Helsinki-NLP
14https://docs.csc.fi/computing/system/#puhti
15https://huggingface.co/transformers/index.html
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with SentEval for the purpose of this thesis. Per the recommendation of

Devlin et al. (2019), the latest cased version of multilingual BERT-base was

used.

• BertTokenizer – tokenises the sentence and converts the tokens to IDs

• BertModel – encodes the sentence and outputs the embedding

The idea for obtaining a sentence embedding is to process the sequence with

a BERT model and extract the hidden state of the last layer as a represen-

tation for the sentence. There are multiple ways to approach this objective

depending on task at hand. For example, in the work by Pires et al. (2019)

dedicated to probing BERT, the hidden feature activations at each layer are

extracted, and the representations for the input tokens are then averaged to

obtain a vector representing the entire sentence. While there is no clear-cut

method for obtaining the embedding that best encompasses the semantic in-

formation, there appears to be a rough community consensus that much of

the sentence’s content is efficiently summarised in the output of the initial

token, especially in the case of classification.

Obtaining the embeddings was first attempted according to the Hugging

Face Quickstart tutorial16 and by averaging over the word representations

using the torch.mean function. Due to unknown causes, the encoding of the

sentences proved to be impractically slow for proper testing purposes with

this method. With more time to debug, the issue could likely be resolved,

but for the the sake of this thesis, a workaround was attempted instead. The

encoding scheme (batcher() function) is shown in figure 1. The strategy

was mostly adapted from the instructions by Jay Alammar.17

16https://huggingface.co/transformers/quickstart.html
17https://github.com/jalammar/jalammar.github.io/blob/master/notebooks/bert
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Figure 1: The M-BERT encoding implementation in MultiSent
def batcher(params , batch ):

batch = [sent if sent != [] else [’.’] for sent in batch]
tokenized = []
max_len = 0

# Tokenize and prepare the sentences
for sent in batch:

tokenized_sent = tokenizer.encode(sent)
tokenized.append(tokenized_sent)

max_len = 0
for i in tokenized:

if len(i) > max_len:
max_len = len(i)

# Make all inputs same length and compile into single batch
padded = np.array([i + [0]*( max_len -len(i)) for i in tokenized ])
mask_padded = np.where(padded != 0, 1, 0)

# If model is put on CUDA , put tensors there as well
input_ids = torch.tensor(padded ).to(’cuda ’)
mask = torch.tensor(mask_padded ).to(’cuda ’)

with torch.no_grad ():
encoded_layers = model(input_ids , attention_mask=mask)

# Get the hidden state of the initial [CLS] token
embeddings = encoded_layers [0][: ,0 ,:]. cpu(). detach (). numpy ()

return embeddings
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To speed up computation, the text input to the model is given as a sin-

gle batch rather then looping over each sentence separately to encode it.

Once the sentences are tokenised and converted to their vocabulary IDs, the

sequences are batched together into an array before being fed as input to

the model. As per the Transformers documentation, because the sequences

within the array might be of different lengths, each sequence in the array

should be padded to the length of the longest sequence in the batch. Ad-

ditionally, an attention mask18 may be passed to the model to indicate the

positions of actual tokens it should pay attention to. As such, an array mir-

roring the sentence array is created, where each position that corresponds to

a token ID is denoted by the value 1, and otherwise the value 0. The arrays

are then converted to tensors and given as input to the model, after which

the pooled hidden state described in the previous paragraph is extracted.

The array of embeddings can then be passed further on to the MultiSent

downstream tasks.

5.4 Downstream tasks

The transfer tasks make use of the data described in detail in chapter 4. This

section describes their specific integration into the MultiSent suite. For the

most part, the data was structured so that minimal modifications to existing

SentEval files would have to be made. The aim was also to keep the data as

modular as possible in order to (1) make it straightforward for the user to

include or exclude languages based on their specific needs, (2) later extend

the downstream tasks with data in additional languages in a straightforward

way.
18https://huggingface.co/transformers/glossary.html#attention-mask

38



XNLI The XNLI training, development, and test sets are included as pro-

vided by Conneau et al. (2018b). As mentioned in chapter 4, the dev and

test sets are not based on MultiNLI, but newly created and professionally

translated from the English XNLI sets to the other 14 languages, for a total

of 7,500 samples per language. The training sets released to the public are,

however, machine-translated. The "Translate-Train" baseline in the XNLI

paper was obtained using these sets, which were automatically translated

from the MultiNLI training data into each of the other 14 languages us-

ing neural machine translation. As such, some of the classification accuracy

necessarily depends on the quality of the machine translation. Because the

translation is done at the training stage, a classifier is trained and tested

separately for each language as part of the evaluation pipeline.

The evaluation script designed for the monolingual NLI task, snli.py, was

then adapted to simply use the XNLI data instead. For this purpose, the

XNLI data was divided into separate folders on a per-language basis. In the

data/downstream/XNLI directory, for each language $lg, there is a subdirec-

tory XNLI-$lg with identical train, dev and test file structures mimicking the

SNLI transfer task structure. The premise sentences, hypothesis sentences,

and gold labels are simply split into their own files, with lines aligned accord-

ingly. That is, the first line of labels contains the label for the entailment

relationship between the first line of s1 (premise) and the first line of s2

(hypothesis). The total number of samples is outlined in table 2.

Regarding the files, the entailment labels included in the machine-translated

training data deviated from the dev and test data in that the term "contra-

dictory" was used instead of "contradiction". This was corrected as part of

the pre-processing.
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XNLI data train dev test

number of samples 392,702 2,490 5,010

Table 2: Number of lines per file in the XNLI data.

XED Because SentEval already has a fine-grained sentiment classification

task built in, it was used as a template for integrating the Cross-lingual Emo-

tion Detection task. The main difference is the number of classes used: the

Stanford Sentiment Treebank (Socher et al., 2013) makes use of five classes

ranging from very negative to very positive, whereas XED’s fine-grained

scheme spans eight classes. However, it should be noted that emotion de-

tection represents multi-dimensional classification, which comes with its own

host of challenges (Öhman et al., 2016). Although SST-5 makes use of sev-

eral classes, they are segments of the same one-dimensional positive/negative

scale. Given the scope and time-frame of the project, the SST template was

still deemed suitable enough for rudimentary testing.

The emotion detection data and its pre-processing into SST-like format was

provided by Emily Öhman and Kaisla Kajava (University of Helsinki). Sim-

ilar to the XNLI scheme, for each language $lg, there is a subdirectory

data/downstream/XED-$lg with language-specific train, dev, and test files.

Each line is a simple text string: The first character of the line denotes the

emotion class assigned to the sentence, which follows the emotion ID.

Because of the data deficiency noted in Kajava’s work, an effort was made to

use related resources to extend the data sets where possible. In particular,

larger validation sets were needed for the MultiSent setup than was available.

For this project, an additional English dev set of approximately 1,500 sam-

ples was produced. French and Italian dev sets, however, were obtained by

extracting 800 random samples (about 14%) from their respective training
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XED data train dev test

English 5773 1505 652

French 4975 800 652

Italian 4974 800 652

Table 3: Number of lines per file in the XED data.

sets. The total number of samples are outlined in 3.

As mentioned in section 4.2, the Finnish language data also considered in Ka-

java’s work can be added to the MultiSent framework in future experiments

once enough suitable data is available.
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MultiSent: M-BERT test accuracy on XNLI

ar bg de el en es fr hi ru sw th ur vi zh

MLP 33.3 33.3 47.7 33.3 55.9 50.2 50.9 33.3 33.4 35.8 38.2 33.3 33.3 33.3

LR 33.8 33.6 47.3 33.5 54.4 49.7 48.5 33.5 32.8 36.5 36.3 33.0 33.3 34.3

Table 4: Test accuracy with MLP and Logistic Regression.

6 Results and discussion

This chapter describes the results obtained with the MultiSent framework,

insofar as it was developed within the ramifications of this thesis project.

The sentence embeddings produced by the pre-trained Multilingual BERT

model were evaluated on two types of cross-lingual tasks: Natural Language

Inference and Emotion Detection. These embeddings are essentially con-

textualised word vectors extracted from hidden states of the model output,

which are then used as input to the classifiers trained on top. As such,

the main practical objective of the thesis was achieved with some success,

although there is limited material for proper analysis of the system’s perfor-

mance and functionality. Despite a significant time investment, the technical

execution of the project remained on an experimental level and the scores

obtained are questionable at best. The technical intricacies going on beneath

the hood of MultiSent – ensuring that the desired embeddings were obtained

and that they represented a suitable input to the downstream classifiers –

was the biggest hurdle of the experiment, and therefore rigorous analysis of

the meager results is difficult to perform.

A full table of scores obtained with M-BERT on all the downstream task and

language combinations is displayed in tables 4 and 5.

For comparison with other results in previous work, table 6 shows the ob-

tained test accuracy across different models for selected languages. State-
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MultiSent: M-BERT test accuracy on XED

English French Italian

MLP 34.5 27.3 25.3

Logistic Regression 38.3 27.9 25.1

Table 5: Test accuracy on each of the XED languages.

of-the-art results with BERT fine-tuned for NLI are not available for all

languages; Chinese is included here for the sake of comparison with results

reported in related literature. The first row contains the "Translate-Train"

results from the XNLI paper, in which the sentence encoder has been trained

on MultiNLI training data using a bidirectional LSTM with max-pooling

(Conneau et al., 2018b). (At this time, their best results were still obtained

by running the encoder and classification in English and simply translating

the target language into English at test time.) The second and third rows

are some of the recent results reported on the Multilingual BERT GitHub

webpage.19 Out of these BERT models, the first was trained on the machine-

translated MultiNLI data, whereas the second was fine-tuned only on English

MultiNLI data and then evaluated on the XNLI data set (zero-shot classi-

fication). Lastly is reported the scores from the feature-based Multilingual

BERT implementation of MultiSent.

There are a multitude of ways in which classification parameters could have

been tweaked and only some of them were explored. Both the logistic regres-

sion and MLP (multi-layer perceptron) types of classification were tested,

although the differences appeared minor across the experiment runs. The

Chinese accuracy of 34.3 was obtained with logistic regression, whereas the

highest English and French accuracy scores (by a margin of less than two per-
19https://github.com/google-research/bert/blob/master/multilingual.md#models
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XNLI: TRANSLATE TRAIN approach

Model English French Chinese

BiLSTM-max 73.7 68.3 67.0

M-BERT (translate-train) 81.9 - 76.6

M-BERT (zero-shot) 81.4 - 63.8

Multi-Sent: M-BERT 55.9 50.9 34.3

Table 6: Classification accuracy on the XNLI data-set.

centage points) were obtained through MLP with 5 hidden units. As every

premise sentence is associated with three hypothesis sentences in the data,

one with each label, the distribution of classes is even in the case of XNLI.

For Chinese, the comparably low accuracy – close to the random chance

of 33.3% – suggests poor transfer of inference capability when task-specific

fine-tuning is omitted. It is, however, also possible that something along

the stream of encoding the data, extracting the features, and performing

the classification is not working as intended. This proved to be a rather

challenging process to debug, especially with practical limitations such as

queuing for computing resources.

As a MultiSent evaluation baseline, a simple continuous bag-of-words (CBOW)

model was intended to be constructed using multilingual fastText word em-

beddings for the relevant languages. Regrettably, this step was not success-

fully completed within the time-frame of this project. Likewise, a version of

Multilingual BERT fine-tuned on the NLI task was planned to be evaluated

in MultiSent. The Hugging Face library enables fine-tuning on XNLI, but

this option was not explored further due to time constraints.

As for XED (table 7), the accuracy scores are fairly low, which is not surpris-
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XED: Classification accuracy

Classifier type English French Italian

MLP (Kajava) 49.3 37.7 41.5

MultiSent: MLP 34.5 27.3 25.3

MultiSent: Logistic Regression 38.3 27.9 25.1

Table 7: Comparison of classification accuracy on the XED data-set.

ing given the number of classes alone. In line with the existing fine-grained

sentiment classification task, only the micro-F score is reported; that is, the

overall accuracy of the classifier (portion of samples correctly classified out of

all classified samples). The first row is from the paper by Kajava (2018). She

reports accuracy scores for four different classifiers; only MLP is considered

here. It is contrasted with the MultiSent classification results obtained with

both MLP and logistic regression.

It bears mentioning that there are substantial differences in the MLP classifier

parameters used: in Kajava (2018), the MLP contains three hidden layers,

each with 100 neurons, whereas the MultiSent classifier only contains one

layer. The results here were obtained with 5 hidden units in the layer. Other

differences include activation functions used (Rectified Linear Unit versus

Sigmoid, respectively) and the value of k in k-fold cross-validation (10 versus

5). Certainly for further experiments, the parameters could stand to be much

more carefully tuned.

With the total number of eight classes, an even distribution would yield a

12.5% chance of randomly estimating the class correctly. In practice, as

shown in section 4.2, the split between the emotion classes varied by a few

percentage points, the most frequent class being joy with 15% of the sam-

ples. Additionally, as discussed in section 4.2, there is the matter of emo-
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tion multi-dimensionality being less straightforward than fine-grained one-

dimensional classification. The significant drop in performance for French

and Italian compared to English can likely at least partially be attributed

to the clearly diminished size of the training and development sets: the

truncated French and Italian training sets are 14% smaller than the English

training set, whereas the French and Italian development sets are as much

as 47% smaller. The random extraction of the dev sets also minorly affected

the class distributions, which is exacerbated by the small number of samples.
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7 Conclusion

The result of this project is MultiSent, a version of SentEval with partially

working modifications to enable evaluation of sentence embeddings in a cross-

lingual setting. While executed on a smaller scale than originally intended,

mostly due to technical challenges encountered during the practical imple-

mentation, some tentative results were obtained. The accuracy scores ob-

tained for XNLI were far from competitive (in the 33.3–55.9 range), whereas

XED scores mostly suffered from data scarcity (25.2–34.4). More rigorous

analysis of the results would require more extensive tuning of the consid-

ered models, careful extraction of the embeddings, as well as more coverage

across possible classification parameters. Another use case mentioned by

Conneau et al. (2018b) is the possibility of mixing languages in tasks with

dual-sentence input (such as pairing a premise sentence in one language with

a hypothesis sentence in a different one), which was not explored within the

scope of this project. With the basic modifications in place, XED can be

easily extended with additional languages for further experiments. It would

also be recommendable to implement a naive cross-lingual CBOW encoder

based on multilingual word embeddings as an evaluation baseline.
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