
Modern web-programming language concurrency

Veli-Pekka Kestilä

Helsinki May 5, 2020

M. Sc. Thesis

UNIVERSITY OF HELSINKI
Department of Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/328853812?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Faculty of Science Department of Computer Science

Veli-Pekka Kestilä

Modern web-programming language concurrency

Computer Science

M. Sc. Thesis May 5, 2020 66 pages

distributed systems

This Masters Thesis compares Elixir, Go and JavaScript (Node.js) as programming language candi-
dates for writing concurrent RESTful webservice backends. First we describe each of the languages.
Next we compare the functional concurrency characteristics of the languages to each other. Finally
we do scalability testing for each of the languages. Scalability testing is done using the Locust.io
framework. For testing purposes we introduce for simple REST-api implementations for each of the
languages. Result from the tests was that JavaScript performed the worst of the languages and Go
was the most verbose language to program with.

ACM Computing Classification System (CCS):
Computing methodologies → Concurrent computing methodologies → Concurrent programming
languages
Software and its engineering → Software notations and tools → General programming languages
→ Language features → Concurrent programming structures
Software and its engineering → Software notations and tools → General programming languages
→ Language features → Concurrent programming structures → Coroutines
Computer systems organization → Architectures → Distributed architectures → Cloud computing

Tiedekunta — Fakultet — Faculty Laitos — Institution — Department

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Oppiaine — Läroämne — Subject

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

ii

Contents

1 Introduction 1

1.1 Background . 1

1.2 Overview . 3

2 Concurrency 3

3 Languages 5

3.1 JavaScript . 5

3.1.1 Frameworks . 15

3.1.2 Threading . 15

3.2 Elixir . 16

3.2.1 Language features . 16

3.2.2 Erlang and OTP . 23

3.3 Go . 25

3.3.1 Simple Go program . 26

3.3.2 Language features . 27

3.3.3 Concurrency and channels . 31

3.4 Conclusion . 35

4 Comparison methodology 36

4.1 Feature comparison . 36

4.2 Empirical performance testing . 38

5 Comparison 39

5.1 Go Implementation . 40

5.2 Node.js Implementation . 45

5.3 Elixir Implementation . 50

5.4 Feature comparison . 54

5.5 Empirical comparison . 56

iii

5.6 Findings . 60

6 Conclusion 61

References 63

1 Introduction

In this thesis I will describe and compare three web-service programming languages.
Namely Go, Elixir and JavaScript (in Node.js run-time). My plan was to find out
how each of the languages and their run-times deal with concurrency. Concurrency
is important for web-services as it enables serving multiple clients from a single
server.

In the tests I found that all of the languages perform reasonably well and most of
the tests results were similar. Go and Elixir both were best in some of the tests and
JavaScript was a bit slower than the other two with failure to perform in some of
the CPU intensive tests. From this we can conclude that the lightweight threading
approach used in Go and Elixir performs better than Event based concurrency used
in JavaScript.

1.1 Background

In the last 10 years there has been emergence of new languages and frameworks for
implementing web-services. Of course there are still a lot of projects done using
PHP or Java. But for the new projects programmers are looking to more modern
technologies as the basis for their project. One reason programmers are looking for
these new languages is stricter memory requirements when running multiple Docker
images. These stricter requirements are especially true in cloud services where price
is often dictated on physical resources consumed.

One aspect of the new languages is how they handle concurrency. Concurrency and
how it is handled is important when trying to serve as many clients as possible
with minimal resources. Languages selected for closer examination have differing
strategies on how concurrency is handled.

There are different ways to implement concurrency for Internet service[1]. In the
lowest level there is threading, which uses either system threads or some kind of light
weight threading scheme. Next level is using operating system processes. When
a single computer does not have enough capacity, then the concurrency can be
implemented using multiple computers. In practice modern Internet services use
a combination of these strategies to implement concurrency. There are usually
multiple computers and/or virtual machines serving the clients. These computers
can have multiple processes running, and finally a single process can use multiple

2

threads internally.

What are then the benefits of using the different concurrency implementations? For
multiple servers benefits come from added redundancy and the possibility to bring
the servers closer to the clients. Both of these benefits can be expanded further by
using the servers located in different data-centers around the world. Of course this
decentralization of servers comes with the cost of more complicated implementation
and problems, such as consistency and timely access of data.

Inside the servers we usually have multiple processors, and one way to gain benefit
from those processors is to run multiple copies of the server program. This is easily
done with using the operating system resources. A problem with process level con-
currency is that sharing of data between processes is not necessarily very efficient.
Another issue is that switching between the processes is an expensive operating
system level operation. Also a simple process can only serve one client at the time.

To make it convenient to serve multiple clients we can utilize threads. All mod-
ern operating systems provide threading implementation. Threads share the same
memory space, therefore communication between threads is easy. Scheduling of
the threads happens at the operating system level so switching from one thread to
another takes similar time as switching from one process to another.

To solve the problem with expensive context switches, programs can use lightweight
threading. This lightweight threading does not suffer context switching penalty.
Another way to avoid the context switches is to use event based concurrency.

Lightweight threads and event based concurrency both have the same weakness
where badly behaving code can lead thread starvation and one event prevents others
from running. These problems can be mitigated. In case of the thread this is done
by forcing the switching of the running thread. And with even processing it is done
by interrupting event processing code during its execution to divide it in smaller
chunks and interleaving execution of multiple events.

Then the next question with all of these concurrency options is, who needs this
increased concurrency? The simple answer is; all internet services. To a certain
degree this is probably true. But one segment which will benefit this increased
concurrency is large scale internet services like Google or Amazon. According to the
definition in [2] a large scale internet service is one with millions hits per day and
hundreds of servers.

Modern web service architectures usually employ single page JavaScript applications

3

in the front-end, connected with REST-API to stateless back-end. These back-ends
usually need to handle multiple concurrent clients in a timely manner with ability
to scale up and down depending on the load.

Functional and imperative programming style, as well as variable mutability are
also important things to consider when doing concurrent programming. Functional
style and immutable variables force programmers to write code which avoids certain
kinds of hard to debug errors.

1.2 Overview

In this chapter I have shown background about how concurrency affects the internet
services and have given background on reading the following chapters.

Next chapter is an overview of what the concurrency means in Computer Science. I
will especially talk about the types of concurrency used in the languages in question.

In chapter 3. I will describe the three languages selected for the comparison and
their background. I will also talk on the concurrency methods the languages use.

After describing the languages I will introduce the selected comparison methodology
in chapter 4. Chapter 5. first describes the language implementations done for the
empirical performance testing. After the implementation descriptions it will first
have the feature comparison and then empirical comparison results.

Finally in Chapter 6. I will have conclusions and opinions on the test results. I will
also talk about how to refine these tests and improve the test results.

2 Concurrency

What does the concurrency mean in Computer Science? Leslie Lamport explores
this question in his ACM article[3]. According to him the beginning of research in
concurrent systems is Edsger Dijkstra’s 1965 paper describing the mutual exclusion
problem. Most of the early concurrent system research concentrated on algorithms
and correctness. Especially correctness is still an issue on poorly implemented con-
current algorithms and programs. Modern concurrency research is a wide field inside
of Computer Science.

So to answer the question in context of this thesis; In Computer Science concurrency
means that events, programs, processes and so on seemingly execute at the same

4

time. What this same time means is then implementation specific. For example in
single processor this means that processor executes two or more items in smaller
interleaved chunks. This definition of executing smaller interleaved chunks is im-
portant as it is the basis on which all of the languages explored reach seemingly
concurrent processing of multiple requests.

On operating system level program execution happens in processes which are sched-
uled on the operating system level. Processes can then be divided in multiple
threads[4]. Threads can be either scheduled by operating system or by virtual
machine running inside the process. Threads can also be scheduled co-operative
manner. In this thesis I will call these threads run inside of the process without
operating system lightweight thread. Some implementations or sources call them
green threads, user threads, coroutines or fibres.

The main difference between the operating system threads and lightweight threads
is the way they are scheduled. Operating system thread scheduling is closer to
scheduling processes and needs multiple operating system and CPU level operations.
Lightweight threads can have more lightweight scheduling operations which take less
time and resources.

One way of implementing lightweight threads is cooperative multitasking. In coop-
erative multitasking thread or process executes code for a certain number of steps
before yielding the execution turn to the next thread or process. Classic well known
examples of co-operative multitasking are Windows versions before windows NT and
95.

Event based concurrency has been an important part of computing for a long time as
evident in a 1975 paper by Leon Presser [5]. Early concurrency related events were
often related to the peripherals connected to the computers. Most common event
based task even in most modern operating systems is handling of clock interrupt
which is used for scheduling different processes to run. User interfaces often have
this kind of event based model where the user presses a button or inputs text which
is then processed by the event processor.

In this chapter I described what concurrency means and also introduces the con-
currency concepts most prevalent to the following chapters. Each of the languages
described in this thesis use either even based co-operative multitasking or lightweight
threads based multitasking.

5

3 Languages

In this section I will look into three programming languages used in modern web-
service back-ends. These languages were selected for their different characteristics
which will be described in this chapter. One selection criteria was that they are
modern or in case of JavaScript modern in web-service use, but still used widely
enough. Another criteria was that each of the languages used new paradigms to
implement concurrency instead of the traditional way of implementing concurrency
with threads and processes.

These languages present different programming paradigms from functional to pro-
cedural and from dynamic typing to static typing. Each of the selected languages
also has its own strengths and drawbacks. I will discuss these in detail when talking
about the specific languages.

For each language I will briefly talk about their history. I will also introduce the
language syntax. Then I will give the overview of the run-time system and how the
concurrency is implemented in each of the languages. In conclusion I will look into
the non concurrency related differences of these languages.

Next chapter after this will introduce the methodology used for comparing the con-
currency features of these languages. After the methodology chapter follows the
chapter describing the comparison process and its results.

3.1 JavaScript

JavaScript[6][7] is a language aspiring from humble beginnings. The language was
designed by Brendan Eich during 10 days in 1995 for Netscape, and has come far from
the beginnings. Most important steps for its development to the current state was
the implementation of Ecma standardization process, Microsoft’s XMLHttpRequest
and Google’s V8 interpreter. V8 virtual machine gave push for implementation of
Node.js framework and upgraded JavaScript as a language which can also be used
for server side implementations.

JavaScript syntax is heavily influenced by C. One of the reasons was that the lan-
guage was created to be a lightweight version of the Java language. As a result
JavaScript does not have Java like class and interface syntax. However this does
not mean that JavaScript is not an object oriented language. It uses a Prototype-
based object model. The language is also imperative, structured and functional.

6

JavaScript functions also have different characteristics depending on where they are
used. This means JavaScript functions can work as object definitions when used as
constructor. If a function is defined as an object property it will work as a member
method. Finally it can work as a regular function when defined elsewhere in the
code.

One of the main reasons of JavaScript’s popularity is its use of event based concur-
rency. This stems from the language’s original target to be used in user interfaces
where a lot of functionality is related to user triggered events. In addition time
consuming operations like network, database or disk access can be easily handled
asynchronously using events. This makes the language perform well despite it being
single threaded.

Version Published Description
1 Jun 1997 Initial standard.
2 Jun 1998 Edited to conform ISO/IEC 16262.

3 Dec 1999
Improved language by adding regular expression,
exception handling and other improvements.

4 Abandoned
5 Dec 2009 JSON support, "strict mode" and other enhancements.
5.1 Jun 2011 Conformation to ISO/IEC 16262:2011

6 Jun 2015
Multiple changes to language including
but not limited to: classes, modules, for/of loops,
generators, arrow functions, collections and promises.

7 Jun 2016
Language refactoring, exponential operator and
Array.prototype.includes

8 Jun 2017 concurrency, atomics and async/await

9 Jun 2018
asychronous iteration and generators, enhancements to
regular expressions and rest/spread parameters

Table 1: ECMAScript versions

The functionality of JavaScript language is defined through the ECMAScript stan-
dardization process. Currently there are nine versions of standard as seen in Table 1.
The fourth version of the standard was abandoned. It is also clear that the pace of
change to the language has picked up in recent four years.

1 function callingFunction(callback, errorCallback) {

2 firstAsyncTaskWithCallback((result1) => {

7

3 secondAsyncTaskWithCallback(result1, (result2) => {

4 thirdAsyncTaskWithCallback(

5 result1, result2, (result3) => {

6 callback(result3);

7 }, (error3) => {

8 console.log(’Error’, error3);

9 errorCallback(error3);

10 });

11 }, (error2) => {

12 console.log(’Error’, error2);

13 errorCallback(error2);

14 });

15 }, (error1) => {

16 console.log(’Error’, error1);

17 errorCallback(error1);

18 });

19 }

Listing 1: Nested code using callback functions.

1 function longRunningTask(param1, param2) {

2 return new Promise((resolve, reject) => {

3 // Do some asynchronous processing

4 if (result == ’successful’) {

5 resolve(’Success’);

6 } else {

7 reject(’Failure’);

8 }

9 });

10 }

Listing 2: Example of promise definition.

1 function callingFunction() {

2 return firstAsyncTaskWithPromise()

3 .then((result1) => {

4 return secondAsyncTaskWithPromise(result1)

5 .then((result2) => {

6 return thirdAsyncTaskWithPromise(result1, result2)

8

7 .then((result3) => {

8 return result3;

9 });

10 });

11 })

12 .catch((error) => {

13 console.log(’Error’, error);

14 throw error;

15 };

16 }

Listing 3: Code from Listing 1 implemented with promises

Version six of the standard named ECMAScript 2015 is important for concurrency
features in the language. Most important feature was to introduce a standard way
to implement promises. The Promises were first introduced by Daniel Friedman
and David Wise in 1976 and are well described in Wikipedia[8]. An example of a
promise is given in Listing 2 that shows declaration of the promise and how resolve
and reject functions are used to signal the result of the promise.

Promises help to deal problems with multiple nested callback functions. These
problems are evident in Listing 1 where there are multiple callback functions and
errors have to be handled in multiple different places. Reading and reasoning this
kind of code becomes quickly cumbersome and can lead to programmer mistakes
[9]. In Listing 2 we see the code with callbacks transformed in more manageable
form with use of promises. There is only one place to deal with errors and results
come as return value for the function so we don’t need to give callback functions
as parameters.

1 async function callingFunction() {

2 try {

3 const result1 = await firstAsyncTaskWithPromise();

4 const result2 = await secondAsyncTaskWithPromise(

5 result1

6);

7 const result3 = await thirdAsyncTaskWithPromise(

8 result1, result2

9);

10 } catch (error) {

9

11 console.log(’Error’, error);

12 throw error;

13 }

14 return result3;

15 }

Listing 4: Code from Listing 3 implemented using async/await.

The version 8 of the standard introduced async/await functionality to the language.
With this improvement to the language programmers can declare function to be
asynchronous using an async keyword. Inside an async function it is possible to
use await keyword to wait for results from the functions returning promises. This
async/await functionality is demonstrated in Listing 4 where it is easy to see how
the program is cleaner and more concise when compared to the previous examples.

With the previously mentioned fast pace of innovation in the language, it has become
usual for the JavaScript community and virtual machine implementations to adopt
more popular features of the language standard even before actual standardization.
This sometimes can lead to features to be implemented which does not end up in
the final standard. An example of this is the WeakMap.prototype.clear()[10]
method which was planned to ECMAScript version 6, but dropped before the fi-
nal standard. On the other hand some of the standard mandated features can be
implemented years after the standard has been published.

To counter this problem of unimplemented features, it is common to use libraries
called polyfill[11] to patch the missing functionality on the JavaScript execution
environment. This environment missing the standard defined functionality could
be for example an old web-browser like Microsoft’s Internet Explorer, which isn’t
updated anymore, but is widely used.

Another way to deal with the problems of unsupported language features is using
a technique called source, to source compilation or transpiling[12]. Transpiling is
a process of transforming source code of one programming language to another
one. In the context of ECMAScript, transpiling is usually used to convert from
newer versions to older and more widely supported versions. Usually the target for
conversion has been the well supported version five of the language standard.

The most common transpiler for conversion between ECMAScript versions is called
Babel[13]. Babel started in 2014 as a tool called 6to5. It was created by Sebastian
McKenzie as a project to better understand programming languages. It was renamed

10

as Babel in 2015. Babel can be also used for other transformations like transforming
JavaScript XML (JSX) to pure JavaScript code. JSX is a way to embed HTML code
into JavaScript files and eliminating separate needs for visual template files.

Sometimes it is desirable to transpile from a different language to ECMAScript.
This is done so that programmers can implement the program with language they
are familiar with and then transpile it to JavaScript for execution in web-browsers,
where you can only run some version of ECMAScript. Another reason for transpiling
may be to add features not present in ECMAScript like static typing.

Microsoft has implemented a super set of ECMAScript with static typing called
TypeScript[14]. It adds the possibility of giving type information to variables and
function definitions, and checking that there are not unintentional type conversions
in compile time. The weakness of TypeScript is that it does not protect against
assignment and use of items (objects or functions) with wrong types during program
execution. This problem is present in most of the statically typed languages in run-
time. Mixing of plain JavaScript code and TypeScript code makes this problem
worse in TypeScript than most of the other statically typed languages.

1

2 function ExampleClass(name, value, privateName) {

3 var privateValue = 5;

4 this.memberName = name;

5 this.memberValue = value;

6

7 this.getPrivateName = function() {

8 return privateName;

9 }

10

11 this.getPrivateValue = function() {

12 return privateValue;

13 }

14

15 this.setPrivateValue = function(value) {

16 privateFunction(value)

17 }

18

19 function privateFunction(value) {

11

20 privateValue = value;

21 }

22 }

23

24 ExampleClass.prototype.getName = function() {

25 return this.memberName;

26 }

27

28 ExampleClass.prototype.getValue = function() {

29 return this.memberValue;

30 }

31

32 ExmapleClass.prototype.setValue = function(value) {

33 this.memberValue = value;

34 }

35

36 var instance = new ExampleClass(

37 ’public_name’, 42, ’private_name’

38);

39 instance.getPrivateName(); // Returns ’private_name’

40 instance.getName(); // Returns ’public_name’

41 instance.getValue(); // Returns 42

42 instance.setValue(84);

43 instance.getValue(); // Returns 84

44 instance.setPrivateValue(10);

45 instance.getPrivateValue(); // Returns 10

46 instance.memberName; // Direct access to instance variable

47 instance.memberValue; // Direct access to instance variable

48

49 instance = null; // Releases instance to be

50 // garbage collected.

Listing 5: ECMAScript 5 class

1

2 class ExampleClass {

3

4 constructor(name, value) {

12

5 this.memberName = name;

6 this.memberValue = value;

7 }

8

9 get name() {

10 return this.memberName;

11 }

12

13 get value() {

14 return this.memberValue;

15 }

16

17 set value(value) {

18 this.memberValue = value;

19 }

20 }

21

22 let instance = new ExampleClass(’public_name’, 42);

23 instance.name(); // Returns ’public_name’

24 instance.value(); // Returns 42

25 instance.value(84);

26 instance.value(); // Returns 84

27 instance.memberName; // Direct access to instance variable

28 instance.memberValue; // Direct access to instance variable

29

30 instance = null; // Releases instance to be

31 // garbage collected.

Listing 6: ECMAScript 6 class

1

2 class ExampleClass {

3

4 private privateName: string;

5 private privateValue: number;

6 public memberName: string;

7 public memberValue: number;

8

13

9 constructor(

10 name: string, value: number, privateName: string

11) {

12 this.privateName = privateName;

13 this.memberName = name;

14 this.memberValue = value;

15 }

16

17 public getName(): string {

18 return this.memberName;

19 }

20

21 public getValue(): number {

22 return this.memberValue;

23 }

24

25 public setValue(value: number) {

26 this.memberValue = value;

27 }

28

29 public getPrivateName(): string {

30 return this.privateName;

31 }

32

33 public getPrivateValue(): number {

34 return this.privateValue;

35 }

36

37 public setPrivateValue(value: number) {

38 this.privateFunction(value);

39 }

40

41 private privateFunction(value: number) {

42 this.privateValue = value;

43 }

44 }

14

45

46 let instance = new ExampleClass(

47 ’public_name’, 42, ’private_name’

48);

49 instance.getPrivateName(); // Returns ’private_name’

50 instance.getName(); // Returns ’public_name’

51 instance.getValue(); // Returns 42

52 instance.setValue(84);

53 instance.getValue(); // Returns 84

54 instance.setPrivateValue(10);

55 instance.getPrivateValue(); // Returns 10

56 instance.memberName; // Direct access to instance variable

57 instance.memberValue; // Direct access to instance variable

58

59 instance = null; // Releases instance to be

60 // garbage collected.

Listing 7: TypeScript class

As mentioned before JavaScript is an object oriented language. In Listing 5 we
can see how ECMAScript 5 class is initialized. This looks quite foreign for people
who are used to how classes are defined for example in Java. Class is defined as a
constructor function which can then be instantiated. Its parameters are by default
private variables inside of the class. One can also define more private variables by
using var keyword. It is also possible to define private functions which are only
visible inside of the class. Functions defined inside the constructor can access both
public and private instance variables. Functions defined using a prototype can only
access the public instance variables.

ECMAScript 6 introduced a new way of defining classes. It is shown in Listing 6.
The main differences are the use of a more Java like way of defining classes with
class keyword and separate constructor. All methods are defined inside the class
body. The listing also demonstrates new ways to define the methods by get and
set to define getter and setter methods. The big difference to the previous example
is that there are no private methods or instance variables. There is a proposal for
private instance variables which is not standardized or widely implemented.

Many people are more familiar with the way classes are defined in TypeScript, as
shown in Listing 7. In TypeScript there is a way to define variables and methods to

15

be private or public. Another important aspect shown here is the definition of static
types for variables and parameters. Some of these definitions might be omitted as
their types can be inferred from the usage and still enforced by the compiler.

3.1.1 Frameworks

Node.js[15][16] is the engine making server side JavaScript to happen. It is im-
plemented on top of Google’s V8[17], which is the JavaScript run-time build for
Google’s Chrome Internet browser. The project was started by Ryan Dahl in 2009.
In addition to the simple event loop on top of V8 engine Node.js includes a low level
I/O API and package manager in the form of npm (Node Package Manager).

As it happens sometimes with Open Source projects there was disagreement on how
Node.js should be developed and for a while there was a competing fork of the run-
time called IO.js. This disagreement ended in 2015 when Node.js Foundation was
founded and both projects were merged to form Node.js version 4.0.

Technically Node.js runs a single main thread with an event loop to process messages.
These messages consist of data and a function reference to process it. This single
threaded design eliminates most of the thread switching overhead. Thread switching
overhead is caused by maintenance work that needs to be done by the operating
system when changing from one thread to another. In addition to this main thread
it has helper threads to implement the non blocking I/O calls. This non blocking
I/O is implemented using observer pattern[18]. Observer pattern is defined as one
to many relation where many observers subscribe to information updates from a
single producer.

There are also other projects implementing JavaScript on the server side, but none
of them have grown as big as Node.js. This is because of the rapid growth of
the Node.js ecosystem, especially in the form of npm package manager and related
repositories consisting of over 800 000[19] packages. Because of this other platforms
will be excluded from the evaluation.

3.1.2 Threading

Browser implementations of JavaScript virtual machines have WebWorker API [20]
which defines how to use background threads to execute long-running CPU intensive
code in browsers. Node.js introduced worker threads in release 10.5.0[21], which will
allow running longer background tasks outside of the thread for the main event loop.

16

3.2 Elixir

Elixir[22][23] is a concurrent and functional programming language created by José
Valim. Elixir is implemented on top of the Erlang[24] virtual machine BEAM (Bog-
dan’s Erlang Abstract Machine) named after the Bogumil "Bogdan" Hausman who
was the virtual machine’s original creator. Elixir and Erlang are compiled to byte-
code. This bytecode is then executed by the BEAM. Because both languages com-
pile to the same bytecode, it is possible to invoke functions written in either of the
languages from both of them. This is very similar to cross function call ability of
languages targeting Java Virtual Machine (JVM) or Microsoft’s Common Language
Runtime (CLR) virtual machine.

The path[25] that led to creation of Elixir started when José Valim wanted to find
a good solution for running code concurrently. Because of this need he started to
explore different languages and ideas to use multi-core capabilities of the computers.
This exploration led him to Erlang-language and BEAM which in his opinion were
the answer. He also felt that Erlang was missing important features from other
languages. Elixir was created to bring these features to the BEAM platform.

3.2.1 Language features

Next I will explore some of the features of Elixir[23]. In Elixir everything is an
expression. Another choice is that the code is divided into the statements and
expressions. The expressions are language constructs composed of variables and
operations, which when evaluated return a result. An example of expression is a +
b, which calculates together variables a and b. Statements on the other hand affect
the flow of the program without returning results. While loop is a common example
of a statement. While loop executes itself until the given condition is false without
returning a result.

Erlang interoperability is an important part of the Elixir. This interoperability
means that Erlang functions can be called from Elixir without run-time cost and
enables usage of libraries written for Erlang in Elixir. This has had a positive effect
on the speed of adaptation of the language, as there are already libraries for accessing
outside resources like databases.

1 defmodule Unless do

2 defmacro macro_unless(clause, do: expression) do

3 quote do

17

4 if(!unquote(clause), do: unquote(expression))

5 end

6 end

7 end

Listing 8: Elixir macro definition [26].

The language also includes a way to change and extend itself with the help of macros.
These macros can be used to manipulate Abstract Syntax Tree (AST). AST is the
internal presentation of Elixir code and it is made of tuples. In the above Listing 8,
I define macro called macro_unless. One should note the defmacro, quote, and
unquote operators. Defmacro starts the macro definition. Quote returns given
expressions in AST format. All the variables are evaluated on quote. Because of
this there is unquote which can be used to inject variables which have not been yet
evaluated. In the above example clause and expression are not defined before the
macro is called, and because of that they are unquoted.

Macros are quite a powerful language feature and many of the Elixirs features are
implemented as macros. Example of this kind of feature is unless-expression which
is implemented as a macro using if-expression.

Polymorphism was introduced by Strachey in 1967 and reprinted in 2000[27]. Poly-
morphism is a way for the function to accept multiple inputs. For example in Java
this means that different objects implementing interfaces either via superclass or
interface definition can be processed with the same method. In Elixir this polymor-
phism is done with protocols. Protocols work with providing a dynamic dispatch
mechanism. This is similar to Clojure[28] which is a language designed for JVM
environments. This feature of Elixir should not be confused with the multiple dis-
patch feature. Multiple dispatch means that the method selections are based on the
run-time type or other dynamic attribute. In contrast to multiple dispatch, Elixir
protocols dispatch only on a single type.

Because documentation is often an important part of the program, Elixir provides
a way to document code using docstrings[29]. Docstrings were introduced in the
original TECO implementation of popular text editor Emacs. There are multiple
other languages which support docstrings. For example Lisp, Clojure, Gherkin,
Julia and Python. Python is probably the most popular one of these languages.

Contrary to many popular programming languages like Java, Elixir doesn’t have
variables or shared data structures. Function calls in Elixir are implemented by

18

message passing. In Elixir programs mutable data is stored in processes implement-
ing the actor model. This makes it easy to implement concurrent programs in Elixir,
because data-access concurrency issues disappear when using this kind of shared-
nothing architecture. Pure shared-nothing architecture also makes scaling up to be
as simple as adding one more computing node.

Functional design can be seen in Elixir on use of recursion instead of loops and
in use of higher-order functions. It is also usual that functional languages prefer
immutable data structures over mutable ones. Functional features are becoming
more popular and are adopted by procedural and object oriented languages like
Java. For example Java 8 has higher order functions, recursion capabilities and
immutable data structures.

1 defmodule Loops do

2 def recursive([head|tail]) do

3 IO.puts "Head #{head}"

4 recursive(tail)

5 end

6

7 def recursive([]) do

8 end

9

10 def for_loop(list) do

11 for item <- list do

12 IO.puts "Item: #{item}"

13 end

14 end

15 end

16

17 Loops.recursive([1, 2, 3, 4])

18 Loops.for_loop([1, 2, 3, 4])

Listing 9: Elixir iteration examples.

1 import java.util.List;

2 import java.util.Arrays;

3

4 class Loops {

5 public static void recursive(List<Integer> list) {

19

6 if (!list.isEmpty()) {

7 System.out.println("Head: " + list.get(0));

8 recursive(list.subList(1, list.size()));

9 }

10 }

11

12 public static void loop(List<Integer> list) {

13 for (int item: list) {

14 System.out.println("Item: " + item);

15 }

16 }

17

18 public static void main(String[] args) {

19 List<Integer> list = Arrays.asList(1, 2, 3, 4);

20 recursive(list);

21 loop(list);

22 }

23 }

Listing 10: Java iteration examples.

Listing 9 demonstrates two examples on how to loop through a list in Elixir. First
the recursive one is calling itself, processing the head of the list and passing the end
of the list to the next recursion. When the list is empty, it will match to the function
expecting an empty list, and the recursion will end. This is also an example showing
how pattern matching in Elixir works when calling functions. The second function
shows how to do the same thing using an iterator.

Listing 10 display an example in modern Java for comparison. As there is no pattern
matching capability, a recursive method needs to use the if-operator to determine
if recursion should end. Also extracting items from the list is more cumbersome
without the pattern matching operations. The iterator version of the function is
quite similar to the Elixir version.

The common belief is that threads and processes are better handled as operating
system features. The problem is that it is relatively expensive to create either threads
or processes in programs. Because of this cost, it is preferable to create threads or
processes and use them multiple times. Even recycling threads and processes has
its cost as it needs operating system intervention to schedule them for execution,

20

which is an expensive context switch.

The context switch happens when the processor changes the execution from one
thread to another. In context switch the execution of the current thread is stopped
and the state of it is saved. This state saving includes all of the registers, other
necessary data and program counter pointing to the next instruction to be executed
when a thread is rescheduled. After this the operating system decides which thread
to execute next and that thread’s state is loaded in the processor to be executed.
After loading data the processor starts to execute the new thread.

Because of this Elixir via Erlang has lightweight processes, which do not suffer
aforementioned penalties. This is because the creation and scheduling of processes
are implemented on language and virtual machine level. This is helped by the fact
that the language does not have mutable variables which might make it imperative
to have safeguards against accidental modification on different threads or processes
data.

To make it cleaner to handle error cases in the chain of functions, one can use
a technique called Railway oriented programming[30]. In this technique we have
two tracks(paths) through the program. One of the tracks is the success track and
another one is the error track. Any function in the chain of functions can go from
the success track to the error track, but not vice versa.

The main idea is that the chained functions after the first one accept success and
error inputs and emit both of them according to the rules laid out in the previous
paragraph. It is also possible to adapt functions which do not support Railway
oriented programming to this paradigm by using higher-order functions.

1 defmodule Railway do

2 def process(data) do

3 with {:ok, true} <- verify_data(data),

4 {:ok, value} <- process_data(data)

5 do

6 value

7 else

8 {:error, error} -> error_handler(error)

9 end

10 end

11 end

21

Listing 11: Elixir railway oriented programming.

Railway oriented programming in Elixir benefits from the languages with-construct.
With-construct makes it easy to test things and go to the error case when neces-
sary. Also it is easy to make functions wrapping other functions. And finally it
is common for elixir functions to return {:ok, data} and {:error, error}

constructs as a result. In Listing 11 we can see a function called process which is
using with-construct to do railway oriented programming. As long as the functions
return patterns starting with :ok and matching the second parameter it will return
extracted value in the end. In the case of the first error it will go to the else section
where the error can be handled.

Usually programming projects consist of multiple files and use third party libraries
in addition to standard libraries shipping with the language. With Elixir there are
two tools shipped with the language which are helpful. These tools are called Mix
and Hex. Mix is the build tool similar to Make, Maven or Gradle. Hex is the package
manager similar to popular NPM for JavaScript or Bundler for Ruby. Maven and
Gradle also include package management for Java projects. It is also possible to
format source code and run tests with mix. Unified formatting for the code and
automated testing help working in teams and maintaining code quality.

Like many modern languages Elixir ships with an interactive shell for running source
code interactively. In Elixir this tool is called iex. With iex it is possible to test
small pieces of code or load your program and call its functions to check that they
work as intended. Debugging is also done with the help of iex. User first starts
an iex session with the program code loaded, and then starts the graphical Erlang
debugger called Debugger. This method can be also used to do remote debugging by
connecting iex and the debugger to a program that is already executing in a remote
or local machine.

Elixir also contains lazy and asynchronous collections which can be used to minimize
the need of computations when transforming data from one form to another. These
collections are implemented with stream-module. The operations of stream-module
can be chained together and combined so that there is reduced need for intermediate
data structures. This way of processing data is especially beneficial when we need
to handle very large or infinite data-sets.

Fail-Fast principle states that a system or software should catch potential problems

22

near to the place where they are introduced. In programming fail-fast can be done by
using assertions which leads this technique to be also called assertive programming.
Assertions are used to declare how the program state should be and cause failure
if the current state does not match the expected state. A common example of an
unexpected state is when a method receives a parameter which is Null instead of
the expected object.

1 defmodule Example do

2 def example({:ok, x}) do

3 "Got :ok with value #{x}."

4 end

5

6 def example({:error, x}) do

7 "Got :error with value #{x}."

8 end

9

10 def example(_) do

11 "Error. Wrong input."

12 end

13 end

Listing 12: Elixir function pattern matching examples.

In Elixir there are two mechanisms to enforce validity of the program state. Both
of the ways check the parameters function receives. First of them is pattern match-
ing in function parameters as shown in Listing 12. In the listing there are three
functions. Each of the functions take one parameter. Functions will be matched in
the order they are introduced. This means that the first function will match with
tuple containing two values, atom :ok and any. The second function will match with
tuple containing two values, atom :error and any. And the last function will match
everything else.

1 defmodule Example do

2 def example({:ok, x}) when is_integer(x) do

3 "Got :ok with value #{x}."

4 end

5

6 def example({:error, x}) when is_integer(x) do

7 "Got :error with value #{x}."

23

8 end

9

10 def example(_) do

11 "Error. Wrong input."

12 end

13 end

Listing 13: Elixir function with guard.

The Second mechanism is called guards. This feature comes from Erlang and it
can be used to assert the type of the function parameter. In Listing 13 is the same
code from Listing 12 with amended guard clauses. This causes that variable x needs
to be of type integer for the functions to be called. With pattern matching and
guards programmers can write more assertive code and also fail fast when functions
are called with wrong parameters. As the Elixir code is based on supervisors and
processes. In Elixir it is actually preferable for processes to fail and then program
to return to a known state from before the process was called.

In most modern programming languages there is usually some support of extended
character sets. The most common of these is UTF-8. Problem we often encounter is
that programming languages do not support this Unicode character set properly[31].
In Elixir all of the strings are stored as UTF-8 and these strings work according to
the standard.

It is a common problem with programming languages that the Unicode support
does not behave according to the standard. Common operations with problems are,
reversing multibyte strings and converting the case of the letter.

3.2.2 Erlang and OTP

When talking about Elixir it is impossible not to talk about Erlang at the same
time. This is because a lot of the libraries in the language come from Erlang. Elixir
also benefits from all the features provided by the Erlang runtime system (ERTS)
and Open Telecom Platform (OTP). OTP and Erlang are actually so intertwined
that when the name Erlang is used it means the combination of both language and
OTP runtime system and libraries.

The name of the language Erlang, is reference to "Ericsson language" and Danish
mathematician Agner Krarup Erlang. Originally the language was developed as a

24

replacement to Programming Language for Exchanges (PLEX) used in AXE line
of telecommunication network switches. The first version of the language was im-
plemented in Prolog and influenced by the aforementioned PLEX language. The
language was released as open source in 1998.

Erlang is a functional, dynamically typed and concurrent general purpose program-
ming language. It is known especially for its good support for concurrency. The
concurrency support comes from the use of lightweight co-operative processes which
are scheduled at runtime level. In some other concurrent languages these processes
are called Agents[32]

1 -module(fact). % Module and file name ’fact.erl’

2 -export([fac/1]). % Function exported by module

3

4 fac(0) -> 1; % If 0, then return 1, otherwise

5 fac(N) when N > 0, is_integer(N) -> N * fac(N-1).

Listing 14: Erlang example, adapted from Wikipedia.

Listing 14 shows an example of a simple Erlang module and a function calculating
factorials iteratively. Comments are denoted with %. Erlang code is organized in
modules, and here this module is called fact. Module also exports one function
called fac which takes one parameter for other modules to call. This is done with
export definition -export([fac/1]). If the function would take two parameters
it would be exported with -export([fac/2]) definition. The function fac has
two implementations. One for parameter zero which returns 1 and another for when
parameter is N > 0.

Calling a function with a parameter that is smaller than zero or not an integer will
cause the function to crash. This crash will be then propagated to the supervisor
of the current process. It is common to organize programs in Erlang so that the
processes are allowed to crash when there is error. This works because processes
are started by the supervisor process which then handles the error by rerunning the
process.

As you can see in Figure 1 running application in Erlang is composed of multiple
layers. The bottom layer is actual hardware (or virtualized hardware in case of most
cloud services. On top of that is the operating system layer, providing file access and
other operating system services. ERTS runs on top of the operating system layer.
Moving up, the next layer is a BEAM-virtual machine running on top of ERTS.

25

Figure 1: Erlang runtime stack.

OTP runs on top of the BEAM-virtual machine as it is written in Erlang and one
can think of it as the standard library for Erlang language. Last, but not least is the
application layer or in case of Elixir programs, Elixir layer and Elixir applications.

3.3 Go

Go[33][34] is a programming language designed by Robert Griesemer, Rob Pike and
Ken Thompson at Google. The motivation for creation of the language was to ad-
dress the perceived shortcomings of other programming languages used at Google
while also importing the perceived good qualities of those languages. Some of these
perceived features are static typing, run time efficiency, reliability, usability, high
performance networking and multiprocessing. The languages from where these fea-
tures were adapted from are C++, Python and JavaScript.

When designing the language three authors had agreement that they would only
include features which all three of them agreed on. This meant that some of the
features found in other modern programming languages were not implemented in
the new language. Some of these are inheritance, generic programming, assertions,
pointer arithmetic, implicit type conversions and unions (tagged or untagged). De-
signers are especially against pointer arithmetic and assertions.

26

Go was designed 2007 and the first public version was published by Google in 2009.
Version 1.0 of the language was announced three years later in 2012. There exist
different compilers for the language. There are two compilers which compile Go
to native executable. These two compilers are the Google compiler and GCC Go
compiler. Google compiler is faster and only supports x86, amd64 and arm plat-
forms. GCC Go compiler is slower, but supports more code optimizations shared
with all languages supported by GCC. GCC Go also supports architectures which
are not supported by Google compiler. There is also a GopherJS compiler whose
responsibility is to compile Go code into JavaScript, which can then be used either
in Node.js-runtime or virtual machines in web-browsers.

3.3.1 Simple Go program

Next I will define a simple Go program and go through some basic features of the
language. These features include how code is packaged and how the program is
compiled and run.

1 package main

2

3 import "fmt"

4

5 func main() {

6 fmt.Println("Simple example")

7 }

Listing 15: Simple Go example.

In Listing 15 we can see a minimal Go program. The first line defines the package
where the code belongs to. Package main is special as it is used as the program
entry point with main function. An import function is used for importing other
packages. In this example I import one package called fmt which is used for for-
matted I/O operations. If there are multiple packages to be imported, then it
is recommended to use the version of import with braces to enclose the package
names.

Inside of main function there is only one statement. In this statement we can see
how functions exported from the package have names starting with capital letter.
Functions which have names starting with a lowercase letter are not exported and
are considered private to that package. Strings are denoted with double quotes and

27

bool string
int int8 int16 int32 int 64
uint unit8 uint16 uint32 uint64
byte rune

float32 float64 complex64 complex128

Table 2: Basic types provided by Go

statements are by default terminated at the end of the line. It is also possible to
use semicolon to terminate the statement.

Because Go is a compiled language, to run this example one needs to use the com-
mand go build to create an executable. Building is done with information provided
by the source files, and separate Makefile or similar is not needed. After the build
finishes a single executable file is produced. Users can then run this file in any
system which is compatible with the build environment to produce the result.

3.3.2 Language features

Go has a limited set of basic types which are listed in Table 2. Bool is normal
boolean type. String type is composed of bytes. The encoding used in strings is
UTF-8. Size of the default int and uint is architecture dependent, and is 32bits in
code compiled for 32bit systems and 64bits for 64bit systems. Rune is a special type
which is 32bits in size and contains one Unicode code-point. It can be thought to
have the same functionality as char type in C when it is used in storing characters.

Memory in Go is allocated either automatically in the case of declaring new variables
of a certain type or by using keywords new and make. New keyword allocates a
zeroed out block of memory and returns a pointer to it. Type of the allocated
pointer is decided by the parameter given to the new-function. Keyword make is
used when initializing slices, maps and channels. The make does not return
a pointer. It instead returns a data structure which can be used to access the actual
data. Because of this it can be passed as value instead of pointer to functions which
mutate the data structure.

1 package main

2

3 import "fmt"

4

28

5 type ExampleType struct {

6 intvalue int

7 stringvalue string

8 }

9

10 var pkgVariable int = 0

11 var pkgArray [4]int

12

13 func main() {

14 var a = 1

15 b := 2

16 c := new(ExampleType)

17 c.intvalue = 3; c.stringvalue = "Go"

18 d := make([]int, 5)

19 fmt.Println(a, b, pkgVariable, c, d)

20 }

Listing 16: Go memory reservation examples.

In Listing 16 we can see different ways to allocate memory. On line 10 and 11 are the
examples on how to declare package level variables. The first one is a declaration of a
simple basic type variable, and the second one is declaration of a static array. Inside
the main function lines 14 and 15 show the two different ways to declare function
level variables. Variable allocation on line 15 is the recommended and usually used
form. On line 16 memory is allocated for ExampleType struct and its contents are
initialized to zeros. Finally on line 18 I allocate slice of 5 int-values. Slices are
the way to make array manipulation simpler and more dynamic in Go.

After allocating all the memory, the next question is how to release it. As Go is
garbage collected language, it does this memory release automatically when memory
is no longer needed. To decide when the memory block is no longer needed Go keeps
track on the references to it. This usually means that the memory allocated in a
function is released when the function exits. Exception to this of course is if the
function returns a pointer to the memory it allocated. On the other hand package
level variables are allocated when the program starts and will remain in the memory
until the program exits.

Another aspect in addition to garbage collection is that Go is a memory safe lan-
guage. This means it is not possible to access memory which is outside of the

29

allocated size of an object. This prevents many of the common attacks which try to
access outside of the memory area to execute arbitrary code. These types of attacks
are very common against programs written in C and C++.

One thing to take note about memory access in Go is that it is not thread safe.
So it is important to take care not to use the same memory areas in different Go
routines at the same time. These Go routines and how to safely communicate with
them will be introduced in the next section.

1 package main

2

3 import "fmt"

4

5 type WrittenWork interface {

6 Author() string

7 Title() string

8 }

9

10 type Thesis struct {

11 writer string

12 topic string

13 }

14

15 func (t Thesis) Author() string {

16 return t.writer;

17 }

18

19 func (t Thesis) Title() string {

20 return t.topic

21 }

22

23 func main() {

24 var w WrittenWork

25 t := Thesis{"Jane Doe", "Really exciting thing."}

26 w = t

27 fmt.Printf("type of w = %T, value of w = %v\n", w ,w)

28 fmt.Printf("type of t = %T, value of t = %t\n", t ,t)

29 }

30

30 // type of w = main.Thesis, value of w = {Jane Doe Really

exciting thing.}

31 // type of t = main.Thesis, value of t = {%!t(string=Jane

Doe) %!t(string=Really exciting thing.)}

Listing 17: Example of Go interface.

Go uses a structural type system[35] for its interfaces. In structural type systems the
equivalence between two things are determined according to their properties. So two
interfaces which have the same properties are considered equal despite their names.
In Listing 17 we can see how interfaces can be declared and then a combination of
struct and functions created to conform the declared interface. In the printouts we
can see that the line 30 struct is accessed as interface and in line 31 it is accessed
as plain struct when dumping the contents.

1 package main

2

3 type A uint32

4 type B uint32

5

6 func main() {

7 var a A = 32

8 var b B = 64

9 c := a + b

10 }

11 // Results: prog.go:9:12: invalid operation: a + b (

mismatched types A and B)

Listing 18: Example of declaring two nominal types in Go

Suppose that you declare two types A and B like in Listing 18, and A and B share
the same basic type. If you try to add them together you will get an error from
the compiler complaining that the types A and B are not compatible. This happens
because Go is a strongly typed language. Because of the strictness of this type
system it is also often called strictly typed language.

As previously mentioned Go programs start executing from a package called main.
Go programs are usually divided into packages. One package includes variables,
types, functions and sub-packages. Package in Go is defined by creating a folder with
a package name. This folder then contains files belonging to the package. Package

31

can be divided to multiple files to make the code cleaner and more manageable. Sub-
package is created just by adding a folder inside of the parent package. Import string
for the package would be "package" and for sub-package "package/sub-package".

Go distribution includes a build tool which can be invoked through go command.
Build tool will automatically find the project files and compile them to the executable
binary.

3.3.3 Concurrency and channels

One of the main features of Go language is easy concurrency by using Go routines.
Go routines are lightweight threads scheduled by the Go run-time environment. This
scheduling happens in predetermined points. Some of these scheduling points are
channel sending and receiving, thread blocking on syscall, garbage collection and
starting new a thread using the go keyword.

When a new Go routine is created with the go keyword, it goes to the queue of
waiting to be scheduled. There is no guarantee that it will be scheduled next. Calling
of the go keyword forces the program to run the Go routine scheduler. Go routine
scheduler will start executing the Go routine waiting at the top of the execution
queue. Also the newly created Go routine will be allocated two kilobytes of stack
space which can be grown if needed. Compared to the operating system threads
this process of creating Go routine is very lightweight, because it does not involve
context switches and saving of CPU registers like an operating system thread would
need.

This same lightness is applied to scheduling of Go routines. The Go run-time creates
a necessary amount of operating system threads when it starts up, and then it can
schedule any of the waiting Go routines to one of these threads. When run-time
schedules a Go routine to the currently running thread, from the operating system
point of view nothing changes. As Go routines are always in known state when
rescheduling, Go run-time just needs to save three registers, namely program counter
(PC), stack pointer (SP) and data register (DX). This is very little compared to 48
registers which needs to be saved when switching between operating system threads
or contexts.

1 package main

2

3 import "fmt"

32

4 import "time"

5

6 func msgSender(sendMsg chan<- string) {

7 sendMsg <- "Hello"

8 sendMsg <- "World!"

9 }

10

11 func msgReceiver(receiveMsg <-chan string) {

12 msg := <- receiveMsg

13 fmt.Println(msg)

14 msg2 := <- receiveMsg

15 fmt.Println(msg2)

16 }

17

18 func main() {

19 msgChannel := make(chan string)

20 go msgReceiver(msgChannel)

21 go msgSender(msgChannel)

22 time.Sleep(2 * time.Second)

23 }

24

25 // Result:

26 // Hello

27 // World

Listing 19: Basic example of channels in Go

Languages with multiple threads need a simple and efficient way to communicate
between these threads. In Go this is handled by channels. Channels in Go are typed
communication streams which can be read from and written to. By default channels
are blocking and are created with the make keyword.

Listing 19 is an example on how the channels can be used to communicate between
Go routines. I first allocate a channel on line 19 which can be used for sending and
receiving messages. This channel is then given as a parameter to msgReceiver

function which is started as a Go-routine. This function will receive a message two
times from the channel before it exits. As channels are blocking it will stop on line
12 if it is run before msgSender Go-routine is run.

33

On line 21 I start msgSender Go-routine. This is responsible for sending two
messages. The first message when the routine is run is "Hello". This is sent to the
channel and then the channel blocks and the next Go-routine is scheduled. When
msgReceiver is scheduled it will read this message, print it out and block on the
receiving next message on line 14.

Then at some point msgSender is scheduled again to send the second message,
and this will then result in the msgReceiver receiving the message. The main Go
routine will wait for two seconds which should be enough time for both of the other
Go routines to execute.

Another thing to note is that programmers can limit the use of the channel. On the
msgSender function sendMsg channel is limited only for sending messages. And
on the msgReceiver function receiveMsg is limited only to receive messages.

In Listing 20 there is a more advanced channel example. It has a buffered channel
with buffer size of 5 and an example of dual direction channel as a function param-
eter. There is also an example of using boolean channel to wait when it is time for
the program to end. From the example it can be seen that the channel buffers are
fixed and will need to be decided during creation. When the channel buffer is full it
will block. Buffered channel will also block if someone tries to read from it when it
is empty.

Usually using the same channel to communicate between Go routines is not very
practical. In the example of dual direction channel in Listing 20, it is possible that
the same process sends and reads messages from the channel. Because of this it is
recommended to pass one channel for reading and another channel for writing to
the Go routines if two way communication is needed.

1 package main

2

3 package main

4

5 import "fmt"

6 import "time"

7

8 func msgSendReceiver(sendReceiveMsg chan string) {

9 msg := <- sendReceiveMsg

10 fmt.Println("received: ", msg)

11 sendReceiveMsg <- "pong"

34

12 }

13

14 func bufferedReceiver(bufferedChannel <-chan string, exit

chan<- bool) {

15 fmt.Println("received: ", <- bufferedChannel)

16 fmt.Println("received: ", <- bufferedChannel)

17 fmt.Println("received: ", <- bufferedChannel)

18 time.Sleep(5 * time.Second)

19 exit <- true

20 }

21

22 func main() {

23 msgChannel := make(chan string)

24 bufferedChannel := make(chan string, 5)

25 exitChannel := make(chan bool)

26 go msgSendReceiver(msgChannel)

27 msgChannel <- "ping"

28 msg := <- msgChannel

29 fmt.Println("received: ", msg)

30 bufferedChannel <- "msg 1"

31 fmt.Println("Send msg 1")

32 bufferedChannel <- "msg 2"

33 fmt.Println("Send msg 2")

34 bufferedChannel <- "msg 3"

35 fmt.Println("Send msg 3")

36 go bufferedReceiver(bufferedChannel, exitChannel)

37 <- exitChannel

38 fmt.Println("Exit after ~5 seconds")

39 }

40

41 // received: ping

42 // received: pong

43 // Send msg 1

44 // Send msg 2

45 // Send msg 3

46 // received: msg 1

35

47 // received: msg 2

48 // received: msg 3

49 // Exit after ~5 seconds

Listing 20: Advanced example of Channels in Go

When implementing multithreading applications in Go, it is important to remember
that the memory access between Go routines (and in extension underlying operating
system threads) is not exclusive, which means that the Go-routines using the same
memory area need to agree between themselves which of them can access the given
area of memory. This coordination is usually done using channels.

Another concurrency related issue is that two Go routines can end up in deadlock
if they are waiting for messages from each other. This of course is a common
synchronization related problem in most languages providing concurrency.

3.4 Conclusion

In this chapter I went through the three different languages used for implementing
a web-service back-end. Of these three languages Elixir is functional and Go is
procedural language. JavaScript is a mix of functional and procedural programming
styles. JavaScript is also the only of these languages to support Object-oriented
programming style through its prototype based inheritance.

Another difference between the languages is that JavaScript is a scripting language
which is run in a virtual machine without any beforehand compilation. Elixir is
compiled to byte-code which can be run in a BEAM virtual machine. Go on the
other hand is compiled to machine code which can be then executed in the target
processor. Also for Node.js there exists tools to package the node interpreter and
all of the JavaScript files into one executable.

There are drawbacks in each of these choices. Go programs can only be run on the
processor and operating system type they are compiled to. This is actually true of
Elixir programs as well, because they have dependencies to OS level components like
libraries, which need to be the same versions used for compiling the program. Dif-
ference here is that Go programs can be statically linked. This means the resulting
binary can be run on any of the operating systems supporting it.

Each of the languages have an ecosystem comprising tooling, dependency manage-
ment and libraries. JavaScript is ahead of the other languages with its NPM-package

36

manager and very active developer community. Elixir also has npm-style package
management and can use Erlang libraries. This means that Elixir can use all of
the time tested frameworks and libraries from Erlang. Go is the least complete
one in this aspect, but it also has most commonly used libraries available, but no
centralized way of accessing them.

4 Comparison methodology

In the previous chapter I described three programming languages and their execution
environment. In this chapter I will describe methodology for comparing concurrency
features of these languages. Traditional way for comparing performance related
characteristics of languages is to create series of test programs as evident in [36] [37]
[38] [39].

This way of comparing languages isn’t without its pitfalls. As described in [39] there
are measurable differences on code quality and use of beneficial language features
between different programmers depending on their familiarity of the language and
programming experience. Also choice of running hardware can affect the comparison
results. For example Go and Elixir can benefit from multiple cores more than
NodeJS can.

Another way to compare languages is to compare individual features. This can be
accomplished by selecting a list of features and then marking up if a given language
supports the feature or not. Here problem comes from biases in selecting the features
to compare and different ways to implement things in languages which can lead
ambiguities on deciding if a feature is implemented or not.

For the comparison I have selected to do feature comparison and empirical perfor-
mance testing. Feature comparison is selected so that we can form a clear picture
of what selected languages offer for the programmer in terms of tackling concur-
rency. Empirical performance testing on the other hand will give more objective
comparison on the performance difference between languages.

4.1 Feature comparison

In feature comparison we will compare the following concurrency related features of
the languages. Some of the languages might not have all of the features listed in the
following list. I will take note of this when making the comparison and give examples

37

of ways one could circumvent the missing feature from the language. Things in this
comparison mostly affect the implementation phase of the program’s life-cycle. And
they can make the implementation harder or make it necessary for the programmer
to write more code in one of the languages than on the other.

• Multi-threading

• Lightweight user space threading

• Event based asychronous programming

• Thread/concurrent execution starting (implicit / explicit)

• State handling and Mutability

• Inter-process (thread) communication method

• Error handling

Multi-threading was selected as it is a common way to use multiple processors or
processor-cores when running in the single node computer. Another choice for this
would be using multiple processes with a technique called forking. Main difference
with these is that in multi threading the threads can access memory of the other
threads. Using multiple processes programmers need to use special memory areas
or other inter-process communication methods. Both of these methods suffer from
task switching overhead when used in single processor or processor-core.

Lightweight user space threading is used to minimise task switching overhead. An-
other benefit with this technique is that single thread can have mode dynamic stack
handling. Usually implementations start with a small stack per thread and may
enlarge it if necessary.

Event based reactive programming is a technique where usually blocking operations
are delegated to happen in background asynchronously and will call event hooks
when operation finishes or needs to interact with other parts of the program. Tech-
niques like callbacks, promises, events and reactive programming can be used to
implement this technique.

In some languages thread starting might need multiple lines of code. In other lan-
guages threads can be started with single instruction or even without any program-
mer interaction. These differences affect how likely and how easily programmers can
add thread based concurrency in their programs.

38

State handling and mutability are important because most non-trivial programs
have some state and mutating this state can lead to hard to find and fix errors. One
also needs to take care of limiting the access to shared mutable state like variables
or memory locations. In some languages there are non mutable variables and as
such programmers can not make mutability related errors.

Inter-process or in the context of selected languages inter-thread communication
is used for sending messages between different running tasks. There are different
ways to archive this[40]. Common among these are either pipes or shared memory
based methods. Also there might be different ways to initialize these communication
channels.

Error handling[41] also usually comes harder in concurrent programs and it is im-
portant to compare the different ways this can be handled in different languages and
how this affects the programs implemented in the language.

4.2 Empirical performance testing

I will compare performance and scalability with small REST Web-service. This
Web-service will be implemented so that it will have all of the data locally available
so that we do not end up measuring database connection speed instead of the im-
plementations made with selected programming languages. Selected functionality
should represent common tasks one can find in many of the Web-service back-ends
for simple mobile- or web-applications.

The first task will be a login where I will implement password encryption and check-
ing using bcrypt[42] adaptive hashing algorithm for which there are ready made
available libraries for all of the selected languages. Time cost of the password gen-
eration depends on the computational cost parameter which will be configured to
20 iterations. This will test how languages handle high CPU load situations.

Next task will be querying and modifying the user information. There will be
respectively implemented as GET and POST requests. Pattern used will be first
storing the user information and then reading it from the server. This will test how
the language will handle a modify and read access pattern.

The third task will be a GET task which will simulate long Database query or long
request to some back-end service. This test will measure how the language will
handle parallelising long running connections which keep connection to the client
open for longer time, but are not CPU intensive. For the simulation I will use a five

39

second wait.

Testing will be implemented in Amazon AWS service using C5n.metal instance host-
ing the REST-service and four T2.medium and four T2.small instances to generate
the load. All of the instances will be running Linux based on Fedora 31 server dis-
tribution. Fedora is selected because I was most familiar with it. For allowing the
larger amount of connections in tests some of the Linux kernel parameters need to
be changed. For server open files per process parameter need to be raised bigger
than expected connection count.

Fedora will have the following versions of language run-times and libraries installed.

• Node.js 12.16.1

• Go 1.13.6

• "Erlang 10.6.4, OTP 22, Elixir 1.9.2

Also generating executables and compiling of the programs will be done in the same
operating system using the same versions.

All of the servers will be allocated from the same AWS availability zone to minimise
the effect of network infrastructure on the testing.

For load generation I will use the Locust load-testing framework. Locust load gener-
ating scripts are implemented in python and run on multiple machines coordinated
by one master machine.

Load-testing will start with one CPU and then on each testing iteration I will double
the number of CPU in use up to and including 64 CPU. For Node.js we use the
Cluster API[43] to have multiple Node.js processes listening to the same TCP port.
Cluster can be parameterized to tell how many of the OS processes it will create.
For Go we will use GOMAXPROCS environment variable to tell how many threads
to create for executing user level Go code. For Elixir we can use the Erlang run-time
+S option to tell how many scheduler threads to create.

5 Comparison

In this chapter I will first describe the implementation of the three test programs and
load generation methods. Second part of the chapter will concentrate on the test

40

results and analysis. I implemented the program outlined in the previous chapter in
the three programming languages described earlier.

The first I implemented was a Go-version. Next I did TypeScript/Node.js-version
and the last one I chose to implement was the Elixir-version. All three versions were
relatively simple to implement, but each of them needed some language specific
extra work, which I will describe more closely in following three chapters.

5.1 Go Implementation

The first language implementation I did was a Go-program. Implementation was
quite straightforward using net/http-library and golang.org/x/crypto/bcrypt-
library. For in-memory storage I used Map implementation from Go’s sync package.
This Map implementation is thread-safe so it can be accessed concurrently from
multiple Go-routines. Go code was the most verbose of the three programming lan-
guages which is evident in following examples. Most of the verbosity comes from
error handling.

1 func runServer() {

2 http.HandleFunc(

3 "/password/set/", bcrypt.HandleSetPassword

4)

5 http.HandleFunc(

6 "/password/verify/", bcrypt.HandleVerifyPassword

7)

8 http.HandleFunc("/longPoll", sleeper.LongPollHandler)

9 http.HandleFunc("/user/get/", userinfo.HandleGetUser)

10 http.HandleFunc("/user/set/", userinfo.HandleSetUser)

11 http.HandleFunc("/", handler)

12 log.Fatal(http.ListenAndServe(":8080", nil))

13 }

Listing 21: HTTP-Request routing code for Go implementation.

For processing HTTP-requests from load generating clients I implemented request
routing using aforementioned net/http-library. The function implementing routes
and starting server can be seen in Listing 21. Routing is defined by giving a route, for
example "/password/set" and a package containing function to handle the request.
After necessary request handlers have been defined, HTTP-server can be started

41

using http.listenAndServe function call. Only parameter needed in our case is a
port for listening to the requests. Once started HTTP-server will keep running until
terminated.

1 func LongPollHandler(writer http.ResponseWriter, _ *http.

Request) {

2 time.Sleep(5 * time.Second)

3 _, err := fmt.Fprint(writer, "OK")

4 if err != nil {

5 log.Printf("Error writing response: %v", err)

6 http.Error(

7 writer,

8 "Can’t write response",

9 http.StatusInternalServerError

10)

11 }

12 }

Listing 22: Simple HTTP-Request handling function in Go.

In Listing 22 we can see a simple HTTP-Request handler. It does not use any
parameters which is why http.Request input is assigned to the underscore char-
acter. Output is written through http.ResponseWriter which is assigned to
the writer variable. Handler itself only sleeps five seconds to simulate long lasting
backend operation and then returns either OK-text or error.

1

2 var users sync.Map

3

4 func HandleGetUser(

5 writer http.ResponseWriter,

6 request *http.Request

7) {

8 username := request.URL.Path[len("/user/get/"):]

9 user, ok := users.Load(username)

10 if !ok {

11 log.Printf("Error retrieving user: %v", username)

12 http.Error(

13 writer, "User not found.", http.StatusBadRequest

42

14)

15 return

16 }

17 bytes, err := json.Marshal(user)

18 if err != nil {

19 log.Printf("Error marshalling JSON reponse: %v", err)

20 http.Error(

21 writer, "Can’t create response",

22 http.StatusInternalServerError

23)

24 return

25 }

26 _, err = writer.Write(bytes)

27 if err != nil {

28 log.Printf("Error writing response: %v", err)

29 http.Error(

30 writer, "Can’t write response",

31 http.StatusInternalServerError

32)

33 }

34 }

Listing 23: Get user request handler in Go

More complex Go-function can be seen in Listing 23. Here we can see how the
username is extracted from the incoming URL and how it is used for retrieving user
information from sync.Map storing the user information. If a user is found, then this
information is marshalled into JSON-object and returned to the requesting user.

1

2 const passwordCost = 20

3 var passwords sync.Map

4

5 type Password struct {

6 Password string ‘json:"password"‘

7 }

8

9 func HandleSetPassword(

43

10 writer http.ResponseWriter,

11 request *http.Request

12) {

13 username := request.URL.Path[len("/password/set/"):]

14 body, err := ioutil.ReadAll(request.Body)

15 if err != nil {

16 log.Printf("Error reading body: %v", err)

17 http.Error(

18 writer, "Can’t read body", http.StatusBadRequest

19)

20 return

21 }

22 var password Password

23 err = json.Unmarshal(body, &password)

24 if err != nil {

25 log.Printf("Error reading request body: %v", err)

26 http.Error(

27 writer, "Can’t read request body",

28 http.StatusBadRequest

29)

30 return

31 }

32 passwordHash, err := bcrypt.GenerateFromPassword(

33 []byte(password.Password), passwordCost

34)

35 passwords.Store(username, passwordHash)

36 _, err = fmt.Fprint(writer, "OK")

37 if err != nil {

38 log.Printf("Error writing response: %v", err)

39 http.Error(

40 writer, "Can’t write response",

41 http.StatusInternalServerError

42)

43 }

44 }

45

44

46 func HandleVerifyPassword(

47 writer http.ResponseWriter,

48 request *http.Request

49) {

50 username := request.URL.Path[len("/password/verify/"):]

51 body, err := ioutil.ReadAll(request.Body)

52 if err != nil {

53 log.Printf("Error reading body: %v", err)

54 http.Error(

55 writer, "Can’t read body", http.StatusBadRequest

56)

57 return

58 }

59 var password Password

60 err = json.Unmarshal(body, &password)

61 if err != nil {

62 log.Printf("Error reading request body: %v", err)

63 http.Error(

64 writer, "Can’t read request body",

65 http.StatusBadRequest

66)

67 return

68 }

69 passwordHash, ok := passwords.Load(username)

70 if !ok {

71 _, _ = bcrypt.GenerateFromPassword(

72 []byte(password.Password), passwordCost

73)

74 log.Printf("Password not found for user: %v", username)

75 http.Error(

76 writer, "Password not found",

77 http.StatusBadRequest

78)

79 return

80 }

81

45

82 err = bcrypt.CompareHashAndPassword(

83 passwordHash.([]byte), []byte(password.Password)

84)

85 if err != nil {

86 errorText := fmt.Sprintf("Passwords didn’t match for

user: %v", username)

87 log.Printf(errorText)

88 http.Error(writer, errorText, http.StatusForbidden)

89 return

90 }

91 _, err = fmt.Fprint(writer, "OK")

92 if err != nil {

93 log.Printf("Error writing response: %v", err)

94 http.Error(

95 writer, "Can’t write response",

96 http.StatusInternalServerError

97)

98 }

99 }

Listing 24: Go password encryption and verification

Password handling is the Most CPU-intensive and complex task tested. In List-
ing 24 we can see functions for setting password and verifying given password to
the stored one. Password encryption is implemented using Bcrypt-library. Library
takes password in byte array and returns hash containing unique salt, number or
hashing rounds and hashed password.

This password is then stored in sync.Map like user information to be retrieved when
using verification function. In case the user is not found, a given password is hashed.
This extra step is not strictly necessary in our testing implementation, but in real
world application this would slow down attacks trying to determine usernames by
calling verify password multiple times with different candidates.

5.2 Node.js Implementation

Next language implementation was with TypeScript to be run in Node.js-environment.
The program was implemented using Express framework to handle the HTTP-

46

Requests, Cluster library for starting multiple Node.js-processes, bcrypt.js for en-
crypting password and node-ipc for communication between Node.js processes forked
to exploit multiple processors.

Complication with Node.js implementation was that it does not support a convenient
way to exploit multithreading in user programs. Options which can be used are
either web-workers or forking the Node.js processes. I chose forking with Cluster
library as the way to use multiple processors. Another problem which came with
forking was the communication between forked processes. As there were no good
shared memory solutions I decided to use Inter Process Communication (IPC) for
sending messages between forked processes. IPC is also the way Express exploits
multiple processes to handle the web traffic.

For storing the user information and passwords I implemented a shared hash table
distributed over the running Node.js processes. This hash table is used through the
IPC. On the client side there is a library which will either send a store or a retrieve
call to the node determined by hashing the access key. Hashing is done using the
fnv1a hash function. On the listening side data is then stored to JavaScript Map
using these keys. When Node.js implementation is run on single process mode, it will
bypass the IPC communication. One optimization which could be done is bypassing
IPC when storing information to the local process.

1 public start() {

2 this.app.use(express.json());

3 this.app.post(

4 ’/password/set/:username’,

5 this.setPassword.bind(this)

6);

7 this.app.post(

8 ’/password/verify/:username’,

9 this.verifyPassword.bind(this)

10);

11 this.app.get(

12 ’/longPoll’, this.longPollHandler.bind(this)

13);

14 this.app.get(

15 ’/user/get/:username’, this.getUser.bind(this)

16);

47

17 this.app.post(

18 ’/user/set/:username’, this.setUser.bind(this)

19);

20 this.app.get(’/’, this.default.bind(this));

21 this.app.listen(8080);

22 }

Listing 25: HTTP-Request routing code for Node.js implementation.

As we can see in Listing 25 Node.js implementation has similar HTTP-request rout-
ing implemented with Express as there was in Go implementation shown in List-
ing 21. It also behaves same way as Go implementation that each URL is mapped
to handling function and the server runs after started until terminated.

1 private async longPollHandler(_, response) {

2 await this.sleep(5000);

3 response.status(200).send(’OK’);

4 }

Listing 26: Simple HTTP-Request handling function in Node.js.

In Listing 26 we can see the simple HTTP-request handler. This one implements
the same functionality as the Go version in Listing 22. Only main difference is that
typing of the function parameters is done through type inference and thus it is not
necessary to write them out explicitly. Another thing to note is the use of JavaScript
async/await to make code more compact and readable. Without async/await pro-
grammers would have to explicitly write promise handling code which would make
the implementation more verbose and error prone.

1

2 private readonly storeClient: StoreInterface;

3

4 private async getUser(request, response) {

5 if (request.params.username) {

6 const data = await this.storeClient.getUserData(

7 request.params.username

8);

9 response.status(200).send(data);

10 } else {

11 response.status(400).send(’Missing username!’);

48

12 }

13 }

Listing 27: Get user request handler in Node.js.

In Listing 27 is the get user handler for Node.js. Here we can see that the TypeScript
and Node.js code is more compact than the Go counterpart in Listing 23. Mainly
there is less need for explicit error handling as Express will take care of the possible
exceptions.

1

2 private async setPassword(request, response) {

3 if (request.params.username && request.body.password) {

4 await this.bcrypt.setPassword(

5 request.params.username, request.body.password

6);

7 response.status(200).send(’OK’);

8 } else {

9 response.status(400).send(

10 ’Missing username or password!

11 ’);

12 }

13 }

14

15 private async verifyPassword(request, response) {

16 if (request.params.username && request.body.password) {

17 if (await this.bcrypt.verifyPassword(

18 request.params.username, request.body.password

19)) {

20 response.status(200).send(’OK’);

21 } else {

22 response.status(403).send(

23 ’Passwords did not match for the user:’ +

24 ‘${request.params.username}‘

25);

26 }

27 } else {

28 response.status(400).send(’Missing username!’);

49

29 }

30 }

31

32 // BCrypt class for handling the password operations.

33

34 import {compare, genSalt, hash} from ’bcryptjs’

35 import {StoreInterface} from "./store_interface";

36

37 const PASSWORD_COST = 20;

38

39 export class BCrypt {

40

41 private readonly storeClient: StoreInterface;

42

43 constructor(storeClient: StoreInterface) {

44 this.storeClient = storeClient;

45 }

46

47 private static async encryptPassword(

48 password: string

49): Promise<string> {

50 return await hash(

51 password, await genSalt(PASSWORD_COST)

52)

53 }

54

55 private static async testPassword(

56 password: string, passwordHash: string

57): Promise<boolean> {

58 return await compare(password, passwordHash);

59 }

60

61 public async setPassword(

62 username: string, password: string

63): Promise<void> {

64 const passwordHash =

50

65 await BCrypt.encryptPassword(password);

66 await this.storeClient.storePassword(

67 username, passwordHash

68);

69 }

70

71 public async verifyPassword(

72 username: string, password: string

73): Promise<boolean> {

74 const passwordHash =

75 await this.storeClient.getPassword(

76 username

77);

78 return await BCrypt.testPassword(

79 password, passwordHash

80);

81 }

82 }

Listing 28: Node.js password encryption and verification.

Password handling implementation for the Node.js is shown in Listing 28. First there
are two functions for setting and verifying the password. These two just take care of
the HTTP-request and response handling. Implementation uses Node.js bcryptjs-
library. The library does the password hashing in a JavaScript event-model friendly
way by yielding the execution time also to other functions in the run-queue. As
mentioned earlier, passwords are stored in the map distributed over the running
Node.js processes.

5.3 Elixir Implementation

Last language implementation was the one written in Elixir. Elixir implementation
uses Mix build tool to manage dependencies and Phoenix-framework to abstract
the HTTP connection handling. As Elixir is a functional language which does not
have mutable variables it needs some way to handle the mutable state needed by
the service. As I did not want to introduce outside services which might influence
the testing result I decided to use Erlang Term Storage (ETS) which is a in-memory

51

key value database included in Erlang.

1 defmodule ScalabilityTestWeb.Router do

2 use ScalabilityTestWeb, :router

3

4 pipeline :api do

5 plug :accepts, ["json"]

6 end

7

8 scope "/", ScalabilityTestWeb do

9 pipe_through :api

10

11 post(

12 "/password/set/:user_name",

13 PasswordController,

14 :set_password

15)

16 post(

17 "/password/verify/:user_name",

18 PasswordController,

19 :verify_password

20)

21 get "/longPoll", LongPollController, :index

22 get "/user/get/:user_name", UserController, :get_user

23 post "/user/set/:user_name", UserController, :set_user

24 get "/", DefaultController, :index

25

26 end

27 end

Listing 29: HTTP-Request routing code for Elixir implementation.

In Listing 29 we can see the HTTP-request routing implementation for the Phoenix
in Elixir. One thing to note is the use of Domain Specific Language (DSL) to define
the HTTP-Verbs and accompanying paths. Usage of DSL in here strives to make
the code more compact and readable.

Each of the HTTP-endpoint definitions have a path, controller module (for example
PasswordController) and function to be called (:set_password, :verify_password).

52

Another thing to note is the pipe_through :api and corresponding pipeline :api
definitions which tell Phoenix to treat incoming HTTP-body elements as JSON
objects.

1 defmodule ScalabilityTestWeb.LongPollController do

2 use ScalabilityTestWeb, :controller

3

4 def index(conn, _params) do

5 Process.sleep(5000)

6 text(conn, "OK")

7 end

8 end

Listing 30: Simple HTTP-Request handling function in Elixir.

The same long http-request emulating function as in Go and Node.js is implemented
in Listing 30. use ScalabilityTestWeb, :controller line defines this module as Web-
request controller. This controller only implements one function called index. Func-
tion itself is as compact as the TypeScript implementation.

1 def get_user(conn, %{"user_name" => user_name}) do

2 user_info = ScalabilityTest.UserStore

3 .get_user_info(user_name)

4 json(conn, user_info)

5 end

Listing 31: Get user request handler in Elixir.

User request handler for Elixir is shown in Listing 31. Here we can see that the
function gets two parameters. The first parameter is the connection object and the
second is the HTTP-request parameters. This function uses a matching operation
to match and assign the username passed from the HTTP-router. Because of this
implicit parameter checking we do not need to do extra parameter validation which
was done in the Node.js and Go implementations for the same function.

After the function gets parameters it fetches the user information from ETS. If ETS
does not have the user information it will return just an empty list. json-function
in the end of the function writes the resulting user information into the connection
as a JSON-object.

1 defmodule ScalabilityTestWeb.PasswordController do

53

2 use ScalabilityTestWeb, :controller

3

4 def set_password(

5 conn,

6 %{"user_name" => user_name, "password" => password}

7) do

8 password_hash = Bcrypt.Base.hash_password(

9 password, Bcrypt.gen_salt(20, false)

10)

11 ScalabilityTest.UserStore.set_user_password(

12 user_name, password_hash

13)

14 json(conn, "OK")

15 end

16

17 def verify_password(

18 conn,

19 %{"user_name" => user_name, "password" => password}

20) do

21 password_hash = ScalabilityTest

22 .UserStore

23 .get_user_password(user_name)

24 case Bcrypt.verify_pass(password, password_hash) do

25 true -> json(conn, "OK")

26 false -> send_resp(

27 conn,

28 403,

29 "Passwords didn’t match for the user: " + user_name

30)

31 end

32 end

33 end

Listing 32: Elixir password encryption and verification.

Finally in Listing 32 we have a password controller which takes care of hashing
the initial password with BCrypt and verification of the existing password. Pass-

54
aaaaaaaaaaaa
Feature

Language
Go

Node.js
(TypeScript)

Elixir

Multi-threading Yes No Yes

Lightweight threading Yes No Yes

Event based
asynchronous
programming

No Yes No

Explicit concurrency Yes No No

Mutable variables Yes Yes No

Table 3: Language feature comparison.

words are also stored in ETS storage, like I did with user information. Here the
implementation is more compact than with Go and Node.js.

5.4 Feature comparison

In this section I will compare the three selected languages. Selected comparison
metrics are described in section 4.1. and 4.2. In some aspects the languages differ
quite much from each other and may have different strategies to attain the same
goal. I will note these differences in this comparison.

First is the feature comparison of the three languages. In Table 3 we can see simple
yes and no comparison of the language implementations of common concurrency
features.

Here Go and Elixir have run-time multithreading implementation to benefit from
multi processor architectures. Node.js does not have a multithreading implementa-
tion, but as we could see in the section 5.2. it has a way to start multiple Node.js
instances and use IPC to communicate between these instances.

Also Go and Elixir have lightweight threading implementations for organising con-
currency inside the single processor more efficiently. In Node.js we archive similar
single processor concurrency using events and callbacks based asynchronous pro-
gramming. In load testing I will explore which of these concurrency strategies will
perform better.

Explicit concurrency means that the programmer needs to explicitly make the pro-
gram behave concurrently. In Go programmers need to explicitly start Go-routine.

55
aaaaaaaaaaaa
Feature

Language
Go

Node.js
(TypeScript)

Elixir

Inter-process
communication

method
Channels Pipes Function calls

Error handling
Function

return value
Exceptions

Promise rejects
Return values,
Exceptions

Table 4: Additional language features.

Another choice is doing the concurrency implicitly in the way Node.js and Elixir
do this. In Elixir all functions are implicitly concurrent and in Node.js events and
callbacks also naturally lead to concurrent code.

The last difference is mutability of variables. In Elixir all variables are immutable.
This means that when a variable is set its value can not be changed. It is possible
to rebind the variable name with a new value, but if the variable was passed as
parameter to another function it will not change the value passed before rebinding.

This behaviour is different compared to Go and Node.js which have mutable vari-
ables. This mutability means that value of memory location referenced by variable
can be changed and if another part of the program accesses the value it will now get
the new value. Problem with mutable variables is that it can lead to hard to debug
concurrency errors and in case of Go programmer also needs to take care that two
Go-routines do not access the same variable at the same time.

In Table 4 we can see different ways languages handle the inter-process commu-
nication and error handling. Each of the three languages have different ways to
accomplish this. The Go programmer needs to explicitly define the channel which
is given as a parameter to the Go-routines wanting to use it for communication. In
Node.js different processes usually use Operating System pipes to communicate with
each other. And finally Elixir implicitly does message passing to do function calls
which means that the function can be executed in any of the available threads and
there is no need for separate functionality to pass information between the threads.

Error handling between the languages also uses different strategies. The Go function
call usually returns a tuple of result and error values. If there was no error, then
error part of the tuple is nil. Errors are then explicitly processed in part of the
normal program flow.

56

JavaScript uses the exceptions where function normally returns only successful val-
ues and in case of error function throws an exception which is then processed in a
separate path using try/catch blocks. Another way to propagate errors is to reject
promises which will then be processed in catch function.

The Elixir function can either return error values or throw exceptions. Usually
exceptions are not processed using try/catch blocks. Instead in Elixir there are
special processes called supervisors which are used to restart processes if they have
an error. It is said that in Elixir the default error handling method is: "Let it fail."

5.5 Empirical comparison

Empirical comparison was implemented using Locust-framework. The framework
uses Python-programs to run the tests. In Listing 33 we can see how the test is
composed. When the script is loaded it reads in pre-generated test users. This way
each of the tests will use the same user information for the test. These unique pre
generated users are distributed evenly on the load generation nodes.

1 from locust import HttpLocust, TaskSet, task, between

2 import csv

3

4 USER_INFO = []

5 with open(’users.csv’, ’r’) as file:

6 reader = csv.reader(file, delimiter=’;’)

7 next(reader)

8 USER_INFO = list(reader)

9

10 class PasswordTestTasks(TaskSet):

11

12 acceptHeader = {’Content-Type’: ’application/json’}

13

14 @task

15 def set_get_password(self):

16 if len(USER_INFO) > 0:

17 user_info = USER_INFO.pop()

18 username = user_info[0]

19 password = user_info[1]

20

57

21 self.client.post(

22 ’/password/set/%s’ % username,

23 name=’/password/set/[username]’,

24 json={’password’: password},

25 headers=self.acceptHeader

26)

27 self.client.post(

28 ’/password/verify/%s’ % username,

29 name=’/password/verify/[username]’,

30 json={’password’: password},

31 headers=self.acceptHeader

32)

33

34 class PasswordTest(HttpLocust):

35 task_set = PasswordTestTasks

36 wait_time = between(1, 1)

37 sock = None

38

39 def __init__(self):

40 super(PasswordTest, self).__init__()

41 global USER_INFO

Listing 33: Python password set and verify test.

Actual test task is defined in the form of the method set_get_password and dec-
orated with @task decorator. Method is called multiple times during the test run
and it will one by one get users from the USER_INFO array. After getting the user
information it will create a POST message to the server setting the users password.
After this POST method returns it will then make a second request to verify the
password.

This test was run on all three languages with different processor configurations.
Load generation was done using four T2.medium instances. Each test was run for
10 minutes to see how many requests each language could process during the given
time. In Figure 2 we can see the requests completed with each language. Node.js
performed worst of all of the languages. It managed to complete the least requests
in all of the CPU/client combinations and it also failed to perform without errors
in case of 64 CPU and 128 clients combination. With multiple CPU Elixir performs

58

0

100

200

300

400

500

600

1/
(1
)

2/
(2
)

4/
(4
)

8/
(8
)

16
/(
16

)

32
/(
32

)

64
/(
64

)

12
8/

(6
4)C

om
pl
et
ed

re
qu

es
ts

in
10

m
in
ut
es

Clients / (CPUs)

Go
Elixir

NodeJS

Figure 2: Password test, total successful requests in 10 minute period.

better than GO. It should be noted that with all languages having double the number
of clients for CPU started to generate errors, with exception of 64 CPU for Go and
Elixir. For this test I used 4 load generation computers.

0

20

40

60

80

100

120

140

160

1/
(1
)

2/
(2
)

4/
(4
)

8/
(8
)

16
/(
16

)

32
/(
32

)

64
/(
64

)

12
8/

(6
4)

C
om

pl
et
io
n
ti
m
e
in

se
co
nd

s

Clients / (CPUs)

Go
Elixir

NodeJS

Figure 3: Password test, maximum completion time in seconds for 99th percentile.

As we can see in Figure 3 most languages perform quite nicely with the increase
of processors and load. Here also the order remains unsurprisingly the same with
Elixir being clearly best performing of the three languages. Another thing of note is
that adding the processors has a negative impact to the performance. For this test

59

I used 4 load generation computers.

Next test is the saving and retrieving user information. In this test I ran two different
variants. One with 4000 clients and 4 load generating computers and another with
8000 clients with 8 load generating computers.

1.30

1.32

1.34

1.36

1.38

1.40

1.42

1 2 4 8 16 32 64

M
ill
io
n
re
qu

es
ts

CPUs

Go
Elixir

NodeJS

Figure 4: Userinfo test, total successful requests with 4000 clients in 10 minute
period.

In the 4000 client test shown in Figure 4 we can see that Go performs best of the
languages. Elixir being second and the Node.js implementation worst. For Elixir
storage implementation might be affecting the results. All of the requests are close
to each other. Only interesting result is that Go implementation performs better
with one processor than with multiple ones.

aaaaaaaaaaaa
CPU

Language
Go Elixir Node.js

1 2410247 2293269 1971003

64 2451769 2416383 2410811

Table 5: Userinfo test, total successful requests with 8000 clients in 10 minute period.

But as we can clearly see from Table 5 the limiting factor in our test isn’t the imple-
mentations, but the number of load generating clients. Here we can see that Node.js
implementation with one processor performs significantly worse than the other im-
plementations. Order of the implementations still stays the same. For getting better

60

Go Elixir Node.js
50 99 50 99 50 99

1 460 1500 550 1600 550 1600

2 480 1500 490 1700 530 1600

4 470 1500 480 1600 510 1600

8 470 1500 480 1600 500 1500

16 480 1500 470 1500 490 1500

32 480 1500 480 1500 490 1500

64 470 1500 480 1500 500 1500

Table 6: Userinfo test, maximum completion time in milliseconds with 4000 clients
on 50th and 99th percentiles.

Go Elixir Node.js
50 99 50 99 50 99

1 120 990 180 1100 230 1700

64 110 840 120 880 130 870

Table 7: Userinfo test, maximum completion time in milliseconds with 8000 clients
on 50th and 99th percentiles.

results one would need to significantly raise the amount of load generating comput-
ers. Here we also don’t see a similar rise in request processing for Go with single
processor implementation.

For the request completion times we can see in Table 6 that 4000 clients perform
quite evenly. Go seems to be quite equal between processor counts and also has
the lowest response time with one processor setup. When we look into Table 7 with
8000 clients we can see more differences between the languages. Here Node.js clearly
starts to struggle when serving 8000 clients with a single CPU, but when running
with 64 CPU the differences mostly vanish.

5.6 Findings

All of the languages performed relatively well in the testing. Mainly Node.js imple-
mentation had problems in multiprocessor setups as it has been designed for single
threaded operation. All in all the concurrent runtime capabilities of Node.js were

61

the worst of the languages. In some of the tests Elixir performed a bit better than
Go and in others this was reversed.

Implementing concurrent applications in Elixir is the simplest of the languages. This
is because the programmer does not really need to think about concurrency at all.
For most finetuning possibilities Go is the language of choice. Drawback of this is
that it is easier for the programmer to make the common concurrency programming
mistakes. Node.js event based concurrency paradigm may need some getting used to
if a programmer comes from a more traditional procedural or object oriented style
of programming. Go and JavaScript are closer to the more mainstream C influenced
languages and Elixir may have a bit steeper learning curve for the people coming
from procedural and object oriented languages.

6 Conclusion

In this thesis I have introduced and compared three programming languages, namely
Go, JavaScript (with Node.js runtime) and Elixir. All of the languages are used in
creating REST backends for web-services.

In the testing I found out that all of the languages had trouble when there were a lot
of CPU intensive calculations paired with HTTP-client requests. Another finding
was that more regular HTTP-client requests with 8 load generating servers and 1000
clients each and one CPU couldn’t produce enough load to make notable differences
in any of the language specific test implementations.

In regards to testing, the next steps would be to build a testing environment with
more load generating servers, clients and more automation. This environment could
be then used to produce more significant differences between the languages. Another
thing to do would be optimization of the language implementations. This might lead
to better results on the tests.

Of course the weakest result in Userinfo test still managed to handle over 2200
requests in a second. Of course real world REST-backends often have more com-
plicated business logic and slow databases to deal with. One of the further paths
would be to study how the behavior of the language implementations change when
adding these to the tests.

From a programming point of view I would personally recommend either Elixir or
TypeScript as the programming languages for implementing the services. Go has

62

also its place, but it is quite verbose compared to the other languages. If the uptime
of the service to be implemented is very important then the possibility of updating
Elixir applications without shutting them down might be useful.

REFERENCES 63

References

[1] M. Welsh, D. Culler, and E. Brewer, “SEDA: An architecture for well-conditioned,
scalable internet services”, Operating Systems Review (ACM), vol. 35, no. 5,
pp. 230–243, Dec. 2001, issn: 01635980. doi: 10.1145/502059.502057.
[Online]. Available: https://dl.acm.org/doi/10.1145/502059.
502057.

[2] D. Oppenheimer and D. A. Patterson, “Architecture and dependability of
large-scale internet services”, IEEE Internet Computing, vol. 6, no. 5, pp. 41–
49, Sep. 2002, issn: 10897801. doi: 10.1109/MIC.2002.1036037.

[3] L. Lamport, “The computer science of concurrency: The early years”, Com-
munications of the ACM, vol. 58, no. 6, pp. 71–76, Jun. 2015, issn: 15577317.
doi: 10.1145/2771951. [Online]. Available: https://dl.acm.org/
doi/10.1145/2771951.

[4] Thread (computing), 2020. [Online]. Available: https://en.wikipedia.
org/wiki/Thread_(computing).

[5] L. Presser, “Multiprogramming Coordination”, ACM Computing Surveys (CSUR),
vol. 7, no. 1, pp. 21–44, Mar. 1975, issn: 15577341. doi: 10.1145/356643.
356646. [Online]. Available: http://dl.acm.org/doi/10.1145/
356643.356646.

[6] C. Severance, “JavaScript: Designing a Language in 10 Days”, Computer, vol.
45, no. 2, pp. 7–8, Feb. 2012, issn: 0018-9162. doi: 10.1109/MC.2012.
57. [Online]. Available: http://ieeexplore.ieee.org/document/
6155645/.

[7] JavaScript, 2018. [Online]. Available: https://en.wikipedia.org/
wiki/JavaScript.

[8] Futures and promises, 2019. [Online]. Available: https://en.wikipedia.
org/wiki/Futures_and_promises.

[9] K. Kambona, E. G. Boix, and W. De Meuter, “An evaluation of reactive
programming and promises for structuring collaborative web applications”, in
Proceedings of the 7th Workshop on Dynamic Languages and Applications -
DYLA ’13, New York, New York, USA: ACM Press, 2013, pp. 1–9, isbn:
9781450320412. doi: 10.1145/2489798.2489802. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2489798.2489802.

REFERENCES 64

[10] WeakMap.prototype.clear(), 2020. [Online]. Available: https://developer.
mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_

Objects/WeakMap/clear.

[11] Remy Sharp,What is a Polyfill?, 2010. [Online]. Available: https://remysharp.
com/2010/10/08/what-is-a-polyfill.

[12] Source-to-source compiler, 2019. [Online]. Available: https://en.wikipedia.
org/wiki/Source-to-source_compiler.

[13] State of Babel 2016.12.07, 2019. [Online]. Available: https://babeljs.
io/blog/2016/12/07/the-state-of-babel.

[14] TypeScript, 2019. [Online]. Available: http://www.typescriptlang.
org/.

[15] nodejs.org, 2018. [Online]. Available: https://nodejs.org/.

[16] Node.js, 2018. [Online]. Available: https://en.wikipedia.org/wiki/
Node.js.

[17] V8 JavaScript Engine, 2018. [Online]. Available: https://v8.dev/.

[18] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns : ele-
ments of reusable object-oriented software. Addison-Wesley, 1995, p. 395, isbn:
0201633612. [Online]. Available: https://dl.acm.org/citation.cfm?
id=186897.

[19] https://npmjs.com, 2019. [Online]. Available: https://npmjs.com.

[20] Web Workers, 2020. [Online]. Available: http : / / www . whatwg . org /
specs/web-workers/current-work/.

[21] Node v10.5.0 (Current) | Node.js, 2019. [Online]. Available: https://nodejs.
org/en/blog/release/v10.5.0/.

[22] https://elixir-lang.org/, 2018. [Online]. Available: https://elixir-lang.
org/.

[23] Elixir (programming language), 2019. [Online]. Available: https://en.
wikipedia.org/wiki/Elixir_(programming_language).

[24] Erlang (programming language), 2019. [Online]. Available: https://en.
wikipedia.org/wiki/Erlang_(programming_language).

[25] Erlang Solutions, Erlang Factory SF 2015 - Panel Discussion, 2015. [Online].
Available: https://www.youtube.com/watch?v=oZwfi8JZ3kU.

REFERENCES 65

[26] Macros - Elixir, 2019. [Online]. Available: https://elixir-lang.org/
getting-started/meta/macros.html.

[27] C. Strachey and Christopher, “Fundamental Concepts in Programming Lan-
guages”, Higher-Order and Symbolic Computation, vol. 13, no. 1/2, pp. 11–49,
2000, issn: 13883690. doi: 10.1023/A:1010000313106. [Online]. Avail-
able: http://link.springer.com/10.1023/A:1010000313106.

[28] Clojure, 2019. [Online]. Available: https://clojure.org/.

[29] Docstring, 2019. [Online]. Available: https : / / en . wikipedia . org /
wiki/Docstring.

[30] S. Wlaschin, Railway oriented programming, 2014. [Online]. Available: https:
//fsharpforfunandprofit.com/rop/.

[31] E. Mortoray, The string type is broken, 2013. [Online]. Available: https:
//mortoray.com/2013/11/27/the-string-type-is-broken/.

[32] Y. Shoham, “Agent-oriented programming”, Artificial Intelligence, vol. 60, no.
1, pp. 51–92, Mar. 1993, issn: 00043702. doi: 10.1016/0004-3702(93)
90034-9.

[33] https://golang.org/, 2018. [Online]. Available: https://golang.org/.

[34] A. A. A. Donovan and B. W. Kernighan, The Go Programming Language, 1st.
Addison-Wesley Professional, 2015, isbn: 0134190440.

[35] Structural type system, 2020. [Online]. Available: https://en.wikipedia.
org/wiki/Structural_type_system.

[36] V. W. Freeh, “A Comparison of Implicit and Explicit Parallel Programming”,
Journal of Parallel and Distributed Computing, vol. 34, no. 1, pp. 50–65, Apr.
1996, issn: 0743-7315. doi: 10.1006/JPDC.1996.0045. [Online]. Avail-
able: https://www.sciencedirect.com/science/article/pii/
S0743731596900453.

[37] M. Fourment and M. R. Gillings, “A comparison of common programming
languages used in bioinformatics”, BMC Bioinformatics, vol. 9, no. 1, p. 82,
Dec. 2008, issn: 1471-2105. doi: 10 . 1186 / 1471 - 2105 - 9 - 82. [On-
line]. Available: https://bmcbioinformatics.biomedcentral.com/
articles/10.1186/1471-2105-9-82.

REFERENCES 66

[38] J. Fang, A. L. Varbanescu, and H. Sips, “A Comprehensive Performance Com-
parison of CUDA and OpenCL”, in 2011 International Conference on Paral-
lel Processing, IEEE, Sep. 2011, pp. 216–225, isbn: 978-1-4577-1336-1. doi:
10.1109/ICPP.2011.45. [Online]. Available: http://ieeexplore.
ieee.org/document/6047190/.

[39] L. Prechelt, “An empirical comparison of seven programming languages”, Com-
puter, vol. 33, no. 10, pp. 23–29, 2000, issn: 00189162. doi: 10.1109/2.
876288. [Online]. Available: http://ieeexplore.ieee.org/document/
876288/.

[40] P. K. Immich, R. S. Bhagavatula, and R. Pendse, “Performance analysis of
five interprocess communication mechanisms across UNIX operating systems”,
Journal of Systems and Software, vol. 68, no. 1, pp. 27–43, Oct. 2003, issn:
01641212. doi: 10.1016/S0164-1212(02)00134-6.

[41] J. Xu, A. Romanovsky, and B. Randell, “Concurrent exception handling and
resolution in distributed object systems”, IEEE Transactions on Parallel and
Distributed Systems, vol. 11, no. 10, pp. 1019–1032, Oct. 2000, issn: 10459219.
doi: 10.1109/71.888642.

[42] N. Provos and D. Mazières, “A Future-Adaptive Password Scheme”, in Pro-
ceedings of the Annual Conference on USENIX Annual Technical Conference,
ser. ATEC ’99, USA: USENIX Association, 1999, p. 32.

[43] Node.js Cluster API, 2020. [Online]. Available: https://nodejs.org/
api/cluster.html.

