
DIMENSION REDUCTION APPROACHES 
FOR ATMOSPHERIC REMOTE SENSING 

OF GREENHOUSE GASES

CONTRIBUTIONS

OTTO LAMMINPÄÄ

172



Finnish Meteorological Institute
Contributions 172

Dimension reduction approaches for atmospheric
remote sensing of greenhouse gases

Otto Lamminpää
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1 Introduction

Wide effects of global warming and climate change can be largely attributed to
anthropogenic release of greenhouse gases in the atmosphere. These gases have
the effect of reflecting solar light back towards the surface of the planet, leading in
more heat being trapped. This phenomenon has a vast body of scientific evidence in
its support, including e.g. IPCC (2013), Melillo et al. (2014), Council (2008). The
most prevalent greenhouse gases are carbon dioxide (CO2) and methane (CH4), both
of which have their concentrations increasingly risen from pre-industrial times, from
about 280 ppm to 410 ppm for CO2, and for CH4, from about 700 ppb to almost
1800 ppb.

Carbon dioxide is the most significant long-lived anthropogenic greenhouse gas
in Earth’s atmosphere. Quantifying point sources, such as power plants, as well as
state-of-art modelling of sources and sinks of CO2 require a global coverage of accu-
rate concentration measurements. NASA’s Orbiting Carbon Observatory 2 (OCO-2)
satellite mission assists in this goal by measuring the attenuation of sunlight in Earth’s
atmosphere. From the measured absroption spectra, CO2 concentrations can be in-
ferred. For credible analysis and further research, rigorous uncertainty quantification
is needed to correctly assess the reliability of the measurements.

Atmospheric methane is the second most important greenhouse gas in the atmo-
sphere after CO2. While methane is not as abundant, it traps heat over 20 times
more per unit mass than carbon dioxide. While major sources of methane are on
the surface, the main loss mechanism for is the oxidation by the hydroxyl radical,
mainly happening in the upper troposphere (altitudes from 0 to approx. 13 km on
average) and in the stratosphere (altitudes from 13 km to approx. 50 km). Due to
this phenomenon, in order to understand the carbon cycle of methane, it is impor-
tant to study the changes in the profile shape of CH4. This is especially true in the
Arctic regions like northern Finland, where a polar vortex forms each winter, limiting
the flow of air to the region and thus causing CH4 concentrations to decrease more
rapidly during this time. This vertical profile can be extracted from the measurements
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2 1 Introduction

carried out by the Sodankylä Total Carbon Column Observation Network (TCCON)
Fourier transform spectrometer (FTS). It is a ground based device that, similar to
OCO-2, measures the attenuation of solar light in the atmosphere and requires solid
uncertainty quantification for the measurements to be reliable.

The main goal of this work is to develop and implement rigorous, robust and
computationally efficient means of uncertainty quantification for atmospheric remote
sensing of greenhouse gases. We consider both CO2 measurements by OCO-2 and
CH4 measurements by Sodankylä FTS mentioned above. Our approach leverages
recent mathematical results on dimension reduction to produce novel algorithms
that are a step towards thorough operational uncertainty quantification in this field.

The process of inferring gas concentrations from measured spectra is known as
retrieval. The retrieval is an ill-posed inverse problem, meaning that a well-defined
solution doesn’t exist without proper regularization. Bayesian inversion casts the
retrieval to the language of probability theory and provides a regularized solution to
the inverse problem as posterior probability distribution. The posterior distribution is
conventionally approximated using a Gaussian distribution, and results are reported
as the mean of the distribution as a point estimate, and the corresponding variance
as a measure of uncertainty. In reality, due to non-linear computational physics
models used in the retrievals, the posterior is not well approximated by a Gaussian
distribution, and ignoring its actual shape can lead to unpredictable errors and inac-
curacies in the retrieval. Markov chain Monte Carlo (MCMC) methods offer a robust
way to explore the actual properties of posterior distributions, but they tend to be
computationally challenging as the dimension of the state vector increases.

In this work, we exploit the low intrinsic information content of remote sensing
measurements and implement the Likelihood-Informed Subspace (LIS) dimension re-
duction method to increase the computational efficiency of MCMC retrievals. Novel
algorithms using LIS are implemented to abovementioned atmospheric methane pro-
file and column-averaged carbon dioxide concentration retrievals. The work in Paper
I implements adaptive LIS MCMC to CH4 profile retrieval from real world FTS data.
This method additionally provides the freedom of choosing any desired prior covari-
ance matrix. The performance of this novel algorithm is finally compared against
another dimension reduction method. In Paper II , the dimension reduction based
profile retrieval is implemented for all measurements of Sodankylä FTS from 2009
to 2018, resulting in a robust algorithm that produces a time series vertical profiles
that is shown to agree well with three separate instruments measuring CH4 concen-
trations. This time series is further analyzed with a dynamic linear model, which lets
us obtain information about the non-linear trend of CH4 as a function of altitude.
Lastly, in Paper III LIS dimension reduction is implemented to a synthetic OCO-
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2 CO2 retrieval, which increases the computational efficiency of adaptive MCMC.
Resulting posterior sample is then used to explore the non-Gaussian shape of the
posterior, which is shown to improve the accuracy of the retrieval.

The rest of this introductory part is organized as follows: Chapter 2 introduces
the concepts of inverse problems and the Bayesian formulation, also going through
the optimization and MCMC methods used in this work. Chapter 3 deals with infor-
mation content of a measurement and lays out how the utilized dimension reduction
strategies are formulated. Chapter 4 lays out the implementation and results of our
work with the Sodankylä FTS and OCO-2 retrievals, together with the DLM time
series analysis method and our dimension reduction retrievals application to a long
time series. The basic mathematical concepts needed to understand the theory and
results of this work are briefly introduced in the Appendix.
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2 Inverse problems

To infer the quantities of interest from the measured atmospheric absorption of ra-
diation, we need to solve an inverse problem. In this Chapter, we first introduce
the general definition of inverse problems, followed by a formulation of the Bayesian
framework for obtaining solutions as probability distributions. We then describe the
atmospheric remote sensing inverse problem in more detail and identify the challeng-
ing aspects which are the focus of this work. Lastly, we introduce the optimization
and Markov chain Monte Carlo algorithms used in this work to solve Bayesian inverse
problems.

2.1 Classical inverse problems

In a general setting, the result of some indirect measurement, given as the data
vector y , is used to obtain information about a state vector x . These vectors belong
to the data space y ∈ Y ⊆ Rm and the state space x ∈ X ⊆ Rn, where generally
m 6= n. The results presented in this section are easily generalized into more general
Hilbert spaces (Mueller and Siltanen, 2012), but in this overview we limit ourselves
to the real valued case.

The measurement is described with the indirect inverse model (Mueller and Sil-
tanen, 2012)

y = F(x) + "; (2.1)

where y ∈ Y ⊆ Rm, x ∈ X ⊆ Rn and F : X→ Y is the forward map which describes
the physics of the measurement. In this work, we assume the measurement noise
" ∈ Rm to be additive.

In practice, in order to solve the inverse problem, we need to approximate the
forward map with

y = F (x; „) + ": (2.2)

5



6 2 Inverse problems

where F (x; „) : Rn × Rl → Rm is the discretized version of the ideal forward map
F called the forward model, where some model parameters „ ∈ Rl are fixed when
building a computational approximation. In this work, we assume the forward model
to be differentiable so that the first order derivative @

@x F (x) exists.
Difficulties in solving inverse problem arise from ill-posedness, which is best un-

derstood as the opposite of well-posedness. According to Jacques Hadamard (1865-
1963), a well posed problem (see e.g. Mueller and Siltanen (2012)) fulfils the fol-
lowing criteria:

H1: The problem has a solution (existence).

H2: The solution is unique (uniqueness).

H3: The solution depends continuously on the data (stability).

An ill posed problem can now be thought of as a problem that violates one or more
of Hadamard’s conditions. This means that the exact answer might not exist, or
that there are several or even infinitely many states that can produce the same data.
Furthermore, the problem is ill-posed if arbitrarily small errors in the measured data
can cause large errors in the result, known as unstable problems. In practice, all the
measurements are affected by some sort of noise or measurement error, and hence
this is a challenge in solving inverse problems.

In practice, inverse problems tend to be ill posed. A technique called regular-
ization is thus required to deal with ill-posedness. Classical regularization methods
include the truncated SVD and Tikhonov regularization (e.g. Mueller and Siltanen
(2012), Bardsley (2018)), but in this work we use the statistical approach and a priori
constraints (Kaipio and Somersalo, 2005) for regularization. Statistical approach to
inverse methods is also the standard method used in the atmospheric remote sensing
literature (e.g. Rodgers (2000)).

2.1.1 Atmospheric remote sensing

We are interested in solving the inverse problem of inferring different atmospheric
properties, such as temperature or trace gas concentrations, from measured atten-
uation of electromagnetic radiation in the atmosphere, recorded as an absorption
spectrum. The measurements are we consider in this work are done by ground based
devices looking directly at the sun, and by satellites measuring solar radiation scat-
tered back to space by Earth’s surface. The latter is illustrated in Figure 2.1, with
the measurement geometry of ozone column measuring GOME satellite. The pro-
cess of solving the resulting inverse problem is referred to as a retrieval. The part
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of the forward model describing the absorption and propagation of radiation in the
atmosphere is referred to as atmospheric radiative transfer. In addition, the forward
model includes the instrument model which describes effects taking place inside the
measurement device. In computational implementation of radiative transfer mod-
els, choices like number of absorbing gases, means of modelling of scattering and
polarization of light, effects of atmospheric aerosols, pressure and temperature, and
properties of Earth’s surface are made, leading to models of different accuracies.

Figure 2.1: Measurement geometry of the GOME satellite, which detects solar light
reflected by Earth’s surface. In the retrieval process the satellite measured ozone
slant column (brown path) is converted to viewing geometry independent vertical
column of ozone (black path). Illustrative figure taken from Dameris and Loyola
(2011).

As an illustration, let us consider the forward model for the atmospheric remote
sensing problem in Paper I and Paper II (from the Swirlab software by Tukiainen
et al. (2016)). The data y (Figure 2.2) is obtained as an absorption spectrum with
m separate wavelengths. The solar light passing through the atmosphere and hitting
the detector is modelled using the Beer-Lambert law (see e.g. IUPAC (1997)), which
gives, for wavelengths –j ; j ∈ [1; : : : ; m], the intensity of detected light as

I(–j) = I0(–j) exp

 
−

KX
k=1

Z ∞
0
Ck(–j ; z)k(z)dz

!
; (2.3)

where I0 is the intensity of solar light, the atmosphere has K absorbing trace gases,
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Ck(–j ; z) is the absorption coefficient of gas k, which depends on altitude z and on
the wavelength –j , and k(z) is the density of gas k at altitude z .

In a retrieval, the gas densities k(z) are inferred from the measured spectra
I(–j). In the computational model, the solar light intensity I0(–j) is in our case
assumed to be known. The integral in the Beer-Lambert law is discretized into a
sum over atmospheric layers in which all properties are assumed to be constant. This
discretization also determines the size of the state vector. The absorption coefficients
Ck(–j ; z) have to be computed based an a -priori atmosphere as they depend on the
pressure and temperature of the atmosphere. A challenge in atmospheric remote
sensing is that even forward models based on this simple radiative transfer model
are non-linear, which necessitates either linear approximations or more complex and
sophisticated methods to solve the resulting inverse problem.
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Figure 2.2: Absorption spectrum measured by the Sodankylä FTS in arbitrary units.
Lower panel shows the entire spectrum from 3900cm−1 to 10000cm−1. The upper
panel shows the spectral window of 6003cm−1 to 6005,5cm−1 used in the CH4

profile retrieval, since this part of the spectrum doesn’t have significant absorption
from other chemical compounds than CH4 and water vapor.
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2.2 Bayesian formulation

In this work, we utilize the statistical approach to inverse problems (e.g. Kaipio
and Somersalo (2005)), in which all variables are treated as random variables. This
permits using the Bayes formula to obtain a solution to the inverse problem as
posterior probability distribution for state x . This method combines information
from the data as likelihood distribution, together with regularization from a priori
probability distribution. We will next provide a short description of the Bayesian
formulation of inverse problems.

Let Y ∈ Rm be the data and X ∈ Rn be the unknown state. Let ı(x; y) be the
joint probability distribution random variables X and Y . Then the posterior density
function of X = x conditional on the data Y = y is given by the Bayes formula (e.g.
Gelman et al. (1995))

ı(x |y) =
ı(y |x)ı0(x)

ı(y)
; (2.4)

where ı(y) =
R
Rn ı(x; y)dx > 0 by assumption. The marginal density function

ı0(x) =

Z
Rm
ı(x; y)dy (2.5)

is called the a priori density function (also prior for short). It describes the information
about the unknown X before the measurement Y = y is made. Physical constraints
such as positivity and feasible intervals can be included in the prior to regularize an
ill-posed inverse problem.

For fixed X = x and ı0(x) 6= 0, we get the likelihood function of data Y = y
given x as

ı(y |x) =
ı(x; y)R

Rm ı(x; y)dy
: (2.6)

The dependency between these variables is described with the inverse model y =
F (x; „) + ". It is common practice to write out the model parameters „ explicitly,
but in the following discussions we assume them to be fixed and write the forward
model as F (x). The likelihood distribution is obtained using the statistics of the
measurement error, since by formula (2.2) we get y = F (x) + "⇔ " = F (x)− y .

In this work, we assume the prior density function to be Gaussian with a known
mean and covariance, which is denoted as N (x0;Σ0). Also, the additive noise is
assumed to have be zero-mean Gaussian density function with known covariance
matrix, " ∼ N (0;Σ"). Combining the Gaussian prior and likelihood using the Bayes
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formula (2.4) we get the solution to the inverse problem as the posterior distribution

ı(x |y) ∝ exp

„
−1

2
(y − F (x))TΣ−1

" (y − F (x))− 1

2
(x − x0)TΣ−1

0 (x − x0)

«
; (2.7)

where the proportionality ∝ comes from the fact that the marginal distribution ı(y)
in (2.4) can be thought of as a normalizing constant not depending on the state x
and is therefore omitted.

Figure 2.3: Illustration of a 3-dimensional Gaussian posterior distribution (green) as
a product of a Gaussian likelihood (red) that doesn’t contain information in the z-
direction, making the problem ill-posed, and the Gaussian a priori distribution (blue)
used to regularize the posterior.

Assume that the likelihood and prior are Gaussian . When the forward model
F is linear, the solution to the inverse problem (2.2) is the Gaussian distribution
N (bx;Σpost) (Kaipio and Somersalo, 2005). The posterior mean and covariance are
obtained analytically as

bx =
“
F TΣ−1

" F + Σ−1
0

”−1 “
F TΣ−1

" y + Σ−1
0 x0

”
(2.8)

Σpost =
“
F TΣ−1

" F + Σ−1
0

”−1
(2.9)

When the forward model F is non-linear, the resulting posterior is not Gaussian and
the formulas (2.8) don’t hold. This is usually the case in atmospheric remote sensing.
Several statistics are still obtainable if the expression (2.7) is available.
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A widely used point estimator for a solution to the Bayesian inverse problem is
the maximum a posteriori estimator (MAP), denoted bx . For posterior distribution
ı(x |y) of the state X ∈ Rn it holds that

bx = arg max
x∈Rn

ı(x |y); (2.10)

if the maximum exists. This maximum is not necessarily unique. In this work, we
use optimization methods to compute the most probable value of the posterior

Various numerical summaries of the posterior are desirable. Two of the most
common such numbers are conditional mean x̄ ∈ Rn as a point estimate, and co-
variance Cov(X) ∈ Rn×n as a measure of uncertainty. These are given as expected
values

x̄ =

Z
Rn
x ı(x |y)dx

Cov(X) =

Z
Rn

(x − x̄)2 ı(x |y)dx
(2.11)

over the posterior distribution ı(x |y). Evaluating this types of integrals is often
challenging or impossible, since the result is typically not available in closed form.
Therefore we will use Markov chain Monte Carlo (MCMC) methods (e.g. Tarantola
(2005), Kaipio and Somersalo (2005) or Stuart (2010) for a comprehensive review)
to obtain a set of realizations from the posterior and approximate these statistic via
the result (A.14) from the preliminary chapter.

2.2.1 Application to atmospheric remote sensing

The retrieval problem in atmospheric remote sensing is described in detail by Rodgers
(2000) using Bayesian formulation, which is a widely used framework in the remote
sensing literature. The solution to the inverse problem is obtained as a Maximum
A Posteriori estimate, denoted bx , which is the most probable state of the posterior
distribution. This approach described later in Section 2.4.

The retrieval is typically an ill-posed inverse problem and requires regularization.
Enforcement of feasible physical constraints, modelling choices, and approximations
in radiative transfer offer general guidelines in defining a proper prior distribution
which is usually assumed to be Gaussian. A further assumption that the posterior
distribution can be approximated by a Gaussian distribution is also made. This as-
sumption permits a convenient linear error characterization and propagation analysis,
which we will shortly describe next.

The derivative of the forward model is given as the Jacobian matrix Jx ∈ Rm×n
with elements Jx;i j = @

@xj
Fi (x). We further define the following quantities:
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• The Gain matrix G := @bx
@y characterizes the linear response that a small change

in the measurement causes to the retrieval:

G = Σ0JTx (JxΣ0JTx + Σ")
−1 (2.12)

• The Averaging kernel A := @bx
@x characterizes the linear response that a small

change in the true state causes to the retrieval:

A = GJx (2.13)

Let us again consider the retrieval using the forward model of the Swirlab software for
illustration. The software includes a methane profile retrieval, which we will shortly
illustrate next. Figure 2.4 shows a retrieved CH4 profile from 1 to 70 km and related
posterior uncertainties, together with the absorption spectrum and the Gain matrix
of the retrieval. We can see that the retrieval is most sensitive in altitudes from
about 10 km to 40 km, whereas the highest altitudes come directly from the prior.
Furthermore, information on these altitudes can be seen to be obtained largely from
the width of the absorption spikes and not the entire spectrum. A further illustration
of the sensitivity of the retrieved state to the changes in the underlying true value is
seen in the averaging kernel of the retrieval in Figure 2.5.

Assume that the true atmospheric state is known and we know the best possi-
ble values xtrue for the state vector and „true for the model parameters. A widely
used error analysis framework introduced by Rodgers (2000)) quantifies the linear
propagation of uncertainty in the retrieval as the difference

bx − xtrue =(I− A)(x0 − xtrue) Smoothing error

+GJ„(„true − „) Parameter error

+G∆F (x; „) Approximation error

+G" Instrument noise;

(2.14)

where „ is our best estimate of the ”true” model parameters „true, J„ = @
@„F (x; „) is

the sensitivity of the forward model to the model parameters, and ∆F (x; „) contains
the errors we make when approximating the true atmospheric radiative transfer (2.1)
by a computational model (2.2).

As can be seen from formula (2.14), the retrieval problem is prone to numerous
different sources of error. A linear approximation of the posterior covariance matrix
is given as

Σpost(bx) =
“

JTbx Σ−1
" Jbx + Σ−1

0

”−1
∈ Rn×n (2.15)
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Figure 2.4: Illustration of the Gain matrix from our FTS retrieval’s physics model. a)
The 95% confidence limits of retrieved posterior distribution (blue) and prior (dashed
blue for mean, grey for variance) of CH4 concentration profile. b) Absolute values of
the Gain matrix G, showing is the sensitivity of the retrieved profile to the measured

absorption spectrum, that is, @bx@y . c) The data y , an absorption spectrum, used in the
retrieval. It can be seen that the retrieval is most sensitive at altitudes from 20 km
to 40 km, to changes in the data that mainly corresponds to the width and depth of
absorption spikes in the spectrum.

However, this error characterization does not take into account the effect of a non-
linear forward model. The main idea of this workis to use Markov chain Monte Carlo
(MCMC) to explore the non-Gaussian shape of the posterior distribution. High di-
mensional MCMC suffers from slow convergence and high computational cost, so di-
mension reduction combined with the adaptive Metropolis algorithm is implemented
to speed up the computation. Motivation for this comes from the information theo-
retical considerations in section 3.1, as atmospheric remote sensing problems typically
have a significantly low intrinsic dimensionality and hence contain a relatively low
amount of information about the features we are interested in.
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Figure 2.5: Every fifth layer of the FTS retrieval’s averaging kernel matrix at SZA
= 45◦ depicted in ppb units. This describes how a change at a given altitude, color
coded on the right, propagates to other altitudes in the retrieval.

2.3 State space modeling

In the context of atmospheric remote sensing, the observed phenomena are often
dependent on the dynamics of atmospheric processes, and therefore not static in
relation to time. Earlier, we defined inverse problems by the equation

y = F (x; „) + ": (2.16)

This problem does not explicitly address any time-dependence of the state x . Fur-
thermore, the uncertainty model parameters „ are not implicitly treated. We can,
however, consider targets that evolve in time, e.g. time series, and formulate the
inverse problem so that we obtain a solution as a function of time.

The state space formulation describes both how the data yt ∈ Rm at time step
t depends on the target xt ∈ Rn, as well as how the state evolved from the previous
timestep xt−1. We will also assign a prior distribution on parameters „ and explicitly
fit them to the observations. State space models, sometimes called hidden Markov
models or structured time series models, are well known and documented in time
series literature (Chatfield (1989), Harvey (1991), Hamilton (1994), Migon et al.
(2005)). The dynamic formulation we use Laine et al. (2014), given an assumption
that the time evolution of atmospheric states can be described with linear operators,
is know as the dynamic linear model (DLM), turning the time series analysis into
a Bayesian inverse problem. This allows us to assess uncertainty in the timeseries
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instead of just a point estimate solution.
We next follow the description by Laine (2019) for a brief DLM introduction.

The techniques used in the software implementation include the Kalman filter, which
solves the linear inverse problem on each timestep and uses the previous solution as
a prior in next timestep, Kalman smoother going backwards in time again to get a
smoother solution, and the simulation smoother to sample from the joint posterior
given all the data. A more detailed description of these methods is beyond the scope
of this overview

2.3.1 Dynamic linear model

In order to formulate the dynamic linear model, we need we need to assume that the
evolution of the states depends on the history only through the previous time step
(Kaipio and Somersalo, 2005). Let {Xt}∞t=0 and {Yt}∞t=1 be stochastic processes
so that Xt ∈ Rn represents a state vector and Yt ∈ Rm is a measurement or an
observation on time step t. We also assume that these processes have the following
properties:

1. {Xt}∞t=0 is a Markov process, s.t

ı(xt+1|x0; : : : ; xt) = ı(xt+1|xt): (2.17)

2. {Yt}∞t=1 is a Markov process with respect to the history of {Xt}∞t=0, meaning
that

ı(yt |x0; : : : ; xt) = ı(yt |xt): (2.18)

3. {Xt}∞t=0 depends on the observations only through its own history, that is,

ı(xt+1|xt ; y0; : : : ; yt) = ı(xt+1|xt): (2.19)

With the previous assumptions, we can write the dynamic linear model as a general
linear state space model with an observation equation and an evolution equation as

yt = Htxt + "t ; "t ∼ N (0;Rt);

xt = Mtxt−1 + Et ; Et ∼ N (0;Qt);
(2.20)

where yt ∈ Rn contains the observations and xt ∈ Rm the hidden and unobserved
model state at time steps t = 1; : : : ; N, the observations are gained via the ob-
servation operator Ht ∈ Rm×n, the state is evolving along a linear system opera-
tor Mt ∈ Rm×m. A non-linear extension exists (Cressie and Wikle (2011), Särkkä
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(2013)), but in our case linear operators are sufficient. In this formulation, the ob-
servation error "t ∈ Rn and the model error Et ∈ Rm are assumed to be zero mean
Gaussian with positive definite, symmetric covariance matrices given by Rt ∈ Rn×n
and Qt ∈ Rm×m, respectively.

The DLM formulation can seen as a hierarchical statistical model with three
levels: data yt , process xt and model parameters „ (Cressie and Wikle, 2011). By
using the Bayes formula, we can write the state and parameter posterior distributions
as a product of conditional distributions

ı(xt ; „|yt) ∝ ı(yt |xt ; „)ı(xt |„)ı(„) (2.21)

where ı(yt |xt ; „) is the likelihood describing observation uncertainty, ı(xt |„) is the
process uncertainty given model parameters, and ı(„) is the prior uncertainty for the
model parameters. Explicitly, the parameters „ are used to define the operators Ht

and Mt as well as the covariance matrices Rt and Qt .

2.4 Optimization for MAP estimates

Finding the MAP-estimator is an optimization problem, which can be solved using
iterative algorithms to minimize the cost function

− 2 logı(x |y) = constant + (y − F (x))TΣ−1
" (y − F (x)) + (x − x0)TΣ−1

0 (x − x0);
(2.22)

which results from the formula (2.7) for the posterior distribution. This procedure
is referred to as Optimal Estimation (OE) in the remote sensing literature (Rodgers,
2000). A large variety of methods exist, including quadratic programming, gradient
descent, or the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm (see for exam-
ple Gill et al. (1981)). In atmospheric remote sensing, a common strategy for finding
MAP-estimates is to use the Levenberg-Marquardt (Levenberg (1944), Marquardt
(1963)) algorithm.

2.4.1 Levenberg-Marquardt algorithm

The Levenberg-Marquardt algorithm is a balance between the gradient descent and
Gauss-Newton iterations. Gradient descent updates the parameter values in the
direction opposite to the gradient of the cost function (2.22). The update is given
by

xi+1 = xi + ¸
“

JTxi Σ
−1
" (y − F (xi ))−Σ−1

0 (xi − x0)
”
: (2.23)
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where ¸ is a scaling parameter defining the step length, and Jxi is the Jacobian
matrix of the forward model F evaluated at xi .

The Gauss-Newton method is a method for minimizing a sum-of-squares cost
function under the assumption that the cost function is approximately quadratic near
the solution (Björck, 1996). If the assumption holds, the Gauss-Newton method
converges faster than the gradient descent (Marquardt, 1963) for moderate sized
problems. For non-quadratic cost functions with thousands of parameters the slower
converging gradient descent may be the only viable option. The Gauss-Newton
update is given by

xi+1 = xi + [Σ−1
0 + JTxi Σ

−1
" Jxi ]

−1
“

JTxi Σ
−1
" (y − F (xi ))−Σ−1

0 (xi − x0)
”

(2.24)

The Levenberg-Marquardt algorithm is a modification of the Gauss-Newton method
with an additional term ‚D, where ‚ ∈ R is a damping parameter and D ∈ Rn×n
is a scaling matrix. The value of ‚ is initialized to be large, resulting in a gradient
descent update. If an iteration results in an increased value of the cost function, i.e.
−2 logı(xi+1|y) > −2 logı(xi |y), the value of the damping parameter is increased.
This shortens the step length. Otherwise the value is decreased, resulting in a Gauss-
Newton update closer to the solution, which accelerates convergence (Marquardt,
1963). Choosing D = Σ−1

0 (see Rodgers (2000), Crisp et al. (2019)), we can write
the iteration as

xi+1 = xi + [(1 +‚)Σ−1
0 + JTxi Σ

−1
" Jxi ]

−1(JTxi Σ
−1
" (y −F (xi ))−Σ−1

0 (xi −x0)): (2.25)

The starting value of the optimization is usually set to the prior mean x0. For a more
comprehensive derivation, the reader is referred to e.g. Bardsley (2018).

2.5 Markov chain Monte Carlo

The posterior distribution contains all the information about the parameter of inter-
est, and ideally one would want to report the entire distribution. Obtaining a large
sample from the posterior and graphing pairs of parameters against each other is an
excellent tool for examining the shape of an unknown posterior. The needed samples
can be obtained in several ways. Some widely used methods are for example impor-
tance sampling (see e.g. Ripley (1987)), forward-backward algorithm (Scott, 2002)
and sequential Monte Carlo method (Liu and Chen, 1998). In this work we employ
the Markov chain Monte Carlo (MCMC) method for its relatively easy computational
implementation and a variety of existing theoretical results making it mathematically
convenient (Gelman et al., 1995).
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The idea of MCMC is to simulate a random walk process X1; X2; : : : ; XM ∈ Rn
called a Markov chain, which converges to the posterior distribution as the stationary
distribution of the chain. The Markov Chain needs to be aperiodic and irreducible
for the stationary distribution to exist and be unique. We will briefly describe this
property before moving on to computational implementations (following Gamerman
(1997)).

Generating a Markov chain is based on the Markov property. This means that
every member of the sample sequence is obtained with a conditional probability that
depends only on the previous member of the sequence:

P (xk+1|x1; : : : ; xk) = P (xk+1|xk): (2.26)

If the conditional probability above is independent of the time k, the Markov chain is
called homogeneous, in which case the evolution is governed by the Markov transition
kernel

T (x1; x2) = P (x1|x2): (2.27)

If for any x1; x2 ∈ Rn there exist an integer m such that Tm(x1; x2) > 0, the chain
is called irreducible. This means that any states are reachable from all other states
within finite time. Furthermore, a chain is called aperiodic if no states are visited at
fixed intervals.

2.5.1 Metropolis-Hastings algorithm

Several possible ways of implementing MCMC exist, including the Gibbs sampler
(e.g. Gelman et al. (1995)) that samples one parameter dimension at the time,
or the Hamiltonian Monte Carlo (S.Brooks et al., 2011) which uses Hamiltonian
dynamics to produce posterior samples. In our applications, many of these otherwise
efficient methods are less feasible since we usually don’t know anything about the
posterior shape beforehand. Furthermore, evaluating the marginal likelihood ı(y)
in the denominator of the Bayes formula (2.4) is computationally challenging due
to large data vectors y . In light of this reasoning, in this work we use Metropolis-
Hastings (MH) algorithm (Metropolis et al. (1953), Hastings (1970)) which is the
simplest MCMC algorithm for our unknown posterior. Additionally, with MH we can
avoid evaluating the marginal likelihood altogether. There exists a growing amount of
literature in applying MCMC to atmospheric remote sensing (Tamminen and Kyrölä
(2001), Tamminen (2004), Haario et al. (1999), Haario et al. (2004), Laine and
Tamminen (2008), Tukiainen et al. (2016), Hobbs et al. (2017), Brynjarsdottir et al.
(2018)) We will next give a short description of the MH algorithm.
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Let X ∈ Rn be a random variable with probability density function ı(x) as before.
Define the proposal distribution Q(x; ·) and its density function q(x1; x2) describing
the probability of moving from state x1 ∈ Rn to state x2 ∈ Rn. Assume that at a
given moment t the chain is in state xt ∈ Rn. The following state xt+1 is obtained
with following steps:

1. Pick a random candidate z from the distribution Q(xt ; ·).

2. The candidate z is either accepted or rejected. The acceptance probability is
given by:

¸(xt ; z) =

8<:min
“
ı(z)q(z;xt)
ı(xt)q(xt ;z) ; 1

”
; if ı(xt)q(xt ; z) > 0

1; if ı(xt)q(xt ; z) = 0:
(2.28)

3. If the candidate z is accepted, set xt+1 = z , otherwise xt+1 = xt .

Using a symmetric proposal distribution, with q(x; z) = q(z; x), the previous rule
simplifies to

¸(x; z) = min

„
ı(z)

ı(x)
; 1

«
: (2.29)

In this case the algorithm is simply called the Metropolis algorithm. In practice, it
is often convenient to use a Gaussian proposal distribution (which is symmetric), so
that the new proposal is given by xt+1 ∼ N (xt ;C), where C ∈ Rn×n is the proposal
covariance matrix.

When the target distribution is the posterior ı(x |y), the normalization constant
in Bayes’ formula (2.4) is cancelled out when computing the division ı(z |y)=ı(x |y),
leading to a more computationally efficient algorithm.

2.5.2 Adaptive Metropolis algorithm

A key element in the successful convergence of an MCMC algorithm is the choice of
proposal distribution. In implementing MH, this is usually done by trial and error,
which can be difficult in the case of an unknown shaped posterior distribution. A
remedy for this problem is to use the Adaptive Metropolis algorithm (Haario et al.,
2001), where the proposal covariance matrix is tuned by empirically calculating the
covariance from the already obtained chain:

Ct =

(
C0; t < t0;

sdCov(xo ; : : : ; xt−1) + ›In; t ≥ t0
(2.30)
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where t0 is the number of time steps the chain is run before the first covariance
adaptation, C0 ∈ Rn×n is some appropriate starting covariance for parameter of
interest x ∈ Rn, › ∈> 0 is a constant we can choose to be very small, and sd =
(2:4)2=n is a scaling parameter that optimizes the sampling efficiency in close-to-
Gaussian cases (from Gelman et al. (1996)). The training time t0 > 0 is free of
choice and reflects our belief in the initial choice of covariance C0.

The empirical covariance computed from points x0; : : : ; xk ∈ Rn is given by

Cov(xo ; : : : ; xk) =
1

k

 
kX
i=0

xix
T
i − (k + 1)x̄k x̄

T
k

!
; (2.31)

where x̄k = (k + 1)−1Pk
i=0 xi and the elements xi are considered as column vectors.

Using definition 2.30 with t > t0 + 1, we get a recursive formula for the covariance
matrix

Ct+1 =
t − 1

t
Ct +

sd
n

“
tx̄t−1x̄

T
t−1 − (t + 1)x̄t x̄

T
t + xtx

T
t + ›In

”
: (2.32)

This way, the covaraince can be updated recursively without having to perform the
computation using the entire history of the MCMC chain.
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While MCMC offers a robust way of exploring the shape of a possibly non-Gaussian
posterior distribution, the method is prone to the curse of dimensionality (Roberts
et al., 1997). This means that the algorithm converges increasingly slower as the
dimension of the state vector x increases. In this work we solve this problem by
considering the inherent low information content of the measurements in atmospheric
remote sensing (Rodgers, 2000) and exploiting it to reduce the dimension of the state
vector.

An atmospheric remote sensing measurement of absorption spectra y often has
all the information constrained in a subspace that is low-dimensional compared to
the size of the state vector x . This can be seen for example in the earlier Figure 2.4)
where the retrieved state is seen to be mostly sensitive to changes on the measured
absorption peaks. The result is mainly influenced by the data on altitudes up to 50km
from the total of 70 km grid. The measurements are also corrupted by a significant
amount of noise originating from the measurement device.

We next explore the information content of measurements in general, based on
the discussion by Rodgers (2000) and the sources therein. It is shown that there
are fewer independent informative directions in the state than actual state vector
dimensions. We then present two different dimension reduction methods guided by
this idea of low information content; one based on truncating the prior covariance
matrix (Marzouk and Najm (2009), Solonen et al. (2016)) and a second based on
isolating the informative directions of the likelihood (Cui et al. (2014), Spantini
et al. (2015)). These ideas are then applied to a ground-based and a satellite-based
retrievals together with adaptive MCMC. An illustration of the effect of dimension
reduction to MCMC performed on the FTS problem is given in Figure 3.1. With the
same amount of samples, LIS AM is seen to converge to correct posterior significantly
faster than regular AM. In this case regular MH algorithm is producing barely any
accepted states. It is worth noticing that AM is approaching the correct posterior
distribution, but with the given amount of samples in this case the LIS method yields

21
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samples from the stationary distribution of the Markov Chain faster.
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Figure 3.1: Different MCMC methods applied to the FTS retrieval. Two dimensions
of the 100-dimensional CH4 profile are given here in ppb. Shown is every 100th of the
first 1 000 000 samples of the MCMC chain that was started purposefully from a bad
starting vale are shown for each method. The Adaptive Metropolis algorithm with
LIS-dimension reduction is shown on blue, the full-dimensional AM on red, and a
full-dimensional Metropolis-Hastings MCMC on green. Dashed black line is the 95%
prior probability region, and the solid black line is the approximate 95% posterior
probability region obtained via MAP-estimation

3.1 Information content

In order to quantify how much information can be obtained from a measurement,
we follow Rodgers (2000) and consider the informative directions in the posterior
distribution. This quantification uses a version of the inverse problem in equation
(2.2) with a linearized forward model, and Gaussian prior and likelihood, given by

y = Jx(x − x0) + "; (3.1)
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where x0 ∈ Rn is the prior mean, and Jx ∈ Rm×n denotes the Jacobian matrix
of the forward model evaluated at x ∈ Rn with elements Jx;i j = @

@xj
Fi (x). We

will occasionally drop the subscript for brevity. This approximation works best with
posteriors that resemble a Gaussian distribution around the posterior mean.

The prior uncertainty of y is given by the prior predictive covariance

Σy = E[(Jx(x − x0) + ")(Jx(x − x0) + ")T ] = JJT + Σ"; (3.2)

where J = Jx(x − x0). We will use this notation for the rest of this discussion for
brevity. Next, we perform diagonalization and pre-whitening for y . The resulting
prior predictive covariance is diagonal, and the resulting prior and noise are zero-
mean Gaussian with unit covariance N (0; I). We use the Cholesky factorizations
(A.1) of prior and error covariances,

Σ0 = L0LT0 ; Σ" = L"LT" ; (3.3)

and the singular value decomposition (A.2) of the whitened Jacobian eJ ∈ Rm×n,
given by eJ = L−1

" JL0 = UΛVT : (3.4)

Define ey = UTL−1
" y; ex = VTL−1

0 (x − x0) and e" = UTL−1
" "; (3.5)

where ex ∼ N (0; In) and e" ∼ N (0; Im). Together with (3.1) and (3.4), we get

ey = UTL−1
" y = UTL−1

" JL0L−1
0 (x − x0) + UTL−1

" "

= UT
“

UΛVT
”
L−1

0 (x − x0) + UTL−1
" "

= Λex + e":
(3.6)

We can now derive expressions for the prior predictive covariance for whitened
measurements ey , as well as the posterior covariance of whitened state ex :

Σey = E[ey eyT ] = E[(Λex + e")(Λex + e")T ] = Λ2
m + Im: (3.7)

Referring to formula (A.3), Λ2
m ∈ Rm×m are the eigenvalues of matrix eJeJT corre-

sponding to the eigenvectors ui ∈ Rm. The prior predictive covariance Σey (3.7)
can be interpreted to show the r components of the variance in the data than can
be distinguished from whitened noise, corresponding to eigenvalues –2

i > 1, where
i = 1; : : : ; r .
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The same treatment can be repeated for the whitened state ex . Because the
forward model is linear, we can use the formula (2.8) for Σpost = (F TΣ"F +Σ−1

0 )−1

and write the posterior covariance as

Σpost(ex) =
“

VT eJT eJV + In
”−1

=
“

Λ2
n + In

”−1
; (3.8)

We recall from formulas (A.3) and (A.4) that the non-zero eigenvalues of the
matrix eJT eJ in Λ2

n are the same as the non-zero eigenvalues of Λ2
m with –2

i > 1,
i = 1; : : : ; r . The informative directions of the posterior distribution are thus the
eigenvectors vi ∈ Rn, i = 1; : : : ; r of matrix eJT eJ. A two dimensional Gaussian
example with one only one informative direction is presented in Figure 3.2. In this case
the likelihood is effectively one dimensional and has only one informative direction xr ,
so all the variability of the posterior in the non-informative direction x⊥ is resulting
from the prior distribution.

x
1

x
2

Informative directions

Prior

Likelihood

Posterior

Prior Mean

Posterior Mean

Figure 3.2: Illustration of an informative direction xr and a non-informative direction
x⊥ using a 2-dimensional Gaussian case. A Gaussian prior is shown in blue, likeli-
hood in red and the resulting posterior in green. Here, the likelihood has only one
informative component, so the remaining direction for the posterior is obtained from
the prior.
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3.2 Prior reduction

Let us consider a dimension reduction method utilized by Marzouk and Najm (2009),
Solonen et al. (2016) and Tukiainen et al. (2016). The idea is to construct a prior
covariance matrix for the inverse problem that has a number of non-zero eigenvalues
equal to the number of informative directions of the corresponding posterior distribu-
tion. We will then use the truncated Karhunen-Loève (K-L) decomposition (Loève,
1978) to obtain a reduced dimensional version of the problem.

The Karhunen-Loève theorem (Loève, 1978) states that for a square-integrable
zero-mean random process Xt defined over a probability space (Ω; F;P) that is
indexed over a closed and bounded interval [a; b] and that has a continuous covariance
function C(s; t); s; t ∈ [a; b], there exist a representation called Karhunen-Loève
decomposition as follows:

Xt =
∞X
i=1

Ziei (t) (3.9)

where Zi =
R b
a Xtei (t)dt are uncorrelated, zero-mean and have variance –i , and

–i ; ei are the eigenvalues and functions of C(s; t), which means
R b
a C(s; t)ei (s)ds =

–iei (t).
Consider the inverse problem (2.2) with x ∈ Rn and a Gaussian prior N (x0;Σ0),

Σ0 ∈ Rn×n. We use the eigenvalue decomposition (A.4) of the prior covariance
matrix

Σ0 = UΛ2
nUT =

nX
i=1

–2
i uiu

T
i ; (3.10)

to obtain the K-L decomposition (Solonen et al. (2016), Tukiainen et al. (2016)) of
the state vector x as

x − x0 = P¸; P = UΛn = [–1u1; –2u2; : : : ; –nun] ∈ Rn×n (3.11)

which satisfies the requirements of the Karhunen-Loëve theorem: x−x0 is zero-mean,
¸ ∈ Rn; ¸ ∼ N (0; In) and each –iui¸i has a variance –2

i (Solonen et al., 2016).
If the prior covariance matrix Σ−1

0 has numerous zero or nearly-zero eigenvalues,
the K-L decomposition can be truncated to only include the first significant eigen-
values and the corresponding eigenvectors, resulting in an optimal low-dimensional
approximation (Marzouk and Najm, 2009).

The state vector x now has an approximate representation by r basis vectors from
the first columns of P, denoted Pr ∈ Rn×r . Using a reduced dimensional parameter
¸r ∈ Rr we can write it as

x ≈ x0 + Pr¸r : (3.12)
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The random vector ¸r has a Gaussian prior ¸r ∼ N (0; I), which allow us to write
an approximate posterior distribution as

ı(x |y) ≈ eı(¸r |y) ∝ exp

„
−1

2

“
(y − F (x0 + Pr¸r ))TΣ−1

" (y − F (x0 + Pr¸r )) + ¸Tr ¸r )
”«

:

(3.13)
Now, instead running MCMC in full dimensional space, we can sample the low dimen-
sional parameter ¸r and retain the approximation of the full posterior by equation
(3.12).

3.3 Likelihood-informed subspace

The previous discussion on informative directions offers a direct means for reduc-
ing the dimension of the state vector. The dimension reduction method uses the
likelihood-informed subspace based on considering only the first r right singular vec-
tors of the whitened Jacobian (3.4). A growing amount of literature has already
demonstrated the effectiveness of this approach (Spantini et al. (2015), Cui et al.
(2014), Cui et al. (2016a), Cui et al. (2016b), Beskos et al. (2018), Zahm et al.
(2018)), although no previous application to real remote sensing data has been im-
plemented. This method is also similar to the widely used active subspace dimension
reduction (Constantine et al. (2014), Constantine et al. (2016)).

Consider the low-rank approximations for the posterior of the form

eı(x |y) ∝ ı(y |Prx)ı0(x); (3.14)

where Pr ∈ Rr×n is rank r projection matrix. It is shown by Spantini et al. (2015)
that when forward model F is linear, the optimal Pr that minimizes the Hellinger
distance (A.16) between a class of all rank r approximations and the full posterior
can be obtained from the eigenvalue decomposition of prewhitened Hessian matrix
of the negative log-likelihood

− logı(y |x) =
1

2

“
(y − F (x))TΣ−1

" (y − F (x))
”
: (3.15)

The Hessian is given by

H(x) = −∇2logı(y |x) = J(x)TΣ−1
" J(x) + Σ−1

" (y − F (x))∇2F (x); (3.16)

where J(x) ∈ Rm×n is the Jacobian of the forward model F . When the forward model
is linear, the second therm of the sum equals zero due to the second derivative, and
it is justified to consider the Gauss-Newton approximation of the Hessian:

H(x) = J(x)TΣ−1
" J(x): (3.17)
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With same reasoning as in section 3.1, we perform prewhitening on the Gauss-
Newton Hessian eH := LT0 HL0 = LT0 JTΣ−1

" JL0 = eJT eJ (3.18)

and recall that only the components of the posterior corresponding to singular values
of scaled Jacobian eJ that are greater than 1 can be obtained from the measurement,
and the rest are given by the prior.

Informative directions of the measurement can now be identified with the first
r eigenvectors of matrix eH corresponding to the first r eigenvalues greater than 1.
These are the first r columns of matrix V given by the eigenvalue decomposition

eH = VΛ2VT : (3.19)

Given Vr ∈ Rn×r containing the first r eigenvectors of eH, we can define

Φr := L0Vr and Θr := L−T0 Vr (3.20)

where the superscript −T denotes the transpose of the inverse.
The rank r LIS projection for the low-rank posterior approximation in eq. (3.14)

is given by
Pr = ΦrΘ

T
r : (3.21)

The range Xr ⊆ Rr of projection Pr : Rn → Xr is a subspace of state space Rn
spanned by the column vectors of matrix Φr . We call the subspace Xr the likelihood-
informed subspace (LIS) , and its complement Rn \ Xr the complement subspace
(CS) (Spantini et al., 2015).

The matrix of singular vectors V = [VrV⊥], where V⊥ ∈ Rn×n−r contains the
rest of the eigenvectors not included in Vr , is an orthonormal basis for Rn and we
can define

Φ⊥ := L0V⊥ and Θ⊥ := L−T0 V⊥ (3.22)

and the projection I− Pr can be written as

I− Pr = Φ⊥ΘT
⊥: (3.23)

Define the LIS-parameter xr ∈ Rr and the CS-parameter x⊥ ∈ Rn−r as

xr := ΘT
r x; x⊥ := ΘT

⊥x: (3.24)

The parameter x can now be decomposed as

x =Prx + (I− Pr )x

=Φrxr + Φ⊥x⊥:
(3.25)
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Using the previous definitions, we can decompose the posterior distribution as

ı(x |y) = ı(y |x)ı0(x)

= ı(y |Φrxr + Φ⊥x⊥)ı0(Φrxr + Φ⊥x⊥)

= ı(y |Φrxr )ı(y |Φ⊥x⊥)ı0(xr )ı0(x⊥)

(3.26)

As was shown before, we know that the ı(y |Φ⊥x⊥) part of the likelihood is non-
informative as all the corresponding eigenvalues are less than 1. We can therefore
omit this part and get the low-rank approximation of the posterior distribution as

eı(x |y) = ı(y |Φrxr )ı0(xr )ı0(x⊥): (3.27)

Since the parameters xr and x⊥ are independent, the inverse problem can now be
solved in two parts. First, using e.g. optimization or MCMC, the desired xr are
obtained from ı(y |Φrxr )ı0(xr ) and projected into full space as

Φrxr + x0 ∈ Rn: (3.28)

Second, the remaining CS part can be analytically obtained from the complement
prior

x⊥ ∼ N (0; I); x⊥ ∈ Rn−r : (3.29)

The sample is then projected back to full space as

Φ⊥x⊥ ∈ Rn (3.30)

and added to the LIS-part, yielding a solution from the optimal rank r posterior
approximation eı(x |y).

When the forward model is non-linear, the Hessian matrix depends on the point x
and is not constant on the state space. Furthermore, the Gauss-Newton approxima-
tion of the Hessian matrix is no longer accurate since the second order derivative of
F on the second term of expression (3.16) is no longer zero. A non-linear extension
of the LIS decomposition is provided by Cui et al. (2014): Consider the expectation
of the Gauss-Newton Hessian over the posterior distribution, given as the integral

Ĥ = LT0
„Z

Rn
H(x)ı(x |y)dx

«
L0: (3.31)

This integral is computed as sample mean

ĤN = LT0

 
1

N

NX
k=1

H(x (k))

!
L0; (3.32)
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where the N samples x (k) should ideally be drawn from the posterior. However,
the goal of this construction is to avoid evaluating the full posterior. The reference
distribution used in the articles in this work was taken to be the Laplace approximation
N (x̂ ; ˆΣpost), where x̂ ∈ Rn; ˆΣpost ∈ Rn×n are the posterior mean and covariance
obtained by solving the full-dimensional optimization problem (2.15). The eigenvalue
decomposition ĤN = V̂Λ̂2V̂T is then used to find a basis for the non-linear LIS
analogously to the linear case.
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4 Uncertainty quantification in remote
sensing of greenhouse gases

4.1 Ground based CH4 retrieval

Ground based measurements of concentration profiles of atmospheric CH4 are im-
portant for studying the altitude-dependent dynamics of CH4 as well for validating
profile measurements by satellites. These tasks require high precision and reliable er-
ror estimates, which are achieved by rigorous uncertainty quantification via Bayesian
approach. The measurements we consider in Paper I and Paper II are carried out
in Arctic conditions at Finnish Meteorological Institute’s Arctic Research Center in
Sodankylä, Northern Finland using a Fourier Transform Spectrometer (FTS) (Kivi
and Heikkinen, 2016).

In order to fully quantify the retrieval uncertainty while taking into account the
effects of a non-linear forward model, we perform our retrievals with Markov chain
Monte Carlo. We use Likelihood-informed subspace (LIS) dimension reduction to
achieve a computationally fast algorithm that also offers flexibility in selection of
prior distribution. Our retrieval is based on the Swirlab retrieval software (Tukiainen
et al., 2016) developed at FMI. Prior to the work in Paper I , MCMC with LIS
dimension reduction had been implemented by Cui et al. (2014) to the GOMOS
satellite’s retrieval problem (retrieval described by Tamminen and Kyrölä (2001)).
This implementation was done using simulated data as a ground truth, but LIS
retrievals with real data had not been performed for atmospheric remote sensing
inverse problems prior to our research.

While the long-term trends of atmospheric methane have been studied (e.g.
Saunois et al. (2019)), the mechanisms governing the trend remain largely unknown.
Since the major sink of CH4 is in the upper troposphere, long-term changes in the
vertical distribution can give insight on the underlying phenomena. In Paper II we
utilize the dimension reduction retrieval framework to solve for all CH4 concentration

31
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profiles measured from 2009 to 2018 by the Sodankylä FTS. We then implement a
Dynamic linear model (DLM) based analysis method to investigate the non-linear,
altitude-dependent background level and trend in CH4 timeseries.

For empirical prior construction and validation of our retrievals, we use two sup-
porting instruments providing CH4 profiles: a occultation mesurement from the At-
mospheric Chemistry Experiment (ACE, Bernath et al. (2005)) satellite, and an in-
situ balloon measurement called AirCore (Karion et al. (2010), Chen et al. (2016)).
Both are useful together, since the satellite measurements are unable to capture
the concentrations close to Earth’s surface due to measurement geometry, whereas
AirCore can only fly up to 30 km altitude.

4.1.1 Sodankylä Fourier Transform Spectrometer

Fourier Transform Spectrometer (FTS, Figure 4.1) is an interferometer for measuring
light attenuation as a function of wavelength. The device divides incoming solar light
into two beams; one hitting a detector directly, and another reflected from a moving
mirror back to the detector, which travels a longer distance as a result. These beams
are then compared, producing an interferogram, that is, intensity as a function of
difference in optical path length. The interferogram is finally Fourier transformed to
obtain an absorption spectrum. Up to several hundreds of measurements per day can
be recorded (depending on the season and cloudiness during measurement), although
sunlight is still required to do so and hence the instrument is not operated during
winter.

The Sodankylä FTS is a Bruker IFS 125 HR with a A547 solar tracker and three
detectors: InGaAs (12,800-4,000 cm−1), Si (25,000-9000 cm−1) and InSb(10,000-
1,850 cm−1). This instrument is capable of a spectral resolution of about 0.02
cm−1. It is part of the international Total Carbon Column Observation Network
(TCCON) (Wunch et al., 2011) spectrometers, which delivers the results as column-
averaged dry-air mole fractions, i.e. the gas columns are divided by the dry-air
column coming from O2 measurements. These column-averages (denoted XCO2

for carbon dioxide, XCH4 for methane etc.) are operationally processed using the
GGG14 (Wunch et al., 2015) software, which solves the retrieval inverse problem by
scaling the prior atmospheric density profiles of gases of interest. Column-averaged
abundance of CO2, CH4, N2O, HF, CO, H2O, and HDO are retrieved from the
measured spectra.
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Figure 4.1: Sodankylä Fourier Transform Spectrometer measurement geometry. The
solar light (yellow) enters the detector from a slit on top oh the housing building.
The device itself is shown in the upper right panel with the light entrance indicated
by a yellow arrow. The lover left panel shows a schematic of the aperature inside
the FTS, with light beam reflected along the yellow line to hit a mirror. The red
dashed arrow shows the movement of the mirror, which is used to obtain different
path lengths to form an interferogram. Photos by O.L.

4.1.2 Implementation

For comprehensive uncertainty quantification, we use the Bayes formula (2.4) to
obtain the solution for the FTS retrieval problem as a posterior distribution for state
x ∈ Rn. The Bayesian solution is implemented as follows:

State vector: The state vector consists of CH4 concentrations at n = 100
altitudes on a grid from 0 to 70km. The grid spacing is non-uniform to reflect the
atmosphere getting thinner on higher altitudes.

Prior: We use a Gaussian prior N (x0;Σ0), with a prior mean x0 ∈ Rn and
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covariance matrix Σ0 ∈ Rn×n computed empirically as

Σ0 =
1

N − 1

NX
l=1

(x (l) − x0)(x (l) − x0)T ; x0 =
1

N

NX
l=1

x (l); (4.1)

where x1; x2; : : : ; xN ∈ Rn are an ensemble of ACE satellite’s CH4 profiles interpo-
lated to the 100-altitude retrieval grid. Since these profiles don’t reach the ground
level due to ACE’s limited vertical coverage, a randomized extrapolation was per-
formed to achieve a similar variability to the TCCON prior covariance in lower al-
titudes. This prior was chosen to reflect the best knowledge we have from vertical
distribution of atmospheric CH4 in contrast to previous work by Tukiainen et al.
(2016), where the prior covariance was built to have a desired amount of non-zero
eigenvalues by using a Gaussian process.

Additionally, it was observed that for time series studies, the empirical prior
covariance matrix derived from ACE satellite measurements constrained the retrieval
too much in altitudes form 1 to 10 km. Therefore, in Paper II we settled to
using the prior reduction retrieval with the covariance matrix defined in (4.3), as
it performed similarly to the LIS method when not using the empirical covariance
matrix. The prior covariance Σ0 is constructed so that it only has r = 4 non-
zero eigenvalues, corresponding to the total number of informative directions of the
posterior distribution. The diagonal elements of Σ0 as

ff(h) = ff1 exp
“

(h − h1)2s−2
1

”
+
“
ff2 exp(h − h2)2s−2

2

”
; (4.2)

where h = 1; : : : ; n and the parameters ff1; ff2; h1; h1; s1 and s2 are chosen appropri-
ately to reflect the physical conditions of the retrieval (Tukiainen et al., 2016). The
off-diagonal terms are further given by

Σ0(i ; j) = ff(i)ff(j) exp

 
−1

2

„
d(i ; j)

l

«2
!
; (4.3)

where i and j are two atmospheric layers, d(i ; j) is the distance of these layers in
kilometeres and l is an appropriately chosen correlation length.

In Paper II , the prior mean x0 was estimated by combining the stratospheric
part from the mean of an ensemble ACE satellite measurements and the tropospheric
part from the TCCON prior profile from GGG14 algorithm. The ensemble of ACE
measurements was obtained using co-location criteria of 3 degrees inlatitude, 30
degrees in longitude from Sodankylä station, which is situated at 7.367 N, 26.629 E.
Since ACE has been operational from 2003, we limited ourselves to using only the
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data from 2009 onwards. The prior mean was calculated separately for three domains:
summer (from May to August), Polar Vortex and the rest. The location inside the
polar vortex was defined using ERA-Interim atmospheric model data. To assess the
retrieval’s sensitivity to the prior profile, we also performed the retrievals for the
entire times series with a prior profiles without the additional trend, and with a
constant profile shape. When compared with retrieved ACE profiles, the use of a
seasonal prior mean resulted in a better agreement with ACE, while retrievals using
a constant prior mean were still able to match the general characteristics in the ACE
time series reasonably well.

Likelihood: We utilize likelihood derived from the assumed Gaussian distribution
for the observation noise " ∼ N (0;Σ"); " ∈ Rm; Σ" ∈ Rm×m: This results in a

likelihood proportional to exp
“
−1

2 (y − F (x))TΣ−1
" (y − F (x))

”
, where y ∈ Rm is

the measured absorption spectrum and F is the forward model. In our case we have
m = 355. The covariance matrix is taken to be diagonal: Σ" = cIm, where c ∈ R is
a multiplier initialized at c = 0:0015. This multiplier is updated by first performing
an Optimal Estimation (2.4) retrieval to obtain bx , and then scaling c with the square
root of the residual sum of squares RSS=

Pm
i=1(yi − F (bxi ))2.

Forward model: Due to it’s computational efficiency and proven functionality,
we use the forward model from the Swirlab software by Tukiainen et al. (2016).
This radiative transfer model consists of non-scattering atmosphere with n spherical
layers from ground level up to 70 km. Absorption lines are calculated for each layer
separately as Voigt profiles taking into account the temperature and pressure of the
layer. Atmospheric model data from National Centers for Environmental Prediction
(NCEP) are used as source for these atmospheric parameters. Using only the main
beam geometry, that is, considering only the photons that are coming directly from
the sun, the absorption for each wavelength – is then calculated using the Beer-
Lambert law, yielding the intensity of detected light for wavelengths –j ; j ∈ [1; : : : ; m]
as

I(–j) = I0(–j) exp

 
−

KX
k=1

Z ∞
0
Ck(–j ; z)k(z)dz

!
(a–2

j + b–j + c) + d; (4.4)

where I0 is the intensity of solar light when it enters the atmosphere, the atmosphere
has K absorbing trace gases, Ck(–j ; z) is the absorption coefficient of gas k , which
depends on height z and on the wavelength –j , and k(z) is the density of gas
k at altitude z . The second degree polynomial and the constant d in (4.4) are
used to describe instrument related features and the continuity properties of the
spectrum. In reality, solar light is scattered on the way by atmospheric particles.
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This phenomenon is relatively weak in the wavelength band we are considering in
this work (see 2.2), so it is ignored for simplicity. The absorption in continuous
atmosphere is modeled by discretizing the integral in equation (4.4) into a sum over
atmospheric layers and assuming a constant absorption for each separate layer. As
an update to description by Tukiainen et al. (2016), the absorption coefficients are
calculated using HITRAN2016 line database (Gordon et al., 2017).

Dimension reduction: For enhancing the efficiency of MCMC computations, we
use LIS dimension reduction to exploit the low intrinsic dimensionality of the retrieval
problem. The corresponding Gauss-Newton Hessian (3.17) in this case generally has
three singular values greater than unity, but we set r = 4 to make sure that all the
information in the likelihood is used. The global basis (3.32) for non-linear LIS was
computed by first solving for posterior estimates bx and Σpost with Optimal Estimation
(2.4) and then drawing samples from the Laplace approximation N (bx;Σpost) for the
sample mean computation. The LIS basis is used to obtain the projection matrices
Φr ∈ Rn×r and Φ⊥ ∈ Rn×n−r such that x = Φrxr + Φ⊥x⊥ for the LIS parameter
xr ∈ Rr and the CS parameter x⊥ ∈ Rn−r .

MCMC: For efficient sampling of the high-dimensional, possibly non-Gaussian
posterior, we use Adaptive Metropolis algorithm (2.5.2) for the r -dimensional LIS
parameter xr . A starting value x1 = (0; 0; : : : 0)T ∈ Rr is used, since the state
has been centered at the prior mean by the formulation in Chapter 3. Due to pre-
whitening in this formulation, we also use the r dimensional unit covariance matrix
Ir as the training covariance for AM. To ensure that all uncertainties are taken
into account, we add the polynomial and offset parameters a; b; c; d from the Beer-
Lambert equation (4.4) to the state vector with a white noise prior N (0; I) for each
parameter (see Tukiainen et al. (2016) for details). As we want to compare the
results of LIS dimension reduction to the full-dimensional retrieval, MCMC was run
for a total of NM = 1000000 timesteps in order to ensure the convergence of the

full-dimensional chains. MCMC chains x
(l)
r ; l = 1; : : : ; NM are projected back to

full-dimensional space according to

x (l) = x0 + Φrx
(l)
r + Φ⊥x

(l)
⊥ ; (4.5)

where x
(l)
⊥ is an ensemble of realizations drawn from the complement prior N (0; In−r )

In order to compare the performance of MCMC methods we have additionally defined
the sample speed of a MCMC run via the effective sample size Neff as

Neff =
NM

1 + s
P∞
k=1 k(x)

; (4.6)
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where NM is the length of the MCMC chain and k(x) is lag-k autocorrelation for
parameter x in the chain (Ripley, 1987). Then the sample speed of an MCMC chain
is obtained as

V =
Neff

tM
; (4.7)

where tM is the total computation time of the MCMC chain.

SZA Correction The FTS collects measurements throughout the day, and it
is well documented (Wunch et al., 2011) that the measured concentrations have a
solar zenith angle (SZA) dependence. We utilized a statistical correction to adjust
all the measured profiles for SZA dependence to match the smallest SZA for each
given day. After this, a daily average was calculated and used as the timeseries for
fitting the DLM model. The fit was performed on a layer-by-layer basis, and prior
assumptions on the beginning of each fit were adjusted by hand based on knowledge
from adjacent atmospheric layers.

DLM: The time series model for Sodankylä FTS time series was of the form

yt = —t + ‚t + ›t (4.8)

where yt are the retrieved methane concentrations, —t is a second order random
walk component that describes the slowly varying trend in the data, ‚t is a seasonal
component, and the Gaussian error term ›t is allowed to have AR(1) autoregressive
temporal correlation. The fitting was done using the DLM approach (see Kivimäki
et al. (2019) and Laine (2019) for details) which utilizes Kalman filter and smoother
formulas to estimate the time series components in (4.8). The structural parameters
of the model that constrain the time-varying aspects were estimated by MCMC.

4.1.3 Overview of results

We performed the MCMC retrieval on real FTS data using LIS dimension reduction,
as well the prior reduction and full dimensional MCMC retrievals implemented in the
Swirlab software. We used the empirical prior for all retrievals, and the comparison of
the retrieved posterior distributions is shown in Figure 4.2 together with an AirCore
sounding performed at the same time as the FTS measurement. The AirCore profile
is seen to be better contained within the 95% posterior confidence interval with
full dimensional and LIS retrievals, in comparison to prior reduction that performs
worse. We can also observe that the LIS method agrees remarkably well with the
full dimensional MCMC up to the altitude of 35 km, whereas the retrieval performed
with prior reduction did not produce a similar posterior. This disagreement can likely
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be attributed to the usage of an empirical covariance matrix, which demonstrates
the flexibility and robustness of the LIS method.

The differences of prior reduction and LIS based dimension reduction approaches
to the MCMC retrieval were further explored by measuring the distance of the ap-
proximate posterior to the full dimensional one using the Hellinger distance (A.16).
In short, for two probability distributions that give a non-zero probability for exactly
the same events, their Hellinger distance is 0, and if the distributions don’t align
at all, the Hellinger between them is 1. In Figure 4.3, the upper-left panel shows
the Hellinger distances of the dimension-reduced MCMC posterior distributions from
prior reduction and LIS to the full-dimensional posterior. We performed the compar-
ison with different selections of the number r of singular vectors used in the retrieval.
As seen in the graph, LIS method yields a Hellinger distance close to 0 with just 4
basis vectors used, while prior reduction performs poorly in comparison. This can be
partially explained by the shapes of the basis vectors shown in the upper-right and
lower-right panels of Figure A.16, where it can be seen that the LIS basis vectors
more closely resemble the shapes of the concentration profiles shown in Figure 4.2).

The lower-left panel of Figure 4.3 shows the corresponding sample speeds of
the MCMC retrievals as a function of basis vectors used. The two methods perform
equally well, but as the LIS method provides a more accurate posterior approximation
it is to be preferred while using an empirical prior. However, using the prior covariance
derived previously by Tukiainen et al. (2016), these methods performed equally well.
For this reason, prior reduction with was chosen as a basis for our approach for time
series analysis.

In Paper II , we implemented the dimension reduction based CH4 concentration
profile retrieval for the entire time series of FTS measurements from 2009 to 2018,
which was processed without significant algorithmic failures. While time series of
column-averaged CH4 have been retrieved and studied by e.g. the TCCON network,
a times eries of profiles in the Arctic region has not been available prior to this
study. Our analysis discovered that while the CH4 concentrations close to the surface
are decreasing, the concentrations on upper troposphere and lower stratosphere are
increasing. This observation agrees with the in-situ mast measurements as well
as an independent satellite borne measurement by ACE, thus the results provide a
convincing argument for further research on this phenomenon and its causes. A
comment on the resolution of our retrieval is also merited: As is apparent from the
averaging kernels in Figure 2.5, the retrieval is well informed on the lower levels of
the atmosphere. For altitudes higher 40 km, the retrieved profile no longer contains
information obtained from the measurements and is defined by the prior. This limits
the usability of the developed methodology to altitudes lower than 40 km.
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Figure 4.2: Posterior distributions (green) from the FTS CH4 profile retrievals shown
as 95% confidence intervals. From left to right, the results of MCMC applied to full
dimensional, LIS, and prior reduction retrievlas. Also shown are the prior distributions
(95% confidence intervals (grey) and prior mean (dashed blue)) and an in-situ AirCore
measurement (red) for reference.

As in Paper I we compared the dimension reduction retrievals to AirCore balloon
measurements on 22 separate measurement times ranging from 2013 to 2017 and
spanning all seasons the measurements are done. It was observed that Optimal
Estimation (2.4) yielded results comparable to those from MCMC, which justified
using OE to efficiently retrieve the entire time series. The comparison of MCMC
solutions to the AirCore measurements is shown in Figure 4.4.

Figure 4.5 summarizes the results of the time series analysis. For the trend
analysis, we draw samples from the posterior distribution of the level parameter —t
using MCMC within the DLM software package. For each sample we computed the
yearly trend at time step t as

trendt = —t+s=2 − —t−s=2; (4.9)
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Figure 4.3: Upper left panel: Hellinger distances to the full posterior as a function of
number of basis vectors used in the retrieval, with prior (green) and LIS (red) based
dimension reductions. Lower left panel: sample speeds of the MCMC chains as a
function of number of basis vectors used in the retrieval, with prior (green) and LIS
(red) based dimension reductions. Upper right panel: 4 first basis vectors used in
prior based dimension reduction. Lower right panel: 4 first basis vectors used in LIS
dimension reduction.

where s is the number of days considered. To assess the trend and the uncertainty,
we ran MCMC for 1000 steps and calculated the average trend and the standard
deviation of the trend for every time step.

Comparison of the lowest altitude of the retrieved CH4 profile against an in situ
mast measurement from 50 m shows that while the spread and temporal coverage of
our retrieval is inferior, the agreement in the background level and seasonal cycle is
remarkable. DLM analysis of both instruments pointed out a decreasing trend from
2016 onwards. While artifacts are common in the beginning and end of time series
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Figure 4.4: Comparison between retrieved posterior distributions obtained via
MCMC, and AirCore profiles (red). Black dashed line is the prior profile with 95%
prior variance in grey shading. Blue dotted line is the posterior mean with blue
shading representing the 95% posterior confidence limits.

trend analyses due to lacking data, our results show a downwards trend for over 3
years which increases their credibility.

For three representative atmospheric altitudes at 11.5 km, 21.5 km and 26.5 km
in Figure 4.5, the methane profiles we retrieved and ACE profiles agree very well
within the 95% posterior confidence limits on the background level term. This shows
the strength of the DLM approach: we have managed to detach seasonal variability
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and autocorrelations from the data, obtaining a description of the mean background
level of the atmospheric concentrations and related uncertainties.

Figure 4.5: top left) Lowest layer of our retrieval compared against 50 m in situ mea-
surements. Top right: Our retrieval compared to ACE-FTS instrument at 11.5 km.
Bottom left: Our retrieval compared to ACE-FTS instrument at 21.5 km. Bottom
right: our retrieval compared to ACE-FTS instrument at 26.5 km. In every panel the
upper axis shows the daily averages from compared instruments and the lower axis
shows the 1-year average trend and the 95 percent confidence limits evaluated from
the DLM analysis. Our retrieval is in orange and the reference instrument in blue.
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4.2 Satellite retrieval of CO2

Carbon dioxide retrievals carried out by NASA’s Orbiting Carbon Observatory 2
(OCO-2) satellite are required to have extremely reliable error estimates. Our work
aims to aid in this task by providing a thorough quantification of uncertainty caused
by the non-linear forward model used in the OCO-2 retrieval. These effects are as-
sumed to be negligible in the operational retrieval algorithm, resulting in linear error
estimates introduced in section 2.2.1. For rigorous UQ, we use a computationally
feasible surrogate forward model together with Likelihood informed subspace dimen-
sion reduction to implement a fast and robust Markov chain Monte Carlo retrieval
algorithm to sample directly from the obtained posterior distribution.

The strength of our analysis method is demonstrated by assessing the non-
Gaussian shape of the retrieval’s posterior distribution, and further exploring the
sensitivity of the retrieval to operational OCO-2 prior covariance matrice’s aerosol
parameters. We base our implementation on existing code by Brynjarsdottir et al.
(2018), where adaptive MCMC and Optimal Estimation for simulated OCO-2 re-
trievals were comprehensively compared. The results highlighted issues of slow con-
vergence of MCMC and lack of consistent agreement of MCMC means and MAP
estimates in retrievals. These issues are further addressed by our work.

In this section, we first introduce the OCO-2 satellite and the computational
forward model used in this work, followed by results of applying adaptive MCMC
and LIS dimension reduction introduced in earlier chapters to efficiently explore the
posterior distribution obtained as the solution of the retrieval problem.

4.2.1 Orbiting Carbon Observatory 2

In atmospheric research (according to Miller et al. (2007)), an absolute accuracy of
1-2 ppm is required for reliable atmospheric carbon flux inversions and climatological
predictions. NASA’s Orbiting Carbon Observatory 2 (OCO-2, Figure 4.6) (Crisp et al.
(2004), Eldering et al. (2017)) satellite mission aims to satisfy these requirements
and has been operationally measuring XCO2 since July 2014. From orbit, OCO-
2 measures radiances of reflected solar radiation, that is, absorption of sunlight in
Earth’s atmosphere on different wavelengths. These measurements are inverted to
get an atmospheric state x that describes conditions in the light path, among which
are CO2 concentrations, aerosol distributions and surface properties. The resulting
inverse problem is solved using a retrieval algorithm, which consists of a so called
Full Physics model (O’Dell et al. (2012), Crisp et al. (2012), O’Dell et al. (2018))
that extensively describes the relevant physical phenomena in the atmosphere, and
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Figure 4.6: The Orbiting Carbon Observatory 2 satellite’s measurement geometry.
The satellite measures attenuation of reflected solar light that has passed through
the atmosphere. The main beam (orange), reflected by Earth’s surface, is the most
significant light path hitting the detector. In addition, physics model describing the
atmospheric radiative transfer has to take into account e.g. atmospheric scattering
(yellow) and extinction by clouds and aerosols (red). Original image is credited to
NASA/JPL and obtained from the OCO-2 public web page.

Optimal Estimation (OE) framework, in which an optimization algorithm minimizes
the cost function related to the statistical inverse problem of the retrieval.

The OCO-2 instrument is composed of three spectrometers that measure light
reflected from Earth’s surface in the near-infrared part of the spectrum at three
separate wavelength bands. These bands are centered around 0.765, 1.61 and 2.06
—m and are called the O2 A-band, the weak CO2 band and the strong CO2 band,
respectively. Each observation furthermore consists of 1016 radiances from each
band, and together they form the observed sounding. The satellite flies in a polar,
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sun-synchronous orbit that covers the whole Earth with a 233 orbit 16-day repeat
cycle, during which it collects measurements with a surface footprint of less than
2.25 km down-track and 1.3 km cross-track every 0.333 seconds.

4.2.2 Implementation

For uncertainty quantification, we use Bayesian approach to obtain a posterior dis-
tribution as a solution to the OCO-2 inverse problem. We implement the retrieval
as follows:

State vector: The state vector x ∈ Rn used in our study is based on the physics
model used by Hobbs et al. (2017). In our case, n = 39 and the state consists of
four parts:

• CO2 vertical profile (1-20)

• Surface pressure (21)

• Surface albedo (22-27)

• Aerosol parameters (28-39)

This state vector partially represents the operational OCO-2 retrieval algorithm’s
state vector, but a thorough treatment of the Full Physics framework is not feasible
in the scope of this thesis.

The main quantity of interest in the OCO-2 retrieval is the column-averaged dry
air mole fraction of CO2, denoted XCO2 , which is a weighted average CO2 concen-
tration from the first 20 parameters of the state vector. XCO2 is calculated as

XCO2 = hT x¸; (4.10)

where h ∈ R20 is a pressure weighting function (see Crisp et al. (2019)) assigning
appropriate weights to each altitude, and x¸ ∈ R20 contains the first 20 elements of
the surrogate state vector.

Prior: We use a Gaussian prior distribution N (x0;Σ0), where the prior mean
x0 ∈ Rn and prior covariance matrix Σ0 ∈ Rn×n are obtained from the operational
retrieval (Crisp et al., 2019), while leaving out the elements that are not part of
our state vector. The 20-dimensional CO2 part of the state has a covariance that
promotes smoothness, while the remaining part of the prior covariance matrix is
diagonal.

Likelihood: We utilize likelihood derived from the assumed Gaussian distribution
for the observation noise " ∼ N (0;Σ"); " ∈ Rm; Σ" ∈ Rm×m: This results in
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a likelihood proportional to exp
“
−1

2 (y − F (x))TΣ−1
" (y − F (x))

”
, where y ∈ Rm is

the measured absorption spectrum and F is the forward model. In the case of OCO-2
data we have m = 3048. The error covariance Σ" is taken to be diagonal with entries
corresponding to the magnitudes of radiances in data y multiplied by an appropriate
constant given by Hobbs et al. (2017).

Forward model: The operational state-of-the-art OCO-2 physics model de-
scribes the light absorption and scattering by trace gases and aerosols in the at-
mosphere. While this is a comprehensive way to compute atmospheric radiative
transfer, the model is computationally expensive to evaluate and hence is not suit-
able for Monte Carlo experiments. We ease this problem by using a computationally
feasible surrogate forward model by Hobbs et al. (2017), which accounts for most of
the major sources of error in the retrieval.

The surrogate model uses similar physics computations as the Full Physics model,
but only a part of the operational state vector is taken into account as follows:

• The model considers the amount of molecules in 20 fixed pressure levels of the
atmosphere. The concentration of CO2 as well as pressure and temperature
are taken to be constant inside each level.

• A single parameter of the state vector is retrieved to help identify the total
amount of molecules in an atmospheric column. Since O2 has a near constant
concentration in each atmospheric layer, the total absorption on the O2 band
can be used to estimate the total amount of air at the measurement location.

• Earth’s surface reflects radiation differently at different wavelengths, and the
relation of reflected vs. total incoming radiation is given by albedo. In the
surrogate model this corresponds to 6 parameters: a Lambertian albedo and
it’s spectral slope at each of the 3 wavelength bands of the observed absorption
spectrum.

• Small particles in the atmosphere absorb and scatter light in complex ways,
which is taken into account by the model as an aerosol model. The vertical
profile of aerosol concentration is modeled with 3 parameters per aerosol type,
first of which is the logarithm of Aerosol Optical Depth (AOD) at 755nm which
describes the total intensity of aerosol effects. The second parameter describes
the height of the maximum aerosol concentration, and the third describes the
thickness of the aerosol layer, with a small value corresponding to a thin layer.
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The aerosol profile calculated from these parameters is proportional to

AOD exp

 
−(x − xa)2

2ff2

!
; (4.11)

where xa is the layer height and ff is the layer thickness. In this work the
number of atmospheric aerosol types is 4, which amounts to a total of 12
aerosol parameters in the state vector.

Data: Our study uses simulated data, which is given in locational templates.
These templates are areas on land inside which most geophysical properties affecting
the retrieval can be assumed to be constant. Geolocated state vectors from operta-
tional OCO-2 retrieval are used to calculate the empirical CO2 mean and covariance
(4.1) for each template. Together with climatological data about aerosol concentra-
tions, surface propreties etc, a Gaussian mixture model is constructed and ensemble
of surrogate state vectors are simulated from it. Following Hobbs et al. (2017), ra-
diances with additional noise are then computed using the surrogate forward model,
and Optimal estimation retrieval (2.4) is conducted to obtain retrieved state vectorsbx and posterior covariances Σpost . All of this information is then saved on so called
scene files.

Dimension reduction: It was observed that the number r of informative di-
rections for the radiances varies from location to location. For each sounding, r is
obtained from the SVD of the Gauss-Newton Hessian (3.17) evaluated at bx . LIS ba-
sis is then constructed by sampling from the Laplace approximation N (bx;Σpost) for
the sample mean computation (3.32). The LIS basis is used to obtain the projection
matrices Pr ∈ Rr×n; (I− Pr ) ∈ Rn−r×r ; Φr ∈ Rn×r and Φ⊥ ∈ Rn×n−r such that

x = Prx + (I− Pr )x = Φrxr + Φ⊥x⊥: (4.12)

for the LIS parameter xr ∈ Rr and the CS parameter x⊥ ∈ Rn−r .
MCMC: The obtained LIS projector Pr (3.21) is used to get Pr (bx − x0) ∈ Rr

as the starting value, and PrΣpostPTr ∈ Rr×r as the starting covariance for the
Adaptive Metropolis algorithm (2.5.2). MCMC is run for 250 000 iterations to
ensure the convergence of full-dimensional chains for adequate comparison against
LIS MCMC. LIS samples are then projected back to full space according to formula
(3.28), and a sample from the complement prior is added according to (3.30).

Parameter tuning for OE: As was shown by Brynjarsdottir et al. (2018) and
Nelson (2015), the optimal estimation retrieval is sensitive to the initial guess of
the optimization algorithm, and furthermore the result might not agree with the



48 4 Uncertainty quantification in remote sensing of greenhouse gases

overall posterior distribution obtained with MCMC. We performed trial-and-error
based parameter tuning for the OE retrieval in order to rule out convergence problems
due to bad starting parameter values. In previous work, the starting value for damping
parameter ‚ for the Levenberg-Marquardt algorithm (2.25) was set to 10 (see Crisp
et al. (2019)). For tuning, we set the maximum amount of iterations to 1000 so
that the optimization will terminate only once one of the other conditions is met.
As a starting state x0 ∈ R39 for the optimization, we use the prior mean, the mean
obtained from MCMC simulation, and the MCMC mean perturbed by ±ff ∈ R39,
where ff is a standard deviation obtained by taking the square root of the elements
of the diagonal of Ŝ. The results with both original ‚ = 10 and tuned ‚ = 30, which
was found to be a reasonably good value, as starting values are shown in Figure 4.7.
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Figure 4.7: CO2 profiles from OE retrievals, starting the optimization from various
perturbed first guess profiles. Left panel: OE retrievals performed with parameter
values of starting ‚ = 10, normalized step size tolerance = 40. Right panel: OE
retrievals performed with parameter values of starting ‚ = 30, normalized step size
tolerance = 0.0001.

4.2.3 Overview of results

In Paper III, we implemented the LIS dimension reduction to OCO-2 retrieval in-
troduced by Brynjarsdottir et al. (2018), using synthetic data, a computationally
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efficient surrogate forward model and Adaptive MCMC. The novel LIS dimension
reduction implementation was found to significantly increase the computational ef-
ficiency of MCMC, while yielding essentially a similar result as the full-dimensional
retrieval. Using the MCMC samples we detected that the resulting posterior distribu-
tion is non-Gaussian, specifically in aerosol parameters of the state vector. This result
gives important insights on the effectiveness of the linear error estimation (2.15) in
the operational OCO-2 algorithm. Furthermore, our analysis showed that relaxing
constraints on the prior covariance of aerosol parameters can significantly improve
the results of the retrieval. This is to say that a misspecification of the prior for
non-CO2 elements of the state vector can cause large errors in the retrieved XCO2 ,
which is in agreement with recent results in Nguyen et al. (2019).

In Figure 4.2.3, we show the MCMC chains of retrieved XCO2 obtained from the
CO2 profile using formula 4.10. We clearly see that the implemented LIS dimenesion
reduction results in more or less exactly the same posterior distribution as the full
dimensional MCMC performed in Brynjarsdottir et al. (2018). Moreover, the obtained
posterior in figure 4.2.3 is seen to be wider than the approximation obtained via OE.
The lower panel of figure 4.2.3 also graphically demonstrates that convergence is
obtained faster with LIS MCMC in comparison to the full dimensional case. This is
useful for future work since, as stated in Brynjarsdottir et al. (2018), the OCO-2 Full
Physics model is computationally too costly to perform a full dimensional MCMC
analysis. As shown, LIS has the potential to aid in this task in the future.

We observed from the MCMC retrieval that while the Gaussian assumption holds
well with the CO2 part of the state vector, the distribution of aerosol parameters show
clear non-non-Gaussian shape. Figure 4.9 shows the distribution of MCMC samples
from the aerosol parameters of the state vector plotted against each other. We can
see that the Gaussian posterior approximation from OE retrieval is too optimistic and
doesn’t provide wide enough confidence intervals for aerosol parameters. This error
might propagate to the final XCO2 estimate as an over confidence on the retrieval
result. Moreover, the middle figure of the second row shows a so called ”banana
distribution” shape, which has been known to pose trouble for MCMC samplers and
resulting in low acceptance rates (see e.g. Haario et al. (1999)). The third figure
on the second row also reveals two dimensions that are strongly correlated, which
results to the posterior being ”flat” and difficult to sample from. This observation
highlights one strength of the LIS approach, since correlated dimensions are automat-
ically removed from the reduced state vector. We observed that numerous retrievals
were overly constrained by the operational prior covariance, so that the true values
of aerosol cloud width parameters (4.11) were not retrieved. This effect is seen in
the middle panel of top row (parameters 30 vs. 33) in Figure 4.9. Guided by this
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Figure 4.8: Upper panel: XCO2 posterior histogram from full dimensional MCMC
(blue) compared to LIS MCMC (red). Also shown the starting value for MCMC and
simulated ground truth (green). Lower panel: every 100th sample of XCO2 chain
from full dimensional MCMC (blue) and LIS MCMC (red).

observation, we performed additional OE and MCMC retrievals on the same prob-
lematic cases while multiplying the prior covariance variance of the first aerosol cloud
height parameter by 10. Figure 4.10 shows effects of this change to the histograms
of aerosol parameters of the state vector obtained with MCMC. Using an inflated
prior covariance is generally seen to make the results agree better with the true value
of the aerosol parameters. Three MCMC test cases of retrieved XCO2 are shown in
Figure 4.11. The result is by no means universal, but suggests that in certain cases
using a less strict prior can significantly improve the quality of both OE and MCMC
based retrievals.
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Figure 4.9: 2D posterior distributions of selected aerosol and surface parameters
from LIS MCMC (blue with 95% posterior confidence interval on blue contour)
compared with ground truth (green), prior (black with 95% confidence interval on
black ellipse) and OE (red with 95% posterior confidence interval on red ellipse).
Parameter numbers agree with the numbering in the surrogate model state vector.
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Figure 4.10: Aerosol parameter marginal histograms (corresponding to retrievals
using operational prior (blue) and widened prior (orange)) with operational prior
(dashed black), ground truth (green) and OE retrieval result (blue and red vertical
lines). SO = sulphate, DU = dust, Ice = cloud ice and Water = cloud liquid water.
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Figure 4.11: Three separate test cases showing XCO2 posterior histograms (using
operational prior (blue) and widened prior) from LIS MCMC compared to the OE
retrieval (blue and red dashed lines) and simulated ground truth (green). Also shown
the true value of XCO2 with the corresponding MCMC mean using a widened prior.
It should be noted that the example case 2 on the middle panel most likely did not
converge in either the MCMC or OE when using the operational prior, which is not
an unusual scenario even in the operational retrieval.
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5 Conclusions

In the field of atmospheric remote sensing of greenhouse gases, rigorous uncertainty
quantification is needed in order to ensure the accuracy and precision of concentration
measurements. In this work we have developed and implemented efficient dimension
reduction methods to facilitate the usage of Markov chain Monte Carlo algorithms
to solve the related Bayesian inverse problem. Our methods were successfully used
to gain insight into the retrieval problems of both atmospheric CH4 profile from
Sodankylä Fourier Transform Spectrometer, and CO2 total column from NASA’s
Orbiting Carbon Observatory 2 satellite. In all our research cases, the Likelihood-
informed subspace dimension reduction method was found to be robust and efficient
in accelerating MCMC computation and making it feasible. In this work, LIS was was
used with real date for the first time in the FTS retrieval, which was further used to
process the entire time series of measurements from 2009 to 2018. We were also able
to detect the non-Gaussian shape of the posterior distribution of the OCO-2 inverse
problem and suggest possible improvements to the retrieval algorithm via assessment
of the prior covariance matrix.

The research of this thesis opens up some interesting further research ques-
tions as well. First, the LIS dimension reduction we used includes approximating
the non-linear LIS with a Monte Carlo average. For a rigorous, general solution,
a thorough analysis of certified dimension reduction was presented by Zahm et al.
(2018), where the authors derived an expression for a general non-linear case. Cer-
tified dimension reduction could be implemented to our algorithms instead of LIS
to improve the low-dimensional posterior approximations. Second, we used DLM to
process the Sodankylä FTS CH4 profile time series on a altitude-by-altitude basis.
This implementation requires parameter and first guess tuning by hand, which is a
time consuming procedure. A possible improvement to our algorithm would be to
perform the DLM analysis for the entire profile all at once. In order to do this, the
state space model would need to be updated to include parameters for correlations
between atmospheric layers, resulting to larger hidden state vector than in our case.
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Finally, our work with the OCO-2 algorithm relies on using a surrogate model which
is an approximation of the operational Full Physics model and hence the results are
not guaranteed to hold for the operational algorithm. A way to remedy this would be
to use the approximation error approach (e.g. Kolehmainen et al. (2011),Lehikoinen
et al. (2007)) to extract the statistics of the error one makes when approximating a
high fidelity model by a surrogate model. This statistical correction could then be
included in the OCO-2 surrogate model retrieval to make it comparable with the Full
Physics model.
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A Preliminary mathematical concepts

In this section, we give a short revision of key mathematical concepts required to
understand the theory and applications in this work.

A.1 Matrices

A matrix A ∈ Rn×n is positive definite if xTAx > 0 for all x ∈ Rn, and symmetric if
AT = A. For a symmetric, positive definite square matrix A ∈ Rn×n, there exists a
unique Cholesky factorization (Golub and Loan, 1996)

A = LLT ; (A.1)

where L ∈ Rn×n is lower-triangular and has positive diagonal entries.
For a matrix A ∈ Rm×n, there exists a singular value decomposition (SVD) (see

e.g. Golub and Loan (1996), Mueller and Siltanen (2012)) given by

A = UΛVT ; (A.2)

where U ∈ Rm×m, V ∈ Rn×n, UTU = UUT = Im, VTV = VVT = In and Λ ∈ Rm×n
is a diagonal matrix with singular values of matrix A, –1; –2 : : : ;∈ R, as diagonal
entries. The matrix A has n singular values if m ≥ n, and m if n > m. The
singular values are labelled in increasing order: –1 ≥ –2 ≥ : : : . Furthermore, the
columns of ui and vi of matrices U and V are called singular vectors of A. The
right singular vectors vi also form an orthonormal basis for Rn (see e.g. Andrilli and
Hecker (2016)).

Given an SVD A = UΛVT as previously, the eigenvalue decomposition for sym-
metric matrices matrices M = AAT ∈ Rm×m and N = ATA ∈ Rn×n is given by

M = (UΛVT )(VΛTUT ) = UΛ2
mUT : (A.3)

N = (VΛTUT )(UΛVT ) = VΛ2
nVT ; (A.4)
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where Λ2
m = ΛΛT ∈ Rm×m and Λ2

n = ΛTΛ ∈ Rn×n. Consider the matrix N as
above. The columns vi ∈ Rn of matrix V are called eigenvectors of N and the
diagonal entries –2

i ∈ R of matrix Λ2
n are called eigenvalues of matrix N, satisfying

Nvi = –2
i vi .

A.2 Random variables

Let Ω be an abstract sample space, S be a sigma algebra over Ω and let P be a
probability measure. Then the triple (Ω;S; P ) is called a probability space (for a
more comprehensive discussion, see e.g. Kallenberg (1997)). Given a probability
space (Ω;S; P ), a random variable X with values in Rn is defined as a measurable
mapping

X : Ω 7→ Rn; (A.5)

or in other words, X−1(B) ∈ S for each open set B ∈ Rn. We use the usual
convention and denote random variables with upper case letters. Furthermore, the
realizations of these random variables are denoted with lower case letters: X(!) =
x ∈ Rn; ! ∈ Ω.

A random variable X ∈ Rn induces a probability measure — called probability
distribution of X in Rn such that

—(B) = P (X−1(B)); B ∈ B; (A.6)

where B is the Borel sigma-algebra of Rn. In this work, we assume that all random
variables introduced are absolutely continuous with respect to the Lebesgue mea-
sure on an appropriate space (see e.g. Rudin (1987) for details). The probability
distribution of random variable X that is absolutely continuous with respect to the
Lebesgue measure can be described with a probability density function ı(x), (also
density function for short), which satisfies

—(B) =

Z
B
ı(x)dx: (A.7)

Furthermore, for random variables X ∈ Rn and Y ∈ Rm, the joint density function
ı(x; y) for the product random variable X × Y : Ω→ Rn × Rm satisfies

—(B1; B2) =

Z
B1×B2

ı(x; y)dxdy: (A.8)

with open sets B1 ∈ Rn; B2 ∈ Rm.
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Given a joint probability density function ı(x; y) for the variables X and Y , the
marginal density function ı(x) for X is given by

ı(x) =

Z
Rm
ı(x; y)dy: (A.9)

The expected value of X ∈ Rn over ı(x) is given by

E[X] =

Z
Rn
x ı(x)dx; (A.10)

provided that the integral exists. Furthermore the covariance matrix of random
variable X ∈ Rn is

Cov(X) = E[XXT ]− E[X](E[X])T ∈ Rn×n (A.11)

if the integral exists. A n-variate Gaussian random variable X ∈ Rn with mean
x0 ∈ Rn and a symmetric, positive-definite covariance matrix Σ0 ∈ Rn×n has the
probability density function

ı(x) = ((2ı)m|Σ0|)−
1
2 exp

„
−1

2
(x − x0)TΣ−1

0 (x − x0)

«
: (A.12)

We denote this distribution by N (x0;Σ0).
An assumption we usually make about the data is that observations xi are inde-

pendent and identically distributed (i.i.d.) random variables. Independence means
that P(x1; x2) = P(x1)P(x2), which also implies conditional independence: P(x1|x2)
= P(x1).

Two random variables X1 and X2 are said to be independent P(x1; x2) = P(x1)P(x2),
which also implies conditional independence: P(x1|x2) = P(x1). . If they are pairwise
independent and all follow the same distribution.

Let X1; : : : ; XN be N i.i.d. random variables with expected value x̄ and variance
ff2 and let Sn be the sample mean of the values, given by

Sn =
1

n

nX
i=1

Xi : (A.13)

The central limit theorem states that in the limit n → ∞, the random variable√
n(Sn − x̄) converges in distribution to a zero-mean Gaussian distribution with

variance ff2, i.e. N (0; ff2). The strong law of large numbers states that in the limit
n→∞, the sample mean converges to the expected value Sn → x̄ .
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Assume that E[X] <∞. For a random sample xi
i.i.d.∼ ı(x); i = 1; : : : ; N, we can

estimate E[X] using the sample mean

IN =
1

N

NX
i=1

xi : (A.14)

By the Strong law of large numbers, we obtain limN→∞ IN = E[X].
Given a probability space (Ω;S; P ), a stochastic process is a collection of Rn-

valued random variables

{X(!; t) : ! ∈ Ω; t ∈ T}; (A.15)

where T is some index set, usually taken to be time. While generalizations exist, in the
scope this work we only need to consider the case X ∈ Rn. Given the beginning and
ending indices t1; t2 ∈ T , we will use the notation {Xt}t2t=t1 for stochastic processes.

Lastly, we need to use the Hellinger distance (e.g. Pollard (2002)) to quantify
the difference between probability distributions. The Hellinger distance between two
probability distributions with density functions ı1(x) and ı2(x) is defined as

H2(ı1; ı2) =
1

2

Z
Rn

„q
ı1(x)−

q
ı2(x):

«2

dx (A.16)

It holds that 0 < H(ı1; ı2) < 1. The maximum distance 1 is achieved when ı1(x)
assigns probability zero to every set to which ı2(x) assigns a positive probability, and
vice versa.
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CO2 at Sodankylä, finland. Geoscientific Instrumentation, Methods and Data
Systems, 5(2):271–279, 2016. doi: 10.5194/gi-5-271-2016.
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Likelihood informed dimension reduction for
remote sensing of atmospheric constituent
profiles

Otto Lamminpää, Marko Laine, Simo Tukiainen, Johanna Tamminen

Abstract We use likelihood informed dimension reduction (LIS) [2] for invert-
ing vertical profile information of atmospheric methane from ground based Fourier
transform infrared (FTIR) measurements at Sodankylä, Northern Finland. The mea-
surements belong to the word wide TCCON network for greenhouse gas measure-
ments and, in addition to providing accurate greenhouse gas measurements, they are
important for validating satellite observations.

LIS allows construction of an efficient Markov chain Monte Carlo sampling al-
gorithm that explores only a reduced dimensional space but still produces a good ap-
proximation of the original full dimensional Bayesian posterior distribution. This in
effect makes the statistical estimation problem independent of the discretization of
the inverse problem. In addition, we compare LIS to a dimension reduction method
based on prior covariance matrix truncation used earlier [16].

1 Introduction

Atmospheric composition measurements have an increasingly crucial role in moni-
toring the green house gas concentrations in order to understand and predict changes
in climate. The warming effect of greenhouse gases, such as carbon dioxide (CO2)
and methane (CH4), is based on the absorption of electromagnetic radiation origi-
nating from the sun by these trace gases. This mechanism has a strong theoretical
base and has been confirmed by recent observations [4].

Remote sensing measurements of atmospheric composition, and greenhouse
gases in particular, are carried out by ground-based Fourier transform infrared
(FTIR) spectrometers, and more recently by a growing number of satellites (for
example SCIAMACHY, ACE-FTS, GOSAT, OCO-2). The advantage of satellite

Otto Lamminpää · Marko Laine · Simo Tukiainen · Johanna Tamminen
Finnish Meteorological Institute, P.O. BOX 503, FI-00101 Helsinki, Finland. e-mail: otto.
lamminpaa@fmi.fi
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measurements is that they provide global coverage. They are used for anthropogenic
emission monitoring, detecting trends in atmospheric composition and studying the
effects of biosphere, to name but a few examples. Accurate ground-based measure-
ments are crucial to satellite measurement validation, and the global Total Carbon
Column Observing Network (TCCON [17]) of FTIR spectrometers, consisting of
around 20 measurement sites around the world, is widely used as a reference [3].
The FTIR instrument looks directly at sun, returning an absorption spectrum as
measured data.

Determining atmospheric gas density profiles, or retrieval, from the absorption
spectra is an ill-defined inverse problem as the measurement contains only a limited
amount of information about the state of the atmosphere. Based on prior knowledge
and using the Bayesian approach to regularize the problem, the profile retrieval is
possible, provided that our prior accurately describes the possible states that may
occur in the atmosphere. When retrieving a vertical atmospheric profile, the dimen-
sion of the estimation problem depends on the discretization. For accurate retrievals
a high number of layers are needed, leading to a computationally costly algorithms.
However, fast methods are required for the operational algorithm. For this purpose,
different ways of reducing the dimension of the problem have been developed. The
official operational TCCON GGG algorithm [17] solves the inverse problem by scal-
ing the prior profile based on the measured data. This method is robust and compu-
tationally efficient, but only retrieves one piece of information and thus can give
largely inaccurate results about the density profiles.

An improved dimension reduction method for the FTIR retrieval based on reduc-
ing the rank of the prior covariance matrix was used by Tukiainen et al. [16] using
computational methods developed by Solonen et al. [13]. This method confines the
solution to a subspace spanned by the non-negligible eigenvectors of the prior co-
variance matrix. This approach allows a retrieval using more basis functions than
the operational method and thus gives more accurate solutions. However, the prior
has to be hand tuned to have a number of non-zero singular values that correspond
to the number of degrees of freedom for the signal in the measurement. Moreover,
whatever information lies in the complement of this subspace remains unused.

In this work, we introduce an analysis method for determining the number of
components the measurement can provide information from [12], as well as the
likelihood informed subspace dimension reduction method for non-linear statistical
inverse problems [2, 14]. We show that these two formulations are in fact equal. We
then proceed to implement a dimension reduction scheme for the FTIR inverse prob-
lem using adaptive MCMC sampling [6, 5] to fully characterize the non-linear pos-
terior distribution, and show that this method gives an optimal result with respect to
Hellinger distance to the non-approximated full dimensional posterior distribution.
In contrast with the previously implemented prior reduction method, the likelihood
informed subspace method is also shown to give the user freedom to use a prior de-
rived directly from an ensemble of previously conducted atmospheric composition
measurements.
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2 Methodology

We consider the atmospheric composition measurement carried out at the FMI Arc-
tic Research Centre, Sodankylä, Finland [9]. The on-site Fourier transform infrared
spectrometer (FTIR) measures solar light arriving to the device directly from the
sun, or more precisely, the absorption of solar light at different wavelengths within
the atmosphere. From the absorption spectra of different trace gases (CO2,CH4, . . .)
we can compute the corresponding vertical density profiles, i.e. the fraction of the
trace gas in question as a function of height.

Let us consider the absorption spectrum with m separate wavelengths. The solar
light passing through the atmosphere and hitting the detector can be modeled using
the Beer-Lambert law, which gives, for wavelengths λ j, j ∈ [1, . . . ,m], the intensity
of detected light as

I(λ j) = I0(λ j)exp

(
−

K

∑
k=1

∫ ∞

0
Ck(λ j,z)ρk(z)dz

)
(aλ 2

j +bλ j + c)+d, (1)

where I0 is the intensity of solar light when it enters the atmosphere, the atmosphere
has K absorbing trace gases, Ck(λ j,z) is the absorption coefficient of gas k, which
depends on height z and on the wavelength λ j, and ρk(z) is the density of gas k at
height z. The second degree polynomial and the constant d in (1) are used to describe
instrument related features and the continuity properties of the spectrum. In reality,
solar light is scattered on the way by atmospheric particles. This phenomenon is
relatively weak in the wavelength band we are considering in this work, so it will be
ignored for simplicity.

The absorption in continuous atmosphere is modeled by discretizing the integral
in equation (1) into a sum over atmospheric layers and assuming a constant absorp-
tion for each separate layer. This way, a discrete computational forward model can
be constructed, giving an absorption spectrum as data produced by applying the for-
ward model to a state vector x describing the discretized atmospheric density profile
for a certain trace gas. In this work, we limit ourselves to consider the retrieval of
atmospheric methane (CH4).

2.1 Bayesian formulation of the inverse problem

Consider an inverse problem of estimating unknown parameter vector x ∈ Rn from
observation y ∈ Rm,

y = F(x)+ ε, (2)

where our physical model is describe by the forward model F : Rn → Rm and the
random variable ε ∈ Rm represents the observation error arising from instrument
noise and forward model approximations. In the Bayesian approach to inverse prob-
lems [7] our uncertainty about x is described by statistical distributions. The solution
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to the problem is obtained as posterior distribution of x conditioned on a realization
of the data y and depending on our prior knowledge. By the Bayes’ formula, we
have

π(x|y) ∝ π(y|x)πpr(x), (3)

where π(x|y) is the posterior distribution, π(y|x) the likelihood and πpr(x) the prior
distribution. The proportionality ∝ comes from a constant that does not depend on
the unknown x. In this work, we assume the prior to be Gaussian, N (x0,Σpr), e.g.

πpr(x) ∝ exp
(

−1
2
(x− x0)

T Σ−1
pr (x− x0)

)
. (4)

Also, the additive noise is assumed to be zero-mean Gaussian with known covari-
ance matrix, ε ∼ N (0,Σobs), so the likelihood will have form

π(y|x) ∝ exp
(

−1
2
(y−F(x))T Σ−1

obs(y−F(x))
)

. (5)

When the forward model is non-linear, the posterior distribution can be explored
by Markov chain Monte Carlo (MCMC) sampling. When the dimension of the un-
known is hight, for example by discretization of the inverse problem, MCMC is
known to be inefficient. In this paper, we utilize dimension reduction to be able to
make MCMC more efficient in high dimensional and high CPU problems.

2.2 Prior reduction

The operational GGG algorithm for the FTIR retrieval problem [17] is effectively
one dimensional as it only scales the prior mean profile. However, there are about
three degrees of freedom in the FTIR signal for the vertical profile information. To
construct basis functions that could utilize this information a method that uses prior
reduction was developed in [16]. It is based on the singular value decomposition on
the prior covariance matrix,

Σpr = UΛUT =
m

∑
i=1

λiuiuT
i , (6)

which allows further decomposition as

Σpr = PPT , with P =
(√

λ1u1 + · · ·+
√

λmum

)
. (7)

If the prior can be chosen so that most of the singular values are negligible, then the
rank of the prior covariance matrix can be reduced by considering only the first r
singular values and vectors:
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Σ̃pr = PrPT
r , with Pr =

(√
λ1u1 + · · ·+

√
λrur

)
. (8)

The unknown x has an approximate representation by r basis vectors from the
columns of Pr and using a reduced dimensional parameter α ∈ Rr as

x ≈ x0 +Prα. (9)

By the construction, the random vector α has a simple Gaussian prior, α ∼ N (0,I),
which allow us to write the approximate posterior as

π(x|y)≈ π̃(α|y) ∝ exp
(

−1
2
(
(y−F(x0 +Prα))T Σ−1

obs(y−F(x0 +Prα))+αT α)
))

.

(10)
Now, instead running MCMC in the full space defined by x, we can sample the
low dimensional parameter α and retain the approximation of the full posterior by
equation (9).

2.3 Likelihood-informed subspace

The prior reduction approach depends on the ability to construct a realistic prior
that can be described by only a few principle components. For the FTIR retrieval
problem this is possible to some extent [16]. However, there are several possible
caveats. We have to manually manipulate the prior covariance matrix to have a lower
rank, which can lead to information loss as the solution will be limited to a subspace
defined by the reduced prior only.

In atmospheric remote sensing the information content of the measurement is an
important concept to be considered when designing the instruments and constructing
the retrieval methodology, we refer to book by Rodgers [12].

Consider a linearized version of the inverse problem in equation (2),

y = J(x− x0)+ ε, (11)

with Gaussian prior and noise. The forward model is assumed to be differentiable,
and J denotes the Jacobian matrix of the forward model with elements Ji j = ∂

∂x j
Fi.

Using Cholesky factorizations for the known prior and error covariances,

Σpr = LprL
T
pr, Σobs = LobsL

T
obs, (12)

we can perform pre-whitening of the problem by setting

ỹ = L −1
obs y, J̃ = L −1

obs JLpr, x̃ = L −1
pr (x− x0) and ε̃ = L −1

obs ε. (13)

Now the problem can be written as
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ỹ = J̃x̃+ ε̃, (14)

with ε̃ ∼ N (0,I) and a priori x̃ ∼ N (0,I).
As the unknown x and the error ε are assumed to be independent, the same holds

for the scaled versions. We can compare the prior variability of the observation
depending on x and that coming from the noise ε by

Σ̃y = E[ỹỹT ] = E[(J̃x̃+ ε̃)(J̃x̃+ ε̃)T ] = J̃J̃T + I. (15)

The variability in y that depends only on the parameter x depends itself on J̃J̃T and it
can be compared to the unit matrix I that has the contribution from the scaled noise.
The directions in J̃J̃T which are larger than unity are those dominated by the signal.
Formally this can be seen by diagonalizing the scaled problem by the singular value
decomposition,

J̃ = WΛV T , (16)

and setting

y′ = W T ỹ = W T J̃x̃+W T ε̃ = ΛV T x̃+ ε̃ ′ = Λ x̃′ + ε̃ ′. (17)

The transformations ε ′ and x′ conserve the unit covariance matrix. In other words,
y′ is distributed with covariance Λ 2 + I. This is a diagonal matrix, and the elements
of vector y′ that are not masked by the measurement error are those corresponding
to the singular values λi ≥ 1 of the pre-whitened Jacobian J̃. Furthermore, degrees
of freedom for signal and noise are invariant under linear transformations [12], so
the same result is also valid for the original y.

Another way to compare the information content of the measurement relative to
the prior was used in [2]. This is to use the Rayleigh quotient

R(Lpra) =
aT L T

prHLpra
aT a

, (18)

where a ∈ Rn and H = JT Σ−1
obsJ is the Gauss-Newton approximation of Hessian

matrix of the data misfit function

η(x) =
1
2
(
(y−F(x))T Σ−1

obs(y−F(x))
)
. (19)

Directions for which R(Lpra) > 1 are the ones in which the likelihood contains
information relative to the prior. This follows from the fact that the ith eigenvector
vi of the prior-preconditioned Gauss-Newton Hessian

H̃ := L T
prHLpr (20)

maximizes the Rayleigh quotient over a subspace Rn \ span{v1, . . . ,vi−1} and the r
directions vi for which R(Lprv) > 1 correspond to the first r eigenvalues of H̃. We
call these vectors the informative directions of the measurement.
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To see the correspondence for the two approaches for the informative directions
we notice that for H̃(x) it holds that

L T
prH(x)Lpr = L T

prJ(x)T Σ−1
obsJ(x)L T

pr

= (L −1
obs J(x)Lpr)

T (L −1
obs J(x)Lpr)

= J̃T (x)J̃(x).

(21)

The eigenvalues λ 2 of matrix H̃(x) less than unity correspond to the singular values
λ less than unity of the scaled Jacobian J̃(x). The corresponding eigenvectors are
the same as the right singular vectors v of J̃. The informative and non-informative
directions for a simple 2-dimensional Gaussian case are illustrated in Figure 1.

Next, we use the informative directions of the measurement to reduce the di-
mension of the inverse problem. Consider approximations for the posterior of the
form

π̃(x|y) ∝ π(y|Πrx)πpr(x), (22)

where Πr is rank r projection matrix. In [2] and [14] it was shown that for any given
r, there exists a unique optimal projection Πr that minimizes the Hellinger distance
between the approximative rank r posterior and the full posterior. Furthermore, us-
ing the connection to Rodgers’ formalism, the optimal projection can be obtained
explicitly with the following definition.

Definition 1 (LIS). Let Vr ∈ Rn×r be a matrix containing the first r left singular
vectors of the scaled Jacobian J̃. Define

Φr := LprVr and Θr := L −T
pr Vr. (23)

The rank r LIS projection for the posterior approximation (22) is given by

Πr = ΦrΘ T
r . (24)

The range Xr of projection Πr : Rn → Xr is a subspace of state space Rn spanned by
the column vectors of matrix Φr. We call the subspace Xr the likelihood-informed
subspace (LIS) for the linear inverse problem, and its complement Rn \Xr the com-
plement subspace (CS).

Definition 2. The matrix of singular vectors V = [VrV⊥] forms a complete orthonor-
mal system in Rn and we can define

Φ⊥ := LprV⊥ and Θ⊥ := L −T
pr V⊥ (25)

and the projection I−Πr can be written as

I−Πr = Φ⊥Θ T
⊥ . (26)

Define the LIS-parameter xr ∈ Rr and the CS-parameter x⊥ ∈ Rn−r as



8 Otto Lamminpää, Marko Laine, Simo Tukiainen, Johanna Tamminen

x
1

x
2

Informative directions

Prior

Likelihood

Posterior

Prior Mean

Posterior Mean

Fig. 1 Illustration of an informative direction xr and a non-informative direction x⊥ using a 2-
dimensional Gaussian case. Here, the likelihood has only one informative component, so the re-
maining direction for the posterior is obtained from the prior.

xr := Θ T
r x, x⊥ := Θ T

⊥x. (27)

The parameter x can now be naturally decomposed as

x =Πrx+(I−Πr)x

=Φrxr +Φ⊥x⊥.
(28)

Using this decomposition and properties of multivariate Gaussian distributions, we
can write the prior as

πpr(x) = πr(xr)π⊥(x⊥) (29)

and approximate the likelihood by using the r informative directions,

π(y|x) = π(y|Φrxr)π(y|Φ⊥x⊥) ≈ π(y|Φrxr), (30)

which leads us to the approximate posterior

π̃(x|y) = π(y|Φrxr)πr(xr)π⊥(x⊥). (31)

When the forward model is not linear, the Jacobian and Hessian matrices depend
on the parameter x and the criterion (18) only holds point wise. To extend this lo-
cal condition into a global one, we consider the expectation of the local Rayleigh
quotient R(Lprv;x) over the posterior,
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E[R(Lprv;x)] =
vT ĴT Ĵv

vT v
, Ĵ =

∫

Rn
J̃(x)π(x|y)dx. (32)

The expectation is with respect to the posterior distribution, which is not available
before the analysis. In practice, an estimate is obtained by Monte Carlo,

Ĵn =
1
n

n

∑
k=1

J̃(x(k)), (33)

where x(k) is a set of samples from some reference distribution which will be
discussed later in this work. We can now use the singular value decomposition
Ĵn = WΛV T to find a basis for the global LIS analogously to the linear case.

The advantage of LIS dimension reduction is that it is sufficient to use MCMC
to sample the low-dimensional xr from the reduced posterior π(y|Φrxr)πr(xr), and
form the full space approximation using the known analytic properties of the Gaus-
sian complement prior π⊥(x⊥).

3 Results

To solve the inverse problem related to the FTIR measurement [16], we use adaptive
MCMC [5, 10] and SWIRLAB [15] toolboxes for Matlab. The results from newly
implemented LIS-algorithm as well as from the previous prior reduction method are
compared against a full dimensional MCMC simulation using the Hellinger distance
of approximations to the full posterior. We use a prior derived from an ensemble of
atmospheric composition measurements by the ACE satellite [1]. The vertical prior
distribution, prior covariance and prior singular values are illustrated in Figure 2.

In Figure 3, we show the results of our retrievals using full-space MCMC, com-
pared with LIS dimension reduction and prior reduction using 4 basis vectors in
each method. The retrievals are further compared against accurate in-situ measure-
ments made using AirCore balloon soundings [8] which are available for the se-
lected cases, also included in Figure 3. In this example, the Monte-Carlo estima-
tor (33) for Ĵn in equation (33) was computed using 1000 samples drawn from the
Laplace approximation N (x̂, Σ̂post), where x̂ and Σ̂post are the posterior MAP and
covariance, respectively, obtained using optimal estimation [12].

In order to compare the performance of MCMC methods, we define the sample
speed of a MCMC run as

Definition 3. The effective sample size Neff of a MCMC chain is given by

Neff =
NM

1+ s∑∞
k=1 ρk(x)

, (34)

where NM is the length of the MCMC chain and ρk(x) is lag-k autocorrelation for
parameter x [11]. Define the sample speed of an MCMC chain as
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Fig. 2 The prior derived from an ensemble of ACE satellite measurements. Left: Full prior profile,
mean with dashed line and 95% probability limits in grey. Top right: covariance matrix derived
from the measurements. Bottom right: first 20 singular values of the prior covariance matrix.

V =
Neff

tM
, (35)

where tM is the total computation time of the MCMC chain.

For the MCMC runs shown in Figure 3, we get as corresponding sample speeds
as samples per second:

V(full) = 1.56s−1, V(LIS) = 19.01s−1, V(PriRed) = 19.66s−1. (36)

In order to compare the approximate posteriors obtained from prior reduction
and LIS-dimension reduction against the full posterior, we use the discrete Hellinger
distance,

H (P,Q) =
1√
2

√√√√ k

∑
i=1

(
√

pi −
√

qi)2, (37)

where P = (p1, . . . , pk) and Q = (q1, . . . ,qi) are discrete representations of the full
and approximate posterior distributions obtained from histograms of corresponding
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Fig. 3 Atmospheric CH4 density profile retrieval results. Retrieved posterior in green, prior in
gray, and in-situ AirCore measurement in red. The color shading indicates areas where 95% of the
profiles are. Right: MCMC with in full space. Middle: MCMC with LIS. Right: MCMC with prior
reduction.

MCMC runs. The Hellinger distances of both approximations to the full posterior
can be seen in Figure 4 together with the corresponding sample speeds, both as a
function of the number of singular vectors used. In Figure 4 have also visualized the
first four singular vectors used in prior reduction and LIS method for the example
retrieval in Figure 3.

4 Conclusions

Although both of the discussed dimension reduction methods provide roughly the
same computational gains in the performance of the MCMC sampler, we see from
Figure 4 that while using an empirical prior, the prior reduction method requires
a lot more singular vectors to achieve the same Hellinger distance from the full
posterior as the LIS method, which gets really close already with 4 singular vectors.
We conclude that the LIS method gives an efficient MCMC sampling algorithm
to solve the inverse problem arising from the FTIR retrieval, with an additional
improvement of allowing the direct usage of an empirical prior.
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Fig. 4 Left: Hellinger distances to full posterior and sample speeds of corresponding MCMC runs
as functions of singular vectors used in the approximation. Top right: first 4 singular vectors from
prior reduction. Bottom right: first four singular vectors of J̃ forming the LIS basis.
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Abstract: We analyzed the vertical distribution of atmospheric methane (CH4) retrieved from
measurements by ground-based Fourier Transform Spectrometer (FTS) instrument in Sodankylä,
Northern Finland. The retrieved dataset covers 2009–2018. We used a dimension reduction retrieval
method to extract the profile information, since each measurement contains around three pieces
of information about the profile shape between 0 and 40 km. We compared the retrieved profiles
against Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) satellite
measurements and AirCore balloon-borne profile measurements. Additional comparison at the
lowest tropospheric layer was done against in-situ measurements from a 50-m-high mast. In general,
the ground-based FTS and ACE-FTS profiles agreed within 10% below 20 km and within 30% in the
stratosphere between 20 and 40 km. Our method was able to accurately capture reduced methane
concentrations inside the polar vortex in the Arctic stratosphere. The method produced similar trend
characteristics as the reference instruments even when a static prior profile was used. Finally, we
analyzed the time series of the CH4 profile datasets and estimated the trend using the dynamic linear
model (DLM).

Keywords: arctic methane; vertical profiles; growth rate; ground-based remote sensing; Fourier
Transform Spectrometer; TCCON; dynamic linear model

1. Introduction

After carbon dioxide (CO2), methane (CH4) is the second most important anthropogenic
greenhouse gas in the atmosphere. While methane is not as abundant, it traps about 28 times more
heat per unit mass than carbon dioxide [1]. In comparison to carbon dioxide, methane is relatively
short lived with a lifetime of around nine years [2]. Despite this, the concentration of atmospheric
methane has more than doubled since pre-industrial times, with global average surface concentration
being 1863 ppb in May 2019 [3,4].

Atmospheric methane is produced on the surface by both human activities and natural processes.
Major sources of methane include agriculture, waste management, production and use of fossil
fuels and different processes in the biosphere involving microorganisms and plants, especially in the
wetlands [5]. Increased methane concentrations introduce a potential positive climate feedback in the
Arctic in the form of emission changes from the wetlands and potential release of methane trapped in
the permafrost caused by a warmer climate [6,7].
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The main loss mechanism of methane, accounting for about 90% of the sink, is oxidation by the
hydroxyl radical (OH), mainly in the troposphere [5]. In the troposphere, other notable sinks are
oxidation in soils and loss by photochemistry in the marine boundary layer [5]. In the stratosphere,
methane is lost in the reactions with OH, but also with atomic oxygen (O(1D)) and chlorine (Cl). The
latter two account for 3% of the total methane sink, with O(1D) being more important closer to the
equator and Cl at high latitudes [8].

While the main source of methane is on the surface, the sink is spread more evenly in the
troposphere. This creates a negative vertical gradient in the tropospheric profile, especially close to a
source where the emitted methane is not completely mixed vertically [9,10]. The stratospheric air in
the Arctic originates from equatorial troposphere from where it slowly ascends to stratosphere and is
transported towards the poles [11,12]. During the ascent and transport, methane is subject to chemical
loss, which causes a negative vertical gradient in the stratosphere. During winter, the temperature of
the polar stratosphere decreases because of reduced solar radiation. This creates a pressure gradient
between high latitudes with the polar night and mid-latitudes. This pressure gradient together with
the Earth’s rotation produces a circumpolar belt of westerly winds in the stratosphere called polar
vortex [13]. Horizontal transport through the edge of the polar vortex is restricted and the air inside
the vortex is descending. This results in an even larger gradient inside the vortex as the descending air
has resided longer in the stratosphere, leading to a stronger depletion of methane [14].

The global growth rate of methane has varied in the recent decades. In the beginning of the 2000s,
methane concentrations leveled off to what was suggested to be a possible steady state [15]. In 2007,
however, methane concentration started to increase again [16]. The reasons for the stagnation and
the renewed growth have been widely speculated but, thus far, a consensus has not been reached [5].
Saunois et al. [5] concluded that the most probable reasons for the latest rising trend are increased
microbial and fossil emissions, with the tropics being the most probable region with the highest
increase in emissions and the Arctic having a negligible effect. Changes in the OH sink can provide a
partial explanation: Rigby et al. [17] showed that the OH sink was likely stronger during the stagnation
period, which could explain the stable concentrations with a smaller decrease in emissions.

The concentrations of methane in the Arctic have been observed to follow the global behavior,
increasing about 6 ppb/year (2008–2013) [7]. Since the recent increase in methane concentrations after
2007, the growth rate in the Arctic has been found to have a tendency to lag behind the rest of the
world [18], suggesting that the increase is not of local or regional Arctic origin. During winter, methane
levels in the Arctic are impacted by transport from mid-latitude source regions. During summer, local
sources consist mostly of wetlands, confirmed by the isotopic data from Arctic measurement sites [7].
While Arctic methane emissions are expected to increase due to rising average temperatures, to date,
no definitive changes in the Arctic methane emissions have been detected by the existing observational
network [7].

Atmospheric methane can be measured with a variety of different techniques. Close to the ground
level, a gas analyzer can be set up to sample surrounding air and analyze the methane concentration.
Alternatively, an air sample can be collected to a flask and analyzed in a laboratory [19,20]. Using
remote sensing, the total column of methane (XCH4) can be retrieved measuring the absorption of
direct solar radiation at near-infrared or mid-infrared wavelengths. This method is used by the Total
Carbon Column Observing Network (TCCON [21]) and the Network for the Detection of Atmospheric
Composition Change (NDACC [22]). The infrared radiation back-scattered by the atmosphere and the
surface is used by satellite instruments, such as TROPOMI onboard Sentinel 5 Precursor satellite (S5P
[23]) and TANSO-FTS onboard GOSAT [24], to retrieve XCH4 from space.

While surface concentrations and total columns are measured continuously at numerous stations,
the atmospheric profile of methane is usually measured in campaigns or rather infrequently by flying
an instrument on an aircraft or using an AirCore [25]. An AirCore is a long, narrow stainless steel
tube, which is lifted with an atmospheric sounding balloon up to about 30 km altitude. The tube then
ingests the surrounding air while descending through the atmosphere. AirCore measurements are
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crucial for vertical distribution research; most aircraft are unable to reach altitudes above roughly 13
km [26] and therefore cannot measure the stratospheric profile that is highly variable for methane,
especially at high latitudes inside the polar vortex [14].

Another way to measure atmospheric profiles is using a satellite with limb viewing geometry,
which allows the satellite to scan through different layers of the atmosphere as the sun (or other
star) is ascending from behind the horizon or descending behind it. This method is used by the FTS
instrument onboard the Atmospheric Chemistry Experiment (ACE) satellite to retrieve atmospheric
profiles of CH4 in the upper atmospheric layers. In this work, the ACE-FTS profile retrievals are used
to evaluate our ground-based profile retrievals. A large ensemble of co-located ACE-FTS profiles is
also used in the construction of the extra-tropospheric part of prior profiles.

In this work, we retrieved a time series of methane profiles from high-resolution short-wave
infrared spectra measured by a ground-based Fourier Transform Spectrometer (FTS). Retrieval was
done by modeling the temperature and pressure broadened absorption lines in short-wave infrared
(SWIR) wavelength range using the Swirlab code that is publicly available [27]. Other remote sensing
profile retrieval codes for ground-based FTS spectra were described and demonstrated by Hase et
al. [28] and Zhou et al. [29]. The inverse problem related to the profile retrieval is ill-posed, thus, to
retrieve physically meaningful profiles and to prevent artificial oscillations in the retrieved methane
profile, the retrieval needs to be constrained. The other codes, PROFFIT ([28]) and SFIT4TCCON
([29]), use Tikhonov regularization [30] to obtain an appropriate prior for the retrieval. Swirlab on the
other hand utilizes prior based dimension reduction [31], where the retrieved profile is constructed
using only the largest singular vectors calculated from the prior covariance matrix. The prior itself
is first built to reflect the mean and variability of the ACE-FTS measurements. An advantage of this
method is that, in addition to regularization, the dimension of the problem is reduced, leading to a
more computationally efficient retrieval algorithm [32].

The most significant advantage of the FTS measurements over the other profile measurements is the
time resolution. The aircraft and balloon-borne measurements are superior in accuracy and vertical
resolution. However, they are time consuming and resource intensive, and therefore not made on a
daily or even weekly basis. Solar occultation measurements by ACE-FTS also have a higher vertical
resolution than the ground-based remote sensing methods but the profiles cover only altitudes from
roughly 10 km upwards. Due to the satellite’s orbit and measurement geometry, the revisit time over
Sodankylä varies between 1 and 70 days. Temporary data gaps in the ground-based FTS measurements
are caused by clouds blocking the direct view of the sun. Excluding the polar night, data gaps longer
than two days are very rare.

While the profile information is useful in itself, the profile retrieval method could also improve
the total column measurements. The averaging kernels show better sensitivity to the variability in the
stratosphere than in the case of a profile scaling method [32]. In addition, the solar zenith angle (SZA)
dependence of the averaging kernels is lower, thus resulting in reduced SZA-induced biases when the
true profile differs significantly from the prior profile used for the retrieval [32].

To evaluate the performance of Swirlab retrievals, the profiles were here compared to concurrent
ACE-FTS profiles above 10 km altitude, AirCore balloon measurements below 30 km and to 50-m mast
measurements for the lowest atmospheric level of the profile. In addition to one-to-one comparisons,
a dynamic linear model (DLM) trend analysis [33] was carried out to each dataset, and the growth
rates of the recent years were compared. The growth rates were also evaluated in the light of recently
published Arctic methane growth rates [7,10,18].

2. Data Description

The study concentrated on data measured at or above Finnish Meteorological Institute’s Arctic
Space Centre in Sodankylä. The site is located at 67.37◦N, 26.63◦E (see Figure 1) and hosts a high-quality
measurement infrastructure covering several research areas such as upper-air chemistry and physics,
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atmospheric column measurements, cryospheric and hydrological processes, biosphere—atmosphere
interaction and satellite calibration and validation.
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Figure 1. Sodankylä (67.367◦N, 26.629◦E) marked with a star and the co-location criteria (3◦ in latitude,
30◦ in longitude) for ACE-FTS satellite measurements marked with dark rectangle.

2.1. Ground-Based FTS Dataset

The Fourier Transform Spectrometer at Sodankylä became operational in 2009 [34]. The instrument
participates in the Total Carbon Column Observing Network (TCCON). The TCCON facility at
Sodankylä is equipped with a Bruker IFS 125HR spectrometer and a large solar tracker A547N (Bruker
Optics, Ettlingen, Germany). The instrumentation is designed to record high-resolution solar spectra
in the near-infrared spectral region. From the spectra, column-averaged abundances of CO2, CH4,
N2O, HF, CO, H2O, HDO and other gases are derived.

The FTS instrument at Sodankylä has two room temperature detectors: an indium gallium
arsenide (InGaAs, wavenumber range is 4000–11,000 cm−1) and a silicon diode (Si, range
is 9000–15,000 cm−1). In addition, a liquid nitrogen cooled indium antimonide detector (InSb, detector
covers 1800–6000 cm−1) was installed in July 2013. The additional detector expands the wavelength
region covered by the instrument and provides a possibility to retrieve more atmospheric species. For
stability and to keep water vapor low, the measurements are performed in vacuum. For the TCCON
measurements, the spectral resolution is 0.02 cm−1, with an optical path difference of 45 cm and the
collection time for a single scan is 78 s. The instrument has been operated in an automated mode: after
two InGaAs/Si scans, one InSb scan is taken. The instrument characterization has been performed
using a hydrogen chloride gas cell.

For the TCCON retrieval, GGG2014 algorithm is used [35]. The algorithm retrieves total column
dry air mole fraction of methane using three wavelength windows centered at 5938, 6002 and 6076
cm−1 (1684, 1666 and 1647 nm). The spectroscopy is based on a modified HITRAN2012 line list
[36]. The National Centers for Environmental Protection and National Center for Atmospheric
Research (NCEP/NCAR) reanalysis data are used to generate prior profiles of pressure, temperature,
geopotential height and water vapor. Methane prior profiles are generated by empirical functions
that include a secular increase, interhemispheric gradient, seasonal cycle and stratospheric decay
based on the age of air. These functions are optimized to fit existing information from balloon-borne
platforms, satellites and aircraft campaigns. The prior CH4 profiles are iteratively scaled to generate
forward-modeled spectra that best fit the measured spectra. To calculate the total column dry air
mole fractions (XCH4), the total dry air columns are calculated from retrieved O2 columns, with a fair
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assumption of constant O2 dry air mole fraction (20.95%). An empirical correction is applied to correct
the solar zenith angle (SZA) dependence, determining any variations that are symmetric about local
noon as SZA-dependent artefacts [21]. The TCCON data are publicly available at the TCCON data
archive, hosted by Caltech-DATA [37]. The algorithm to retrieve profile information from the same
spectra is described in Section 3.1.

2.2. AirCore Measurements

The AirCore was constructed as a 100-m-long coated stainless steel tube, with a volume of about
1400 mL. A data logger was built to record the temperature of the AirCore and the ambient pressure. An
automatic valve was used to close the inlet valve of the AirCore system shortly after the landing of the
payload. The AirCore was lifted by a meteorological balloon to the altitude of typically 25–30 km, and
was filled during descent from the stratosphere down to the surface. The gas analysis was performed
typically within 2–3 h after the landing of the AirCore using a cavity ring-down spectrometer (CRDS).
Calibration of the CRDS was performed before and after analyzing the sample to ensure the traceability
of the measurements to the World Meteorological Organization scale of CH4 (X2004A).

2.3. ACE Data

Atmospheric Chemistry Experiment (ACE), also known as SCISAT, is a Canadian-led satellite
mission for remote sensing of the Earth’s atmosphere. It was launched in August 2003. The primary
instrument onboard is the infrared Fourier transform spectrometer (ACE-FTS). It measures infrared
spectrum in the wavenumber range of 750–4400 cm−1 with a resolution of 0.02 cm−1. The spectra are
measured during sunsets and sunrises in the limb viewing geometry with different slant paths and
tangent heights from upper troposphere up to 150 km [38]. From the measured spectra, several tens of
microwindows are analyzed to retrieve CH4 profiles with the vertical resolution of about 4 km. In the
comparison studies, the accuracy has been found to be within 10% in the upper troposphere–lower
stratosphere region [39].

To gather a comprehensive dataset, the co-location criteria for ACE-FTS measurements was set
quite loose. Measurements within 30 degrees in longitude and 3 degrees in latitude from Sodankylä
were included in the analysis (see map in Figure 1). The comparison between ACE-FTS and Swirlab
was done on the spatially closest ACE-FTS profile of the day and the daily average of SZA-corrected
Swirlab profiles. We used the Level 2 ACE-FTS data version 3.5 and 3.6 interpolated to a 1 km grid
with center altitudes from 0.5 to 149.5 km. The analysis was restricted to altitudes from 10 to 40 km as
the ACE-FTS data below 10 km are sparse and the sensitivity of the Swirlab retrieval is very low above
40 km.

2.4. Continuous Mast Measurements

Sodankylä 50-m-high mast has gas line inlets at four different heights: 2, 10, 23 and 50 m a.g.l.
Sample air from highest level inlet is measured for 50 min/h, and air from two other (2 and 23 m)
levels for 5 min/h each. The 10 m level is not measured regularly. Gas lines are 8-mm OD stainless
steel, and they are flushed with flow rate of ca. 2.5 L/min, which corresponds to less than 1-min
residence time in the lines.

Sample air is measured with a CRDS instrument, which measures CO2, CH4, CO and water vapor
concentrations at the same time. This instrument is automatically calibrated with WMO/GAW/CCL
(World Meteorological Organization/Global Atmosphere Watch/Central Calibration Laboratory, i.e.,
NOAA ESRL GMD) traceable calibration gases ca. 2 times a month. In addition, two cylinders,
“working standard” and “target”, are measured every 11 and 34 h, respectively. The methane scale in
use is WMO X2004A.

Humid air samples are measured directly, i.e., no dryer is used. This is compensated by
determining and using individual water vapor correction factors for the instrument [40,41]. The
raw data are first calculated as 1-min averages, and further to uncalibrated dry concentrations
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based on water vapor correction factors. Calibration is applied to these values, and hourly average
concentrations are calculated from 1-min calibrated dry concentrations. For the time series analysis, a
daily average value is calculated from the hourly values.

3. Methods

3.1. Profile Retrieval Method

Traditionally, ground-based direct solar radiation measurements at SWIR wavelengths have
been used to retrieve methane total column. This is done by scaling the prior profile to produce a
modeled spectrum that has the closest match to the measured spectrum (e.g., the method used in the
TCCON retrievals [21]). However, the shapes of absorption lines include information about the vertical
structure of the methane profile. The lines are broadened by temperature and pressure, resulting in
wider absorption features at low altitudes and narrower at high altitudes. The algorithm described in
this section finds the best fit between the modeled and measured spectra by allowing the methane
profile shape to vary. This allows better fit between the measured and modeled spectra as also the
width, in addition to the depth, of the absorption features in the modeled spectra is modified. The
retrieved profiles, the vertically resolved concentrations and their changes can be studied. There are
also advantages in using this method for total column retrievals: the averaging kernels show better
sensitivity to the variability in the stratosphere than in the case of profile scaling method [32]. In
addition, the SZA dependence of the averaging kernels is lower, thus resulting smaller SZA induced
biases when there is a large difference between the shapes of the true profile and the prior profile used
for the retrieval [32].

To retrieve vertical profiles of methane, we used the dimension reduction method described in
detail in [32]. In this section, we give a brief description of the method. The goal has been to develop
a method that would be only weakly dependent on the prior assumptions but would still provide
information about the vertical structure and realistic profiles. The entire algorithm, hereafter referred
to as Swirlab, is programmed to be run in Matlab and is publicly available [27].

The measured FTS data, described in Section 2.1, allows us to retrieve around 2–3 independent
pieces of information about the vertical structure of CH4, as demonstrated in [32]. This means that we
can actually extract more information from the measurement than the operational TCCON retrieval,
which only has one degree of freedom. Thus, we construct the inverse problem so that there are 2–3
estimated parameters only. This kind of parameterization simplifies and stabilizes the inverse problem,
and eases the computation in comparison to a layer-by-layer retrieval. The parameters need to be
chosen so that they manifest the information content of the measurement, and we need a way to project
the low-parameter profile back to the full space.

The profile of the atmospheric constituent of interest, in our cases CH4, is defined by first
discretizing the atmosphere from 0 to 70 km into n layers and identifying the relative contribution of
methane to the total atmospheric density (in parts per billion, ppb) per layer as ~x ∈ Rn. The inverse
problem of inferring methane concentrations from measured data ~y ∈ Rm, also known as a retrieval, is
derived from the relation

~y = f (~x) +~ε, (1)

where f is a non-linear atmospheric radiative transfer model and~ε ∈ Rm is a noise term describing the
measurement and modeling error. The measured spectra used in this work are the same used for the
TCCON retrieval but from a small microwindow with a wavenumber range from 6003 to 6005.5 cm−1

including five methane absorption lines. An example spectrum is given in Figure 2.
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Figure 2. An example spectrum measured using ground-based Fourier Transform Spectrometer at
noon on 20 June 2016. The figure covers the wavenumber range used in the Swirlab profile retrieval
including strong and weak CH4 absorbing features.

We use the Bayesian analysis for solving the retrieval problem and assume Gaussian distributions
for the prior and noise,~xpr ∼ N (~x0, C),~ε ∼ N (0, Cy), where~x0 ∈ Rn is a priori mean profile, C ∈ Rn×n

positive definite prior covariance matrix and Cy ∈ Rm×m is the measurement error covariance matrix.
The solution is obtained as posterior density of form

~p(~x|~y) ∝ exp
(
−1

2

(
‖~y− f (~x)‖2

Cy
+ ‖~x−~x0‖2

C

))
. (2)

We obtain the retrieved methane profile ~̂x from the retrieval method R as

~̂x = R(~y, Cy,~θ), (3)

where R includes our prior assumptions, forward model and Bayesian formulation as well as additional
parameters~θ such as pressure, solar parameters, etc. These parameters can be retrieved as a part of the
state vector, but to keep the notation compact we keep them fixed.

The model atmosphere consists of a non-scattering atmosphere with 100 spherical layers from
ground level up to 70 km. Absorption lines are calculated for each layer separately as Voigt profiles
taking into account the temperature and pressure of the layer. Atmospheric model data from National
Centers for Environmental Prediction (NCEP) are used as source for these atmospheric parameters.
As an update to description in Tukiainen et al. [32], the absorption coefficients are calculated using
HITRAN2016 line database [42].

The dimension reduction approach that we adapted is based on those of Marzouk and Najm [43]
and Solonen et al. [31]. The fundamental idea is to constrain the problem to a subspace that contains
most of the variability allowed by the prior. This is achieved by using a smoothing prior covariance
that has only a small amount of singular values significantly greater than zero, and thus most of this
variability can be represented by a linear combination of the corresponding leading singular vectors.
Thus, we start with the singular value decomposition of the prior covariance matrix

C = UΛUT , (4)

where the diagonal matrix Λ contains the singular values of the prior covariance matrix and U contains
the corresponding singular vectors ~u1, ...,~un as columns. The dimension of the problem is then reduced
by using the k (1 ≤ k < n) largest singular values and the corresponding singular vectors and
representing the unknown as a linear combination

~x = ~x0 + Pk~zk, Pk = UkΛ
1
2
k =

[√
λ1~u1,

√
λ2~u2, . . . ,

√
λk~uk

]
. (5)
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Here, the new unknown ~zk is a k-dimensional vector whose prior distribution is a k-dimensional
Gaussian N (0, Ik) and Pk ∈ Rn×k, k < n, is a projection matrix from Rk to Rn. Inserting this new
parameterization to the problem leads to a posterior distribution for the subspace parameter~zk of the
form

~p(~z|~y) ∝ exp
(
−1

2

(
‖~y− f (~x0 + Pk~zk)‖2

Cy
+ ‖~z‖2

~Ik

))
. (6)

The prior mean, ~x0, is estimated by combining the stratospheric part from the ACE-FTS satellite
data and the tropospheric part from the TCCON prior data. The prior is calculated separately for three
domains: summer (from May to August), polar vortex and the rest (denoted as winter). The location
inside the polar vortex is defined using ERA-Interim atmospheric model data. The station is assumed
to be inside the polar vortex when potential vorticity at 475 K potential temperature level exceeds
3×10−5 K m2 s−1 kg. The seasonal prior means are depicted in Figure 3. A trend of 5.57 ppb per year,
determined from the TCCON prior profiles 2009–2016, is added to each layer. In addition, retrieval
with trendless prior is made and the effect is discussed in Section 4.2.
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Figure 3. The shapes of the three seasonally selected prior mean profiles. Summer profile is used from
May to August and the polar vortex profile when potential vorticity exceeds a threshold value. For the
rest of the cases, winter prior profile is used.

For the prior covariance construction, we follow the procedure from Tukiainen et al. [32] to
produce a variability that matches well to the empirical covariance derived from an ensemble of
ACE-FTS satellite based measurements. In short, this is done by first computing the diagonal elements
of C as

σ(h) = σ1 exp
(
−(h− h1)

2s−2
1

)
+ σ2 exp

(
−(h− h2)

2s−2
2

)
, (7)

where h are the atmospheric layers and the parameters σ1, σ2, h1, h1, s1 and s2 are chosen appropriately
(σ1 = 300, σ2 = 30, h1 = 25 , h2 = 5, s1 = 10 and s2 = 5). The off-diagonal terms are further given by

cij = σ(i)σ(j) exp

(
−1

2

(
dist(i, j)

l

)2
)

, (8)

where i and j are two atmospheric layers, dist(i, j) is the distance between these layers in kilometers
and l is an appropriately chosen correlation length (l = 12 km). The full covariance matrix and the first
four singular vectors are presented in Figure 4.
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Figure 4. (left) Visualization of the prior covariance structure used for the retrieval. (right) The first
four singular vectors calculated from the prior covariance matrix.

3.1.1. Solar Zenith Angle Dependence

Due to errors in radiative transfer modeling and spectroscopy, and because the measurements
sensitivity to atmospheric composition at different altitudes changes when solar zenith angle (SZA)
changes, there is a systematic difference between volume mixing ratios (VMRCH4) measured at noon
and at early morning or late evening (see Figure 5). This difference is compensated for by going
through data for days when the SZA has had both small and large values. The measurement with the
smallest SZA for the day is regarded as the reference value (REFCH4 ) and the ratio (R) between all the
daily measurements and the reference value is calculated.

R =
VMRCH4

REFCH4

(9)

The R is first calculated for days with the minimum SZA smaller than 44.5 degrees. Before
calculating the ratios for the rest of the days, an exponential function

fcorr(SZA) = a exp(bSZA) + c exp(dSZA) (10)

is fitted to ratios R. For the days with the minimum SZA larger than 44.5 degrees, the reference value
is corrected with this function and the following ratios are defined as

R =
VMRCH4

REFCH4

fcorr(SZAref), (11)

where SZAref is the smallest SZA of the evaluated day. The days are evaluated in order of minimum
daily SZA. After each evaluated day, the fcorr is updated and the evaluation ends when 10% of the time
series (about 13,000 measurements) have been evaluated. Then, the final fcorr is regarded as the zenith
angle correction function for the time series. The correction function is calculated for each retrieved
layer separately. The final corrected volume mixing ratio (cVMRCH4 ) at layer i is then calculated as

cVMRCH4,i = VMRCH4,i fcorr,i(SZA). (12)



Remote Sens. 2020, 12, 917 10 of 26

Figure 5. (top left) Dependence of the methane mixing ratio on solar zenith angle for the layer with the
center altitude of 0.3 km. (top right) Dependence of the methane mixing ratio on solar zenith angle for
the layer with the center altitude of 21.9 km. (bottom left) The SZA correction fits color coded for each
layer. (bottom right) The interquartile range of the data points’ distance to the fitted curve depicted as
a color plot for each layer.

As an example, the SZA dependence of the volume mixing ratios at two different layers are
depicted in Figure 5. The Figure also depicts the fits for all the layers and the spread of the difference
between data points and the fit. The variability of the data points is described with interquartile range
as there are some outliers skewing the distribution so that standard deviation would not describe the
data well. Assuming that on average the methane concentration is stable and should not vary as a
function of the solar zenith angle, it seems that at the layers close to the ground the mixing ratios are
underestimated when the SZA increases, and in the stratosphere the values are overestimated when
the sun is close to the horizon.

3.2. Averaging Kernel Correction to ACE Data

To compare the atmospheric profiles obtained from ACE-FTS measurements with Swirlab
retrievals, the results must first be projected into the same space. This is because the ill-defined
inverse problem is regulated by prior information and the retrieval is hence a biased estimator of true
CH4. Moreover, the instruments naturally have different sensitivities at different altitudes, which
needs to be accounted for as well. A widely used way to make two separate measurements by different
instruments comparable is smoothing using the averaging kernel

A =
∂~̂x
∂~x

, (13)
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which measures the sensitivity of the retrieved value ~̂x to the actual true atmospheric state~x. Averaging
kernels for~z parameters can be estimated from the known Swirlab measurements using Jacobians, i.e.,
the derivatives of forward model f of the form Kij =

∂i
∂xj

f , as

Az =
∂~̂z
∂~x

=
(

KT
k C−1

y Kk + Ik

)−1 (
KT

k C−1
y Kv

)
(14)

where Az ∈ Rk×n, Cy ∈ Rm×m is the error covariance matrix, Ik ∈ Rk×k is the prior covariance of~zk,

Kk = Kdiag(~l(Pk~zk +~x0))Pk

Kv = Kdiag(~l)
(15)

and~l ∈ Rn contains the slant lengths of different atmospheric layers (for details, please refer to [32]).
The full-state averaging kernel can then be computed as

A = diag(Pk~zk +~x0)PkAz (16)

where A ∈ Rn×n. The averaging kernels are SZA dependent, and thus can partly contribute to diurnal
and also seasonal biases. A Swirlab averaging kernel matrix at SZA = 45◦ is visualized in Figure 6.
We see that the changes in the lowest altitudes have a large effect to the higher levels also. As the
covariance structure allows the profile to vary the most at altitudes between 20 and 30 km, many of
the changes at levels that are more restricted to follow the prior propagate to these altitudes.
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Figure 6. Every fifth layer of a full Swirlab kernel matrix at SZA = 45◦ depicted in ppb units. This
describes how a change at a given altitude, color coded on the right, propagates to other altitudes in
the retrieval.

Using the Swirlab averaging kernel, we follow [44] and get the smoothed ACE-FTS profile as

~xsmooth = ~x0 + A(~xACE −~x0). (17)

3.3. Time Series Analysis

In this study, our main interest is the altitude-dependent trend in the Sodankylä FTS time series.
In general terms, trend can be defined as a change of distributional processes (e.g., mean) of the process
that generates the observations. Typically, the interesting part is the more slowly varying background
level after better-known variabilities, such as seasonality, have been accounted for. For time series
trend analysis, we follow the approach by Laine et al. [45] and apply dynamical linear regression to the
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FTS data by using Dynamic Linear Model (DLM) toolbox for Matlab by Marko Laine [46]. In contrast
to the more usual linear regression, dynamical regression allows the regression coefficient to evolve
in time. This evolution is controlled by model variance parameters that are estimated from the data.
DLM in extremely useful in atmospheric time series analysis since a lot of factors, such as external
forcing, make the background mean trend nonlinear. On top of this, atmospheric processes are often a
combination of short term rapid changes, such as seasonal cycles, and more long term background
processes.

We present a short description of the DLM formulation used in our analysis. DLM with Gaussian
errors is best described as a general linear state space model with an observation equation and an
evolution equation as

~yt = Ht~ut +~vt, ~vt ∼ N (0, Rt),

~ut = Mt~ut−1 + ~wt, ~wt ∼ N (0, Qt),
(18)

where ~yt contains the observations and ~ut the hidden and unobserved model state at time step t, the
observations are gained via the observation operator Ht, the state is evolving along the model evolution
operator Mt. In this formulation, the observation error ~vt and the model error ~wt are assumed to be
zero mean Gaussian with covariance matrices given by Rt and Qt, respectively.

The hidden state vector ~u has components for each process that is fitted in the time series analysis.
In our case, we get

~ut = [µt αt βt,1 βt,2 ηt], (19)

where µt is the parameter for the local mean, αt is for local trend, βt,1 and βt,2 represent the seasonal
components and ηt is the autoregressive component of the state vector.

In DLM, the background trend is modeled as a random walk process defined by local mean µt

and local trend αt. For these parameters, we can write the observation operator, model evolution
operator and model error as

Mtrend =

[
1 1
0 1

]
,

Htrend =
[
1 0

]
,

Qtrend =

[
0 0
0 σ2

trend

]
,

(20)

where σ2
trend is the error variance of the local trend. Similarly, the annual seasonal cycles are modeled

using harmonic functions. For seasonal components βt,1 and βt,2, we thus have

Mseas =

[
cos(2π/s) sin(2π/s)
− sin(2π/s) cos(2π/s)

]
,

Hseas =
[
1 0

]
,

Qseas =

[
σ2

seas 0
0 σ2

seas

]
,

(21)

where s = 365.242 is the number of days in a year (accounting also for leap years) and σ2
seas is the error

variance of the seasonal components. In this work, we also allow autocorrelations in the residuals by
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using a first-order autoregressive model. The corresponding observation operator, model evolution
operator and model error are given by

MAR =
[
ρ
]

,

HAR =
[
1
]

,

QAR =
[
σ2

AR

]
,

(22)

Combining the independent parts for trend, seasonality and autoregression, we get the full observation
operator, model evolution operator and model error for the hidden state vector ~u as

M =




Mtrend 0 0
0 Mseas 0
0 0 MAR


 ,

H =
[
Htrend Hseas HAR

]
,

Q =




Qtrend 0 0
0 Qseas 0
0 0 QAR


 .

(23)

With the previous formulation, the DLM algorithm proceeds with Kalman Filter and Simulation
Smoother to generate an ensemble of states that fit the observed data. This step is repeated with Markov
chain Monte Carlo (MCMC), sampling the parameters σtrend, σseas, σAR and ρ. This procedure explores
various choices of tuning parameters for the problem and gives the values that fit the observations
the best, minimizing arbitrary fixing that is often done manually in other applications. For a detailed
description of the Simulation Smoother and the MCMC, we refer the reader to the documentation in
[45,46].

4. Results

4.1. The Time Series

The Swirlab profile retrieval algorithm was used to retrieve methane profiles from all the SWIR
spectra measured when non-obstructed sunlight was available in Sodankylä between May 2009 and
November 2018. For further analysis and illustrative purposes, a time series of daily averages was
calculated. Figure 7 shows a surface plot of the time series. In the figure, gaps shorter that seven days
are filled and only few data gaps remain during the measurement season. The measurement season
covers the time when the daily maximum solar elevation angle exceeds eight degrees, in Sodankylä
roughly from mid-February to the end of October. On average there were 148 days with measurements
per year between 2010 and 2018. The algorithm produces nicely the seasonal variability with summer
minimum in the lower troposphere and really low values in the stratosphere throughout the spring
when Sodankylä lies beneath the polar vortex. The seasonal behavior and trends at various altitudes
are more closely studied in Section 4.6.
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Figure 7. Swirlab time series. Each daily average profile is drawn as one column with the volume
mixing ratio of methane depicted with a color. Data gaps shorter than seven days have been filled
using the previous existing daily average profile.

4.2. Sensitivity to Prior Profile

To demonstrate the profile information content in the ground-based FTS spectrum, we ran the
Swirlab retrieval with different prior profiles. Even when using a single prior profile (Figure 8), the
algorithm is able to detect the dip in stratospheric methane concentration inside the polar vortex. The
use of a seasonal prior lets the retrievals inside the vortex reach a bit lower level. The introduction
of the seasonal prior for summer also makes Swirlab retrieval agree better with the ACE-FTS mixing
ratios (see (Figure 8) when the retrieval with a single prior leaves the summer values somewhat low
compared to ACE-FTS.
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Comparison of ACE-FTS and SWIRLAB at 26.5 km

CH4 SWIRLAB, seasonal prior

CH4 ACE

CH4 SWIRLAB, winter prior

Figure 8. The effect of seasonal prior profile in the stratosphere (26.5 km), where the seasonal variability
is the largest. The red squares represent Swirlab retrievals using seasonal priors. Yellow diamonds
show the Swirlab time series when a single prior profile shape is used throughout the time series,
however including a trend of 5.57 ppb/year. Blue circles show the ACE-FTS data used as a reference.

Figure 9 shows the difference in total column mixing ratios calculated from Swirlab profiles with
and without a trend in the prior. Swirlab is able to retrieve a positive trend in the methane total
column even when the trend is excluded from the prior. However, the trend is roughly 0.3 ppb/year
smaller than the one retrieved when a prior trend of 5.57 ppb/year is introduced. The prior trend is
the average trend of total methane column calculated from TCCON prior profiles. The total column
methane retrieved with prior trend agrees well with the TCCON data (see Section 4.5).
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Figure 9. Difference between the total columns calculated from the Swirlab profiles when the retrieval
is made including or neglecting the trend in the prior profile.

4.3. Profile Comparison to AirCore Measurements

The concurrent Swirlab and AirCore profiles are shown in Figure 10. The AirCore profiles were
obtained during 2013–2017. During multiyear flights, all seasons have been represented. In 2017,
the flights were performed within ESA FRM4GHG Project ([47,48]). There is, in general, a good
agreement between AirCore and Swirlab posterior profile. For some retrievals, another prior profile
could have resulted in a better agreement. For example, on 24 and 26 April 2017, the polar vortex
prior would follow the AirCore profiles more closely but the potential vorticity in the ECMWF data
suggests Sodankylä was not inside the polar vortex so the winter prior profile is used. Nevertheless,
the methane deficit in the stratosphere is quite well detected by Swirlab even when using the winter
prior profile.

For quantitative analysis, we calculated the root mean square error (RMSE) of Swirlab retrievals
against the AirCore profiles. The RMSE is defined as

RMSE(x) =

(
N

∑
i=1

(zi − xi)
2/N

) 1
2

(24)

where x is the Swirlab profile, z is the AirCore profile and N is the number of layers where we have
co-occurring data points. We performed the same RMSE analysis also for another set of profiles,
retrieved using the prior scaling method from [32]. The prior scaling retrieval is similar to the one
used in TCCON and thus serves as a good reference point. The results are presented in Table 1. We
can conclude that, in the sense of RMSE, Swirlab tends to give results that are on average closer to the
AirCore profile. In addition, looking at the measurements where the profile scaling yields a smaller
RMSE than Swirlab, the differences between the methods are still relatively small. In contrast, in the
majority of cases where Swirlab provided a better retrieval, it was significantly better. We would also
like to note that, as can be seen in Figure 10, the retrievals where profile scaling performs better are
generally times when the measured AirCore profile is very close to the prior profile.
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Table 1. Root mean square errors of the posterior mean obtained by Swirlab profile retrieval and prior
scaling method similar to the one used by TCCON, relative to the AirCore profile.

Date AirCore-Swirlab AirCore-Prior Scaling

03 Sep 2013 98.7 135.6
05 Sep 2013 188.4 259.5
22 Oct 2013 106.6 289.4

19 Mar 2014 61.1 46.3
09 Apr 2014 76.3 87.5

14 Jul 2014 81.4 61.9
15 Jul 2014 64.6 63.8
16 Jul 2014 60.9 53.6

02 Sep 2014 48.5 32.6
05 Nov 2014 158.5 222.9
14 Apr 2016 185.0 272.4
24 Aug 2016 65.5 43.7
21 Apr 2017 74.4 146.3
24 Apr 2017 167.3 384.5
26 Apr 2017 150.7 372.8
15 May 2017 54.1 97.8
28 Aug 2017 94.0 49.3
04 Sep 2017 40.3 44.1
05 Sep 2017 73.2 44.6
06 Sep 2017 41.0 28.4
07 Sep 2017 23.3 31.3

Mean 87.5 126.3
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Figure 10. Comparison between Swirlab and AirCore methane profiles. The altitudes on the vertical
axes are in kilometers (km) and the concentrations on horizontal axes in parts per billion (ppb). Red
lines are the AirCore profiles. Black dashed line is the prior profile with prior variance in grey shading.
Blue dotted line is the posterior mean with blue shading representing the 95% posterior.

4.4. Profile Comparison with ACE-FTS Instrument

Swirlab retrievals were compared to both original and averaging kernel corrected ACE-FTS
profiles (Figure 11). The comparison was made between the closest ACE-FTS retrieval of the day
within the co-location region (see Figure 1) and the concurrent Swirlab retrieval over Sodankylä. For
the averaging kernel correction, the missing values in ACE-FTS profiles have been filled with the
Swirlab prior profile. The gap-filling method might partly explain the small negative bias below 25 km
and small positive bias above 25 km when comparing averaging kernel corrected ACE-FTS to Swirlab.

A large set of ACE-FTS profiles was used to create the prior means for Swirlab and also the prior
covariance was built to resemble the empirical covariance of ACE-FTS profiles. Therefore, it was
expected that on average ACE-FTS and Swirlab would agree well. However, the information from
ACE-FTS for the priors is condensed to three seasonal prior means. The variability around these priors,
even if constrained to a realistic and smooth solution by the covariance, is interpreted from the spectra.
In this regard, using ACE-FTS as a reference is justified.

The raw, non-smoothed, ACE-FTS profiles and Swirlab profiles agree well below 25 km with
Swirlab retrievals staying within 25% from the satellite data. Between 25 and 35 km the profiles
agree well on average but the variability becomes larger. The distribution of differences against
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non-smoothed ACE-FTS profiles is slightly asymmetric with the median difference being close to zero.
The median suggests that there is an equal amount of cases where Swirlab concentrations are lower
than cases where they are higher than ACE-FTS values. The asymmetry suggests that, when ACE
values are lower, the discrepancies between the two retrievals are larger. This could be caused by
Swirlab being unable to sense large methane deficits occurring on a limited altitude range that can
occur close to the polar vortex edge when air from outside and inside the vortex are mixed [14]. Close
to 40 km altitude, the Swirlab retrievals get closer to prior profiles and on average compare well with
ACE-FTS but the variability ACE-FTS can detect is much larger than what is possible with Swirlab.

The Swirlab profiles compare well also to the averaging kernel corrected ACE-FTS profiles, the
distribution of the differences resembling the comparison to raw ACE-FTS profiles but with slightly
smaller variability. However, the asymmetry above 25 km is even larger than in the comparison with
raw ACE-FTS. This again could also, at least partly, be caused by the gap-filling with the Swirlab prior
information that might not represent the true profile. At levels close to 40 km, the variability becomes
smaller as the sensitivity of Swirlab retrieval is reduced and the averaging kernel smoothed ACE-FTS
profiles are forced closer to the prior profiles as are the Swirlab retrievals.

Figure 11. Median differences between daily average profiles from ACE-FTS and Swirlab. The curtain
plots show 95th percentile of comparison between ACE-FTS profiles and Swirlab profiles. ACE
smoothed has been averaging kernel corrected as described in Section 3.2

4.5. Total Column Comparison to the TCCON Algorithm

We used the pressure profile and water vapor profile from NCEP/NCAR data to calculate the
total column dry air mole fraction (XCH4) from the Swirlab profiles. The daily averages of TCCON
and Swirlab total columns are compared in Figure 12. The agreement is good with a mean bias of −2.8
ppb and standard deviation of 6.1 ppb. The trend of TCCON is followed well by Swirlab data, and
based on the lack of seasonality in the residual time series, the SZA correction implemented to the
Swirlab data is sufficient. A small step in the difference can be seen since the beginning of 2015 but its
origin is unresolved.

The main difference of the two algorithms is the degree of freedom in finding the methane profile
that would produce the measured spectra. TCCON scales the prior shape and Swirlab uses four
singular vectors to modify also the shape of the profile. This improves the accuracy in cases where the
prior profile significantly differs from the true profile. In addition, the residuals in the fit between the
measured and modeled spectra become smaller as the absorption line shapes are allowed to vary [32].
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There are also other differences. The wavelength range used by TCCON is wider as Swirlab uses
one short microwindow (see Figure 2), whereas TCCON has three wavelength windows for its methane
retrieval. The algorithms use slightly different absorption line data as Swirlab uses HITRAN2016
[42] and GGG2014 uses a modified HITRAN2012 [36]. Differences can also be partly attributed to the
different way of defining the dry air column. As the Swirlab algorithm retrieves neither the O2 column
nor the water vapor column, the dry air column used to derive the dry air mole fraction (DMF) is
calculated from the NCEP/NCAR model data. In TCCON retrieval, the air column is calculated using
the retrieved O2 column assuming that the DMF of oxygen is constant. The use of O2 column for air
column estimation improves the precision as it reduces the effects of instrumental or measurement
errors that are common to both gases CH4 and O2 [49].

Figure 12. Comparison of total methane column calculated form Swirlab profiles against the total
column from official TCCON GGG2014 product. (top panel) The daily averages of both retrievals.
(bottom panel) The difference between Swirlab and TCCON.

4.6. Ch4 Trends

The CH4 profiles retrieved with Swirlab allow us to quantify the growth rate of atmospheric CH4

in every level during the 10-year time series. For this analysis, we drew samples from the posterior
distribution of the level parameter µt in our DLM analysis. For each sample, we computed the yearly
trend at a timestep t as a change

trendt = µt+s/2 − µt−s/2, (25)

where s is the number of days considered. To assess the trend and the uncertainty, we drew 1000
samples and calculated the average trend and the standard deviation of the trend for every time step.

The Swirlab CH4 time series at four different levels (at the ground level, 11.5 km, 21.5 km and
26.5 km) and respective growth rates are shown in Figure 13. In the troposphere (upper panels in
Figure 13; orange color), the results show a positive growth rate throughout the time series with
moderate interannual variability, in particular at the ground level. The maximum growth rate of
8.1 ± 1.5 ppb/year occurs around winter 2013–2014 at the ground level, and also simultaneously
higher in the troposphere. This is also clearly shown by Figure 14 (left panels), where the growth rate
in all tropospheric levels increases until 2014, after which it begins to decrease but remains positive. It
is notable that the growth rate has decreased significantly since 2017 at the ground level; however, this
cannot be seen with confidence higher in the troposphere. The uncertainty estimates of the growth
rate increase with altitude, as well as towards the edges of the time series. In the stratosphere (lower
panels in Figure 13; orange color), the seasonal variability of CH4 is stronger, as well as the interannual
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variability; thus, weak trends are more challenging to quantify reliably. The variability of the growth
rate is mostly smaller-scale than the estimated uncertainty range. The average stratospheric trend is
estimated to be weak, and above roughly 20 km altitude, systematically weakly negative; however, the
uncertainty estimates are large. Contrary to the ground level and the troposphere, the stratospheric
CH4 growth rate based on Swirlab retrieval levels has been increasing since 2017 and even earlier in
the lowest part of the stratosphere. In addition, the Swirlab data show a weak positive trend in the
levels close to 40 km but at these high altitudes this is likely due to Swirlab retrieval closely following
the prior with a predefined growth rate of 5.57 ppb/year.

We evaluated the Swirlab CH4 trend signatures described above through comparisons with
appropriate reference data at different atmospheric levels. Figure 13 (upper left panel) shows a comparison
of Swirlab to the 50-metre mast measurements. In general, the time series from the Swirlab retrieval
agrees well with the in-situ measurements, albeit the local variability in the concentration is stronger for
the mast measurements. The large variability of the in-situ data results in large uncertainty estimates
for the growth rate, exceeding those of Swirlab. Both measurements agree that the trend is lower,
almost zero, at the end of the time series, although the uncertainty also increases. For the overlapping
time period 2012–2018, the estimated growth rate is 6.3 ± 0.4 ppb/year (the uncertainty denoting the
95% confidence interval) for Swirlab and 6.8 ± 2.6 ppb/year for the mast measurements.

Figure 13. (top left) The lowest layer of Swirlab retrieval compared against 50-m mast measurements.
(top right) Swirlab compared to ACE-FTS instrument at 11.5 km. (bottom left) Swirlab compared to
ACE-FTS instrument at 21.5 km. (bottom right) Swirlab compared to ACE-FTS instrument at 26.5 km.
For every altitude, the upper axis shows the daily averages from compared instruments and the lower
axis shows the one-year average trend and the 95% confidence limits evaluated from the DLM analysis.
Swirlab data are in orange and the reference instrument in blue. The dashed black line shows the
Swirlab prior trend.
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Figure 14. Surface plots of DLM trends at altitudes from 0 to 40 km based on two different methods:
Swirlab retrieval using ground-based remote sensing and ACE-FTS retrieval using satellite-based solar
occultation measurements. Swirlab trends are on the left and ACE-FTS trends on the right. The top
row shows trends calculated for change over a one-year period, the middle row for a three-year range
and the bottom row for a five-year range. The black line confines the areas where the trend differs from
zero with a 95% confidence level.

At higher altitudes, the reference instrument is the ACE-FTS. As shown in Figure 13, the ACE-FTS
and Swirlab time series agree well but the overall trends differ, although they are mostly within the
uncertainty envelopes. As Swirlab is more constrained than ACE-FTS, the uncertainty estimates are
larger for the latter. At 11.5 km, the eight-year trend from the beginning of 2010 until the end of 2017
(neglecting the edges of the DLM fit) shows a change of 4.9 ± 1.8 ppb/year in ACE-FTS measurements
and 8.4 ± 1.2 ppb/year in Swirlab measurements. In the stratosphere, the ACE-FTS-derived growth
rates are more subject to interannual variability. For the eight-year period of 2010–2017, overall, the
trends at 21.5 km are 4.6 ± 4.8 ppb/year for ACE-FTS and 3.1 ± 3.4 ppb/year for Swirlab. At 26.5 km,
the trends for the same period are 11.1 ± 11.0 ppb/year for ACE-FTS and −0.2 ± 4.4 ppb/year for
Swirlab. The increasing growth rate towards the end of the ACE-FTS time series seems to be driven by
the large increase from 2017 to 2018. This change is also noticeable in the Swirlab data albeit not as
large as in the ACE-FTS data.
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In Figure 14, the Swirlab growth rate is compared to that of the ACE-FTS at all levels and for
different time scales. The ACE-FTS data are presented from 10 km upwards as the data are very sparse
below that level. The analysis is also confined to the altitudes below 40 km as Swirlab is not very
sensitive at altitudes above that and thus mostly follows the prior. Below 15 km, the instruments agree
that there is a small but significant positive trend. However, between 15 and 20 km, ACE-FTS does
not detect consistent growth while Swirlab does. From 20 to 35 km, Swirlab data show very stable
methane concentrations with a weak yet insignificant negative trend until 2015 when the trend turns
to weak positive, while ACE-FTS shows more variable trends in the beginning. In the latest years,
Swirlab and ACE-FTS agree on a large but not statistically significant positive trend; however, in the
ACE-FTS DLM fit, the trend is found significant in the three- and five-year time spans.

When comparing DLM trends for two datasets, it should be noted that the differences in
concurrent measurements are not the only cause for differences in trends. The sampling of the
data also has strong influence to the DLM fit. Random gaps in the data can create artifacts in the trends,
especially if the measurement frequency is already sparse and the data gap hides a yearly maximum
or minimum that is usually observed. Missing data in fall 2011 and early spring 2012 are partly the
cause for the oscillations in the ACE-FTS stratospheric trends around winter 2011–2012. The larger
amount of data in the Swirlab time series partially stabilizes the DLM fit but the missing values during
the polar night make the fitting of the seasonal cycle challenging, as was also pointed out by Kivimäki
et al. [50].

5. Discussion and Summary

We produced a ten-year time series of atmospheric methane profiles using a dimension reduction
retrieval method to ground-based short wave infrared spectra measured with a Fourier Transform
Spectrometer. After statistically correcting the solar zenith angle dependence, the retrieved profiles
agree well with reference measurements: ACE-FTS above 10 km up to 40 km, AirCore from the surface
to 25 km and 50-m mast air sampling measurements at the lowest altitude levels. The retrieval method
succeeds in producing CH4 profiles with realistic trends and seasonal variability even when using a
single prior throughout the time series but the comparison to reference instruments performs better
when a prior trend assumption and seasonal prior profiles are introduced.

The DLM approach in the paper results in realistic trend estimates. Missing data, especially in
the ACE-FTS time series with less frequent measurements over Sodankylä, can induce short-term
variability. The data gap due to the polar night mostly influences the seasonal cycle fit rather than the
trend.

The tropospheric trends in the Swirlab time series agree with the trend in local 50-m mast
measurements. In a wider perspective, the weaker tropospheric trends until 2011 and higher trends
after that agree with other Arctic stations reported by Nisbet et al. [18]. Interestingly, the weaker
trend in the end of the time series from 2017 to 2018 does not follow the global average CH4 increase
as reported by the Global Monitoring Division of NOAA’s Earth System Research Laboratory [51];
however, this weaker trend is shown by both mast measurements and Swirlab. The slowdown of the
growth rate could be interpreted as: (1) the decrease of surface fluxes in the influencing areas of the
mast; (2) decreased biomass signals from e.g., Siberia; and (3) a transport pattern change. However,
confirming the reason demands a thorough model study outside the scope of this work and thus can
only be speculated here.

In the stratosphere, the CH4 growth rates from ACE-FTS and Swirlab retrievals are generally
in a good agreement. However, the confidence limits of the trend are larger than in the troposphere
because of a larger uncertainty of the retrieved values, and a larger seasonal and interannual variability
in the methane concentrations. Therefore, to be reliably detected from other variability, the growth
rate would need to be consistent over a long time period. The significance of the estimated growth
rate was evaluated by its deviation from zero with 95% confidence. As shown in Figure 14, both
instruments detect mostly insignificant changes in the stratospheric CH4 over Sodankylä. However,
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in the ACE-FTS time series, the positive stratospheric trends towards the end of the time series are
found to be significant, contrary to the trends estimated for Swirlab. This could originate from higher
vertical resolution of ACE-FTS but could also be caused by the differences in the DLM fitting due to
less frequent data points in the ACE-FTS time series.

Albeit appearing towards the edge of the time series, the rising stratospheric trend from 2017
to 2018 draws attention. There is a slight suspicion that this could be an edge effect in the DLM fit,
especially as there is a similar negative trend in the beginning of the time series. However, the late rise
can be identified in both ACE-FTS and Swirlab data at the 26.5 km altitude as a high, sudden increase
in CH4 from 2017 to 2018, suggesting that the DLM-inferred positive trends are indeed described
by the data. The stratospheric air at high latitudes mostly originates from the tropical troposphere.
Therefore, the stratospheric methane concentrations in the Arctic are not expected to follow the changes
in the local troposphere: the stratospheric air may have been transported several years after being in
contact with methane sources at the surface. Hence, the recent sudden increase of CH4 in the Arctic
stratosphere could point to enhanced circulation from the tropics or to a decrease in stratospheric
methane sink. However, continuing observations are needed to confirm and monitor this increase, and
further studies involving atmospheric inverse modeling are necessary for pinpointing the reason for
the observed growth rate.

Overall, the method discussed in this paper is a valuable addition to other methane profile
measurements. While it does not reach the accuracy and vertical resolution of aircraft and
balloon-borne measurements, the temporal coverage is much better. The information provided by
the method will be a valuable addition to the existing continuous monitoring of the total column and
the surface concentrations of methane. These continuous measurements can further help to develop
models and reliably track the changes in the sources and sinks of methane. In this work, we considered
a local scale but the method is publicly available and applicable to any ground-based, high-resolution
spectrometer measuring in the short-wave infrared wavelength range.
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Abstract: Markov Chain Monte Carlo (MCMC) is a powerful and promising tool for assessing the
uncertainties in the Orbiting Carbon Observatory 2 (OCO-2) satellite’s carbon dioxide measurements.
Previous research in comparing MCMC and Optimal Estimation (OE) for the OCO-2 retrieval has
highlighted the issues of slow convergence of MCMC, and furthermore OE and MCMC not necessarily
agreeing with the simulated ground truth. In this work, we exploit the inherent low information content
of the OCO-2 measurement and use the Likelihood-Informed Subspace (LIS) dimension reduction to
significantly speed up the convergence of MCMC. We demonstrate the strength of this analysis method
by assessing the non-Gaussian shape of the retrieval’s posterior distribution, and the effect of operational
OCO-2 prior covariance’s aerosol parameters on the retrieval. We further show that in our test cases
we can use this analysis to improve the retrieval to retrieve the simulated true state significantly more
accurately and to characterize the non-Gaussian form of the posterior distribution of the retrieval problem.

Keywords: OCO-2; Markov Chain Monte Carlo; carbon dioxide; aerosols; retrieval; uncertainty quantification

1. Introduction

One of the greatest challenges to the future of planet Earth is climate change arising from global
warming, which in turn is accelerated by human-originated emissions of greenhouse gases. The major
warming effects are due to atmospheric carbon dioxide (CO2), which is emitted in increasing amounts
since industrialization. A majority of these emissions comes from e.g., usage of fossil fuels in transport,
in manufacturing and in agricultural industries. In order to model climate change reliably and to predict
future scenarios, accurate carbon flux estimates are crucial. In addition to source estimation, this also
means quantifying the natural sinks of carbon, e.g., uptake by oceans and forests. Fluxes are estimated by
a procedure called inverse modeling, which in addition to computational models needs observations of
atmospheric greenhouse gas concentrations. While notable ground based measurement networks exist
for this purpose (e.g., GLOBALVIEW-CO2: Cooperative Atmospheric Data Integration Project—Carbon
Dioxide for in-situ, flask, and aircraft measurements [1] used in flux inversions, and TCCON [2,3] for total
atmospheric column measurements), their coverage is not extensive enough to account for all of the global
phenomena relating to the carbon cycle and in particular CO2 emissions.

One way to improve the coverage and resolution of the measurements is to globally collect air
column-averaged measurements of CO2, denoted XCO2, using satellites. Measurements from orbit offer a
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great coverage around the globe, but special care is needed with quantifying the accuracy and precision of
these measurements. Importantly, systematic errors that vary in space and/or time can lead to errors in
flux estimates, which are inferred from CO2 gradients. Simulation experiments with inversion systems
(e.g., [4,5]) indicate that regional or seasonal biases of a few tenths of a part per million (ppm) can induce
substantial errors in flux estimates. Although local CO2 variations in the lower troposphere close to sinks
and sources can be large, these variations are confined to low altitudes and thus have a relatively low
contribution to the total variability of XCO2. NASA’s Orbiting Carbon Observatory 2 (OCO-2) satellite
mission ([6–9]) aims to satisfy these requirements and has been operationally measuring XCO2 since
July 2014.

From orbit, OCO-2 measures radiances of reflected solar radiation, that is, absorption of sunlight in
Earth’s atmosphere on different wavelengths. These measurements are inverted to get an atmospheric state
x that describes conditions on the light path, such as CO2 concentrations and aerosol and surface properties.
The resulting inverse problem is solved using a retrieval algorithm, which consists of a state-of-the-art
full physics model that extensively describes the related physical phenomena in the atmosphere, and the
so called Optimal Estimation (OE) framework [10], in which the algorithm minimizes the cost function
related to the posterior distribution of the retrieval. This is obtained via statistical formulation of inverse
problems, where in short error bars are thought of as probability distributions, and the famous Bayes’
Formula is used to regularize the problem by implementing prior knowledge of the underlying statistics
and physics (operational implementation: ACOS Algorithm [7,9]). OE is is an efficient tool for computing
maximum A posteriori (MAP) estimates and related uncertainties, but these quantities rely on a Gaussian
approximation of the posterior distribution. It is, however, clear that the forward model in this case is
non-linear, which is known to result in a non-Gaussian posterior.

Non-Gaussian posterior distributions can be explored using Markov chain Monte Carlo (MCMC)
methods, in which a set of samples is created such that they are distributed along the desired posterior
distribution. Quantities of interest, e.g., mean, variance, distribution shapes etc. can then further be inferred
from the samples. MCMC was first introduced in atmospheric retrievals by [11], the advantages of MCMC
method for validating operational satellite retrievals were demonstrated using real Envisat/GOMOS
observations in [12]. Other work includes [13–15]. An application of MCMC to the OCO-2 retrieval
problem was recently performed by [16] as a simulation study following the approach of [17] with a
simplified and computationally efficient surrogate forward model that captures all the essential effects of
the Full Physics Model’s CO2, surface and atmospheric aerosol parameters. It was noticed that results
from MCMC and OE can differ from each other, and furthermore in some cases not even agree with the
simulated ground truth.

It was further discussed in [9,18] that perturbations in the first guesses of aerosol part of the state
vector lead to unpredictable changes in retrieved XCO2. The retrievals in the study were performed using
simulated OCO-2 measurements ([19]) with a known ground truth using the full physics model and OE.
As a linear problem would have a unique minimum for the cost function, this suggests that the aerosol
parametrization in the model causes problems in the retrieval that might significantly affect the accuracy
of retrieved XCO2 values. This is due to scattering by aerosols being a substantial source of non-linearity
in the forward model (as was found for example by [17,20]), which might translate to a non-Gaussian
posterior distribution.

In addition to the potential effect of aerosol parametrization of the forward model, it was found in [16]
that the MCMC on OCO-2 surrogate model has a very low acceptance ratio (number of accepted samples
over number of computed samples), and that chains can often converge extremely slowly. These are
symptoms of non-linearity, high dimensionality and strong correlations between the parameters in MCMC.
Recent work on dimension reduction for MCMC in Bayesian inverse problems (e.g., [21,22]) that are solved
using MCMC sampling has successfully addressed this problem. This approach is called the Likelihood
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Informed Subspace (LIS) dimension reduction and it is based on identifying a subspace of the state space
that contains all the information that is possible to obtain from the measurement. It was shown in [15] that
this methodology actually aligns with the informative directions formalism by [10] that is widely used as a
standard in the atmospheric remote sensing community.

In this work we focus on the analysis of single retrievals and their posterior distributions.
We implement the LIS dimension reduction for the OCO-2 surrogate model retrieval to speed up the
convergence of MCMC algorithm and further to characterize the non-Gaussian parts of the full posterior
distribution of the state vector, particularly in the parameters relating to the aerosols in the physics model.
In this study, we use the same simulated radiances and OE retrievals as in [16]. The rest of the article is
organized as follows: in Section 2, we present an overview of the OCO-2 measurement and surrogate
forward model, as well as introducing the MCMC and dimension reduction framework used in this study.
Section 3 summarizes our results comparing the dimension-reduced MCMC with a full dimensional
one, results related to the form of the posterior distribution, and results of an experiment with a relaxed
retrieval prior covariance. Finally, Section 4 contains discussion of the results, conclusions and further
research topics.

2. Methodology

In this section, we give an overview of NASA’s Orbiting Carbon Observatory 2 satellite and
the simplified surrogate forward model used to investigate uncertainties of the actual operational
retrieval algorithm. We then describe briefly the Markov Chain Monte Carlo method and the Adaptive
Metropolis-Hastings implementation used in this study. Lastly, we introduce the mathematical basis for
Bayesian formulation of inverse problems as well as the principles of using the low information content of
the OCO-2 measurement to construct a Likelihood-Informed Subspace dimension reduction scheme for
accelerating our MCMC simulations.

2.1. Remote Sensing of Co2 by OCO-2

We will give a brief overview of the instrument since this is crucial in understanding the nature of the
inverse problem at hand. The OCO mission is described in detail by [6,8,23].

The OCO-2 instrument is composed of three spectrometers that measure light reflected from Earth’s
surface in the near-infrared part of the spectrum at three separate wavelength bands. These bands are
centered around 0.765, 1.61 and 2.06 µm and are called the O2 A-band, the weak CO2 band and the strong
CO2 band, respectively. Each observation furthermore consists of 1016 radiances from each band, and
together they form the observed sounding, denoted as y ∈ R3048 in this work. The satellite flies in a polar,
sun-synchronous orbit that covers the whole Earth with a 233 orbit 16-day repeat cycle, during which it
collects measurements with a surface footprint of less than 2.25 km down-track and 1.3 km cross-track
every 0.333 s.

2.2. Surrogate forward Model

We consider the inverse problem of estimating an unknown atmospheric state vector x ∈ Rn from
observed radiances y ∈ Rm,

y = F(x) + ε, (1)

where the forward model F : Rn → Rm describes the physics relating the atmospheric state to
measured radiances and the random variable ε ∈ Rm is the observation error caused by forward model
approximations and instrument noise.

The state-of-the-art Full Physics Model describes the light absorption and scattering by trace gases and
aerosols in the atmosphere. While this is a comprehensive way to compute atmospheric radiative transfer,
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the model is computationally heavy to evaluate and hence is not suitable for Monte Carlo experiments.
We ease this problem by following the approach in [16] and use the surrogate forward model by [17]
to account for the major sources of error in the retrieval. A more comprehensive look can be found in
Appendix A.2, but in short, the state vector used in the surrogate model can be split into four parts:

• CO2 vertical profile: The model considers the amount of molecules in 20 fixed pressure levels of the
atmosphere. The concentration of CO2 as well as pressure and temperature are taken to be constant
inside each level.

• Surface pressure: A single parameter of the state vector is retrieved to help identify the total amount of
molecules in an atmospheric column. Since O2 has a near constant concentration in each atmospheric
layer, the total absorption on the O2 band can be used to estimate the total amount of air at the
measurement location.

• Surface albedo: Earth’s surface reflects radiation differently at different wavelengths, and the relation
of reflected vs. total incoming radiation is given by albedo. In the surrogate model this corresponds
to 6 parameters: a Lambertian albedo and it’s spectral slope at each of the 3 wavelength bands of the
observed absorption spectrum.

• Aerosol parameters: Small particles in the atmosphere absorb and scatter light in complex ways,
which is taken into account by the model as an aerosol model. The vertical profile of aerosol
concentration is modeled with 3 parameters per aerosol type, first of which is the logarithm of Aerosol
Optical Depth (AOD) at 755 nm which describes the total intensity of aerosol effects. The second
parameter describes the height of the maximum aerosol concentration, and the third describes the
thickness of the aerosol layer, with a small value corresponding to a thin layer. The aerosol profile
calculated from these parameters is proportional to

AOD exp
(
− (x− xa)2

2σ2

)
, (2)

where xa is the layer height and σ is the layer thickness. In this work the number of atmospheric
aerosol types is 4, which amounts to a total of 12 aerosol parameters in the state vector.

The main quantity of interest in the OCO-2 inverse problem is the column-averaged dry air mole
fraction of CO2, denoted XCO2 , which is a weighted average CO2 concentration from the first 20 parameters
of the state vector. Motivated by this, we partition the state vector as

x =

[
xα

xβ

]
, (3)

where xα contains the CO2 profile and xβ has the rest. We can now calculate XCO2 as

XCO2 = hTxα, (4)

where h ∈ R20 is a pressure weighting function [23] assigning appropriate weights to the CO2 profile.
As noted in [17], the surrogate model does not include several elements of the operational retrieval’s

state vector, including a temperature profile offset, a water vapor profile scale factor, band-specific
dispersion parameters for wavelength offsets, band-specific empirical orthogonal function scale factors,
and solar-induced fluorescence (SIF) in the O2A-band. As such, the purpose of the surrogate model is to
act as a computationally feasible means for quantifying the propagation of uncertainty in input arguments
into the algorithm outputs. Based on these insights, further more quantitative experiments can then be
carried out for the Full Physics model.
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2.3. Bayesian Formulation of the Inverse Problem

We follow the Bayesian approach [24] to solving inverse problems, which gives us a solution and the
related uncertainties as a statistical distribution of states x conditioned on observed data y and regularized
by a choice of prior distribution. This is obtained through Bayes’ formula as

P(x|y) ∝ P(y|x)Ppr(x), (5)

where P(x|y) is the posterior distribution, P(y|x) the likelihood and Ppr(x) the prior distribution.
The proportionality ∝ comes from a constant that does not depend on the unknown x. In this work,
we assume the prior to be Gaussian, which is denoted as N (x0, Spr), i.e.

Ppr(x) ∝ exp
(
−1

2
(x− x0)

TS−1
pr (x− x0)

)
. (6)

For comparability, we use the same prior mean x0 and covariance Spr as the operational OCO-2 retrieval.
Also, the additive noise is assumed to be zero-mean Gaussian with known covariance matrix, ε ∼
N (0, Sobs). This way, the likelihood function will have the form

P(y|x) ∝ exp
(
−1

2
(y− F(x))TS−1

obs(y− F(x))
)

. (7)

In this work, we use the same error statistics as [17], where the variance of y for the diagonal Sobs is
given by

Var(yi,j) = cjFi,j(z), (8)

where z ∈ Rn is a simulated state vector, j = 1, 2, 3 is the index of wavelength band, i = 1, . . . , mj is the
index of wavelengths in given band j and cj denotes a band specific constant to yield broadly comparable
signal-to-noise ratios to the operational OCO-2 retrieval. This parameterization is a simplification relative to
the operational retrieval, which includes channel-specific parameters based on instrument calibration [25].

To solve this inverse problem, also referred to as retrieval, a common strategy in atmospheric remote
sensing is to use an optimization algorithm such as Levenberg-Marquadt (see e.g., [10]) solver to find the
posterior mode. This corresponds to minimizing the cost function

− 2 logP(x|y) = (y− F(x))TS−1
obs(y− F(x)) + (x− x0)

TS−1
pr (x− x0). (9)

This procedure is often called Optimal Estimation (OE). We denote the minimizer obtained with OE
by x̂. On top of this, OE yields a linear Gaussian approximation of the posterior covariance, denoted Ŝ,
such that

Ŝ =
(

K(x̂)TS−1
obsK(x̂) + S−1

pr

)−1
, (10)

where Kij =
∂

∂xj
Fi is the Jacobian of the forward model.

2.4. Markov Chain Monte Carlo

While OE can provide a fast and computationally inexpensive solution to the retrieval problem, it is
still a linear Gaussian approximation of the true posterior. In the case of OCO-2 retrieval, the forward
model is non-linear and hence we need a way to characterize the actual underlying distribution. When
the forward model is non-linear, the posterior distribution can be explored by Markov chain Monte
Carlo (MCMC) sampling. In this work, we follow [16] and utilize adaptive Metropolis-Hastings MCMC
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from [26]. The algorithm progresses by moving from state xt to a proposed state xt+1 drawn from a
proposal distribution N (xt, Ct) with a density denoted q(x, ·). The new point is then accepted or rejected
with probability

min
(

1,
P(xt+1|y)q(xt+1, xt)

P(xt|y)q(xt, xt+1)

)
(11)

In the adaptive Metropolis algorithm, we are additionally updating the proposal covariance matrix by
empirically calculating the covariance from the already obtained chain:

Ct =

{
C0, t < t0,

sdcov(xo, . . . , xt−1) + εI, t ≥ t0
(12)

where t0 is the training length and sd is a scaling parameter from [26] that optimizes the sampling efficiency.
Also, as was noted in that article, we extend the adaptation length to updating the covariance every 100th
time step after the initial t0.

2.5. Likelihood-Informed Subspace

In atmospheric remote sensing the information content of the measurement is an important concept
to be considered e.g., when designing the instruments and constructing the retrieval methods. Most of the
time, the actual amount of informative directions in the measurement is small compared to the dimension
of the state vector. This is discussed in detail by Rodgers [10]. Consistent with this idea, the OCO-2
Algorithm Theoretical Basis Document (ATBD) [23] states that the CO2 part of the state vector only has
2 degrees of freedom for the signal. Motivated by these observations, we use the likelihood- informed
subspace (LIS) Dimension reduction ([21,22]) to truncate the dimension of the inverse problem in order to
speed up the MCMC computation. It was shown in [15] that initial derivation of LIS is equal to Rodgers’
discussion on informative directions of the measurement, so we present the basics of the formulation using
the Rodgers’ formalism.

We identify a subspace of the state space that has all the measurable information of the retrieval.
This can be found by first linearizing the inverse problem and then using linear transformations to rotate
and scale the space so that we can see how much of the natural variability of x, coming from the prior,
can actually be distinguished from the noise ε. This is accomplished by first scaling the problem so that we
end up with unit covariances for prior and error, and then diagonalizing the resulting whitened problem.
We can then see how many independent degrees of freedom we can obtain from our measurement for the
state x by finding the directions of variance greater than unity, since the rest are indistinguishable from the
measurement noise.

Consider a linearized version of the inverse problem in Equation (1),

y = K(x− x0) + ε, (13)

where K denotes the Jacobian matrix of the forward model with elements Kij =
∂

∂xj
Fi. Next, we use the

Cholesky factorizations of prior and error covariances,

Spr = LprLT
pr, Sobs = LobsLT

obs, (14)

and perform pre-whitening of the problem by setting

ỹ = L−1
obsy, K̃ = L−1

obsKLpr, x̃ = L−1
pr (x− x0) and ε̃ = L−1

obsε. (15)
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Pre-whitening transforms the error and prior distributions to have zero mean and unit covariance, that is,
ε̃ ∼ N (0, I) and x̃ ∼ N (0, I). Now the problem can be written as

ỹ = K̃x̃ + ε̃. (16)

We now consider the prior predictive distribution for whitened measurements ỹ, obtained by
evaluating the linearized forward model at states x̃ drawn from the whitened prior distribution with
added white noise. It follows that ỹ will be distributed with covariance

S̃y = E[ỹỹT ] = E[(K̃x̃ + ε̃)(K̃x̃ + ε̃)T ] = K̃K̃T + I. (17)

To get rid of possible non-diagonal elements in the resulting covariance matrix, we further diagonalize
the scaled problem by using the singular value decomposition of the whitened Jacobian,

K̃ = WΛUT . (18)

We denote this scaling by a superscript ′. This gives us the diagonalized problem

y′ = WT ỹ = WTK̃x̃ + WT ε̃

= ΛUT x̃ + WT ε̃

= Λx̃′ + ε̃′.

(19)

The transformations ε′ and x′ conserve the unit covariance matrices for the scaled error and prior
distributions, since WTW and UTU both result in unit matrix. It follows that the scaled data y′ is distributed
with covariance Λ2 + I. This is a diagonal matrix with unit contribution from the noise in each diagonal
element. From this covariance we can deduce that only the variability coming from states x̃ corresponding
to singular values λi of scaled Jacobian K̃ that are greater than unity can be distinguished from the
measured data; the rest is masked by measurement noise. In other words, the number of singular values
greater than unity correspond to the number of informative directions or degrees of freedom for signal
in the measurement. Furthermore, degrees of freedom for signal and noise are invariant under linear
transformations [10], and as the unknown x and the error ε are assumed to be independent, the same result
is also valid for the original y.

On the other hand, the linear approximation of the posterior distribution given by Equation (16)
yields the following expression for the posterior covariance of x̃:

S̃post =
(

K̃TK̃ + I
)−1

. (20)

Using the same reasoning as before, we see that only the directions in the likelihood corresponding
to singular values of scaled Jacobian that are greater than unity can be obtained from the measurement,
and the rest are given by the prior. This leads to a connection with the work in [21,22], given also by
the fact that K̃K̃T has the same eigenvalues as K̃TK̃, all of which are the squared singular values of K̃.
The matrix K̃TK̃ in turn is the same thing as the prior-preconditioned Gauss-Newton Hessian

H̃ := LT
pr HLpr = LT

prKTS−1
obsKLpr = K̃TK̃ (21)

from [21]. Here, H denotes the Gauss-Newton approximation of the Hessian of −2 logP(x|y).
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Informative directions of the measurement can now be identified with the first r eigenvectors of
H̃ corresponding to the first r eigenvalues greater than unity. These are the first r columns of matrix V
given by

H̃ = VΛ2VT . (22)

We now use the informative directions to reduce the dimension of the inverse problem. Consider the
low-rank approximations for the posterior of the form

P̃(x|y) ∝ P(y|Prx)Ppr(x), (23)

where Pr is rank r projection matrix. In [21,22] it was shown that the optimal Pr that minimizes the Hellinger
distance between rank r approximations and the full posterior is given by the eigendecomposition of H̃
as follows:

Definition 1. [LIS]: Let Vr ∈ Rn×r be a matrix containing the first r eigenvectors of the prior preconditioned
Gauss-Newton Hessian H̃. Define

Φr := LprVr and Θr := L−T
pr Vr. (24)

The rank r LIS projection for the low-rank posterior approximation in Equation (23) is given by

Pr = ΦrΘT
r . (25)

The range Xr of projection Pr : Rn → Xr is a subspace of state space Rn spanned by the column
vectors of matrix Φr. We call the subspace Xr the likelihood-informed subspace (LIS) for the linear inverse
problem, and its complement Rn \Xr the complement subspace (CS).

Definition 2. The matrix of singular vectors V = [VrV⊥], where V⊥ ∈ Rn×n−r contains the rest of the eigenvectors
not included in Vr, forms a complete orthonormal system in Rn and we can define

Φ⊥ := LprV⊥ and Θ⊥ := L−T
pr V⊥ (26)

and the projection I− Pr can be written as
I− Pr = Φ⊥ΘT

⊥. (27)

Define the LIS-parameter xr ∈ Rr and the CS-parameter x⊥ ∈ Rn−r as

xr := ΘT
r x, x⊥ := ΘT

⊥x. (28)

The parameter x can now be naturally decomposed as

x =Prx + (I− Pr)x

=Φrxr + Φ⊥x⊥.
(29)

Using the previous definitions, we can write the approximate posterior as

P̃(x|y) = P(y|Φrxr)Ppr(xr)Ppr(x⊥). (30)
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2.6. MCMC Sampler

When dealing with a non-linear forward model, the Hessian matrix depends on the point x and thus
is not constant on the state space. It was suggested in [21] that a way to get around this issue is to take a
Monte Carlo average of H̃ over some reference distribution. The effect of different distributions was further
explored in [27]. Since we have obtained the posterior mode and the related covariance approximation
from the OE retrieval, we use these to get an average

ĤN = LT
pr

(
1
N

N

∑
k=1

H(x(k))

)
Lpr, (31)

where the N samples x(k) are drawn from N (x̂, Ŝ). We then use the eigenvalue decomposition
ĤN = V̂Λ̂2V̂T to find a basis for the global LIS analogously to the linear case. We then proceed to
sample xr from the reduced posterior P(y|Φrxr)Ppr(xr), and add a sample drawn from the Gaussian
complement prior Ppr(x⊥) to get an approximation of the full posterior.

In adaptive MCMC, a good starting value for C0 as a training covariance is sdŜ. However, since we
already have computed the expected value of the Gauss-Newton Hessian in the LIS computation, we can
use this Monte Carlo estimator to better capture the variability over the non-linear posterior and set

C0 = sd

(
H̄ + S−1

pr

)−1
, (32)

where H̄ is the expectation of the Gauss-Newton Hessian over the reference distribution N (x̂, Ŝ). Next,
we project C0 into LIS and use that as a starting covariance for the MCMC. The projection is given by

ΘrC0ΘT
r := C̃r ∈ Rr×r. (33)

After dimension reduction, the MCMC sampling then proceeds with the standard Adaptive
Metropolis algorithm where we draw at time step t a new candidate point from proposal N (xt−1, Ct).
Acceptance probability is computed by first projecting the LIS parameter xr into full space as

Φrxr + x0 ∈ Rn. (34)

The likelihood function is then evaluated using the full-dimensional vector as an input to the surrogate
model. Finally, after completing the MCMC chain, we draw a sample with the same length as the chain
from the complement prior

x⊥ ∼ N (0, I), x⊥ ∈ Rn−r. (35)

The sample is then projected back to full space as

Φ⊥x⊥ ∈ Rn (36)

and added to the LIS-chain. It follows from (23) that this way we get a sample from the optimal rank r
posterior approximation, as can be seen from the CO2 profiles in Figure 3.

3. Results

We present our results in 3 subsections. The example soundings we use are chosen from the data used
in [16], which is based on the work in [17]. In short, this study used a clustering method to group the first
18 months of global OCO-2 measurements into 100 geolocation templates based on physical, climatological
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and temporal properties. Within a template, synthetic data was created by randomly sampling a Gaussian
mixture model, the parameters of which were empirically gained from OCO-2 CO2 profiles and MERRA
climatology. We specifically chose soundings from a template in South America (centered at Southern
Bolivia) in which the initial results of OE and MCMC in [16] did not agree. The dominating aerosol
species for this template are sulphate and dust (see the dominating aerosol type map in [23]). First,
we focus on comparing the LIS implementation and its results with previous MCMC results from [16],
as well as showing the relative contributions of LIS and CS to the sampling, as well as improvements
achieved in computational speed of the MCMC when using LIS. In the second section we inspect the
shapes of posterior marginal distributions of model aerosol parameters and compare the MCMC results
with OE. Lastly, we perform MCMC retrievals for three example cases using both the operational OCO-2
prior covariance matrix and a modification of it, in which the prior has been widened to allow a greater
variability on aerosol layer width parameters.

3.1. LIS Implementation

For constructing the LIS basis for the retrieval problem, we use the posterior approximation obtained
from OE and sample 200 points from N (x̂, Ŝ) which are then used to compute the Monte Carlo average
(see Section 2.6). As seen in Figure 1, the total number of eigenvalues greater than unity is found to be 18,
which is in accordance with [23] stating that the degrees of freedom for signal in the full physics model is
around 20. Moreover, the number of eigenvalues greater than unity can be seen to converge to 18 even
when using 100 samples, so using 200 samples will reasonably ensure this convergence. In order to ensure
that all the variability is captured by LIS we set r = 19 as the effective dimension of the problem, as the
19th eigenvalue is still relatively close to 1. Our tests showed that using less than 19 eigenvectors resulted
in a significantly different posterior distribution than the full dimensional case, whereas using 19 or more
resulted in the same posterior as in the full dimensional case.
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Figure 1. Eigenvalues of the Hessian matrix with different numbers of samples used in the calculation
of the Monte Carlo average 2.6. The eigenvalues are separated to less than and greater than unity by a
black line.
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As an example case, we start the comparative MCMC chain from a value that significantly disagrees
with the simulated true value of XCO2 . We perform the full dimensional MCMC with a chain length of
250,000 samples with a training time of 1000 samples as was done in previous work. For comparability,
we perform the dimension reduced MCMC runs using the same sample sizes. The resulting XCO2 chains
for both runs are shown in Figure 2. We also show the histograms of posterior XCO2 for both runs as well
as the simulated ground truth value. When comparing the last 100 000 samples of the chains, we get
acceptance rates of 1.7% for the full-dimensional MCMC and 5.1% for LIS MCMC, and effective sample
sizes (number of samples that can be considered uncorrelated; see e.g., [28], pp. 5–7) of 54 and 134,
respectively. The scaling parameter for adaptive MCMC was set to sd = 0.3× 2.42/d, where d is the
dimension of the estimated parameter. This choice led to a better acceptance rate for the chain which is
better for data visualization, but did not otherwise affect the efficiency of the sampler.

Figure 2. Upper panel: XCO2 posterior histogram from full dimensional MCMC (blue) compared to LIS
MCMC (red). Also shown the starting value for MCMC and simulated ground truth (green). Lower panel:
every 100th sample of XCO2 chain from full dimensional MCMC (blue) and LIS MCMC (red).

Although the OCO-2 algorithm retrieves a full CO2 profile on 20 levels, it only validates its full-column
retrievals, as there are typically only two degrees of freedom for CO2 information in the retrieved profile.
Nevertheless, we show the Optimal Estimation’s retrieved 20 pressure levels in the left panel of Figure 3
plotted against the MCMC results and the ground truth. The contributions from the LIS parameter xr and
CS parameter x⊥ projected back to the full space are also shown in the right panel of Figure 3. Together,
these results show that the LIS implementation works well and succeeds in capturing all the information
present in the measured data with an increased computational efficiency. Furthermore, dimension reduced
MCMC seems to give a decent estimation of the CO2 profile as well.
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Figure 3. Left panel: CO2 profiles from the MCMC retrieval compared with prior mean, ground truth and
OE retrieval result. Right panel: CO2 parts of samples from LIS and CS projected back to full space.

3.2. MCMC Results

The previous subsection offers an opportunity to conduct further analysis with dimension reduction
accelerated MCMC. With the MCMC approach we can compute the full posterior distribution, and a
natural question is whether the OE optimization algorithm actually finds the mode of the posterior
distribution and how well this corresponds to the expected value obtained from MCMC sampling.

In the studied case the initial termination criteria for OE suggested that the cost function did not have
a unique minimum, but our tests concluded that by utilizing the information of the MCMC run, the OE
algorithm could be tuned so that differing starting values did actually converge to same minimum given
enough computation time. Details of this parameter tuning can be found in Appendix A.1. The parameter
tuning we performed achieved an approximate agreement with MCMC mean and x̂ estimate obtained
from OE, but this resulted in significantly more iterations required for the optimization. However, this
effect is not further addressed in this work as we focus on comparing the results of a well-performing
optimization algorithm and MCMC.

Next, we perform MCMC simulation for the same example sounding as before (from the
South American template from [16]) using the improved optimization algorithm parameter values from
Appendix A.1 to initialize the MCMC with a more reliable OE. Figure 4 shows the marginal posterior
distributions for all state vector aerosol parameters. A clear non-Gaussian shape is detected in 1D marginal
posterior distributions of dust and cloud liquid water AOD parameters, which also correlates to the OE
not being able to pick up the full posterior width. The true value of the aerosol parameters is relatively
poorly captured by both MCMC and OE mean estimates. Especially the parameters for sulphate and
water coefficient 2 (aerosol altitude) have the true value outside the edge of the posterior histogram, which
means that these parameters were not identified by MCMC.

We further illustrate the non-Gaussian behavior by plotting the 2D distributions of these state vector
elements in Figure 5, and the uncertainties coming to XCO2 from aerosol parameters as 2D distributions in
Figure 6. Both of these figures show that the posterior estimate as 95% confidence intervals obtained from
OE is consistently not able to contain the full uncertainty in these parameters as shown by the MCMC
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simulation. Compared to OE, the probability region given by MCMC still contains the true value in most
cases, which means that the uncertainty estimate from OE is again inadequate. We can further see that
parameters 29 and 38 (sulphate and water altitudes) have the MCMC posterior tail away from the true
value, which further shows that these directions are not identified and cause error to XCO2 .

Figure 4. Aerosol parameter marginal histograms with operational prior (black dashed line), ground truth
(green) and OE retrieval result (red dotted line). SO = sulphate, DU = dust, Ice = cloud ice and Water = cloud
liquid water.
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Figure 5. 2D posterior distributions of selected aerosol and surface parameters from LIS MCMC (blue with
95% posterior confidence interval on blue contour) compared with ground truth (green), prior (black with
95% confidence interval on black ellipse) and OE (red with 95% posterior confidence interval on red ellipse).
Parameter numbers agree with the numbering in the surrogate model description (see Table A3).
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Figure 6. 2D posterior distributions of XCO2 against aerosol parameters from LIS MCMC (blue with 95%
posterior confidence interval on blue contour) compared with ground truth (green) and OE (red with 95%
posterior confidence interval on red ellipse). Parameter numbers agree with the numbering in the surrogate
model description and correspond to those in Figure 4.

3.3. Wider Prior

In addition to gaining information about the shape of the posterior distribution, we can see from
Figure 5 that the simulated state vector’s parameters 30 and 33 (corresponding to sulphate and dust layer
thickness parameters) are outside the prior distribution induced by the operational prior. Since the state
vectors were simulated using an empirical covariance derived from a credible ensemble of simulated and
meteorological data ([17], Section 4.1), this phenomenon might possibly occur in the operational OCO-2
retrieval as well, because both retrievals use the same prior. It is worth noting that in the operational
retrieval, the prior constraint on the aerosol width is so tight that this parameter is effectively not retrieved.
This was based on early work [29] which showed that the spectra had little sensitivity to it.

Focusing on the 3 parameters describing the sulphate aerosol cloud, the posterior correlation matrix
of Ŝ in Figure 7 shows that parameters 28 and 29 (sulphate log AOD and aerosol altitude) have a strong
correlation with the CO2 part of the state vector. Additionally, we can deduce that if the aerosol profile
width (parameter 30) is outside the prior range and hence cannot be retrieved, the retrieval might try
to compensate for this with the remaining sulphate parameters. This in turn could cause the observed
MCMC mean in Figure 2 to not align with the simulated ground truth. To test this hypothesis, we first
select 2 additional example soundings from the same template as before such that they as well have state
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vector parameter 30 valued outside the operational prior distribution. We then perform a second round
of OE and MCMC but this time we increase the entry in the prior covariance’s diagonal element 30 so
that the prior is in effect non-informative for this parameter, allowing variability that captures the true
simulated value. Furthermore, since the prior is diagonal for the aerosol parameters, any cross-correlation
adjustment is not necessary.

We illustrate the observed effect of widening the prior covariance to the retrieved XCO2 in Figure 8.
The XCO2 computed from both chains (using operational (blue) and widened (red) prior) are plotted in
comparison with the corresponding OE results and the simulated ground truth. We can clearly see that the
wider prior covariance had, in these cases, the effect of significantly improving the accuracy of both MCMC
and OE retrievals of XCO2 . In Figures 9–11, we have summarized the MCMC histograms, for each test case,
of parameters relating to log AOD, height, and width of the modelled aerosol layer for all 4 aerosol types
present in the retrieval. We also show the ground truth, prior distribution and OE results for comparison.
The parameter SO Coefficient 3 on the upper right panel is the one with widened prior, and in comparison
to previous histograms in Figure 4, we see that this parameter is now retrieved relatively well. As we can
see, this change also had the effect of improving the overlap of resulting posterior histograms and the
true value.
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5 10 15 20 25 30 35
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10
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35

Figure 7. Posterior correlation matrix of Ŝ. The elements of the matrix corresponding to CO2 and aerosol
parameters of the state vector are separated with black lines. It should be noted that the first aerosol
parameters have a high correlation with the CO2 part of the state vector.
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Figure 8. Three separate test cases showing XCO2 posterior histograms (using operational prior (blue) and
widened prior) from LIS MCMC compared to the OE retrieval (blue and red dashed lines) and simulated
ground truth (green). Also shown the true value of XCO2 with the corresponding MCMC mean using a
widened prior. It should be noted that the example case 2 on the middle panel most likely did not converge
in either the MCMC or OE when using the operational prior, which is not an unusual scenario even in the
operational retrieval.

Figure 9. Test case 1: aerosol parameter marginal histograms (corresponding to retrievals using operational
prior (blue) and widened prior (orange)) with operational prior (dashed black), ground truth (green) and
OE retrieval result (blue and red vertical lines). SO = sulphate, DU = dust, Ice = cloud ice and Water = cloud
liquid water.
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Figure 10. Test case 2: aerosol parameter marginal histograms (corresponding to retrievals using
operational prior (blue) and widened prior (orange)) with operational prior (dashed black), ground truth
(green) and OE retrieval result (blue and red vertical lines). SO = sulphate, DU = dust, Ice = cloud ice and
Water = cloud liquid water.

Figure 11. Test case 3: aerosol parameter marginal histograms (corresponding to retrievals using
operational prior (blue) and widened prior (orange)) with operational prior (dashed black), ground truth
(green) and OE retrieval result (blue and red vertical lines). SO = sulphate, DU = dust, Ice = cloud ice and
Water = cloud liquid water.
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4. Conclusions

Previous work on Monte Carlo experiments with the OCO-2 retrieval problem laid out the need to
accelerate the convergence of these demanding computations. We have shown that in this case, where the
problem is actually over-parametrized as the parameter space has a relatively low amount of informative
directions, LIS dimension reduction can accelerate convergence of the MCMC simulation. In addition to
the known fact that the CO2 profile has only 2 degrees of freedom, the low information content of the
aerosol part is also supported by recent research in e.g., [20]. The low information content is apparent when
comparing the full-dimensional XCO2 MCMC chain (Figure 2) against the corresponding low dimensional
LIS chain. Both were initiated at a value just outside the resulting posterior distribution, and upon visual
inspection of the chains we can conclude that the LIS chain converges to the same result at least three times
faster. Faster convergence is also supported by increased acceptance rate and effective sample size, as is to
be expected thanks to the reduced dimension. This gain in computational efficiency makes it more feasible
to conduct further studies with different geolocation templates.

The MCMC simulations allowed us to see the shape of the posterior distribution’s aerosol and
surface parameters that have repeatedly caused problems in previous work relating to the OCO-2 retrieval.
The marginal distributions shown in Figure 4 show clear non-Gaussian shapes for some aerosol parameters,
as well as the OE posterior being too narrow to contain the actual error limits. The most pathological
cases are assembled in Figure 5 as 2D plots. In addition to showing again the inadequate coverage of Ŝ,
two observations can be made: first of all, parameters 31 and 37, both of which correspond to log(AOD),
form a so-called "banana" distribution, which is a curved part of the distribution. This is known to cause
problems for the adaptive MCMC (see e.g., [30]) which in part explains the low acceptance rates we
obtained. Although we were mainly focused on aerosol parameters, we have included a plot of parameters
22 vs. 24 in this figure as well. These parameters correspond to albedo in the strong and weak CO2 bands.
As we can see from Figure 5, these parameters are strongly correlated, which is also a known feature that
causes a "flat" posterior distribution which is harder to be characterized by MCMC algorithms.

The XCO2 histogram shown in Figure 2 suggests that, at least in this case, the well-tuned OE retrieval
agrees quite well with MCMC in finding the posterior mean, but gives a too narrow uncertainty in
comparison. This is in contrast to the findings of [16], but could be explained by OE not having converged
to a global minimum. We have plotted the XCO2 distribution against the aerosol parameters in Figure 6,
which further illustrates that OE underestimates the uncertainties propagated to XCO2 especially from
the optical depth parameters of dust and cloud water. Although we have tested this with several other
retrievals (see e.g., Figure 8), they were all from the same template with same dominating aerosol species
and geophysical conditions. These results suggest there would be added value to conduct a comprehensive
further thorough examination of different geolocation templates in the future.

Also, from panel 30 vs. 33 and from panels of SO and DU Coefficient 3 in Figure 4, we can see
that the simulated ground truth is outside of the range of the operational prior distribution in the third
parameter of both SO (sulphate) and DU (dust). This indicates that the retrieval tries to compensate the
out-of-range-truth with other parameters and thus we might end up seeing possibly erroneous OE and
MCMC results. As is apparent from Figure 7, these aerosol parameters (log AOD and profile height)
are strongly correlated with the 20 CO2 parameters and as such they can induce significant errors to
the profile if retrieved incorrectly. Although this observation can in part explain the inconsistencies in
the previous simulation experiments, it can also give a clue to the properties of the operational retrieval
covariance matrix, since the state vectors used in the studies are based on real-world empirical physical
parameters (see [17]). This also highlights the importance of prior validation and the use of MCMC to
inspect the actual posterior distribution, since the OE approximation can give a misleading picture of
the actual posterior uncertainties: a non-smooth likelihood function that might have a non-Gaussian
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shape or multiple local minima, caused by e.g., the use of lookup tables in the model or the non-linear
forward model.

Lastly, we perform the same MCMC retrieval for three separate test cases all having parameters 30 and
33 outside the range of the prior distribution, but with the difference that we inflate the prior covariance of
above-mentioned SO Coefficient 3 parameter so that the resulting prior is practically non-informative in
this direction and the state vector can vary freely. This naturally changes how the posterior distribution
looks like, since the posterior is a product of the prior and likelihood distributions (see Equation (5)).
The resulting XCO2 histograms are plotted in Figure 8 and we can clearly see that the ground truth is this
time found roughly in the middle of the posterior distribution. Following [9,29], the parameters describing
the prior width of distributions of aerosols 1 and 2 in the operational retrieval algorithm are intentionally
left small. This way they are practically not retrieved, as the effect of the total aerosol profile is assumed
to be compensated by the log(AOD) and aerosol height parameters. However, as this means that the
resulting posterior does not contain the original ground truth in these selected test cases, we end up with a
faulty posterior mean.

Allowing more variability with a wider prior covariance can result in finding the correct CO2

concentration, but it still does not mean that the retrieved aerosol parameters correspond credibly to the
ground truth. As can be seen from Figures 9–11 as some marginal histograms do actually converge to
include the ground truth, some on the other hand seem worse after changing the prior. Our experiments
also showed that this improved behavior is not generally observed in all retrievals, and factors such as OE
convergence, simulated profile shape, other out-of-bounds parameters and even possible aerosol model
problems (see e.g., [9] for added stratospheric aerosol) may lead to the OE and MCMC not agreeing with
each other and/or the ground truth, as was observed in [16], even when the prior is relaxed.

5. Discussion

Results of this work open up several interesting topics for further research. Repeating the earlier
experiments of [16] with LIS MCMC would probably aid in getting a better understanding of differences
between different templates, as aerosols used in the state vector and their models change according to
geolocation. In this work we have only seen the effect of dust and sulphate aerosol types, whereas there
exist three more types in the operational OCO-2 retrieval algorithm: organic carbon, black carbon and
sea salt. Investigating the combined effect of aerosols is also of interest, as different aerosol types seem to
together affect the retrieval in a correlated and non-trivial way according to our results. To further assess
the effect of aerosol parameters on XCO2 errors, a comprehensive study on several hundreds of different
conditions should be conducted.

This work has demonstrated insights that can be gained with a strategic implementation of the LIS
MCMC retrieval. The surrogate model illustrated here differs from the operational full physics retrieval in
several ways, including the complexity of the state vector and radiance noise properties. A more efficient
sampling algorithm also makes it more feasible to perform MCMC on the operational OCO-2 full physics
model, and identify which features seen in this work are also present in the operational retrieval; although
one might expect the results to be broadly applicable to the operational retrieval, there could be important
differences not captured by the simplified state vector and forward model.
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CS Complement Subspace
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Appendix A

Appendix A.1. OE Convergence

As was shown in [16,18], the optimal estimation retrieval seems to be sensitive to the first guess of the
optimization algorithm, and furthermore might not agree with the overall posterior distribution obtained
with MCMC. In order to rule out the possibilities of issues with the convergence of the Levenberg-Marquadt
algorithm, we perform parameter tuning for the retrieval and compare the tuned version of the retrieval in
our example case with the corresponding one used in [16,17].

In the previous work, the starting value for γ parameter in the retrieval was set to 10 ([23]). Also,
the tolerance for normalized step size was set to 4. To test the effect of these parameters, we set the
maximum amount of iterations to 1000 so that the optimization will terminate when one of the other
conditions is met. As a starting value for the optimization, we use the prior mean, the mean obtained
from MCMC simulation, and the mean perturbed by ±σ ∈ R39, where σ is a standard deviation obtained
by taking the square root of the elements of the diagonal of Ŝ. The results are shown in the left panel
of Figure A1 and Table A1. Next, we repeat the experiment by setting the starting value of γ to 30 and
reducing the tolerance of normalized step size to 0.0001. The results are shown in the right panel of
Figure A1 for the CO2 part and in and Table A2 for the aerosol part of the state vector.
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Figure A1. CO2 profiles from OE retrievals with starting the optimization from different first guesses.
Left panel: starting γ = 10, normalized step size tolerance = 40. Right panel: starting γ = 30, normalized
step size tolerance = 0.0001.

Table A1. Aerosol parameter values and resulting XCO2 values from OE retrievals shown on the left panel
of Figure A1. SO = sulphate, DU = dust, Ic = cloud ice and Wa = cloud liquid water.

OE 1 OE 2 OE 3 OE 4 OE 5 OE 6

SO 1 −3.42 −4.46 −4.47 −4.57 −4.47 −4.53
SO 2 0.68 0.49 0.49 0.48 0.49 0.48
SO 3 −2.99 −2.98 −2.95 −3.13 −2.95 −2.98
DU 1 −4.67 e4.72 −4.60 −5.28 −4.53 −5.32
DU 2 0.87 0.94 0.95 0.81 0.96 0.90
DU 3 −2.99 −3.00 −2.97 −3.14 −2.98 −3.00
WA 1 −3.33 −3.21 −3.21 −3.21 −3.21 −3.22
WA 2 0.13 0.12 0.12 0.12 0.12 0.12
WA 3 −3.13 −3.15 −3.15 −3.14 −3.15 −3.15
IC 1 −5.37 −4.08 −4.13 −3.93 −4.17 −3.86
IC 2 0.06 0.95 0.94 0.94 0.93 0.96
IC 3 −2.29 −2.30 −2.29 −2.37 −2.29 −2.30
XCO2 396.13 391.67 391.68 391.37 391.67 391.48

Table A2. Aerosol parameter values and resulting XCO2 values from OE retrievals shown on the right panel
of Figure A1. SO = sulphate, DU = dust, Ic = cloud ice and Wa = cloud liquid water.

OE 1 OE 2 OE 3 OE 4 OE 5 OE 6

SO 1 −4.48 −4.48 −4.52 −4.52 −4.52 −4.52
SO 2 0.49 0.49 0.48 0.48 0.48 0.48
SO 3 2.97 −2.98 −2.97 −2.97 −2.97 −2.97
DU 1 −4.80 −4.72 −4.96 −5.08 −4.97 −5.12
DU 2 0.95 0.94 0.94 0.93 0.94 0.93
DU 3 −2.99 −3.00 −2.99 −2.99 −2.99 −2.99
WA 1 −3.21 −3.21 −3.22 −3.22 −3.22 −3.22
WA 2 0.12 0.12 0.12 0.12 0.12 0.12
WA 3 −3.15 −3.15 −3.15 −3.15 −3.15 −3.15
IC 1 −4.06 −4.06 −3.95 −3.92 −3.95 −3.91
IC 2 0.94 0.95 0.95 0.95 0.95 0.95
IC 3 −2.30 −2.30 −2.30 −2.30 −2.30 −2.30
XCO2 391.68 391.63 391.54 391.53 391.54 391.53
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Appendix A.2. Surrogate Model State Vector

Table A3. Surrogate forward model state vector description: element names and the prior values for the
sounding performed in this study.

No. Name Prior Value

CO2 Volume Mixing Ratio [ppm]

1 Vertical Level 1 (Top of Atmosphere) 388.9123
2 Vertical Level 2 393.7508
3 Vertical Level 3 395.8462
4 Vertical Level 4 397.4091
5 Vertical Level 5 (Tropopause) 398.5947
6 Vertical Level 6 398.5761
7 Vertical Level 7 398.5522
8 Vertical Level 8 398.5237
9 Vertical Level 9 398.4913
10 Vertical Level 10 398.4556
11 Vertical Level 11 398.4172
12 Vertical Level 12 398.3766
13 Vertical Level 13 398.3341
14 Vertical Level 14 398.2900
15 Vertical Level 15 398.2445
16 Vertical Level 16 398.1977
17 Vertical Level 17 398.1495
18 Vertical Level 18 398.1000
19 Vertical Level 19 397.7311
20 Vertical Level 20 (Surface) 397.2732

21 Surface Pressure [hPa] 1000

Lambertian Albedo

22 Strong CO2 Band Mean Albedo 0.2296
23 Strong CO2 Band Albedo Spectral Slope 0
24 Weak CO2 Band Mean Albedo 0.2577
25 Weak CO2 Band Albedo Spectral Slope 0
26 O2 A Band Mean Albedo 0.2132
27 O2 A Band Albedo Spectral Slope 0

Aerosols

28 Sulphate Log Aerosol Optical Depth −3.8054
29 Sulphate Profile Height 0.9000
30 Sulphate Log Profile Thickness −2.9957
31 Dust Log Aerosol Optical Depth −5.4027
32 Dust Profile Height 0.9000
33 Dust Log Profile Thickness −2.9957
34 Cloud Ice Log Aerosol Optical Depth −4.3820
35 Cloud Ice Profile Height 0.3000
36 Cloud Ice Log Profile Thickness −3.2189
37 Cloud Water Log Aerosol Optical Depth −4.3820
38 Cloud Water Profile Height 0.7500
39 Cloud Water Log Profile Thickness −2.3026
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