
Date of acceptance Grade

Instructor

Persistent Data Structures for Incremental Join Indices

Antti Karjalainen

Helsinki June 8, 2020

Master’s thesis

UNIVERSITY OF HELSINKI
Department of Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/328853814?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Faculty of Science Department of Computer Science

Antti Karjalainen

Persistent Data Structures for Incremental Join Indices

Computer Science

Master’s thesis June 8, 2020 51 pages + 6 appendix pages

join indices, persistent data structure, in-memory database, OLAP, data warehouse, RDBMS

Join indices are used in relational databases to make join operations faster. Join indices essentially
materialise the results of join operations and so accrue maintenance cost, which makes them more
suitable for use cases where modifications are rare and joins are performed frequently. To make the
maintenance cost lower incrementally updating existing indices is to be preferred.

The usage of persistent data structures for the join indices were explored. Motivation for this
research was the ability of persistent data structures to construct multiple partially different versions
of the same data structure memory efficiently. This is useful, because there can exist different
versions of join indices simultaneously due to usage of multi-version concurrency control (MVCC)
in a database. The techniques used in Relaxed Radix Balanced Trees (RRB-Trees) persistent
data structure were found promising, but none of the popular implementations were found directly
suitable for the use case.

This exploration was done from the context of a particular proprietary embedded in-memory colum-
nar multidimensional database called FastormDB developed by RELEX Solutions. This focused
the research into Java Virtual Machine (JVM) based data structures as the implementation of Fas-
tormDB is in Java. Multiple persistent data-structures made for the thesis and ones from Scala,
Clojure and Paguro were evaluated with Java Microbenchmark Harness (JMH) and Java Object
Layout (JOL) based benchmarks and their results analysed via visualisations.

ACM Computing Classification System (CCS):
Information systems → Data management systems → Data structures
Theory of computation→ Design and analysis of algorithms→ Streaming, sublinear and near linear
time algorithms

Tiedekunta — Fakultet — Faculty Laitos — Institution — Department

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Oppiaine — Läroämne — Subject

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

ii

Contents

1 Introduction 1

1.1 Problem statement . 1

2 Design decisions 2

2.1 Transaction management . 2

2.1.1 Multi-version concurrency control 3

2.1.2 Isolation . 4

2.1.3 Version storage . 4

2.1.4 Garbage collection . 6

2.1.5 Time travel . 6

2.1.6 Index management . 6

2.2 Columnarity . 7

2.3 Cube . 9

3 Implementation details 9

3.1 Fragments . 9

3.2 Live mask . 10

3.3 Mappings . 10

4 Data structures 13

4.1 Persistent data structures . 13

4.2 Prior art . 14

4.2.1 Hash Array Mapped Trie . 14

4.2.2 Compressed Hash-Array Mapped Prefix-tree 18

4.2.3 Relaxed Radix Balanced Tree 19

4.3 Implementations . 21

4.3.1 Int HAMT . 21

4.3.2 Int CHAMP . 21

4.3.3 Int Implicit Key HAMT . 22

4.3.4 Int RB-Tree . 22

4.3.5 Int RB-Tree Redux . 22

5 Evaluation 22

iii

5.1 Generic data structures . 28

5.2 Specialized data structures . 32

5.3 Results in context . 41

6 Conclusion 46

6.1 Future work . 47

References 48

A Appendix 52

A.1 Comparing radix tree implementations 52

A.2 Comparing radix tree implementations with more precise benchmarks 53

A.3 Comparing Scala’s int maps . 54

A.4 Comparing Scala’s int maps without logarithmic scale 55

A.5 Comparing persistence overhead of data structures filled with num-
bers [0, n] . 56

A.6 Comparing effects of branching factor for implementation of HAMT
made for this thesis . 57

1

1 Introduction

Efficient database management systems (DBMS), which are used to access, store and
modify information in a database, are a vital part of today’s businesses for handling
the large amount of data generated by customers and internal systems alike. There
exists two main ways of using a database: By doing a huge amount of write-biased
queries that touch only a small part of the data, called on-line transaction processing
(OLTP); and by doing a relatively small amount of analytical queries, which are
read focused, that touch a large portion of the stored data called on-line analytical
processing (OLAP). Both of these methods have important business value. The
queries caused by single customer actions are predominately of the OLTP kind,
because their actions affect only the data related to their identity or the identity of
groups they are in. Queries that calculate aggregates for analytic purposes over the
data generated by the customers are of an OLAP nature, because they do not make
modifications and just read a subset of the data for large portions of customers [1].

Historically, relational database management systems (RDBMS) have been disk-
based. However, due to the slowness of disk versus memory and the recent growth
in size and reduction in price of memory, new RDBMSs are mostly in-memory
based [2]. This change has also highlighted the benefits of columnar memory layout
versus traditional row based memory layout especially but not limited to OLAP
usage [1].

To ensure the efficiency of a RDBMS there are architecture-defining design decisions
and smaller scale decisions, like what algorithms and data structures are used, to
make. This thesis first goes through the larger-scale design decisions, such as dif-
ferent aspects of transaction management and data layout of a particular database,
simultaneously giving context to them from the wider database ecosystem. After
this, it focuses on the specific sub-problem of join indices and how constructing
them could be improved from the current state of the specific database. Given
this specific problem, multiple different data structures both existing and new ones
specifically created for the thesis are evaluated empirically using benchmarks, to ex-
plore how persistent data structures fit into the picture from both a time-efficiency
and memory-usage perspective. Conclusions and reflections are then offered.

1.1 Problem statement

This thesis tries to help in answering the question of how to do incremental up-
dating of join indices for a proprietary RDBMS developed by RELEX Solutions,
henceforth referred to as FastormDB, an embedded in-memory columnar multidi-
mensional database the development of which began in 2005. FastormDB is the
basis of RELEX – the supply chain management software of RELEX Solutions. It
is used for storing data received from customers and for doing in-memory analytical
queries on it, producing a variety of reports used to improve the efficiency of supply
chain management among other business critical uses [3].

2

In FastormDB there are two kinds of tables: clustered and non-clustered. The data
in clustered tables is ordered by one of the columns making it fast to index and to
do range queries based on that column. For primary keys internal identifiers are
used in FastormDB. Internal identifiers are based on where in the internal data
structure the data is stored, which is in contrast to external identifiers which would
be generated and would need to be stored explicitly. Because the order of rows inside
a clustered table can change when rows are inserted middle of it, they do not have
stable internal identifiers. This means that there cannot be foreign key references
that point to clustered tables. However, there can be foreign key references from
clustered to non-clustered tables and between non-clustered tables. Clustered tables
are used for the biggest tables in FastormDB and are, in production use, in the
order of 10 billion rows large. Non-clustered tables, which are the majority, are in
the order of at most a billion rows. To handle efficient foreign key to primary key
joining between tables, join indices are constructed.

In the current implementation these join indices are completely reconstructed on
access when the relevant data has changed. The reconstruction is slow, but this
scheme works well enough in the common use case where the customer sends their
data once or a few times per night for batch processing. However, as the world moves
to the direction of more and more online shopping, there is no longer a pronounced
daily cycle and so the frequency of transactions grows. This requires rethinking the
construction of join indices, to be more incremental, in order to make the process
faster.

The aim of the thesis is to understand join indices, analyse existing persistent data
structures and their implementation details, and to evaluate the suitability of exist-
ing persistent data structures for join indices from performance point of view.

2 Design decisions

This section will explain important design decisions made in FastormDB, how they
relate to the wider RDBMS ecosystem, and what implications they have for join
indices.

2.1 Transaction management

One of the key design decisions for RDBMSs is how transaction management is
done. Transaction management is the way in which a database handles concurrent
insertions, modifications and removals to the contents of a database correctly and
efficiently. When designing the transaction management part of a database there
are several key design decisions [4]:

1. concurrency control protocol

2. version storage

3

lwrite tstart tend · · ·

l′write t′start t′end · · ·

Figure 1: The structure of version chain of tuples in MVCC.

3. garbage collection

4. index management

In the following we will discuss all of these four aspects, as well as other tightly
related concepts.

2.1.1 Multi-version concurrency control

FastormDB implements multi-version concurrency control (MVCC), which is the
most widely used concurrency control for modern databases [4]. Its selection has
wide reaching implications on the rest of the design. The basic idea of MVCC is to
allow multiple physical versions of a single logical row (tuple) to exist simultaneously
in the database. When an update is performed, the database creates new versions for
the affected tuples. When a read is done, the database will fetch the newest version of
the tuple that the transaction can see in logical time. This allows read-only queries to
happen concurrently with mixed read-write queries, improving throughput. Having
old versions of tuples available also provides opportunities for implementing time
travel, in which a historical state of the database can be inspected and operated
on. In MVCC each transaction has an unique timestamp which gives rise to a
before/after ordering between the transaction start times. For each version of a
tuple there is, at a minimum, the following metadata: A write latch, a start and
end timestamp and a pointer to the previous or next version of the tuple depending
on the variant of MVCC in use. Figure 1 demonstrates this metadata.

The data of each version of a tuple is valid only for the time between its start and
end timestamps. When a transaction wants to modify a tuple it takes that tuple’s
newest version’s write latch, after which it creates a new version that contains the
modified data. The start timestamp of that new version is set to the timestamp
of the transaction that created it and the end timestamp is set to infinity, marking
the new version valid only after the current transaction. The pointer field inside
that version is also updated, to make it part of the version chain. The previous
versions, whose latch the transaction is still holding, end timestamp is updated to
the transaction’s timestamp marking it valid until the new version. Finally, when it
is time to commit, the transaction gives up the write latch, making its modifications
visible to all other transactions.

In most variations of MVCC there is no need for a read latch, though the write

4

latches have to be respected to avoid reading partially updated data, as the reads
always happen to a version that is valid for the current transaction and writes do not
modify existing versions data, but instead create new ones. There exists multiple
different variants of MVCC that handle conflicting writes and reads differently and
have different performance characteristics such as MVTO, MVOCC, MV2PL and
serialization certifiers [4].

2.1.2 Isolation

Isolation tells how concurrent transactions are allowed to perceive each other. Iso-
lation is determined by so-called isolation levels, each of which guarantee absence
of a particular set of phenomena [7]. These phenomenon have been formalized dif-
ferently in different papers, but in general they are things like dirty read in which a
transaction reads another running transaction’s modifications which is then aborted
leading to a transaction relying on non-existent information [7][6]. The strongest
isolation level is so-called strict serializability [8], which ensures the real-time order-
ing of non-overlapping transactions and exhibits no phenomena. A system based
on long read and write locks supports such a guarantee, but multi-version schemes
may not without extra effort [9]. By default MVCC provides snapshot isolation,
which means that when a transaction starts, it can see a consistent snapshot of the
database as it is at that moment: all changes made by previous transactions are
seen and no changes of other active transactions will be seen. For it, there is first-
committer-wins policy, which means that if two active transactions modify the same
tuple, then the first of them to commit is successful and the other is rolled back and
has to try again. See Figure 2 for relationships between different isolation levels.
The database system can also provide different isolation guarantees for running and
committed transactions, single tuples and predicates, and the database system can
support running different transactions with different isolation levels, giving lots of
choice for the database designer [5].

2.1.3 Version storage

The storage of tuples in the version chain can be implemented in different ways.
One option is to store all of them in the same physical storage. The problem
with this approach is that the physical storage can become fragmented, where old
infrequently accessed versions and new versions end up next to each other, slowing
database access. Another option is to have a separate physical storage for the
newest version and another for all of the old versions. The problem with this is
approach is that the performance of accessing an older version is degraded, which
can negatively affect long running transactions. It is also possible to, instead of
multiple versions of tuples, create deltas based on the modifications and store those
separately. This makes modifications that edit only parts of the tuple fast, but
degrades read performance [4].

5

Figure 2: Relative strengths of isolation levels, where arrow points to the stronger
one. Codes in parenthesis relates to the formalization in [5], the source of the figure.
See [6] for a shorter proceedings version of the formalization.

6

2.1.4 Garbage collection

If stale versions in the version chain are left on the physical storage, the performance
of database operations start to degrade. The strength of degradation effect depends
on the chosen version storage, but in general these stale versions have to be garbage
collected. To detect the stale versions, their timestamps can be compared with the
lowest timestamp of the active transactions to figure out if those versions can still
be seen by any of them. With long running transactions this is not efficient as there
might be versions in the middle that cannot actually be seen by any transactions,
but which are not noticed by this scheme. To fix this, interval-based detection can
be used, where interval intersection problem can be solved to find those versions
that are not visible to active transactions. If it is also known a priori which tables
are accessed by transactions, then this information can be used to get even more
precise information on the stale versions. Garbage collection can also happen at
different granularities: versions can be collected separately or grouped based on the
transaction that created them [10].

2.1.5 Time travel

The idea of time travel is to provide a way to inspect and work on a historical version
of the database. This is useful for determining what has happened to the database in
the past, generating reports on the usage of the database, recovering from mistakes
and other operations that need previous versions of data. Supporting time travel
increases memory or disk usage as the previous data has to be saved somewhere.
Time travel can also degrade the efficiency of all queries and time-travelling queries
are usually slower themselves as they are not the usual use case to optimize for.
In MVCC, time travel can be implemented by not doing garbage collection and
accessing the versions of tuples that are valid for the wanted timestamp. To avoid
performance degradation old versions can be persisted to disk.

2.1.6 Index management

An index is a data structure used to exchange memory usage for access speed to
speed up different operations in a database. For a single table there are two kinds
of indices: primary and secondary indices. These can be thought as index in the
back of a book, which can be used to quickly locate information inside the book.
There can be only one primary index which determines the logical ordering of data
inside a table1. The actual physical order might be different depending on imple-
mentation, but it should still optimize the access of the primary index. There can
be multiple secondary indices as they are completely separate data structures to a
table. However, they need extra effort to keep them synced up to the state of their

1These are also called clustered indices in the literature and secondary indices are called non-
clustered ones. [11]

7

table, slowing modification operations. These primary indices are used for clustered
tables in FastormDB.

In MVCC these indices tell about the existence of a version of a tuple, but not which
of the versions, if any, the transaction can actually see and so the transaction has
to go through the version chain itself to figure this out. This means that indices do
not exhibit false negatives, where transaction would miss a data in table, but there
can be false positives, where the transaction does extra work to figure out that the
version chain does not actually contain anything it can see. [4]

There can also exist so-called join indices. A join index is an index between two
tables that essentially caches the result of a join operation. This makes future join
operations significantly faster in exchange of using more memory and needing main-
tenance. The maintenance overhead makes them more suited to OLAP situations
where modifications are relatively rare [11]. It is also possible construct join indices
between two tables that are connected indirectly via a third table [12].

2.2 Columnarity

Whereas in traditional row-oriented databases the physical storage stores rows se-
quentially after each other, in a columnar database the data of each column is laid
out separately in long sequences. This difference between row-oriented and colum-
nar data layout is similar to the difference between an array of structures (AoS) and
a structure of arrays (SoA). An array of structures is familiar from object oriented
programming (OOP): to represent many structures we create an array of objects.
In a structure of arrays we instead have only single object that contains arrays for
each field of the object that we want to represent. For these arrays it holds that the
value in nth index corresponds to the value of the nth object’s field that the array is
representing [13]. Code examples for these can found in Figure 3 and their memory
layouts in Figure 4.

SoA may initially seem unintuitive, however it can provide performance benefits in
different ways:

1. If one is interested in data contained in only a few of the fields, we do not
need to use the CPU cache for the data of other fields, improving our cache
utilisation [13].

2. SoA allows us to play representational tricks such as using a (compressed) bit
vector for the alive field in the example of Figure 3, run-length encoding or
using integer codes for the age field [14].

3. If the data is stored inline it is possible to perform SIMD operations on it [15].

These benefits can be attained in OLAP workloads: usually analytical queries are
interested only in some of the columns. This means that we get the promised cache
utilisation boost. Analytical queries are also interested on big portions of values on

8

struct Person {
name: String,
age: u32,
alive: bool,

}

struct AoS {
people: Vec<Person>,

}

(a) An example of AoS

struct SoA {
name: Vec<String>,
age: Vec<u32>,
alive: Vec<bool>,

}

(b) An example of SoA

Figure 3: An example of encoding a list of people as both an array of structures
(AoS) and a structure of arrays (SoA)

len cap

31 true 92 true · · ·

(a) Memory layout of AoS

len cap len cap len cap

· · · 31 92 · · · true true · · ·

(b) Memory layout of SoA

Figure 4: Memory layouts of examples of Figure 3. len and cap are the length and
capacity fields of the vector, respectively.

9

those columns, negating possible negative effects of compression on random access.
Furthermore, operations might be able to be used on the compressed data making
them even more efficient [1]. See [16] for analysis on compression techniques used in
FastormDB.

2.3 Cube

Furthermore, for certain types of OLAP workloads it is beneficial to organize data
into multidimensional tables where two of the dimensions are standard ones: at-
tributes and rows. One good use for the third dimension is as time axis, as data is
often temporal. In data warehouse environments the tables are often arranged to so-
called star schema, where there exists one fact table in the center that is connected
to dimension tables around it [17]. This schema allows building cubes efficiently:
the cells of a cube contain measures derived from the fact table and its dimensions
are derived from the dimension tables.

Multidimensional databases can be formalized in two different ways: relationally
and cubically. The relational formalization is the more classical approach, where
relational algebra is extended to support multidimensional tables. The cubical view
is a more modern approach, where tables are thought of as hypercubes with a set
of operations to split and carve cubes into new ones, operations to join cubes to-
gether, and for calculating aggregates over cubes [18]. FastormDB takes the cubical
approach and defines a set of operations to manipulate its cubes.

3 Implementation details

In this section we will discuss a few implementation details of FastormDB that affect
the implementation of join indices. First we explain how FastormDB implements
MVCC with columnar layout using fragments, then how the cube operations are
implemented using live masks and finally explain how join indices are implemented
as so-called mappings.

3.1 Fragments

In MVCC, when a tuple is modified a new version of it is created. However, with
columnar layout, tuples are not stored contiguously and so copying tuples cannot
be directly done. One could create similar version chain for each column, but as
columns are large copying them for each modification would be inefficient. Fastor-
mDB addresses this problem by splitting columns into so-called fragments that are
stored separately. Now, to address a single row we split its identifier into two parts:
one which is used to choose the right fragment and a second one to get the value
from right row of that fragment. Now each fragment can be thought of similarly as
a tuple from MVCCs point of view.

10

3.2 Live mask

Within a query there exists a live mask for each table in the database. A live mask
is a set of rows that are active for a given transaction – the rows that the query is
interested in. Each live mask starts with all of the rows active. As a query proceeds,
different operators can be used to carve pieces from the cube – to kill one or more
live rows from the live mask. When joining two tables together, the resulting live
mask has to be calculated. When the desired subset of rows are active, aggregation
operations can be performed on the active rows in the live mask.

id name
1 quivira
2 paititi
3 lanka
4 la canela

(a) location

id product-id location-id
1 1 1
2 1 2
3 2 1
4 2 3
5 3 2
6 3 4

(b) product_location

id name group-id
1 banana 1
2 raspberry 2
3 bilberry 2

(c) product

Figure 5: Derivation of a live mask for a query that selects from the location
table and joins it with the product table via the product_location table. Rows
highlighted with a color are active.

For example, if we select the rows from the table location in Figure 5 where the
location.name equals either "quivira" or "lanka", the live mask for it is {1, 3}. Now
if we join with the table product_location by product.id = product_location
.product-id, the live mask for the join will be {1, 3, 4}. Further joining with the
product table by product_location.location-id = location.id will produce a
live mask {1, 2}. To carry out this joining efficiently we will introduce the concept
of mappings, that works as our join indices, in the next section.

3.3 Mappings

Let us focus on a database that adheres to the schema specified in the Figure 6.
Given such a database, let us assume that we have somehow obtained a product_
location.id. Now it is quite easy to find which product.id is associated with
it: we can just look at the column product_location.product-id at the position
that corresponds to the row of our id. The other direction is also easily obtained: to
find which product_location.ids are associated with product.id we can perform
a linear scan through the product_location.product-id column.

There exists a clear performance asymmetry between these directions. To reduce
this difference, we introduce the concept of mappings. We associate each column
containing references to another table with two different mappings, one for each
direction: a many-to-one mapping for the product_location.id → product.id

11

GROUP

id name

PRODUCT

id name group-id

PRODUCT_LOCATION

id product-id location-id

LOCATION

id name

Figure 6: Simple example of database schema

direction and a one-to-many mapping for the product.id→ product_location.id
direction. Concretely, a mapping is a data structure, a map, that describes how the
foreign keys stored in a reference column are connected with the primary keys of
another table.

We now know how to connect two tables directly with a mapping. But what if
we want to know which group.id is associated with our product_location.id?
There exists no direct mappings between the product_location and group ta-
bles. However, there exists the following two direct mappings: The many-to-one
mapping f : product_location.id → product.id and the many-to-one mapping
g : product.id → group.id. From these two mappings we can now construct the
composite mapping g◦f : product_location.id→ group.id. Because both of the
constituents of the composition are many-to-one mappings, the resulting composite
mapping is also many-to-one as each of the mappings produce only a single identifier
for given an input. Concretely, this creates new a map data structure that merges
the map data structures of the mappings f and g.

To see that we can compose with one-to-many mappings there are two cases to con-
sider: pre- and post-composition. If we pre-compose with a one-to-many mapping
we need to apply the other mapping to all ids in the set produced by it. This results
either in a set of ids or in a set of sets of ids. The set of sets can be then flattened
into set of ids with a operation called join [19]. Post-composing with a one-to-many
mapping to a many-to-one mapping is simple: The one-to-many mapping can be
just called with the result of the many-to-one mapping given as a parameter. Be-
cause a one-to-many mapping produces a set of ids, composing with it also produces

12

a set of ids and so the composite mapping is also a one-to-many mapping.

For example, if we know a specific group.id and we want to find out which of
the product_location.ids correspond with it, we can first use the one-to-many
mapping g−1 : group.id → set<product.id> to get a set of product.ids, where
g−1 is the reverse2 of the mapping g. After that we can use the one-to-many mapping
f−1 : product.id→ set<product_location.id> on every identifier in that set to
get a set of sets of product_location.ids, which we can then flatten, producing
the final composite mapping f−1 ◦ g−1 : group.id→ set<product_location.id>.

GROUP

id name

PRODUCT

id name group-id

GROUP_LOCATION

id group-id location-id

PRODUCT_LOCATION

id product-id location-id

LOCATION

id name

WEATHER_OBSERVATION

id location-id temperature timestamp

Figure 7: Example of schema with multiple paths

Mappings can be also thought of as the materialization of paths between tables for
a certain state of the database in question. A path is a way of getting from one
table to another via reference columns in the database schema. In a schema there
can exist two or more such paths between two tables. To resolve a mapping between
two tables with multiple paths between them, first all mappings for available paths
are constructed. After doing this the mappings can be combined into single one
by either unioning or intersecting the sets that the ids are mapped into, where the
results of many-to-one mappings are thought of as singleton sets.

2Note that g−1 ◦ g 6= id 6= g ◦ g−1 where id(x) = x and so •−1 is not an inverse operation.

13

For example, in the schema described in the Figure 7 there exists two paths from the
group table to the weather_observation table: One that goes via the product_
location table and another one that goes via the group_location table. To cal-
culate a mapping f : group.id→ set<weather_observation.id> for a particular
state of a database adhering to the schema, we first have to calculate the mappings
fproduct_location, fgroup_location : group.id → set<weather_observation.id>. Given
these two mappings, we can then define that for all x ∈ group.id either f(x) =
fproduct_location(x) ∪ fgroup_location(x) or f(x) = fproduct_location(x) ∩ fgroup_location(x).
Notice how the mappings that correspond to each path share the same postfix map-
ping location.id→ weather_observation.id. Besides postfixes, paths can share
other portions and the mappings corresponding to those parts can be calculated only
once and then memoized.

4 Data structures

In the current implementation of the FastormDB these mappings are calculated
from scratch when a transaction modifies a relevant table. This is tolerable if only
one or a few transactions are committed in a night. As more transactions are being
committed in a day, the calculation of mappings needs to be made faster. One way
to do this would be to make the calculation incremental and based on the previous
mapping, minimizing the amount of work required to be done.

Currently, the data structure used for mappings is an array of n elements, indexed
by an integer key i. The data structure grows dynamically by either doubling in
size, if the key is between n and 2n, to avoid performance degradation or by growing
up to i if i > 2n. This provides maximal random access performance, for values
that exist, assuming no deletes are being done. When the size of the database
tables grow, because of the efficient compression used for them, mappings start to
account for a relatively large percentage of the memory usage. As the frequency of
transactions grows, there might be multiple transactions active simultaneously and
so there could exist multiple mappings simultaneously too. Therefore, minimizing
the memory usage effect of multiple mappings existing simultaneously should also
be pursued.

4.1 Persistent data structures

Persistence in persistent data structures does not mean persisting the data structure
to disk or other long-lived storage medium. Instead it means that the data structure
is immutable in nature: one cannot directly modify it. Any operations that would
traditionally do modifications, such as insertions and deletions, instead create a
brand new data structure with the wanted operation applied. This means that,
if we have a pointer to such a data structure, we know that nobody is going to
modify its structure without our knowledge. This further means that one can easily
access the data structure in parallel without causing data races because nobody is

14

modifying it simultaneously.

There are different levels of persistence, giving rise to partially, fully and confluently
persistent data structures. Partial persistence allows read operations to past ver-
sions of the data structure, but write operations only for the newest version. Fully
persistent data structures allow read and write operations to all past and present
versions of the data structure. Confluent persistence additionally allows melding or
merging different versions together to form a new version of the data structure [20].
Data structures that are not persistent are called ephemeral. In this thesis we will
concentrate on fully persistent map data structures, though many of them are in
fact confluently persistent as they support join operations.

A naive way to make a data structure fully persistent is to copy it each time a mod-
ification would be made and then apply the changes to that copy instead. However,
just creating copy of the data structure to create persistence is wasteful. Because
we know that nobody is going to modify the data structure under us, we can reuse
parts of it in the new one, thus potentially making modification operations cheap
from both a memory and time perspective. This reuse is called structural sharing.

4.2 Prior art

Many modern persistent data structures are based on the ideas of Array Mapped
Tries (AMT) [21]. The basic idea in them is of a trie in which the key is partitioned
and each part is used to walk down a tree structure, with the actual data is stored in
leaves. For Hash Array Mapped Tries (HAMT) [22], the key is hashed and then parts
of the hash are used for the descent. HAMT can be used to implement either set or
map data structures, which only differ on the data stored in leaves: only the keys
or a key value pairs, respectively. The Compressed Hash-Array Mapped Prefix-tree
(CHAMP) [23] is a JVM-specific optimized version of HAMT in which data is also
stored in the trunk of the trie. The Relaxed Radix Balanced Tree (RRB-Tree) [24] is
a persistent vector implemented using AMT that can avoid the overhead of HAMT
by assuming that all indices before last index have values. This thesis concentrates
on JVM implementations of these data structures. We now describe them in more
detail.

4.2.1 Hash Array Mapped Trie

The explanation of HAMT in this section is as a set data structure for ease of
exposition. Expanding the idea to a map data structure is just a matter of storing
both keys and values in the leaves.

15

Let h be a hash function that maps keys k1, . . . , k10 to 8 bit hashes.

h(k1) := 10 00 00 002 h(k6) := 00 01 11 002

h(k2) := 10 01 00 002 h(k7) := 00 10 00 102

h(k3) := 00 11 00 002 h(k8) := 11 00 01 102

h(k4) := 01 00 01 002 h(k9) := 00 00 10 102

h(k5) := 00 11 01 002 h(k10) := 00 00 11 102

Now HAMT with branching factor 4 looks like:

0101

1011

1011 k1 k2 k3 1001 k4 k5 0010 k6

1111 k7 k8 k9 k10

Figure 8: An example of HAMT data structure.

As can be seen from Figure 8, each time the postfixes of the hash code match, a new
node is created for them, which disambiguates them. To find a key from the data
structure we walk down from the root by taking the two least significant bits of the
hash of the key and using them to select which of the four children to descend to
until eventually a leaf node is reached. For example, if we want to find k5 we first
look at the 002 = 0 index of the root and from there we find a pointer to a new trunk
node. We now look, based on the next two bits, at the 012 = 1 index of the array of
that trunk node. We have now encountered a pointer to a leaf node and if the key
were looking for exists, it should reside in 112 = 3 index of the array and in this case
it indeed does. As we can see from the example, there has to be a way to distinguish
whether the node is a trunk or a leaf node. This can be either done by adding an
extra bit of metadata, by using sum types [25] which are also called tagged unions
or polymorphism [26] if the used programming language supports such features. In
practical implementations, the branching factor of the trie is kept as a power of
two to allow doing fast modulus using bit mask operation, as the following equation
holds:

a mod 2m = a & (2m − 1)

for all a,m ∈ N, where & is the bitwise and-operation.

In our example, on each node a bit mask of 4 bits is stored which indicates which
of the children are present, one bit for each children where bits from the lowest to
highest order corresponds to children from the first to last child respectively. Using

16

this mask there is no need to actually allocate four slots worth of memory for each
node and the previous trie can actually be represented in memory as follows:

0101

1011

1011 k1 k2 k3 1001 k4 k5 0010 k6

1111 k7 k8 k9 k10

Figure 9: Memory representation of the example HAMT data structure.

The index of each child can then be efficiently recovered using the population count
instruction popcnt, which calculates the number of 1 bits in an integer, by the
following formula.

Definition 4.1. Given a bit mask b ∈ [0, 2n) where n ∈ N and an index i ∈ [0, n],
the corresponding index in an array packed using the bit set is equal to

popcnt(b & mask)− 1

where mask := 2i − 1.

Based on the bit mask of the examples root node we know that there are values for
the first and the third index. To determine where in the compacted array these two
are, we can do the following for the first index

mask := 21 − 1 = 12

popcnt(01012 & 12)− 1 = popcnt(12)− 1 = 0

and the following for the third index

mask := 23 − 1 = 1112

popcnt(01012 & 1112)− 1 = popcnt(1012)− 1 = 1.

When doing modifications to HAMT, only the nodes on the path from the root to
the target of the modification need to be modified to update pointers in them. This
means that when used as a persistent data structure only that path needs to be
copied. This is illustrated in Figure 10. This means that operations on the trie
are O(logb n) from both a memory and time perspective, where b is the branching
factor, assuming that the hashing distributes entries evenly and so ensures that the

17

trie is balanced. The most commonly used branching factor is 32, which is chosen
as a good trade off between cache-line usage and overhead of copying [27].

0101

1111

1000 k5.5

0101

1011

1011 k1 k2 k3 1001 k4 k5 0010 k6

1111 k7 k8 k9 k10

Figure 10: An example of adding h(k5.5) = 01 11 10 002 to the previous example.

Because the hash code is of fixed length, there exists a maximum depth for the
HAMT data structure. In Java and other JVM languages, a hash code is tradition-
ally a 32-bit integer which means that the maximum depth with a branching factor
of 32 is d32/ log2 32e = 7. Because a hash code has a fixed bit length it is possible to
encounter full hash collisions, where two keys hash to exactly the same hash code.
In [22] it is claimed that one needs on average log2 n bits to distinguish n uniformly
distributed hash codes. However from the Birthday Principle [28] we know that for
the minimal number of keys n such that the probability of collision is at least 50%
it holds that n ∈ {d

√
2 · 2b · ln 2e, d

√
2 · 2b · ln 2e+ 1}. From this fact we can derive

the following bounds:

n ≤ d
√
2 · 2b · ln 2e+ 1

n ≤
√
2b+1 · ln 2 + 2

(n− 2)2 ≤ 2b+1 · ln 2

2b+1 ≥ (n− 2)2

ln 2

b ≥ log2(
(n− 2)2

ln 2
)− 1

b ≥ 2 log2(n− 2)− log2(ln 2)− 1

b ≥ 2 log2(n− 2)− 1

18

d
√
2 · 2b · ln 2e ≤ n
√
2b+1 · ln 2 ≤ n

2b+1 ≤ n2

ln 2

b ≤ log2
n2

ln 2
− 1

b ≤ 2 log2 n− log2(ln 2)− 1

b ≤ 2 log2 n

assuming n > 2.

Combining the previous bounds we get that

2 log2(n− 2)− 1 ≤ b ≤ 2 log2 n,

where b is the length of hash codes in bits and n is the number of hash codes. These
bounds do imply you need O(log2 n) bits on average for distinguishing n hash keys,
but the conclusion drawn from this that the collisions are rare in practice is incorrect.
For example, in the case of the largest benchmarks performed in this thesis where
n = 223, one needs

2 log2(2
23 − 2)− 1 ≤ b ≤ 2 log2(2

23)

45.999999312 / b ≤ 46

b = 46

bits on average for distinguishing all of the keys which is a twice as much compared
to log2 2

23 = 23 derived from more naive analysis. Furthermore, the bounds tell us
that we can expect there to be already at least some collisions when n & 216 for a
32-bit hash code. So handling collisions is not only of theoretical interest. One way
to handle them is to rehash the key to get more hash bits and use those for continued
descending. The more common collision handling strategy is to have a special type
of a node that stores a linked list or an array that contains all the collided entries.

4.2.2 Compressed Hash-Array Mapped Prefix-tree

The Compressed Hash-Array Mapped Prefix-tree (CHAMP) is a JVM optimized
version of HAMT [23]. Its main idea is to store keys and values not only in the leaves
of the trie, but also in the trunk, reducing memory usage and improving iteration
speed. This idea was already present in [22], but CHAMP improves upon it and
optimizes it for the JVM. The main difference in CHAMP is to improve memory
usage by using two bit maps: one for children and another for the internal key and
value storage. If we laid out the internal storage and the children consecutively from
front to back, then to be able to index the children we would need to first calculate
how many bits are set in the first mask and then use that and the second bit mask
to index into it. To sidestep this, CHAMP uses the fact that arrays in Java record

19

their lengths to index children from back to front by subtracting the number of set
bits from the length. These layouts are demonstrated in Figure 11.

1000 0011 k6

0000 1011 k1 k2 k3 0000 1001 k4 k5

(a) Naive layout

1000 0011 k6

0000 1011 k1 k2 k3 0000 1001 k4 k5

(b) Optimized layout

Figure 11: Alternative CHAMP layouts with branching factor 4.

4.2.3 Relaxed Radix Balanced Tree

A Relaxed Radix Balanced Tree (RRB-Tree) uses the idea of AMT in a different way
to create a persistent vector data structure [24][27]. Construction of an RRB-Tree
starts from a Radix Balanced Tree (RB-Tree) with branching factor 2b. An RB-Tree
is a complete 2b-ary tree whose non-leaf root has at least two children and whose
leaves are the same distance away from the root. For a m-ary tree T we can think of
T as an array of its children which can be indexed with Ti, for all 0 ≤ i < |T | ≤ m.

Definition 4.2. Full m-ary tree.
Let T be a m-ary tree.

full(T) := > if |T | = 0, and

full(T) := (|T | = m) ∧
|T |−1∧
i=0

full(Ti) if |T | > 0.

Definition 4.3. Complete m-ary tree.
Let T be a m-ary tree.

complete(T) := > if |T | = 0, and

complete(T) := complete(T|T |−1) ∧
|T |−2∧
i=0

full(Ti) if |T | > 0.

20

What this means is that all of the nodes of a RB-Tree are filled up to the maximum
size of 2b except for the rightmost nodes starting from the root.

Figure 12 illustrates the difference between a HAMT-like radix tree and an RB-
Tree. If one used RB-Tree-like indexing for HAMT, the trie would always need
to have maximum depth, because one cannot know a priori the depth needed to
disambiguate all n hashes.

v1 v3

v0 v4 v2

(a) A HAMT like radix tree

v0 v1 v2 v3 v4

(b) A RB-Tree

Figure 12: Radix trees with branching factor 2 for the array v0v1...v4 where the
subscript is used as a key.

Because a full 2b-ary tree with n leaves all hanging the same depth is perfect, its
height is exactly log2b n. Consider an RB-Tree T with n leaves. Let h′ be the height
of one of the perfect children of the root node of T . Now because the leaves of T are
of the same depth, the height of T has to be h′ + 1. The perfect subtree has always
less than n children, because the root node has at least two children. In the other
extreme when the tree is perfect itself and so has 2b children, the perfect subtree
has

n

2b
children. These give bounds for the height of the tree:

log2b
n

2b
+ 1 ≤ h < log2b n+ 1,

log2b n ≤ h < log2b n+ 1.

And so using the definition of ceiling we get that h = dlog2b ne. Now that we know
the height of the tree we can use h of the b-bit sized parts of the key for descending
the tree. When we descended to the ith level we use the (h− i− 1)th part to decide
which children to continue descending to.

RRB-Tree relaxes the previously described RB-Tree to support efficient concatena-
tion while preserving the time complexities of other operations. This relaxation adds
a special node which can have less than 2b children. When such node is encountered
radix approach cannot directly be used to descend forwards. Instead a separate list
of cumulative sizes of subtrees is maintained, which can be then binary searched

21

if large enough or linearly scanned if small enough to find the correct children to
descend to. When two RRB-Trees are concatenated the nodes of the rightmost
branches of the first tree will be merged to the nodes of the leftmost branches of the
second tree. This merging is the only way these smaller nodes can be introduced
into the data structure. So if no concatenations are made, there are no performance
differences between RB and RRB-Trees.

4.3 Implementations

In the following sections we will describe the implementation details of data struc-
tures3 that were implemented for this thesis. They are implementations of previously
described data structures specialized to support 32-bit integers. Only insertion, ac-
cess and iteration operations were implemented.

4.3.1 Int HAMT

Implementations of HAMT were first programmed in Kotlin and then ported to
Java. Because the keys are 32-bit signed integers and the hash code is a 32-bit
integer, hashing was skipped in a similar way to how some implementations of
C++ std::hash4 operate. This does mean that an attacker can easily find hash
collisions, but in our use case this should not be a problem as the access to the system
is restricted and the user cannot directly affect which keys are used. Because no
hashing is done it also means that there will not be any hash collisions and handling
of them can be ignored in the implementations. To distinguish trunk and leaf nodes
polymorphism via sub-classing was used in both languages. However, in Kotlin
this was done using sealed class5, which is Kotlin’s version of union type, that
restricts the number of sub-classes to an amount known at compile time. A leaf
node contains, in addition to the bit mask, two arrays: one integer array for the
keys and an object array of the same length for the values. This split was made to
avoid having to box the integer keys.

4.3.2 Int CHAMP

Implementations of CHAMP were first programmed in Kotlin and then ported to
Java. Similarly to Int HAMT, hashing of keys was skipped. Because every node can
carry key-value payload only a single type of node was used. However, this means
that the integer keys have to be boxed which means more memory is used for the
keys.

3The implementations can be found at https://github.com/WaDelma/thrive. The repository
contains also raw benchmark results and script used to generate graphs in the thesis.

4https://en.cppreference.com/w/cpp/utility/hash#Notes
5https://kotlinlang.org/docs/reference/sealed-classes.html

https://github.com/WaDelma/thrive
https://en.cppreference.com/w/cpp/utility/hash#Notes
https://kotlinlang.org/docs/reference/sealed-classes.html

22

4.3.3 Int Implicit Key HAMT

The idea of Int Implicit Key HAMT was to avoid storing the key inside the data
structure and instead save it implicitly in the descend path. The problem then is
that this causes there to always be maximum number of pointer chases making it
both slow and more memory consuming.

4.3.4 Int RB-Tree

Implementation of the RB-Tree was programmed in Java. This implementation
supports only non-negative integers and so essentially only supports 31-bit integers.
Because we know the height of the tree, the data structure does not need different
types of nodes and instead the leaves can be distinguished by how deep we have de-
scended. The RRB-Tree was not implemented as it mainly affects the data structure
if concatenations are done.

4.3.5 Int RB-Tree Redux

A variant of the Int RB-Tree was implemented using Java. The idea was for it to
use a branching factor of 32 for trunk nodes and for leaf nodes to use branching
factor 64. Because leaves can now hold twice as many values an RB-Tree Redux of
height h can now hold at most 2 · 32h values. Thus, for the height h for an RB-Tree
Redux with n elements the following holds:

2 · 32h−1 ≤ n ≤ 2 · 32h

h− 1 ≤ log32
n

2
≤ h

h ≤ log32
n

2
+ 1 and log32

n

2
≤ h

log32
n

2
≤ h ≤ log32

n

2
+ 1

log32 n− 0.2 ≤ h ≤ log32 n+ 0.8

So the height of the tree is reduced by 0.2 meaning that 20% of the time the height
is reduced by 1. To always reduce the height by 1 a leaf node would need to hold
322 = 1024 values.

5 Evaluation

The evaluation of the different implementations of the data structures described
above was performed via microbenchmarks using Java Microbenchmark Harness
(JMH)6. Evaluation of memory usage was done using Java Object Layout (JOL)7

6https://openjdk.java.net/projects/code-tools/jmh/
7https://openjdk.java.net/projects/code-tools/jol/

https://openjdk.java.net/projects/code-tools/jmh/
https://openjdk.java.net/projects/code-tools/jol/

23

library. The benchmark suite consists of 7 JMH and 4 JOL benchmarks, which are
described in Table 1. The list of benchmarked data structures can be found from
Table 2. In the suite, JMH is configured to run benchmarks with 3 JVM forks with
exactly 4GB of RAM using the G1 garbage collector, to do 10 warmup iterations
and 20 sample iterations 1 second each with forced garbage collection in between.

The benchmark results of this thesis were run on a Dell Inc. PowerEdge R920 server
with 755 GB of DDR3 RAM with clock speed 1066 MT/s with transfer width of 64
bits and 4 of Intel(R) Xeon(R) CPU E7-4880 v2 @ 2.50GHz, which each have 15
cores with 32KiB of L1 instruction and data cache, 256 KiB of L2 cache and the
whole CPU has 37.5 MiB of L3 cache. The JVM used for benchmarks was OpenJDK
11.0.5+10 (1.8.0_192). The Clojure version used was 1.10.1. The Paguro version
used was 3.5.6. For Scala both versions 2.11.12 and 2.13.1 were used.

First we will compare the performance differences of the two different Scala versions,
shown in Figure 13. From it we can see that there is only little difference between
the Scala versions for tree and int maps. For the RRB map there are substantial
improvements in the newer version for the access and the insert benchmarks and a
slight regression for the iterateSequential benchmark. As the implementation of
hash map was changed between the two versions, performance differences between
them are larger. From the results we can see that the ScalaV2HashMap – the succes-
sor of the ScalaHashMap – seems to have worse or equal performance in all but the
iteration benchmarks, where it has considerably better performance after approxi-
mately thousand elements. Although it is hard to tell how the trend will continue
with larger sizes than those included in the benchmark, it looks like the iteration
performance advantage is lost after approximately 10 million elements.

From Figure 13 we can also get a general picture on the performance differences
between different types of data structures. As can be seen from it, RRB-Tree based
data structures are considerably faster than the others in all of the access and
sequential benchmarks. Because RRB-Tree is meant to be used as a persistent
vector, it is not surprising that in benchmarks where random entries are inserted
or iterated over, the performance drops: Inserting a random element has to grow
the vector to a large enough size by filling it with empty values and when filled
sparsely empty gaps has to be skipped slowing the iteration down. We can also see
that while tree maps have otherwise the worst get performance among the visualised
data structures they have good iteration performance.

The int maps have interesting performance characteristics. For the access bench-
marks their performance graphs are closest to the search tree based ones, but on
average are at least 30% better8. The similarity extends to insert benchmark
where int maps are on average approximately 88% better. In insertSequential
benchmark int maps have different performance characteristic compared to search
tree based ones and are on average approximately 213% better. In the iteration
benchmarks the roles are reversed and int maps have on average approximately 32%
worse performance than search tree based ones.

8See Appendix A.3 for comparison between them.

24

Benchmark Parameters Explanation
insert size, density A data structure is filled with size number of en-

tries, with keys that are distinct and uniformly
chosen from the interval [0, d size

density
e]. The idea

of the density parameter is to control how much
space is between consecutive keys. This should not
in theory affect hash based data structures.

hittingAccess size, density A data structure is prefilled as in the insert
benchmark and then benchmarking the access of
the data structure is performed with 1000 random
keys that are present in it.

missingAccess size, density A data structure is prefilled as in the insert
benchmark and then benchmarking access of the
data structure is performed with 1000 random keys
that are missing from it.

iterate size, density A data structure is prefilled as in the insert
benchmark and then benchmarking iteration
through the data structure is performed.

insertSequential size A data structure is filled with entries with keys
[0, size). Again this should not affect benchmark
results for hash based data structures.

hittingAccessSequential size A data structure is prefilled as in the insert-
Sequential benchmark and then benchmarking
access of the data structure is performed with 1000
random keys that are present in it.

iterateSequential size A data structure is prefilled as in the insert-
Sequential benchmark and then benchmarking
iteration through the data structure is performed.

(a) JMH based microbenchmarks. The parameter size takes values {2n : n ∈ [0, 24]} and
the parameter density takes values {0.25, 0.5, 0.75}.

Benchmark Parameters Explanation
sequential size A data structure is filled with entries where keys

are [0, size) and all values are the same
sequentialCumulative size The same as sequential, but after inserting an

entry the resulting data structure itself is recorded
into a list and at the end the size of that list is
reported. This tests the effect of persistence on
memory usage.

random size A data structure is filled with entries where keys

are distinct and uniformly chosen from [0, bsize
0.5
c]

and all values are the same.
randomCumulative size The same as random, but after inserting an entry

the resulting data structure itself is recorded into a
list and at the end the size of that list is reported.

(b) JOL based memory benchmarks. The size parameter takes values {2n : n ∈ [0, 23]}.

Table 1: The benchmark suite.

25

Data structure Description
ArrayMap Data structure following the current implementation

used in FastormDB. An ephemeral data structure
made persistent that is used as a baseline.

JDKHashMap Wrapper for Java standard library’s hash map that
is used as a baseline.

ClojureHashMap Implementation of HAMT that uses linear search and
array for hash collisions, polymorphism for different
types of nodes, has branch factor of 32 and, if a node
has more than 16 elements, switches to uses plain
array of size 32 instead of using a bitmask.

ClojureTreeMap Implementation of Persistent Red-Black Tree [29]
ClojureVectorMap RB-Tree like data structure inspired by [22]
PaguroHashMap Derivative of ClojureHashMap
PaguroTreeMap Derivative of ClojureTreeMap

PaguroVectorMap Derivative of ClojureVectorMap
PaguroRrbMap Implementation of RRB based on [24], but in it the

relaxed nodes can have between
m

3
and

2m

3
nodes

and which, when joining, just sticks shorter tree into
larger one unaltered2.

ScalaHashMap Before version 2.13, Scalas hash map was an imple-
mentation of HAMT that used linked list for hash
collisions and had a special node for the single entry
case.

ScalaV2HashMap After version 2.13 Scalas hash map is an implemen-
tation of CHAMP.

ScalaTreeMap Implementation of Persistent Red-Black Tree
ScalaIntMap Implementation of Fast Mergeable Integer Map which

is a modified version of Patricia trie – variant of bi-
nary radix tree [30]. According to its documentation
its largely superseded by ScalaHashMap1.

ScalaRrbMap Implementation of Persistent Red-Black Tree
IntChamp32Kotlin Kotlin implementation (Section 4.3.2)
IntChamp32Java Java implementation (Section 4.3.2)
IntHamt32Kotlin Kotlin implementation (Section 4.3.1)
IntHamt32Java Java implementation (Section 4.3.1)

IntImplicitKeyHamtKotlin Kotlin implementation (Section 4.3.3)
RadixTree Java implementation (Section 4.3.4)

RadixTreeRedux Java implementation (Section 4.3.5)
1 https://github.com/scala/scala/blob/v2.13.1/src/library/scala/collection/
immutable/IntMap.scala#L169

2 https://github.com/GlenKPeterson/Paguro/blob/3.1.2/src/main/java/org/
organicdesign/fp/collections/RrbTree.java#L35

Table 2: Benchmarked data structures.

https://github.com/scala/scala/blob/v2.13.1/src/library/scala/collection/immutable/IntMap.scala#L169
https://github.com/scala/scala/blob/v2.13.1/src/library/scala/collection/immutable/IntMap.scala#L169
https://github.com/GlenKPeterson/Paguro/blob/3.1.2/src/main/java/org/organicdesign/fp/collections/RrbTree.java#L35
https://github.com/GlenKPeterson/Paguro/blob/3.1.2/src/main/java/org/organicdesign/fp/collections/RrbTree.java#L35

26

100 101 102 103 104 105 106 107

size

100

0

100

200

300

400

sa
vi

ng
s (

in
 %

)
hittingAccess

100 101 102 103 104 105 106 107

size

100

0

100

200

300

400

500

600

sa
vi

ng
s (

in
 %

)

insert

100 101 102 103 104 105 106 107

size

50

0

50

100

150

200

250

sa
vi

ng
s (

in
 %

)

iterate

100 101 102 103 104 105 106 107

size

100

0

100

200

300

400

sa
vi

ng
s (

in
 %

)

hittingAccessSequential

100 101 102 103 104 105 106 107

size

100

0

100

200

300

400

500

600

sa
vi

ng
s (

in
 %

)
insertSequential

100 101 102 103 104 105 106 107

size

50

0

50

100

150

200

250

sa
vi

ng
s (

in
 %

)

iterateSequential

100 101 102 103 104 105 106 107

size

100

0

100

200

300

400

sa
vi

ng
s (

in
 %

)

missingAccess
ScalaHashMap
ScalaIntMap
ScalaRrbMap
ScalaTreeMap
ScalaV2HashMap
ScalaV2IntMap
ScalaV2RrbMap
ScalaV2TreeMap

Figure 13: Visualisation of JMH benchmark results for persistent map implementa-
tions in Scala. The density parameter is set to 0.5. On the vertical axis is operations
per second for each data structure normalized against ScalaHashMap. On the hori-
zontal axis is the size parameter in logarithmic scale.

To analyse cumulative benchmarks we first need to understand what they are actu-
ally measuring. For a persistent data structure based on a m-ary tree, adding a new
leaf amounts to copying the path from the root to a leaf node, which takes O(logm n)
memory. Measuring memory usage of all n data structures created when the data

27

structure is constructed one element at a time, we get the following equation

n∑
i=1

logm i = logm n! ⊆ n logm n− n logm e+O(logm n) ⊆ O(n logm n),

where the equality is derived from the fact that logc a + logc b = logc ab and the
first approximation is done using Stirling’s approximation [31]. On top of this we
also measure the memory usage of the headers of the data structure, increasing
memory usage by O(n), which does not asymptotically affect the overall memory
usage. If we only look at the latest version of the data structure we notice that it
also has O(n logm n) memory usage. So the overhead of persistence can be at most
O(n logm n)9.

Figure 14 shows the JOL benchmark results for the data structures from Scala.
From it we can see that there is no significant difference between different versions
of tree and int maps, which corroborates with the results of JMH benchmarks to
the fact nothing changed between the versions for them. For the RRB-Trees we
can see that the memory usage of small sizes, under 32 elements, was improved.
In the sequentialCumulative benchmark we can see that this improvement is at
least 20% until approximately 600 elements and in the randomCumulative bench-
mark the improvement is at least 10% until approximately 150 elements. In the
cumulative benchmarks the effect is extended to larger sizes, because now each size
also contains every version of data structure before it, so the memory improvement
accumulates. The improvement does not affect bigger sizes as strongly as the pro-
portion of smaller structures shrinks: In the sequentialCumulative benchmark at
size 16 the memory usage difference is 3007 bytes and at size 32 and beyond it stays
at 3968 bytes. Interestingly, in the randomCumulative benchmark, ScalaV2RrbMap
becomes worse after 200 elements crossing negative 5% threshold at thousand ele-
ments slowly creeping downwards. For the hash maps we can see that, while with
lower numbers of elements memory usage of ScalaHashMap is better, ScalaV2Hash
Map has otherwise approximately 30% better memory usage. However, looking at
the cumulative benchmarks we can see the roles are flipped and ScalaHashMap is
superior. It therefore seems that ScalaV2HashMap cannot save as much memory
using structural sharing as ScalaHashMap, even if it does use less memory as a data
structure.

If we use Figure 14 to compare different data structures, we see that except when
there are just a few elements in RRB-Tree, it uses noticeably less memory than any
of the other data structures. Because we have visualised the random benchmark
with density parameter 0.5, of possible indices approximately half have an actual
value and the other half is empty. This causes RRB-Tree’s memory usage advan-
tage to halve when comparing the sequential and random benchmarks. In the
randomCumulative benchmark the advantage of RRB-Trees is lost and they use the
largest amount of memory among the visualised data structures. In the sequential
Cumulative benchmark the memory advantage of RRB-Trees is present, though it is

9See Appendix A.5 for comparison of persistence overheads of benchmarked data structures.

28

in second place between approximately hundred and 0.8 million elements beaten by
the int maps, after which RRB-Trees take the lead. Int maps have the best memory
usage in randomCumulative benchmark too.

100 101 102 103 104 105 106

size

0

200

400

600

800

1000

sa
vi

ng
s (

in
 %

)

sequential

100 101 102 103 104 105 106

size

50

0

50

100

150

200

sa
vi

ng
s (

in
 %

)

sequentialCumulative

100 101 102 103 104 105 106

size

0

200

400

600

800

1000

sa
vi

ng
s (

in
 %

)

random

100 101 102 103 104 105 106

size

50

0

50

100

150

200

sa
vi

ng
s (

in
 %

)

randomCumulative

L1 cache
L2 cache
L3 cache
ScalaHashMap
ScalaIntMap
ScalaRrbMap
ScalaTreeMap
ScalaV2HashMap
ScalaV2IntMap
ScalaV2RrbMap
ScalaV2TreeMap

Figure 14: Visualisation of JOL benchmark results for persistent map implemen-
tations in Scala. On the vertical axis is the memory usage for each data structure
normalized against ScalaHashMap. On the the horizontal axis is the size param-
eter in logarithmic scale. Normalized L1, L2 and L3 cache memory sizes are also
visualised to give an idea of absolute memory usage.

In the following analysis we prefer newer versions of Scala’s data structures, though
we will include both versions of the hash map as their performances were significantly
different.

In the next section we discuss those data structures that can be used generically:
with any key and value type. We then go through data structures that are special-
ized to the special case of mappings, which most importantly means that the data
structures need to only support integer keys.

5.1 Generic data structures

Of the persistent data structures mentioned above, the following are usable with any
keys that are either hashable or comparable depending on if they are hash or search

29

tree based: ClojureHashMap, ClojureTreeMap, PaguroHashMap, PaguroTreeMap,
ScalaHashMap, ScalaV2HashMap and ScalaV2TreeMap. Figure 15 shows the results
of JMH benchmarks of these data structures normalized against ScalaHashMap.

The search tree based data structures perform worse than others in both insertion
and access benchmarks, except when they contain only a few elements. This is be-
cause their tree structures have a smaller branching factor and so they are deeper
and require more pointer chases to reach leaves. In the insertion benchmarks the
ScalaV2TreeMap performs significantly better than other tree maps. This can be
seen especially in the insertSequential benchmark where it is the second best
generic data structure when it has more than approximately 2.5 million elements.
In the iteration benchmarks, search tree based data structures do not perform com-
paratively as badly and in particular the ScalaV2TreeMap has the best iteration
performance among all generic persistent data structures when it has more than
approximately 600 elements. The superior iteration performance of ScalaV2Tree
Map versus both PaguroTreeMap and ClojureTreeMap is most likely due to it pre-
allocating a 2 log2(n + 2) − 2 sized stack – the maximum height for a red-black
tree [32] – to hold the nodes on path from root to leaves. Additionally both Paguro
TreeMap and ClojureTreeMap use java.util.Stack as their stack which is based
on java.util.Vector which uses synchronized on its methods to make it thread
safe. This might impose extra overhead if the JVM cannot elide the locks.

Because Paguro’s implementations are derivative from Clojure’s, one would expect
them to perform similarly and this indeed is true for their search tree based data
structures. However, in the case of hash based data structures, in all of the get bench-
marks Clojure’s hash map performs badly and has completely different performance
characteristics compared to Paguro’s. In insertion benchmarks their performance
graphs do have a similar shape, but Clojure’s data structure is still considerably
worse. In iteration benchmarks this gap is smaller, but it nonetheless remains, es-
pecially in the case of the iterateSequential benchmark. This discrepancy needs
further investigation.

In the get benchmarks PaguroHashMap intermittently has the best performance and
in the missingAccess it has clearly the best performance among all of the compared
generic data structures. In the insertSequential benchmark PaguroHashMap also
has the best performance approximately after 150 elements. In iteration benchmarks
the performance of PaguroHashMap is clearly not as good: it surpasses Scala-
HashMap in the iterateSequential benchmark only approximately between 0.2-0.6
million elements and in the iterate benchmark only at approximately around 0.4
million elements.

30

100 101 102 103 104 105 106 107

size

100

75

50

25

0

25

50

75

100
sa

vi
ng

s (
in

 %
)

hittingAccess

100 101 102 103 104 105 106 107

size

80

60

40

20

0

20

40

60

80

sa
vi

ng
s (

in
 %

)

insert

100 101 102 103 104 105 106 107

size

100

50

0

50

100

150

200

sa
vi

ng
s (

in
 %

)

iterate

100 101 102 103 104 105 106 107

size

100

75

50

25

0

25

50

75

100

sa
vi

ng
s (

in
 %

)

hittingAccessSequential

100 101 102 103 104 105 106 107

size

80

60

40

20

0

20

40

60

80
sa

vi
ng

s (
in

 %
)

insertSequential

100 101 102 103 104 105 106 107

size

100

50

0

50

100

150

200

sa
vi

ng
s (

in
 %

)

iterateSequential

100 101 102 103 104 105 106 107

size

100

75

50

25

0

25

50

75

100

sa
vi

ng
s (

in
 %

)

missingAccess
ClojureHashMap
ClojureTreeMap
PaguroHashMap
PaguroTreeMap
ScalaHashMap
ScalaV2HashMap
ScalaV2TreeMap

Figure 15: Visualisation of JMH benchmark results for persistent maps that support
generic keys that are either comparable or hashable depending on the data structure.
The density parameter is set to 0.5. On the vertical axis is operations per second
for each data structure normalized against ScalaHashMap. On the horizontal axis
is the size parameter in logarithmic scale.

As can be seen from Figure 16 the memory usage of the data structures does
not change drastically between inserting entries with random or consecutive keys.
However, when we compare sequentialCumulative and randomCumulative bench-
marks, we can see that search tree based data structures can save more memory due
to structural sharing when the keys are random. For PaguroHashMap the spikiness in
the memory usage improvement is stronger in the sequential benchmark compared

31

to the random benchmark.

If we examine the memory usage differences between the search tree based data
structures, we can see that their memory usages follow each other and also that
there is a clear ordering between them. The exception is when there are only a
few elements, in which case ClojureTreeMap takes the edge. The PaguroTree-
Map uses the least amount of memory among them, followed by ClojureTreeMap
and then ScalaV2TreeMap. However, when we look at the benchmark results for
the cumulative cases, while PaguroTreeMap still uses the least amount of memory
among search trees, the difference between memory usages of ClojureTreeMap and
ScalaV2TreeMap is collapsed when there is more than a few elements.

100 101 102 103 104 105 106

size

75

50

25

0

25

50

75

100

sa
vi

ng
s (

in
 %

)

sequential

100 101 102 103 104 105 106

size

60

40

20

0

20

sa
vi

ng
s (

in
 %

)
sequentialCumulative

100 101 102 103 104 105 106

size

75

50

25

0

25

50

75

100

sa
vi

ng
s (

in
 %

)

random

100 101 102 103 104 105 106

size

60

40

20

0

20

sa
vi

ng
s (

in
 %

)

randomCumulative

L1 cache
L2 cache
L3 cache
ClojureHashMap
ClojureTreeMap
PaguroHashMap
PaguroTreeMap
ScalaHashMap
ScalaV2HashMap
ScalaV2TreeMap

Figure 16: Visualisation of JOL benchmark results for persistent maps that support
generic keys that are either comparable or hashable depending on the data structure.
On the vertical axis is the memory usage for each data structure normalized against
ScalaHashMap. On the horizontal axis is the size parameter in logarithmic scale.
Normalized L1, L2 and L3 cache memory sizes are also visualised to give an idea of
absolute memory usage.

Given that ScalaHashMap, ScalaV2HashMap and PaguroHashMap have the best ac-
cess benchmark results, but otherwise have different strengths, we will include them
in future comparisons. We will also include ScalaTreeMap due to good iteration
performance.

32

5.2 Specialized data structures

Now we will compare the data structures that only support integer keys. First
we will compare those of them that were implemented specifically for this thesis.
Afterwards we will compare the best of the custom data structures with the rest of
the specialized ones.

100 101 102 103 104 105 106 107

size

40

30

20

10

0

10

20

30

sa
vi

ng
s (

in
 %

)

hittingAccess

100 101 102 103 104 105 106 107

size

30

20

10

0

10

20

sa
vi

ng
s (

in
 %

)

insert

100 101 102 103 104 105 106 107

size

60

40

20

0

20

40

60

sa
vi

ng
s (

in
 %

)

iterate

100 101 102 103 104 105 106 107

size

40

30

20

10

0

10

20

30

sa
vi

ng
s (

in
 %

)

hittingAccessSequential

100 101 102 103 104 105 106 107

size

30

20

10

0

10

20

sa
vi

ng
s (

in
 %

)

insertSequential

100 101 102 103 104 105 106 107

size

60

40

20

0

20

40

60

sa
vi

ng
s (

in
 %

)

iterateSequential

100 101 102 103 104 105 106 107

size

40

30

20

10

0

10

20

30

sa
vi

ng
s (

in
 %

)

missingAccess
IntChamp32Java
IntChamp32Kotlin
IntHamt32Java
IntHamt32Kotlin

Figure 17: Visualisation of JMH benchmark results for HAMT and CHAMP imple-
mentations with branching factor 32 made as part of this thesis that support integer
keys. The density parameter is set to 0.5. On the vertical axis is operations per sec-
ond for each data structure normalized against IntHamt32Java. On the horizontal
axis is the size parameter in logarithmic scale.

33

In Figure 17 we see JMH benchmark results of HAMT and CHAMP data structures
made for this thesis with branching factor 32 written in both Java and Kotlin nor-
malized against IntHamt32Java. From it we can see that there is not much difference
between performance of IntChamp32Java and IntChamp32Kotlin except in the in-
sert benchmarks where IntChamp32Java has the edge when the number of elements
is less than approximately 200 elements. However, between IntHamt32Java and Int
Hamt32Kotlin there are larger differences. In the hittingAccess benchmark, Int
Hamt32Kotlin has worse performance between 20 and 7 thousand elements and after
0.7 million elements and is otherwise superior. In the hittingAccessSequential
benchmark, IntHamt32Kotlin has better performance except between 50 and thou-
sand elements, where the performance of the structures are equal. In the missing
Access benchmark, IntHamt32Kotlin has either equal or better performance. In
insert benchmarks IntHamt32Kotlin has consistently worse performance, but the
difference quickly goes down from around −30% to around −5% as the size grows.

We can also see from Figure 17, when comparing the better of the implementations,
that HAMT has significantly better performance compared to the CHAMP imple-
mentation in the access benchmarks after 200 elements. In iteration benchmarks,
IntHamt32Kotlin has the best performance in iterate benchmark approximately
after 70, 000 elements and in iterateSequential benchmark approximately after
40, 000 elements.

34

100 101 102 103 104 105 106 107

size

50

0

50

100

150
sa

vi
ng

s (
in

 %
)

hittingAccess

100 101 102 103 104 105 106 107

size

80

60

40

20

0

20

40

sa
vi

ng
s (

in
 %

)

insert

100 101 102 103 104 105 106 107

size

100

80

60

40

20

0

20

40

sa
vi

ng
s (

in
 %

)

iterate

100 101 102 103 104 105 106 107

size

50

0

50

100

150

sa
vi

ng
s (

in
 %

)

hittingAccessSequential

100 101 102 103 104 105 106 107

size

80

60

40

20

0

20

40
sa

vi
ng

s (
in

 %
)

insertSequential

100 101 102 103 104 105 106 107

size

100

80

60

40

20

0

20

40

sa
vi

ng
s (

in
 %

)

iterateSequential

100 101 102 103 104 105 106 107

size

50

0

50

100

150

sa
vi

ng
s (

in
 %

)

missingAccess
IntHamt32Java
IntImplicitKeyHamtKotlin
RadixTree
RadixTreeRedux

Figure 18: Visualisation of JMH benchmark results for persistent maps made as part
of this thesis that support integer keys. The density parameter is set to 0.5. On the
vertical axis is operations per second for each data structure normalized against Int
Hamt32Java. On the horizontal axis is the size parameter in logarithmic scale.

Figure 18 shows comparisons of the JMH benchmark results of IntHamt32Java, Int
ImplicitKeyHamtKotlin, RadixTree and RadixTreeRedux. From it we can see that
RadixTreeRedux has similar or better performance in get benchmarks compared to
RadixTree. This improvement seems to be more consistent for larger sizes. For the
insertion benchmarks the differences are smaller. However, in insert benchmark

35

there seems to be slight improvement for larger sizes10. We can also see how the
performance of IntImplicitKeyHamtKotlin is significantly worse in all but insert
and missingAccess benchmarks.

100 101 102 103 104 105 106

size

100

0

100

200

300

400

500

600

sa
vi

ng
s (

in
 %

)

sequential

100 101 102 103 104 105 106

size

60

40

20

0

20

40

60

sa
vi

ng
s (

in
 %

)

sequentialCumulative

100 101 102 103 104 105 106

size

100

0

100

200

300

400

500

600

sa
vi

ng
s (

in
 %

)

random

100 101 102 103 104 105 106

size

60

40

20

0

20

40

60

sa
vi

ng
s (

in
 %

)

randomCumulative

L1 cache
L2 cache
L3 cache
IntChamp32Java
IntChamp32Kotlin
IntHamt32Java
IntHamt32Kotlin
IntImplicitKeyHamtKotlin
RadixTree
RadixTreeRedux

Figure 19: Visualisation of JOL benchmark results for persistent maps made as part
of this thesis that support integer keys. On the vertical axis is the memory usage
for each data structure normalized against IntHamt32Java. On the horizontal axis
is the size parameter in logarithmic scale. Normalized L1, L2 and L3 cache memory
sizes are also visualised to give an idea of absolute memory usage.

Figure 19 shows a visualisation of the JOL benchmark results for data structures
made for this thesis. Firstly, there is no difference in the memory usage between
Java and Kotlin versions of the HAMT and CHAMP implementations. We can also
see that while RadixTreeRedux uses less memory in non-cumulative benchmarks, in
cumulative benchmarks this is reversed. Of the data structures, IntImplicitKey
HamtKotlin uses most memory, except in randomCumulative benchmark where it
uses less memory than RadixTreeRedux after approximately 6, 000 elements.

10Though it seems that the improvement is after approximately 2 thousand elements more precise
benchmark reveals that there is a dip in the relative performance approximately after 0.8 million
elements which is recovered approximately after 2 million elements. This dip might be artifact
of something disturbing the server on which the benchmarks were run. See Appendix A.1 and
Appendix A.2 for visualisations for this.

36

100 101 102 103 104 105 106 107

size

60

40

20

0

20

sa
vi

ng
s (

in
 %

)
hittingAccess

100 101 102 103 104 105 106 107

size

40

20

0

20

40

sa
vi

ng
s (

in
 %

)

insert

100 101 102 103 104 105 106 107

size

60

40

20

0

20

40

60

80

100

sa
vi

ng
s (

in
 %

)

iterate

100 101 102 103 104 105 106 107

size

60

40

20

0

20

sa
vi

ng
s (

in
 %

)

hittingAccessSequential

100 101 102 103 104 105 106 107

size

40

20

0

20

40

sa
vi

ng
s (

in
 %

)
insertSequential

100 101 102 103 104 105 106 107

size

60

40

20

0

20

40

60

80

100

sa
vi

ng
s (

in
 %

)

iterateSequential

100 101 102 103 104 105 106 107

size

60

40

20

0

20

sa
vi

ng
s (

in
 %

)

missingAccess
ClojureVectorMap
PaguroRrbMap
PaguroVectorMap
ScalaV2RrbMap

Figure 20: Visualisation of JMH benchmark results for persistent maps made out of
persistent vectors from Clojure, Paguro and Scala. The density parameter is set to
0.5. On the vertical axis is operations per second for each data structure normalized
against ScalaV2RrbMap. On the horizontal axis is the size parameter in logarithmic
scale.

In Figure 20 are visualisations of the JMH benchmarks for the map data structures
made out of persistent vector implementations from Clojure, Paguro and Scala.
From it we can see that ScalaV2RrbMap has the best performance in the access
benchmarks after approximately 1, 000 elements. We can also notice that the im-
plementation of PaguroRrbMap has the slowest access performance, after 1, 000 ele-
ments, which is a stark contrast to the Scala’s implementation. If we look at the ac-

37

cess performance of PaguroVectorMap and ClojureVectorMap, they are quite close
to each other, which is to be expect as the implementation in Paguro is a derivative
of Clojure’s implementation. However, in the insertion and iteration benchmarks
there is larger difference between PaguroVectorMap and ClojureVectorMap imple-
mentations with Paguro’s being superior.

In the insert benchmark, PaguroRrbMap has the slowest insertion speed between
approximately 60 elements and 0.4 million elements. After that the insertion speed
of it is tied with that of ScalaV2RrbMap. However, PaguroRrbMap is again slower
after 7 million elements, however it is hard to say how things will pan out with
larger sizes than ones included in the benchmark. In the insertSequential bench-
mark, PaguroRrbMap is worse until 2 million elements and after catching Scala
V2RrbMap its performance is clearly better. Similarly to the insert benchmark,
the relative performance of PaguroRrbMap starts to become worse after 9 million
elements. In the iteration benchmarks, the performance of ClojureVectorMap is
worst after just a few elements. In the iterate benchmark, ScalaV2RrbMap has
the best performance after approximately 20 elements, with PaguroRrbMap having
briefly similar performance between approximately 400 and 600 elements. In the
iterateSequential benchmark, the relative iteration performances of PaguroRrb
Map, PaguroVectorMap and PaguroRrbMap, after few elements, fluctuate within 20%
of each other.

38

100 101 102 103 104 105 106 107

size

50

0

50

100

150

sa
vi

ng
s (

in
 %

)
hittingAccess

100 101 102 103 104 105 106 107

size

0

100

200

300

400

500

sa
vi

ng
s (

in
 %

)

insert

100 101 102 103 104 105 106 107

size

0

50

100

150

200

250

sa
vi

ng
s (

in
 %

)

iterate

100 101 102 103 104 105 106 107

size

50

0

50

100

150

sa
vi

ng
s (

in
 %

)

hittingAccessSequential

100 101 102 103 104 105 106 107

size

0

100

200

300

400

500

sa
vi

ng
s (

in
 %

)
insertSequential

100 101 102 103 104 105 106 107

size

0

50

100

150

200

250

sa
vi

ng
s (

in
 %

)

iterateSequential

100 101 102 103 104 105 106 107

size

50

0

50

100

150

sa
vi

ng
s (

in
 %

)

missingAccess
IntHamt32Java
PaguroVectorMap
RadixTreeRedux
ScalaV2IntMap
ScalaV2RrbMap

Figure 21: Visualisation of JMH benchmark results for persistent maps that support
integer keys. The density parameter is set to 0.5. On the vertical axis is operations
per second for each data structure normalized against RadixTreeRedux. On the
horizontal axis is the size parameter in logarithmic scale.

In Figure 21 we see the JMH benchmark results for the data structures Paguro
VectorMap, ScalaV2RrbMap, RadixTreeRedux and IntHamt32Java. We can see
that, while RadixTreeRedux has performance comparable or better access perfor-
mance to PaguroVectorMap, its insertion and iteration performances are clearly
worse. Similarly all of the other compared data structures are overall worse than
PaguroVectorMap and ScalaV2RrbMap, even if there are some areas they might be
better at some points.

39

100 101 102 103 104 105 106

size

60

40

20

0

20

40
sa

vi
ng

s (
in

 %
)

sequential

100 101 102 103 104 105 106

size

60

40

20

0

20

40

60

80

sa
vi

ng
s (

in
 %

)

sequentialCumulative

100 101 102 103 104 105 106

size

60

40

20

0

20

40

sa
vi

ng
s (

in
 %

)

random

100 101 102 103 104 105 106

size

60

40

20

0

20

40

60

80
sa

vi
ng

s (
in

 %
)

randomCumulative

L1 cache
L2 cache
L3 cache
ClojureVectorMap
PaguroRrbMap
PaguroVectorMap
ScalaV2RrbMap

Figure 22: Visualisation of JOL benchmark results for persistent maps made out
of persistent vectors from Clojure, Paguro and Scala. On the vertical axis is the
memory usage for each data structure normalized against ScalaV2RrbMap. On the
horizontal axis is the size parameter in logarithmic scale. Normalized L1, L2 and L3
cache memory sizes are also visualised to give an idea of absolute memory usage.

In Figure 22 are the JOL benchmark results visualised for the map data structures
made out of persistent vector implementations from Clojure, Paguro and Scala.
From it we can see that the memory usage of PaguroVectorMap and Clojure-
VectorMap is close to each other, which makes sense as Paguro’s implementation
is a derivative of Clojure’s. However, in the sequentialCumulative benchmark,
there is a larger difference with PaguroVectorMap being superior. For ScalaV2Rrb
Map we can see an inversion in its performance: in both non-cumulative benchmarks
it uses the least amount of memory and then in both cumulative benchmarks, af-
ter approximately 20 elements, it uses the most. PaguroRrbMap uses second most
memory in the non-cumulative benchmarks after approximately 200 elements. For
it there is no inversion in its performance: it uses the least amount of memory in
the cumulative benchmarks.

40

100 101 102 103 104 105 106

size

50

0

50

100

sa
vi

ng
s (

in
 %

)
sequential

100 101 102 103 104 105 106

size

50

0

50

100

150

200

250

sa
vi

ng
s (

in
 %

)

sequentialCumulative

100 101 102 103 104 105 106

size

50

0

50

100

sa
vi

ng
s (

in
 %

)

random

100 101 102 103 104 105 106

size

50

0

50

100

150

200

250
sa

vi
ng

s (
in

 %
)

randomCumulative

L1 cache
L2 cache
L3 cache
IntHamt32Java
PaguroVectorMap
RadixTreeRedux
ScalaV2IntMap
ScalaV2RrbMap

Figure 23: Visualisation of JOL benchmark results for persistent maps that support
integer keys. On the vertical axis is the memory usage for each data structure
normalized against RadixTreeRedux. On the horizontal axis is the size parameter in
logarithmic scale. Normalized L1, L2 and L3 cache memory sizes are also visualised
to give an idea of absolute memory usage.

In Figure 23 are the JOL benchmark results visualised for the data structures
PaguroVectorMap, ScalaV2RrbMap, RadixTreeRedux and IntHamt32Java normal-
ized against RadixTreeRedux. In non-cumulative benchmarks we can see that Radix
TreeRedux uses the least amount of memory when it contains more than a few el-
ements. We can also see that ScalaV2RrbMap catches RadixTreeRedux’s memory
usage at thousand elements, but after which the advantage of ScalaV2RrbMap is
only few percentages. In the sequential benchmark, after a few elements, ScalaV2
IntMap uses the most memory. In the random benchmark this is also nearly always
the case however, because IntHamt32Java’s relative memory usage fluctuates, Int
Hamt32Java sometimes uses more memory than it.

For the cumulative benchmarks there are stronger differences between sequential
Cumulative and randomCumulative benchmarks. In the sequentialCumulative
benchmark, PaguroVectorMap uses the least amount of memory after approxi-
mately thousand elements. In the randomCumulative benchmark, PaguroVector
Map’s memory usage is around that of RadixTreeRedux, after few elements, fluc-
tuating between using slightly more or less memory. In the randomCumulative

41

benchmark, ScalaV2IntMap uses the least amount of memory. In the sequential
Cumulative benchmark, it starts at the first place, but is then surpassed by first
PaguroVectorMap at approximately thousand elements and then by ScalaV2Rrb
Map at 0.6 million elements. Before attaining second place ScalaV2RrbMap is at the
third place starting from around 50 elements. In the randomCumulative benchmark
there is a reversal in performance for it and so ScalaV2RrbMap uses the most memory
after approximately 500 elements. Interestingly, even though IntHamt32Java still
performs poorly in the sequentialCumulative benchmark, using the most memory
after 20 or so elements, it also uses the second least amount of memory in the random
Cumulative benchmark. The worse performance of vector based maps in random
Cumulative is explainable by the fact they need to be filled with empty entries until
the index where the value is being inserted. The effect of this filling can also be
seen in non-cumulative benchmarks where the lead of vector based maps is smaller
in the random benchmark compared to the sequential benchmark.

Based on the previous analysis ScalaV2RrbMap has the edge in access benchmarks
and PaguroVectorMap in the insert benchmarks and so we include both of them in
future comparisons.

5.3 Results in context

We now compare, in Figure 24, JMH benchmark results for some of the best data
structures from the previous analysis: PaguroHashMap, PaguroVectorMap, Scala
HashMap, ScalaV2HashMap, ScalaV2RrbMap and ScalaV2TreeMap. These are com-
pared against ArrayMap and SdkMap, which are used as baseline ephemeral data
structures.

Immediately noticeable from the figure is how well ArrayMap performs in both in-
sertion and access benchmarks. This was to be expected as ArrayMap operates over
a contiguous piece of memory. Examining the insert benchmark, the speed of ran-
dom insertions to the ArrayMap starts to suffer when its backing array is too large
for the L3 cache. Even after that it still stays faster than most of the other data
structures and is only beaten by the SdkMap between 2 and 10 million elements.
However, what is unexpected is how relatively badly ArrayMap performs in the it-
eration benchmarks. In the iterate benchmark, this slowness can be explained by
the fact that the visualised density is 0.5. This means that there is on average a
gap of size 1 between each element, which the iteration has to skip slowing it down.
However, in the iterateSequential benchmark, where all of indices from 0 to n are
filled, beating its iteration performance should be hard. Also, at the largest sizes,
ArrayMap starts to falter in both hittingAccess and missingAccess benchmarks,
but based on this data it is hard to say what will be the trend with even larger sizes.

SdkMap also has advantage in random insertions before going out of L3 cache. The
advantage compared to persistent data structures is because it only has to do traver-
sals in the linked list, which it uses for separate chaining, when there are collisions.
This is in contrast with persistent structures which are all essentially trees and so

42

always need to traverse to leaves. The focus optimizations [27], that optimize oper-
ations that target the end or the indices next to previous modifications, do not help
persistent data structures as the insertion target is random and focus is rarely hit.
SdkMap performs similarly in the insertSequential benchmark as it does in the
insert benchmark, which is due to hashing the keys. Because of their good append
performance, RRB-Trees catch sequential insert performance of SdkMap once Sdk
Map goes out of L3 cache.

From Figure 24 we can clearly distinguish, in both hittingAccess and hitting
AccessSequential benchmarks, the three different types of data structures: search
tree based, hash based and integer keyed ones from slowest to fastest. Interestingly,
in missingAccess this is almost the case again and only the PaguroHashMap breaks
it by having performance close to PaguroVectorMap in the benchmark. ScalaV2Rrb
Map takes all of the access benchmarks as the fastest persistent data structure. It
even surpasses SdkMap, when the element exists in the data structure, only losing
to SdkMap after approximately 7 million elements. In insertSequential we can
clearly see that both ScalaV2RrbMap and PaguroVectorMap, which are persistent
vectors, are highly optimized for appending to the end of the data structure. In all of
the insertion benchmarks PaguroVectorMap is the fastest persistent data structure.
As we have seen from the previous analysis, iteration benchmarks are the most com-
plex ones to analyse. In the iterate benchmark, among compared data structures,
we can see that ScalaHashMap has the best performance for small sizes and Scala
V2TreeMap has the best performance for large sizes11. In the iterateSequential
benchmark, ScalaHashMap still has the best performance for small sizes. How-
ever, ScalaV2TreeMap’s lead is first surpassed by ArrayMap and then eventually by
PaguroVectorMap and ScalaV2RrbMap for large sizes.

11Around 8 million elements ScalaHashMap and ArrayMap have better performance than Scala
V2TreeMap, but from the precision of benchmarks it is hard to say exactly what is happening there
and the ScalaV2TreeMap surpasses them afterwards. The situation is most likely explainable by
important parts of the data structures going out of L3 cache at different sizes.

43

100 101 102 103 104 105 106 107

size

0

1000

2000

3000

4000

5000

6000

7000

sa
vi

ng
s (

in
 %

)
hittingAccess

100 101 102 103 104 105 106 107

size

0

1000

2000

3000

4000

5000

sa
vi

ng
s (

in
 %

)

insert

100 101 102 103 104 105 106 107

size

50

0

50

100

sa
vi

ng
s (

in
 %

)

iterate

100 101 102 103 104 105 106 107

size

0

1000

2000

3000

4000

5000

6000

7000

sa
vi

ng
s (

in
 %

)

hittingAccessSequential

100 101 102 103 104 105 106 107

size

0

1000

2000

3000

4000

5000
sa

vi
ng

s (
in

 %
)

insertSequential

100 101 102 103 104 105 106 107

size

50

0

50

100

sa
vi

ng
s (

in
 %

)

iterateSequential

100 101 102 103 104 105 106 107

size

0

1000

2000

3000

4000

5000

6000

7000

sa
vi

ng
s (

in
 %

)

missingAccess
ArrayMap
PaguroHashMap
PaguroVectorMap
ScalaHashMap
ScalaV2HashMap
ScalaV2RrbMap
ScalaV2TreeMap
SdkMap

Figure 24: Visualisation of JMH benchmark results of best data structures based
on previous analysis compared to ArrayMap and SdkMap. The density parameter
is set to 0.5. On the vertical axis is operations per second for each data structure
normalized against ScalaV2TreeMap. On the horizontal axis is the size parameter
in logarithmic scale.

We now compare, in Figure 25, JOL benchmark results for some of the best data
structures from the previous analysis: PaguroHashMap, PaguroVectorMap, Scala
HashMap, ScalaV2HashMap, ScalaV2RrbMap and ScalaV2TreeMap. These are com-
pared against ArrayMap and SdkMap, which are used as baseline ephemeral data
structures. As can be immediately seen in the cumulative benchmarks, the memory
usage of both ArrayMap and SdkMap skyrockets as they are ephemeral data struc-

44

tures and the naive persistence applied to them quickly uses all available memory.
In the sequential benchmark we can see that the ArrayMap uses the least mem-
ory, however in the random benchmark both ScalaV2RrbMap and PaguroVectorMap
perform better. We can also see that the memory usage of SdkMap is between that
of ScalaHashMap and ScalaV2HashMap.

100 101 102 103 104 105 106

size

100

50

0

50

100

150

sa
vi

ng
s (

in
 %

)

sequential

100 101 102 103 104 105 106

size

100

50

0

50

100

150

sa
vi

ng
s (

in
 %

)

sequentialCumulative

100 101 102 103 104 105 106

size

100

50

0

50

100

150

sa
vi

ng
s (

in
 %

)

random

100 101 102 103 104 105 106

size

100

50

0

50

100

150

sa
vi

ng
s (

in
 %

)

randomCumulative

L1 cache
L2 cache
L3 cache
ArrayMap
PaguroVectorMap
ScalaHashMap
ScalaV2HashMap
ScalaV2RrbMap
ScalaV2TreeMap
SdkMap

Figure 25: Visualisation of JOL benchmark results of best data structures based on
previous analysis compared to ArrayMap and SdkMap. The density parameter is set
to 0.5. On the vertical axis is the memory usage for each data structure normalized
against ScalaV2TreeMap. On the horizontal axis is the size parameter in logarithmic
scale. Normalized L1, L2 and L3 cache memory sizes are also visualised to give an
idea of absolute memory usage.

If persistence is required from a data structure, then the previous analysis suggest
the following. From the benchmark results it can be concluded that ScalaV2Rrb
Map is most likely the best data structure choice, as access operations are often the
most prevalent operations and it is the leader in their benchmarks. If we know that
all values from 0 to n are present and that insertion is strongly bottleneck, then
PaguroVectorMap might be better choice. If we know that we have lots of small
data structures and iteration is strongly bottleneck, then using ScalaHashMap might
be worth to benchmark. If the data is distributed randomly and iteration is strongly
bottleneck, then ScalaV2TreeMap might be better choice. In Figure 26 and Figure
27 their JMH and JOL benchmark results can be seen visualised.

45

Based on the analysis, the most suitable of the benchmarked persistent data struc-
tures for mappings is ScalaV2RrbMap, however its access performance regression,
to the currently used data structure, is quite steep. The benchmarks visualised in
Appendix A.6 and the benchmarks conducted in [24] for RRB-Trees, suggest that
increasing branching factor would improve the access performance. So while exist-
ing data structures might not be usable as mappings, the techniques used in their
implementations can possibly be used to implement one that is.

100 101 102 103 104 105 106 107

size

0

250

500

750

1000

1250

1500

1750

sa
vi

ng
s (

in
 %

)

hittingAccess

100 101 102 103 104 105 106 107

size

0

200

400

600

800

sa
vi

ng
s (

in
 %

)

insert

100 101 102 103 104 105 106 107

size

75

50

25

0

25

50

75

100

125

sa
vi

ng
s (

in
 %

)

iterate

100 101 102 103 104 105 106 107

size

0

250

500

750

1000

1250

1500

1750

sa
vi

ng
s (

in
 %

)

hittingAccessSequential

100 101 102 103 104 105 106 107

size

0

200

400

600

800

sa
vi

ng
s (

in
 %

)

insertSequential

100 101 102 103 104 105 106 107

size

75

50

25

0

25

50

75

100

125

sa
vi

ng
s (

in
 %

)

iterateSequential

100 101 102 103 104 105 106 107

size

0

250

500

750

1000

1250

1500

1750

sa
vi

ng
s (

in
 %

)

missingAccess
PaguroVectorMap
ScalaHashMap
ScalaV2RrbMap
ScalaV2TreeMap

Figure 26: Visualisation of JMH benchmark results of best data structures based
on previous analysis. The density parameter is set to 0.5. On the vertical axis is
operations per second for each data structure normalized against ScalaV2TreeMap.
On the horizontal axis is the size parameter in logarithmic scale.

46

100 101 102 103 104 105 106

size

0

200

400

600

800
sa

vi
ng

s (
in

 %
)

sequential

100 101 102 103 104 105 106

size

0

100

200

300

400

500

600

sa
vi

ng
s (

in
 %

)

sequentialCumulative

100 101 102 103 104 105 106

size

0

200

400

600

800

sa
vi

ng
s (

in
 %

)

random

100 101 102 103 104 105 106

size

0

100

200

300

400

500

600
sa

vi
ng

s (
in

 %
)

randomCumulative

L1 cache
L2 cache
L3 cache
PaguroVectorMap
ScalaHashMap
ScalaV2RrbMap
ScalaV2TreeMap

Figure 27: Visualisation of JOL benchmark results of best data structures based on
previous analysis. The density parameter is set to 0.5. On the vertical axis is the
memory usage for each data structure normalized against ScalaV2TreeMap. On the
horizontal axis is the size parameter in logarithmic scale. Normalized L1, L2 and L3
cache memory sizes are also visualised to give an idea of absolute memory usage.

6 Conclusion

In this thesis we have first gone through important design decisions that affect
database systems, explored how these have affected an actual implementation of a
database focusing on join-indices, seen variety of different persistent data structures
and then lastly evaluated them empirically.

The previously used data structure used for join indices, that persistent data struc-
tures were compared against, was essentially dynamically growing array where in-
dices were used as keys. From the empirical evaluation we can see that the previously
used solution is clearly superior from performance perspective, however persistence
does save lots of memory when there exists even a couple versions of the same data
structure. It is possible that increasing branching factor would improve access speed
to acceptable level while keeping at least some of the memory benefits of persistence
and this could be investigated next. The benchmarks also show that there are huge
differences in the performance of different implementations of the same data struc-

47

ture. Among the persistent data structures, persistent vectors in form of RRB-Trees
are clearly fastest for access, being able to even overtake the performance of Java’s
standard hash map. However, the search tree based data structures were able to
overtake RRB-Trees in iteration benchmarks, if the data structures were randomly
filled.

The benchmark results of this thesis are far from complete. As seen from the Ap-
pendix A.1 and Appendix A.2 that, even though the one with less samples does give
idea on the relative performance, increasing sampling density does show details miss-
ing from it. However these details might be caused by external factors and might
not be wholly trustworthy. For this specific data structure, where the improved
version should be better for 20% of the elements, illustrates the limitations of the
benchmarks. If the taken samples would have hit only those 20% of elements, we
might have come to too positive conclusion. Also, in most of the graphs, the margin
of error, with confidence level 99.9%, was left out for visual clarity. However, when
leaving it out we also lose the sense of uncertainty of benchmarks and might make
too decisive conclusions. There is also the matter of using a logarithmic scale for
visualisations, which is able to show trends more clearly, but which makes it harder
to realize how changes in the graph in larger sizes have exponentially more weight.
This is illustrated well by the weighted average and variances drawn to Appendix
A.3 which might look ”wrong” from casual glance as the average seems not to be
middle of the graph, but if looked at without a logarithmic x-axis in Appendix A.4
look ”correct”. When an average is illustrated with the trend of a benchmark visible
it does not mislead, but average should not be used as the value when condensing
benchmark results to a single value and instead geometric mean should be used [33].
While writing the thesis it was noticed that the scale used in visualisations is im-
portant: The author of the thesis was predisposed to think that the choice of the
programming language would not affect the performance and for a while the bench-
mark results seemed to support this, but after changing how the data was visualized,
to get clearer idea on the percentages of change, it was apparent that benchmarks
do not actually support this interpretation.

6.1 Future work

The following topics of interest were not investigated in the thesis, but could be
fruitful future work. The thesis did not answer why ClojureHashMap performs so
shockingly poorly in the benchmarks. Finding this out requires further investiga-
tion. The reason for the relatively poor performance of ArrayMap for sequential
iteration was not explained. Even though the benchmarks varied the density pa-
rameter, no throughout analysis for effect of it was done. The effect of different
branching factor for HAMT data structures was benchmarked, but a bug was found
in the implementation. At that point the server used for benchmarking had broken
and there was not enough time for rerunning all of the benchmarks. Based on the
benchmarks on the new server larger branching factor makes access benchmarks
faster and insertion benchmarks slower. See Appendix A.6 for visualisation of those

48

benchmark runs. No memory benchmarks were run for the fixed version, but the
hypothesis is that larger branching factor decreases the memory usage of a single
data structure due it being shallower and increases the memory usage of the cumu-
lative benchmarks as more data has to be copied on the paths from root to leaves.
The effect of different branching factors was not benchmarked for RRB-Trees, but
in [24] time benchmarks were done, from which it was concluded that the branch-
ing factor 32 is a good compromise between insertion and access speeds. For the
custom HAMT implementations the effect of hashing and the effect of separate key
and value arrays was not investigated. It would be interesting to thoroughly inves-
tigate how much different collision handling strategies effect the performance. The
implementations made for the thesis were not fully optimized and it would be inter-
esting to investigate the effects of different micro-optimizations. The effects of focus
optimization, which is the reason inserting to the end of data structures was fast for
many of the data structures, was not investigated [27]. Effects of transience, where
persistent data structures can implicitly or explicitly modified, to skip unnecessary
version creation, was not investigated, though it was used to optimize insertion of
large values to RRB-Tree based maps [34]. One future direction of investigation is
support of multi-maps using persistent data structures [35].

References

1 H. Plattner, “A Common Database Approach for OLTP and OLAP Using an
In-Memory Column Database,” in Proceedings of the 2009 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’09, (New York,
NY, USA), p. 1–2, Association for Computing Machinery, 2009.

2 H. Zhang, G. Chen, B. C. Ooi, K. Tan, and M. Zhang, “In-Memory Big Data
Management and Processing: A Survey,” IEEE Transactions on Knowledge and
Data Engineering, vol. 27, pp. 1920–1948, July 2015.

3 J. Berg, “Query Optimizing for On-line Analytical Processing; Förfrågningsop-
timering för uppkopplad analytisk bearbetan,” g2 pro gradu, diplomityö, Aalto
University, 2017.

4 Y. Wu, J. Arulraj, J. Lin, R. Xian, and A. Pavlo, “An Empirical Evaluation of
In-Memory Multi-Version Concurrency Control,” Proc. VLDB Endow., vol. 10,
p. 781–792, March 2017.

5 A. Adya, Weak consistency: a generalized theory and optimistic implementations
for distributed transactions. PhD thesis, Massachusetts Institute of Technology,
1999.

6 A. Adya, B. Liskov, and P. O’Neil, “Generalized isolation level definitions,” in
Proceedings of 16th International Conference on Data Engineering (Cat. No.
00CB37073), pp. 67–78, IEEE, 2000.

49

7 H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil, “A
critique of ansi sql isolation levels,” in Proceedings of the 1995 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’95, (New York,
NY, USA), p. 1–10, Association for Computing Machinery, 1995.

8 R. Sethi, “Useless actions make a difference: Strict serializability of database
updates,” Journal of the ACM (JACM), vol. 29, no. 2, pp. 394–403, 1982.

9 D. R. K. Ports and K. Grittner, “Serializable snapshot isolation in postgresql,”
Proceedings of the VLDB Endowment, vol. 5, p. 1850–1861, August 2012.

10 J. Lee, H. Shin, C. G. Park, S. Ko, J. Noh, Y. Chuh, W. Stephan, and W.-S. Han,
“Hybrid garbage collection for multi-version concurrency control in sap hana,”
in Proceedings of the 2016 International Conference on Management of Data,
pp. 1307–1318, 2016.

11 P. Valduriez, “Join indices,” ACM Trans. Database Syst., vol. 12, p. 218–246,
June 1987.

12 Z. Xie and J. Han, “Join index hierarchies for supporting efficient navigations in
object-oriented databases,” in VLDB, vol. 94, pp. 12–15, 1994.

13 H. Homann and F. Laenen, “SoAx: A generic C++ Structure of Arrays for
handling particles in HPC codes,” Computer Physics Communications, vol. 224,
pp. 325 – 332, 2018.

14 V. N. Anh and A. Moffat, “Inverted Index Compression Using Word-Aligned
Binary Codes,” Information Retrieval, vol. 8, pp. 151–166, Jan 2005.

15 J. Abel, K. Balasubramanian, M. Bargeron, T. Craver, and M. Phlipot, “Ap-
plications tuning for streaming SIMD extensions,” Intel Technology Journal Q,
vol. 2, pp. 1–12, 1999.

16 A. Karikoski, “Case study on the compression techniques of a column oriented
database,” Master’s thesis, University of Helsinki, 2019.

17 A. Weininger, “Efficient execution of joins in a star schema,” in Proceedings
of the 2002 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’02, (New York, NY, USA), p. 542–545, Association for Computing
Machinery, 2002.

18 P. Vassiliadis and T. Sellis, “A Survey of Logical Models for OLAP Databases,”
SIGMOD Rec., vol. 28, p. 64–69, December 1999.

19 P. Wadler, “Monads for functional programming,” in Advanced Functional
Programming (J. Jeuring and E. Meijer, eds.), (Berlin, Heidelberg), pp. 24–52,
Springer Berlin Heidelberg, 1995.

50

20 A. Fiat and H. Kaplan, “Making data structures confluently persistent,” Journal
of Algorithms, vol. 48, no. 1, pp. 16 – 58, 2003. Twelfth Annual ACM-SIAM
Symposium on Discrete Algorithms.

21 P. Bagwell, “Fast And Space Efficient Trie Searches,” tech. rep., École Polytech-
nique Fédérale de Lausanne, 2000.

22 P. Bagwell, “Ideal Hash Trees,” tech. rep., École Polytechnique Fédérale de Lau-
sanne, 2001.

23 M. J. Steindorfer and J. J. Vinju, “Optimizing Hash-Array Mapped Tries for
Fast and Lean Immutable JVM Collections,” in Proceedings of the 2015 ACM
SIGPLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2015, (New York, NY, USA), p. 783–800,
Association for Computing Machinery, 2015.

24 P. Bagwell and T. Rompf, “RRB-Trees: Efficient Immutable Vectors,”
Infoscience, p. 16, 2011.

25 S. Thompson, Type Theory and Functional Programming. Addison Wesley, June
1991.

26 K. B. Bruce, A. Schuett, R. van Gent, and A. Fiech, “PolyTOIL: A Type-Safe
Polymorphic Object-Oriented Language,” ACM Trans. Program. Lang. Syst.,
vol. 25, p. 225–290, March 2003.

27 N. Stucki, T. Rompf, V. Ureche, and P. Bagwell, “RRB Vector: A Practical Gen-
eral Purpose Immutable Sequence,” in Proceedings of the 20th ACM SIGPLAN
International Conference on Functional Programming, ICFP 2015, (New York,
NY, USA), p. 342–354, Association for Computing Machinery, 2015.

28 D. Brink, “A (probably) exact solution to the Birthday Problem,” The
Ramanujan Journal, vol. 28, pp. 223–238, June 2012.

29 C. Okasaki, Purely functional data structures. Cambridge University Press,
1999.

30 C. Okasaki and A. Gill, “Fast mergeable integer maps,” in Workshop on ML,
pp. 77–86, 1998.

31 G. Marsaglia and J. C. W. Marsaglia, “A New Derivation of Stirling’s Approxi-
mation to n!,” The American Mathematical Monthly, vol. 97, no. 9, pp. 826–829,
1990.

32 R. Hinze, “Constructing red-black trees,” in Proceedings of the Workshop on
Algorithmic Aspects of Advanced Programming Languages, WAAAPL, vol. 99,
pp. 89–99, 1999.

51

33 P. J. Fleming and J. J. Wallace, “How not to lie with statistics: the correct way
to summarize benchmark results,” Communications of the ACM, vol. 29, no. 3,
pp. 218–221, 1986.

34 J. P. B. Puente, “Persistence for the Masses: RRB-Vectors in a Systems Lan-
guage,” Proc. ACM Program. Lang., vol. 1, pp. 1–28, August 2017.

35 M. J. Steindorfer and J. J. Vinju, “To-many or to-one? all-in-one! efficient
purely functional multi-maps with type-heterogeneous hash-tries,” SIGPLAN
Not., vol. 53, p. 283–295, April 2018.

52

A Appendix

A.1 Comparing radix tree implementations

100 101 102 103 104 105 106 107

size

0

10

20

30

40

50

60

sa
vi

ng
s (

in
 %

)

hittingAccess

100 101 102 103 104 105 106 107

size

5

0

5

10

15

20

sa
vi

ng
s (

in
 %

)

insert

100 101 102 103 104 105 106 107

size

0

10

20

30

40

50

60

70

sa
vi

ng
s (

in
 %

)

iterate

100 101 102 103 104 105 106 107

size

0

10

20

30

40

50

60

sa
vi

ng
s (

in
 %

)

hittingAccessSequential

100 101 102 103 104 105 106 107

size

5

0

5

10

15

20

sa
vi

ng
s (

in
 %

)

insertSequential

100 101 102 103 104 105 106 107

size

0

10

20

30

40

50

60

70

sa
vi

ng
s (

in
 %

)

iterateSequential

100 101 102 103 104 105 106 107

size

0

10

20

30

40

50

60

sa
vi

ng
s (

in
 %

)

missingAccess
RadixTree
RadixTreeRedux

Figure A.1: Visualisation of JMH benchmark results for RadixTree and RadixTree
Redux. The density parameter is set to 0.5. On the vertical axis is operations per
second normalized against RadixTree. On the horizontal axis is the size parameter
in logarithmic scale. The margin of error with confidence level 99.9% is also visu-
alised. The blue vertical lines are sample means, weighted by how many elements
were added between two consecutive sizes, of the normalized operations-per-second
values for the RadixTreeRedux. The blue dashed vertical lines indicate similarly
weighted sample deviation.

53

A.2 Comparing radix tree implementations with more pre-
cise benchmarks

101 102 103 104 105 106 107

size

10

0

10

20

30

40

50

60

sa
vi

ng
s (

in
 %

)

hittingAccess

101 102 103 104 105 106 107

size

10

5

0

5

10

15

20

25

sa
vi

ng
s (

in
 %

)

insert

101 102 103 104 105 106 107

size

20

0

20

40

60

80

sa
vi

ng
s (

in
 %

)

iterate

101 102 103 104 105 106 107

size

10

0

10

20

30

40

50

60

sa
vi

ng
s (

in
 %

)

hittingAccessSequential

101 102 103 104 105 106 107

size

10

5

0

5

10

15

20

25

sa
vi

ng
s (

in
 %

)

insertSequential

101 102 103 104 105 106 107

size

20

0

20

40

60

80

sa
vi

ng
s (

in
 %

)

iterateSequential

101 102 103 104 105 106 107

size

10

0

10

20

30

40

50

60

sa
vi

ng
s (

in
 %

)

missingAccess
RadixTree
RadixTreeRedux

Figure A.2: Visualisation of JMH benchmark results for RadixTree and RadixTree
Redux. The density parameter is set to 0.5. On the vertical axis is operations per sec-
ond normalized against RadixTree. On the horizontal axis is the size parameter in
logarithmic scale. The margin of error with confidence level 99.9% is also visualised.

The size parameter is more precise for this graph: {2n+k
2n

4
: n ∈ [1, 23], k ∈ [0, 3]}.

The blue vertical lines are sample means, weighted by how many elements were
added between two consecutive sizes, of the normalized operations-per-second values
for the RadixTreeRedux. The blue dashed vertical lines indicate similarly weighted
sample deviation.

54

A.3 Comparing Scala’s int maps

100 101 102 103 104 105 106 107

size

0

20

40

60

80

sa
vi

ng
s (

in
 %

)

hittingAccess

100 101 102 103 104 105 106 107

size

0

50

100

150

200

250

300

sa
vi

ng
s (

in
 %

)

insert

100 101 102 103 104 105 106 107

size

50

40

30

20

10

0

sa
vi

ng
s (

in
 %

)

iterate

100 101 102 103 104 105 106 107

size

0

20

40

60

80

sa
vi

ng
s (

in
 %

)

hittingAccessSequential

100 101 102 103 104 105 106 107

size

0

50

100

150

200

250

300

sa
vi

ng
s (

in
 %

)

insertSequential

100 101 102 103 104 105 106 107

size

50

40

30

20

10

0

sa
vi

ng
s (

in
 %

)

iterateSequential

100 101 102 103 104 105 106 107

size

0

20

40

60

80

sa
vi

ng
s (

in
 %

)

missingAccess
ScalaV2IntMap
ScalaV2TreeMap

Figure A.3: Visualisation of JMH benchmark results for ScalaV2IntMap and Scala
V2TreeMap. The density parameter is set to 0.5. On the vertical axis is operations
per second normalized against ScalaV2TreeMap. On the horizontal axis is the size
parameter in logarithmic scale. The blue vertical lines are sample means, weighted
by how many elements were added between two consecutive sizes, of the normalized
operations-per-second values for the ScalaV2IntMap. The blue dashed vertical lines
indicate similarly weighted sample deviation.

55

A.4 Comparing Scala’s int maps without logarithmic scale

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
size 1e7

0

20

40

60

80

sa
vi

ng
s (

in
 %

)

hittingAccess

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
size 1e7

0

50

100

150

200

250

300

sa
vi

ng
s (

in
 %

)

insert

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
size 1e7

50

40

30

20

10

0

sa
vi

ng
s (

in
 %

)

iterate

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
size 1e7

0

20

40

60

80

sa
vi

ng
s (

in
 %

)

hittingAccessSequential

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
size 1e7

0

50

100

150

200

250

300

sa
vi

ng
s (

in
 %

)

insertSequential

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
size 1e7

50

40

30

20

10

0

sa
vi

ng
s (

in
 %

)

iterateSequential

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
size 1e7

0

20

40

60

80

sa
vi

ng
s (

in
 %

)

missingAccess
ScalaV2IntMap
ScalaV2TreeMap

Figure A.4: Visualisation of JMH benchmark results for ScalaV2IntMap and Scala
V2TreeMap. The density parameter is set to 0.5. On the vertical axis is operations
per second normalized against ScalaV2TreeMap. On the horizontal axis is the size
parameter without logarithmic scale. The blue vertical lines are sample means,
weighted by how many elements were added between two consecutive sizes, of the
normalized operations-per-second values for the ScalaV2IntMap. The blue dashed
vertical lines indicate similarly weighted sample deviation.

56

A.5 Comparing persistence overhead of data structures filled
with numbers [0, n]

100 101 102 103 104 105 106

size

0

2000

4000

6000

8000

10000

sa
vi

ng
s (

in
 %

)

sequential vs sequentialCumulative
ClojureHashMap
ClojureTreeMap
ClojureVectorMap
IntChamp32Java
IntHamt32Java
IntImplicitKeyHamtKotlin
PaguroHashMap
PaguroRrbMap
PaguroTreeMap
PaguroVectorMap
RadixTree
RadixTreeRedux
ScalaHashMap
ScalaV2HashMap
ScalaV2IntMap
ScalaV2RrbMap
ScalaV2TreeMap

Figure A.5: Visualisation of JOL benchmark result off for the sequential bench-
mark compared against the sequentialCumulative benchmark. ArrayMap and Sdk
Map were excluded as they were outliers. Some of the data structures whose val-
ues were close to another were also excluded for clarity. On the vertical axis is
the memory usage of each data structure in the sequentialCumulative benchmark
normalized against its memory usage in the sequential benchmark. On the hori-
zontal axis is the size parameter in logarithmic scale. The closer values are to 1, the
smaller the overhead caused by persistence.

A.6 Comparing effects of branching factor for implementa-
tion of HAMT made for this thesis

100 101 102 103 104 105 106 107

size

40

20

0

20

40

60

80

100

sa
vi

ng
s (

in
 %

)

hittingAccess

100 101 102 103 104 105 106 107

size

30

20

10

0

10

20

sa
vi

ng
s (

in
 %

)

insert

100 101 102 103 104 105 106 107

size

20

0

20

40

sa
vi

ng
s (

in
 %

)

iterate

100 101 102 103 104 105 106 107

size

40

20

0

20

40

60

80

100

sa
vi

ng
s (

in
 %

)

hittingAccessSequential

100 101 102 103 104 105 106 107

size

30

20

10

0

10

20

sa
vi

ng
s (

in
 %

)

insertSequential

100 101 102 103 104 105 106 107

size

20

0

20

40

sa
vi

ng
s (

in
 %

)

iterateSequential

100 101 102 103 104 105 106 107

size

40

20

0

20

40

60

80

100

sa
vi

ng
s (

in
 %

)

missingAccess
IntHamt16Java
IntHamt32Java
IntHamt64Java

Figure A.6: Visualisation of JMH benchmark results for integer keyed HAMT imple-
mented as part of this thesis with different branching factors. The density parameter
is set to 0.5. On the vertical axis is operations per second for each data structure
normalized against IntHamt32Java. On the horizontal axis is the size parameter
in logarithmic scale. The results for this graph were run on a different server, so
cannot directly be compared against other results in the thesis.

	Introduction
	Problem statement

	Design decisions
	Transaction management
	Multi-version concurrency control
	Isolation
	Version storage
	Garbage collection
	Time travel
	Index management

	Columnarity
	Cube

	Implementation details
	Fragments
	Live mask
	Mappings

	Data structures
	Persistent data structures
	Prior art
	Hash Array Mapped Trie
	Compressed Hash-Array Mapped Prefix-tree
	Relaxed Radix Balanced Tree

	Implementations
	Int HAMT
	Int CHAMP
	Int Implicit Key HAMT
	Int RB-Tree
	Int RB-Tree Redux

	Evaluation
	Generic data structures
	Specialized data structures
	Results in context

	Conclusion
	Future work

	References
	Appendix
	Comparing radix tree implementations
	Comparing radix tree implementations with more precise benchmarks
	Comparing Scala's int maps
	Comparing Scala's int maps without logarithmic scale
	Comparing persistence overhead of data structures filled with numbers [0, n]
	Comparing effects of branching factor for implementation of HAMT made for this thesis

