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Abstract

Paired associative stimulation (PAS) combines transcranial magnetic stimulation (TMS)

and peripheral nerve stimulation (PNS) to induce plastic changes in the corticospinal tract.
PAS employing single 0.2-Hz TMS pulses synchronized with the first pulse of 50-100 Hz
PNS trains potentiates motor-evoked potentials (MEPS) in a stable manner in healthy partic-
ipants and enhances voluntary motor output in spinal cord injury (SCI) patients. We further
investigated the impact of settings of this PAS variant on MEP potentiation in healthy sub-
jects. In experiment 1, we compared 0.2-Hz vs 0.4-Hz PAS. In experiment 2, PNS frequen-
cies of 100 Hz, 200 Hz, and 400 Hz were compared. In experiment 3, we added a second
TMS pulse. When compared with 0.4-Hz PAS, 0.2-Hz PAS was significantly more effective
after 30 minutes (p = 0.05) and 60 minutes (p = 0.014). MEP potentiation by PAS with 100-
Hz and 200-Hz PNS did not differ. PAS with 400-Hz PNS was less effective than 100-Hz

(p =0.023) and 200-Hz (p = 0.013) PNS. Adding an extra TMS pulse rendered PAS strongly
inhibitory. These negative findings demonstrate that the 0.2-Hz PAS with 100-Hz PNS previ-
ously used in clinical studies is optimal and the modifications employed here do not enhance
its efficacy.

Introduction

Several studies have recently demonstrated the potential therapeutic applications of non-inva-
sive brain stimulation, including transcranial magnetic stimulation (TMS) [1, 2]. Non-invasive
depolarization of neuronal membranes by TMS initiates action potentials and enables target-
ing and modulation of activity of cortical neuronal ensembles. Activation or suppression of
neuronal activity provides therapeutic opportunities for numerous neurological conditions
[1]. Paired associative stimulation (PAS) combines TMS of the primary motor cortex (M1)
with electrical peripheral nerve stimulation (PNS) of the contralateral extremities. The
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potential of PAS as a therapeutic tool has been studied in stroke [3], neurodegenerative disor-
ders [4] and spinal cord injury [5] patients, among others [6].

Long-term-potentiation (LTP) is a cellular mechanism that induces long-lasting increase of
synaptic efficacy and neuroplasticity [7]. LTP occurs as a consequence of simultaneous activity
of pre-and postsynaptic cells [8]. N-methyl-d-aspartate (NMDA) channel-dependent LTP pro-
vides an attractive cellular model of learning and memory and may play an essential role in
developing functional neural networks [9, 10]. The aim of PAS is to create the conditions that
can contribute to induction of LTP in vivo. If the timing between the two stimuli (inter-stimu-
lus interval, ISI) is appropriate, PNS signals that ascend via sensory volley to M1 coincide with
the TMS-induced neural impulses from M1. This coincidence can transiently increase the cor-
ticospinal excitability. [11, 12] In spinal PAS, antidromic and orthodromic signals are timed to
occur simultaneously at the spinal cord level. This repeated pairing of signals is thought to
induce an LTP-like effect at the corticospinal-motoneuronal synapses [13-15].

TMS and PAS protocols can engage corticospinal plasticity and are under investigation as a
tool to enhance motor function after spinal cord injury (SCI), which is rarely complete [5]. We
have shown in several case reports and series that PAS with a high-frequency peripheral com-
ponent (0.2-Hz TMS paired with 100-Hz PNS) enhances motor output of paretic or paralytic
muscles in patients with chronic incomplete SCI [16-19]. At the moment this is the only PAS
protocol variant that has produced clinically meaningful and long-lasting improvements in
patients with SCI. Previous studies have applied PAS to spinal cord injury patients as single
sessions only [13-15]. In stroke patients, conventional PAS applied for 4 weeks improved
some neurophysiological and functional measures [20].

The potential for PAS to increase or decrease excitability strongly depends on the interval
between TMS and PNS pulses [12][21]. Therefore, precise timing between the two stimuli is
crucial. Conventional PAS (single-pulse TMS combined with single pulse or 10-Hz PNS) pro-
tocols employ either fixed ISI (across participants) or individually determined ISIs [21][6].
The variable outcomes of conventional PAS reflect its dependence on multiple technical and
individual factors such as time of day, pre-PAS activity, and subject characteristics [6]. Patients
with SCI may have longer neuronal conduction times in both orthodromic and antidromic
pathways, whose conductivity may also change during the rehabilitation and time since injury.
Therefore, finding the precise ISI and most optimal parameters of PAS protocol can be partic-
ularly challenging. Employing a PAS protocol at 0.2-Hz with high-intensity TMS (100% of the
stimulator output) and high-frequency peripheral stimulation leads reliably to robust motor-
evoked potential (MEP) potentiation at a wide range of ISIs, plausibly due to increase in colli-
sion events between TMS- and PNS-induced neuronal impulse volleys [16, 17] PAS with a
100-Hz PNS appears to be the most effective [16][22, 23].

Further development of PAS variants with a high-frequency peripheral component is of
clinical interest. We searched for an increase of the excitatory effect and decrease of the time
required for PAS by modifying the previously employed”standard” protocol (0.2-Hz single
pulse TMS, 240 stimuli in 20 minutes on the M1, paired with 100-Hz PNS to the right tibial
nerve). We wanted to achieve the same or higher MEP potentiation in a more time-efficient
manner and compared the potentiation induced with several modified versions with the effects
of the standard protocol.

The rationale of this study was to test whether increasing the frequency of either PAS or the
PNS component of PAS or doubling the amount of TMS pulses would enhance the efficacy,
feasibility, or both of the protocol that we have used in clinical studies. The aim of all experi-
ments was either to show the superiority of new PAS modifications or to conclude that the
current version of PAS with a high-frequency peripheral component (currently under investi-
gation for clinical use) is currently the most optimal choice for PAS. Increasing the PAS
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frequency would reduce the time of the PAS protocol and render it more feasible for clinical
use and may also increase its efficacy. Since PAS aims at the coincidence of ascending and
descending volleys at the spinal cord level, we also hypothesized that increasing the frequency
of PNS component, or increasing the number of TMS pulses, could further increase PAS effi-
cacy by enhancing the number of coinciding volleys. A single high-intensity TMS pulse pro-
duces several descending volleys, a D-wave, and four I-waves at a frequency of approximately
500-660 Hz [24]. We have previously shown that increasing the frequency of the PNS compo-
nent from 50 Hz to 100 Hz enhances the efficacy of PAS.

Participants and methods
Participants

The study was approved by the Ethics Committee of Helsinki University Hospital (HUS/
1280/2016). Twenty healthy participants without contraindication for TMS were recruited.
Some subjects participated in more than one experiment. Each subject signed an informed
consent form before participation. All experiments were performed according to relevant
guidelines and regulations [25]. All subjects were right-handed. The average (+SD) height
and weight of the subjects was 170+9 cm, 69+11 kg; 174+4 cm, 6619 kg and 167+9 cm, 72
+14 kg for Experiment 1, 2, and 3, respectively. The education level of the subjects for Exper-
iments 1, 2, and 3 was as follows: undergraduates (33, 30, 40%), MSc or MD (44, 30, 40%),
PhD (22, 40, 20%).

Transcranial magnetic stimulation

TMS pulses were generated with an eXimia magnetic stimulator employing a figure-of-eight
coil (Nexstim Ltd., Helsinki, Finland). We applied MRI-guided TMS navigation (Navigated
Brain Stimulation 4.3 [NBS 4.3], Nexstim Ltd., Helsinki, Finland) based on 3D models of the
individual 3T T1 MRI images. In a prospective series of patients, comparison of the preoper-
ative and intraoperative localization of hand motor cortex yielded distances of 4-14 mm
between nTMS and direct cortical stimulation. [26-29] Navigation guarantees the accurate
localisation of M1 and the precise repetition of the same cortical location with exactly the
same coil positioning and orientation, securing the same induced electric field throughout
the whole session and between different experimental sessions. The TMS coil was positioned
over the left primary M1 to activate the “hotspot” of the right abductor hallucis muscle. Dur-
ing the mapping, we systematically recorded MEPs from the whole motor representation
area of the distal lower limb. We defined the hotspot as a site where TMS pulses provided the
maximal and most consistent MEPs from the right abductor hallucis muscle and induced a
plantar flexion. MEPs were recorded and analysed with an EMG device integrated in the eXi-
mia stimulator. The resting motor threshold (RMT) of the contralateral abductor hallucis
muscle was defined as the minimum TMS intensity required to evoke a MEP of >50 4V in at
least 5 of 10 trials over the “hotspot”. During PAS, an intensity of 100% of maximum stimula-
tor output (MSO) was used to mimic the conditions of studies where this protocol was
applied to SCI patients [16-19]. The MEP measurements were performed with 120% of indi-
vidual RMT. Individual RMTs of the participants are presented in Table 1. RMTs in the
three experiments did not differ significantly (p = 0.114 by Kruskal-Wallis test). MEP latency
was calculated from an average of 10 MEPs elicited at an interval of 3.3 s at 120% RMT. The
average of MEP latencies was used to calculate the IST (F-MEP,yerage) [30] between the TMS
and PNS pulses.
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Table 1. Individual resting motor thresholds (RMTs), peripheral nerve stimulation (PNS) intensities, and pre-PAS motor-evoked potential (MEP) amplitudes in
three experiments. RMTs and PNS intensities were defined once prior to all measurements of the experiment. Pre-PAS MEP amplitudes are the average values of all pre-
PAS measurements included in one experiment for each subject.

Subjects | Experiment 1 Subjects | Experiment 2 Subjects Experiment 3
RMT PNS pre-PAS RMT PNS pre-PAS RMT PNS pre-PAS
intensity MEP intensity MEP intensity MEP
amplitude amplitude amplitude
% SO mA pv % SO mA pv % SO mA pv
1 88 13 289 1 76 11 154 1 88 13 180
2 49 6 316 2 71 5 553 2 81 12 444
3 36 5,4 595 3 76 14 752 3 96 6 222
4 90 8,5 514 4 87 6 89 4 91 7,5 314
5 98 12 859 5 52 17 495 5 90 8,5 884
6 96 6 127 6 65 20 337
7 91 7,5 545 7 100 15 44
8 70 8,5 258 8 52 9,7 405
9 81 12 600 9 73 15 449
10 51 10 880
median 88 8,5 514 72 12,5 427 90 8,5 314
mean 78 8,8 456 70 12,3 416 89 9,4 409
SD 22 2,9 226 16 4,8 274 5 3,0 284

https://doi.org/10.1371/journal.pone.0233999.t001

Electrical peripheral nerve stimulation

PNS was delivered using a Dantec Keypoint electroneuromyography device (Natus Medical
Inc., Pleasanton, CA, USA). The tibial nerve was stimulated with two surface electrodes (Neu-
roline 720, AMBU A/S, Ballerup, Denmark) positioned at the medial side of the ankle, between
the medial malleolus and the Achilles tendon. Before stimulation, EMLA Cream (lidocaine
2.5% and prilocaine 2.5%) was applied locally at the stimulation site for 16 participants to
reduce the sensations produced by PNS. Although all participants were offered EMLA, only 16
chose to use it. EMLA penetrates 3-5 mm into the skin [31] and thus does not affect the con-
ductivity of the tibial nerve. The same surface electrodes were employed for the F-response
recording. The recording electrode was placed over the belly of abductor hallucis muscle and
the reference electrode on the medial side of the hallux. Ten F-responses were recorded with a
single 0.2-ms stimulation at supramaximal intensity. From these responses, the one with the
shortest F-latency was selected and used for ISI calculation (F-MEP,yerqge). Square wave pulses
of 1 ms were applied to identify the individual minimum intensity evoking the F-response.
This intensity was used for PNS in PAS. PNS intensities of each participant are presented in
Table 1. PNS intensities in three experiments did not differ significantly (p = 0.196 by Kruskal-
Wallis test). Trains of six 1-ms square wave pulses were delivered at 100-400 Hz.

Paired associative stimulation

PNS and TMS were triggered by Presentation™ software (Neurobehavioral Systems Inc.,
Albany, NY, USA) to ensure their precise timing. Each TMS pulse was paired with a PNS
train. ISIs between the TMS and the first pulse of the PNS train were calculated with the for-
mula (F-MEPyerqg) as described previously [30]. To mimic the conditions of studies where
this protocol was applied to SCI patients [16-19], all participants were asked to imagine plan-
tar flexion of the right foot during the PAS session.
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Experimental design

Experiment 1 (Fig 1A) compared the 20-min 0.2-Hz TMS protocol with the 10-min 0.4-Hz
protocol on MEP potentiation at 0, 30, and 60 min after PAS. A total of 240 single TMS pulses
were delivered in both protocols (once every 5 s or 2.5 s, respectively). Nine healthy partici-
pants were recruited (6 females, age range 22-42 years, mean age 32 years). Each participant
had a PAS session on two different days separated by at least 7 days. The two protocols were
applied in a random order.

A

0.2 Hzvs 0.4 Hz

TMS | I |

PNs [T 1 1N

100 Hz

0.2 Hz

TMS | | |

PNs [T 1 [T

100 vs 200 vs 400 Hz

0.2 Hz

L R S N

Pns [T [T [T

100 Hz

Fig 1. Schematic representation of TMS and PNS parameters tested in A) Experiment 1; B) Experiment 2, and C)
Experiment 3.

https://doi.org/10.1371/journal.pone.0233999.9001
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Experiment 2 (Fig 1B) compared 0.2-Hz PAS with 100-Hz, 200-Hz, and 400-Hz PNS com-
ponents on MEP potentiation at 0, 30, and 60 min after PAS. Ten healthy participants were
recruited (5 females, age range 22-46 years, mean age 37 years). Each participant had a PAS
session on three different days separated by at least 7 days. The three protocols were applied in
arandom order.

In Experiment 3 (Fig 1C), we added a second TMS pulse 50 ms after the first one, pairing
the first and the second TMS pulses with the first and sixth PNS pulses, respectively, at the
level of the spinal cord. Both pulses were given at 96% of MSO due to safety limitations of the
TMS device. We examined whether the increase in the number of orthodromic volleys could
further enhance MEP potentiation. Five healthy participants (three females, age range 30-39,
mean age 34) were enrolled. Each participant underwent one session of PAS.

In all experiments, the MEP amplitude changes were assessed from an average of 30 MEPs
elicited with TMS delivered to the hotspot of right abductor hallucis muscle once every 3.3 s at
120% of RMT. Assessments were conducted immediately prior to the PAS session, immedi-
ately post-session (0 min), 30 min post-session, and 60 min post-session. MEP potentiation
was calculated as a percent ratio of an average of post-PAS normalized to pre-PAS MEP ampli-
tudes. EMG was recorded continuously and analysed 200 ms prior to MEPs to detect muscle
preactivation. MEPs with preactivation were excluded from the analysis.

Statistical analysis

Statistical analysis was performed using SPSS 25.0. An average of 30 MEPs was calculated at
each timepoint post-PAS and compared with the averaged value of amplitudes from 30 MEPs
measured before the PAS session; percent ratios post-PAS/pre-PAS were defined. Data were
assessed with Wilcoxon signed-rank test and with Friedman test for multiple comparisons.

Results

Experiment 1 (Fig 1A) compared the MEP potentiation induced by 0.4-Hz and 0.2-Hz PAS
(Fig 2). At 0 min post-PAS, the 0.4-Hz protocol induced a significant MEP potentiation

(p =0.038, 204+73%). A trend towards MEP potentiation with the 0.2-Hz protocol was
observed (p = 0.66, 193£43%). At 30 min and 60 min, the 0.4-Hz protocol did not enhance
MEDPs (30 min, p = 0.066; 60 min, p = 0.77) whereas the 0.2-Hz protocol generated a significant
long-term MEP potentiation (30 min, p = 0.008, 177+£24%; 60 min, p = 0.008, 147+£10%), con-
sistent with our previous results [23]. The 0.2-Hz protocol induced a significantly stronger
MEP potentiation than the 0.4-Hz protocol at 30 min (p = 0.05) and 60 min (p = 0.011). At0
min (p = 0.3), no significant difference was found (Fig 2A). Individual values for each subject
at pre-PAS and 60 min post-PAS are shown in Fig 2B and 2C.

In Experiment 2 (Fig 1B), we compared MEP potentiation up to 60 min after PAS with
PNS of 100 Hz, 200 Hz, and 400 Hz. The 100-Hz protocol induced a significant MEP potentia-
tion at 0 min (p = 0.005; 198+25%) and 30 min (p = 0.009; 189+28%); the 200-Hz protocol
induced a significant MEP potentiation only at 0 min (p = 0.022; 182+22%); and the 400-Hz
protocol did not induce significant MEP potentiation at any time point (Fig 3). A Friedman
test including all timepoints revealed a significant difference between the groups (p = 0.048).
The protocol with 400-Hz PNS induced significantly weaker potentiation at all time points
than 100 Hz (p = 0.023) and 200 Hz (p = 0.013). The 100-Hz and 200-Hz protocols did not dif-
fer (p = 0.6) (Fig 3).

Joint analysis of 0.2-Hz PAS with 100-Hz PNS (the “standard” protocol) from experiments
1 and 2 (Fig 4, n = 19 measurements) showed a significant MEP potentiation at all timepoints.
According to the Friedman test, MEP potentiation was significantly different between
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Fig 2. Experiment 1. A, MEP potentiation (post-PAS normalized to pre-PAS minus 100%) induced by PAS delivered
at 0.2 Hz and 0.4 Hz. At 30 min and 60 min, the 0.4-Hz protocol did not enhance MEPs, whereas the 0.2-Hz protocol
generated MEP potentiation. The 0.2-Hz protocol induced a significantly stronger MEP potentiation than the 0.4-Hz
protocol at 30 and 60 min. B-C) MEP values at pre-PAS and 60 min post-PAS induced by 0.2 Hz (B) and 0.4 Hz (C) in
individual participants in Experiment 1.

https://doi.org/10.1371/journal.pone.0233999.g002
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Fig 3. Experiment 2. MEP potentiation (post-PAS normalized to pre-PAS minus 100%) induced by PAS with 100-Hz,
200-Hz, and 400-Hz PNS. The significant MEP potentiation was induced by the 100-Hz protocol at 0 and 30 min, and
by the 200-Hz protocol at 0 min. The 400-Hz protocol did not induce significant MEP potentiation. PAS with PNS of
400 Hz induced significantly weaker MEP potentiation than PAS with 100 Hz and 200 Hz PNS.

https://doi.org/10.1371/journal.pone.0233999.g003

timepoints (p < 0.0001). Significant differences were found with post-hoc analysis by Wil-
coxon signed-rank tests between pre-PAS and all other timepoints (0 min, p = 0.001, 195
+25%; 30 min, p < 0.0001, 183£19%; 60 min, p = 0.002, 147+10%), consistent with our previ-

ous results [23].
Experiment 3 examined whether the MEP potentiation of the 0.2-Hz protocol can be fur-
ther increased by adding an another TMS pulse. We found a clear inhibitory effect when this

a0 0.2 Hz PAS with 100 Hz PNS

120
100
80
60

40

MEP potentiation in %

20

0 min 30 min 60 min

Fig 4. MEP potentiation (post-PAS normalized to pre-PAS minus 100%) induced by 0.2-Hz protocol with 100-Hz
PNS, pooled data from Experiments 1 and 2, n = 19. The protocol induced significant MEP potentiation at all time
points.

https://doi.org/10.1371/journal.pone.0233999.g004
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modified PAS was employed (0 min, -64+14%, p = 0.043; 30 min, -66£20%, p = 0.23; 60 min,
-52+12%, p = 0.043).

Discussion

The aim of this study was to investigate whether any of the PAS variants studied here is supe-
rior to the previously applied, clinically beneficial protocol [16-19]. Negative results were
obtained, showing that the clinical protocol is the most efficient; neither non-superiority nor
inferiority of the new PAS protocols presented here can be concluded from the obtained
data. In experiment 1, significantly weaker MEPs at 30 min and 60 min were detected after
applying the shorter than clinical PAS protocol. In experiment 2, a significant difference was
detected between all PAS protocols. Specifically, the difference was detected between the
100-Hz and 400-Hz PAS protocols; the 400-Hz protocol elicited significantly weaker MEPs
than the 100-Hz protocol. In experiment 3, a clear significant MEP inhibition by adding a
second TMS pulse was found. Therefore, the protocol version of PAS with a high-frequency
peripheral component, currently applied in clinical studies, is currently the most efficient
protocol.

The temporal relationship between the activations of pre- and postsynaptic neurons
appear to dictate the extent and polarity of plastic changes, known as spike timing-dependent
plasticity (STDP) [32]. LTP also may depend on firing rate [7] or combination of firing rate,
spike timing, and co-cooperativity among the inputs [33]. The situation in vivo is substan-
tially more complex than in cellular models, as complex patterns of neural activity of the
motor cortex are involved. This leads to variable outcomes in conventional PAS protocols,
thus highlighting strong dependence on external conditions [6]. In designing PAS protocols
that are feasible for neurological rehabilitation, clinical challenges must be considered.
Changes in signal conduction time in both orthodromic and antidromic pathways [34] and
measurement inaccuracies in MEPs due to muscle spasticity are expected in patients with
SCI. Considering all these factors, optimising the PAS protocol for SCI patients is very chal-
lenging. We have previously compared the 0.2-Hz PAS protocol with 50-Hz PNS that was
employed in studies involving patients with incomplete chronic SCI [16-17] with a protocol
involving 100-Hz PNS that was shown to be more effective [23]. Here, we wanted to investi-
gate whether similar efficacy can be obtained in a shorter time or improved by further modi-
fication of PNS.

In Experiment 1 we halved the duration of the PAS session by increasing the PAS fre-
quency to 0.4 Hz. This modification induced significantly weaker MEPs at 30 and 60 min
after PAS than the 0.2-Hz protocol. The results of Experiment 1 might be due to the impact
of stimulation duration, its frequency, or both. Some studies did apply facilitating PAS with a
duration of 10 min or shorter to induce LTP at the cortical [35] and spinal level [13]. How-
ever, the efficacy of these protocols was not examined at 30 and 60 min after the PAS. In in
vitro experiments, the high-frequency stimulation induces an activity-dependent release of
brain-derived neurotrophic factor (BDNF), known to play a crucial role in the LTP induc-
tion [36-38]. In a study where vagus nerve stimulation (VNS) was paired with an auditory
stimulus for inducing recovery-promoting plasticity in the auditory cortex [39], shortening
the interval between VNS tone-pairing events also reduced the plastic response and led to
loss of the therapeutic effect of the stimulation [39]. The authors concluded that longer inter-
vals between VNS tone-pairing events generate more plasticity and better recovery because
the structural changes that underlie these improvements require many seconds to minutes to
develop [39]. The possible role of activity-dependent plasticity-inducing molecules in the
PAS effect might explain why a sufficiently low frequency of PAS is required. A frequency
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that is too high might deplete relevant components of the neurotrophin release machinery,
such as vesicles and calcium stores, not allowing sufficient time for plastic response to occur,
and therefore rendering particularly the long-term plasticity less effective. Experiment 2
demonstrated that although 100-Hz PNS is more efficient than 50- and 25-Hz PNS [23], a
further increase in frequency of PNS does not provide additional efficacy. Thus, bringing the
PNS frequency closer to the frequency of I-waves [24] does not produce stronger potentia-
tion; the exact coincidence of each PNS pulse with each TMS-induced volley does not appear
to be the strongest determining factor for MEP potentiation. Rather, the specific pattern of
PNS appears to be important, although PNS by itself does not produce MEP potentiation
[23]. Consistent with the result of Experiment 1, the highest frequency is not the most effi-
cient. Activity-dependent release from the peripheral motoneuronal pool of neurotrophic
factors such as BDNF is known to occur at 50-100 Hz [36-38]. Frequencies higher than 100
Hz might not be as effective due to depletion of relevant components of the neurotrophin
release machinery, as mentioned above.

During selection of TMS parameters in Experiment 3, we aimed at a precise pairing of the
second TMS pulse with one of the PNS pulses of the PNS train. In addition, we aimed to apply
the same or similar stimulation intensity that was used in the 0.2-Hz protocol (100% MSO) to
ensure the comparability of the results. The 20-Hz TMS was selected to achieve as high a TMS
intensity as feasible. The safety guidelines of our TMS device requires a reduction of intensity
as the applied frequency increases. Employing this frequency enabled a maximum intensity at
96% of MSO and a precise pairing also with the sixth stimulus of the PNS train. The inhibitory
effect found in Experiment 3 most probably reflects the long interval intra-cortical inhibition
(LICI) that occurs by employing paired pulse TMS with ISIs between 50 and 200 ms, generally
considered to be mediated by cortical GABADb receptors [40]. The cortical LICI effect most
probably induces metaplastic change [41] in the motor pathways, preventing PAS facilitatory
effects. It has been suggested previously by pharmacological studies that the GABAD receptor
agonist baclofen decreases PAS-induced LTP-like plasticity in the human motor cortex [42].
GABAD inhibitory postsynaptic potentials may explain why we observed a negative impact on
the MEP amplitudes in this study. However, the increase in the number of orthodromic volleys
by applying several TMS pulses might contribute to a more effective PAS protocol when deliv-
ered with other intervals and needs further examination.

A limitation of this study is that no significant difference was detected between the 100-Hz
and 200-Hz protocols in Experiment 2. However, it is evident from Fig 3 that the 200-Hz pro-
tocol is not superior to the 100-Hz protocol. However, it is not clear if the 200-Hz PNS is sig-
nificantly inferior to the 100-Hz PNS; a larger sample size is required to answer this question.
As our aim was to find protocols superior to PAS with a 100-Hz PNS component, this question
is not clinically urgent. Moreover, we investigated only one modification of PAS frequency
and two modifications of PNS frequency. Although our clinical test protocol of PAS with high-
frequency PNS is the most efficient protocol among the options studied here, it remains open
whether this protocol can nevertheless be further optimized. Further studies that reveal the
exact mechanisms of action of the protocols and include more protocol variants with modifi-
cations of TMS, PNS, and PAS frequencies and intensities are needed.

These results combined with clinical studies [16-19] suggest that 0.2-Hz PAS with 100-Hz
PNS can be applied for patients with incomplete SCI to improve their motor function. More
studies are needed to optimize the timing and duration of the treatment and patient selection.
Current data [16-19] suggest that a longer stimulation time, earlier initiation of treatment,
and milder injury may be associated with better outcomes. More research is needed to confirm
these hypotheses and to further optimize the applied PAS protocol.
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Conclusions

None of the modified paired-associative protocols that we examined in this study could pro-
vide a stronger long-term MEP potentiation than the one we have applied previously [16-19].
Our findings indicate that 0.2-Hz TMS PAS employing 240 single TMS stimuli on M1 paired
with 100-Hz PNS is the most effective protocol of PAS employing high-frequency PNS.
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