
MSc thesis

Computer Science

Select-based random access
to variable-byte encodings

Jussi Timonen

June 6, 2020

Faculty of Science
University of Helsinki

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/328853808?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Supervisor(s)

Dr. Simon Puglisi, Dr. Juha Kärkkäinen

Examiner(s)

Dr. Simon Puglisi, Dr. Leena Salmela

Contact information

P. O. Box 68 (Pietari Kalmin katu 5)
00014 University of Helsinki,Finland

Email address: info@cs.helsinki.fi
URL: http://www.cs.helsinki.fi/

Faculty of Science Computer Science

Jussi Timonen

Select-based random access to variable-byte encodings

Dr. Simon Puglisi, Dr. Juha Kärkkäinen

MSc thesis June 6, 2020 29 pages

compression, data structure

Helsinki University Library

Algorithms specialisation line

Enormous datasets are a common occurence today and compressing them is often beneficial.
Fast direct access to any element in the compressed data is a requirement in the field of com-
pressed data structures, which is not easily supported with traditional compression methods.

Variable-byte encoding is a method for compressing integers of different byte lengths. It removes
unused leading bytes and adds an additional continuation bit to each byte to denote whether
the compressed integer continues to the next byte or not. An existing solution using a rank
data structure performs well in this given task. This thesis introduces an alternative solution
using a select data structure and compares the two implementations. An experimentation is
also done on retrieving a subarray from the compressed data structure.

The rank implementation performs better on data containing mostly small integers. The
select implementation benefits on larger integers. The select implementation has significant
advantages on subarray fetching due to how the data is compressed.

ACM Computing Classification System (CCS)
Information systems → Data management systems → Data structures → Data layout → Data
compression

HELSINGIN YLIOPISTO – HELSINGFORS UNIVERSITET – UNIVERSITY OF HELSINKI
Tiedekunta — Fakultet — Faculty Koulutusohjelma — Utbildningsprogram — Study programme

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Ohjaajat — Handledare — Supervisors

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — övriga uppgifter — Additional information

Contents

1 Introduction 1

2 Variable-byte encoding of integers 3
2.1 Variable-byte encoding . 4
2.2 Variable-byte decoding . 6

3 Rank and Select 7
3.1 Rank and Select implementation . 7

4 Directly addressable codes 10
4.1 DAC via rank . 10

5 DAC with select query 13
5.1 Elias-Fano encoding . 15

6 Subarray access 16
6.1 Subarray access with select . 16
6.2 Subarray access with rank . 17

7 Experimental results 19
7.1 VB decoding comparison . 19
7.2 Memory usage . 22
7.3 Subarray access results . 23

8 Conclusions and Future work 24
8.1 Future work . 24

Bibliography 27

1 Introduction

Enormous datasets are a common case in today’s applications. Some datasets are too
big to handle in memory and thus must be stored in larger, slower storage (Hon et al.,
2010). Compressing these datasets is often beneficial, because doing so naturally decreases
memory requirements, but also can make it faster to transfer data from disk to memory
(Zobel and Moffat, 1995; Williams and Zobel, 1999).

A fundamental method for data compression is variable-length coding (Salomon, 2007).
The main idea of variable-length encoding is that frequent sequences of data are repre-
sented with shorter codewords. Because the sequences of data have different lengths when
compressed, it is not trivial to determine the exact location of a certain element within the
compressed data. If this is required, the usual data compression algorithms are inefficient,
because data must be decompressed from the beginning to the point where the sought
element is located. Fortunately, such random access to elements is not a requirement
compression algorithms usually need to fulfill.

However, efficient random access to compressed data is very useful in compressed data
structures (Venturini, 2013). In addition to saving storage space and bandwidth, the
compression increases the likelihood of data already being in cache (Scholer et al., 2002).

Variable-byte encoding is a method for compressing integers of different byte length. An
additional continuation bit is added to the data to denote whether the compressed integer
is continued to the next byte or not. To facilitate random access, two different light-weight
data structures are built over the continuation bit array. Rank1(i) returns the number of
1 bits in the bit array between indexes 0 and i-1. Select1(i) returns the index of the i-th
1 bit in the array. The fact that the compressed data blocks are of the same size is used
with the data structures to allow direct access to the compressed variable-byte data.

A variable-byte encoding based integer compression method with fast random access was
first introduced by (Brisaboa et al., 2009). They used a clever block reorganizing and
a rank data structure to achieve random access. Their solution is currently the only
published solution for the problem and it has been widely adopted (see, e.g., Konow et al.,
2017; Shareghi et al., 2016).

In this thesis, a novel alternative solution that instead makes use of a select data structure

2

is proposed and explained in detail. The underlying question is if a select based method
is viable for random access. Compared to Brisaboa et al., proposed method uses a very
simple data reorganizing, and capitalizes on the assumption that data is encoded the same
way it is in the source. Data can then be read straight from the memory and reassembling
the integer from its encoded blocks is not needed.

Comparison of the proposed method and the rank-based implementation by Brisaboa et
al. is provided with different implementations of rank and select. The rank method is ex-
pected to perform better on data sets containing mostly small integers. It is assumed that
larger numbers lead to slower random access for rank-based methods. The performance of
the proposed select method is indifferent of the size of the elements in the data. Different
kinds of data sets are used to assess how each approach performs. The assumption is that
select works better with data sets with very large integers. It remains to be seen how
large the integers need to be for the select method to outperform the rank method.

The performance of the algorithms when decompressing a long subarray is also compared.
Because of the way the data is stored, the proposed select method offers fast access to
the next or previous element and is expected to perform well with any given data set or
subarray length. Solutions for subarray fetching with both rank and select methods are
proposed and compared.

2 Variable-byte encoding of integers

Variable-byte (VB) encoding (MIDI Manufacturers Association and others, 1996; Williams
and Zobel, 1999) is a method for compressing unsigned integers via omitting leading zero
bits that would be present in a longer fixed width word. In normal data sets such as text
files or images, leading zero bits are usually not present in large quantitites and thus VB
encoding loses in compression performance to generic algorithms like Huffman encoding
(Huffman, 1952) or Lempel-Ziv encoding (Ziv and Lempel, 1977).

Elias Delta and Gamma codes (Elias, 1975) are popular encoding methods for integer
data sets. Their encoding process assigns short bit sequences to small integers, which is
why they outperform, in terms of compression, VB encoding on datasets containing lots of
small integers (Williams and Zobel, 1999), such as inverted indexes (Anh and Moffat, 2005;
Pibiri and Venturini, 2019). VB is generally faster to decode (Williams and Zobel, 1999;
Trotman, 2003) and so is sometimes preferred, also due to its simplicity of implementation.
In this thesis, the data sets used for experimentation will have the focus on slightly larger,
unordered integers.

Variable-byte encoding originates from and is used in the MIDI music file format (MIDI
Manufacturers Association and others, 1996) and several applications have a similar im-
plementation of VB. Apache Lucene has the vInt datatype (Apache, 2013) which works
well with short inverted index lists (Wan and Pan, 2009). The Wireless Application Pro-
tocol has a variable length unsigned integer uintvar, Google Protocol Buffers has a Base
128 Varint (Google, 2019), Microsoft .Net framework offers ”7BitEncodedInt” in Bina-
ryReader and BinaryWriter classes and IBM DB2 uses variable byte encoding to store
record identifier lists (Bhattacharjee et al., 2009).

VB encoding was first experimented as a tool for compressing inverted index lists of word
locations in documents by Scholer et al. In that setting, VB codes yielded excellent results,
and since then many different approaches have been introduced. A search engine may use
an inverted index of words in documents. For each word, a list of document IDs where
the word appears is stored. It may also store locations of the word in the document for
advanced search purposes. Usually these lists are preprocessed to form an inverted index,
storing each number as its difference to the previous number instead of the actual number
(Manning et al., 2008). Common words have a lot of entries in these lists, which makes

4

the inverted index encoded integers small. In contrast, rare words have only a few entries
but the integers stored are larger. These lists are mostly small integers with a need to
support larger ones and thus are excellent candidates for VB encoding.

More recent studies have taken a look into the machine code level for VB and applied
SIMD (Single instruction, multiple data) instructions for VB decoding (Lemire et al.,
2018; Plaisance et al., 2015). The bit operations in VB are simple and therefore modifying
the code to use SIMD instructions is straightforward and the speed improvements are
significant.

2.1 Variable-byte encoding

The name variable-byte reflects the way in which the integers are stored. When the
integers are stored in an array, each element requires the same fixed amount of space.
This is inefficient if a lot of the values are very small but the array also has to support
very large integers. VB encoding attempts to eliminate the unneeded leading zeros. The
bits in an integer are split into blocks of length b and empty blocks from the beginning are
discarded. Because the lengths of the integers (i.e. the number of bytes used to represent
them) may now be different, the data cannot be stored as it is. Instead a continuation bit
is added in front of each block to form a chunk. This bit is set to 0 on all chunks except
for the last one which contains the least significant bits. The continuation bit is used in
decoding to signal whether or not the current integer continues in the next chunk.

For example, the standard 16-bit representation of an unsigned integer 42 is 00000000

00101010. Assuming the block length is 4, it is split to 0000 0000 0010 1010. The
empty blocks are removed from the beginning and then the continuation bits are added. 1
is added in front of the last block (containing the least significant bits) and 0 to the other
blocks, resulting in 00010 11010. Table 2.1 contains examples of VB encoded integers
with block length 4.

A pseudo code for VB encoding with block length 7 is shown in Figure 2.1. Prepend
adds an element to the beginning of the list and extend adds all the elements of the
second list to the end of the first list. The block length can be changed by replacing 128
with 2b, where b is the desired block length. Since the block length is 7, the continuation
bit is added in row 8 by adding 27 = 128 to the last block.

Smaller block lengths can yield a better compression rate at the cost of more bit manip-

5

Original number first block second block third block fourth block

4 10100

17 00001 10001

620 01100 00110 10010

60201 01001 00010 01011 11110

Table 2.1: VByte encoded integers, block size 4. Continuation bit underlined.

1: function VBEncodeNumber(n)
2: bytes← list
3: while true do
4: prepend(bytes,n mod 128)
5: if n < 128 then
6: break
7: n← n div 128
8: bytes[len(bytes)-1] += 128
9: return bytes

10: function VBEncode(numbers)
11: bytestream← list
12: for each n ∈ numbers do
13: bytes← VBEncodeNumber(n)
14: extend(bytestream,bytes)

15: return bytestream

Figure 2.1: VByte encoding

ulation and therefore possibly slower decompression, while bigger block lengths need less
bit manipulation and offer less effective compression. On the other hand, a bigger block
length means a smaller percentage of added continuation bits. Generally, a block length
of 7 has been popular because it tends to perform well on average and handling chunks as
bytes is convenient (Manning et al., 2008).

6

2.2 Variable-byte decoding

VB decoding reverses the encoding steps: encoded chunks are read until a chunk with 1
as continuation bit is found. Continuation bits are removed from all the chunks and the
resulting blocks are concatenated to form the original integer. A pseudo code implemen-
tation of VB decoding with a block length of 7 is shown in Figure 2.2. Append adds
an element to the end of the list. If the block length is changed, additional bit operation
steps when reading the data may be needed.

Continuing from where the encoding example ended, the encoded message was 00010

11010 with block length of 4 and the goal is to decode a 16 bit unsigned integer. The
block from the first chunk is extracted and added to n, making n = 10 (bit representation
of 2). The continuation bit was 0 in this chunk, which means the encoded integer continues
to the next block. A bitwise shift to the left equal to block length is applied to n, changing
n = 100000 (bit representation of 32). Then the chunk reading process is repeated. The
block of the next chunk is added to n, making n = 101010 (bit representation of 42). The
continuation bit of this chunk is 1, which means the decoding for this number is complete.

function VBDecode(bytestream)
numbers← list
n← 0
for each b ∈ bytestream do

if b < 128 then
n← 128× n + b

else
n← 128× n + b - 128
append(numbers,n)
n← 0

return numbers
Figure 2.2: VByte decoding

3 Rank and Select

Rank and select are two array operations that are widely used in compressed data struc-
tures. Rankx(i) counts the number of occurences of x before index i in the data. Selectx(i)
returns the index of the i-th occurence of x in the data. In this thesis, these two opera-
tions are assumed to work with a bit array. Rank1(i) counts the number of bits set to 1
before i and select1(i) returns the index of the i-th bit set to 1. Both operations can be
implemented to work in constant time (see, e.g., Gog et al., 2014). The two operations are
related to each other: when used on a bit array B = 0100 1101 1011, select1(5) returns
8 (underlined) and therefore rank1(8) returns 4.

To use rank or select in indexing, the set 1 bits in the bit array should reflect the element
locations in the encoded data. For most compression algorithms, this requires the bit
array to be created in addition to the existing data. The length of the bit array in these
cases usually has to be close to the length of the data, because encoded element lengths
vary. This spatial increment makes the compression ineffective and therefore rank and
select cannot be applied to any given compression algorithm.

VB encoding has several advantages with select and rank: the data is compressed in
blocks of equal length which significantly shrinks the length of B. Moreover the bit array
C formed from the continuation bits already stores the locations of items and works as
the needed indexing array. In this case, rank1(i) from C would give the number of end
blocks before the i-th index and select1(i) would give the location of the ending block of
i-th compressed element.

3.1 Rank and Select implementation

The rank and select implementations used in this thesis are from C++ library ’SDSL-
lite’ by (Gog et al., 2014). The library has an implementation of a bit array and several
implementations of both rank and select to support the bit array. A few useful functions
from the library were also used during the implementation phase. Table 3.1 has rank and
select size requirements of the implementations used. Both rank implementations have a
constant space requirement over the bit array, while select’s needed size depends on the
number of 1’s in the data. This chapter describes a way to achieve fast random access to

8

Table 3.1: Memory requirements of SDSL rank and select data structures

Structure Extra size taken

Rankv 25% of bit array
Rankv5 6.25% of bit array
Select 8-23% of bit array (depends on the data)

variable length codes. The described method also has a low space overhead, increasing the
size of the compressed sequence by much less than one bit per element. Two versions of
rank from the ’SDSL-lite’ library are used in this thesis, rankv and rankv5 and the select

version is selectMCL. These implementations were chosen because they are fast and can
be created over a regular bit array.

The data structure to support rankv has two layers. The first layer is the superblock
array. For every 512th bit, the number of 1’s from the beginning of the array is stored
to the superblock array. The second layer is the relative count block. For every 64th bit
inside a superblock, it stores the number of 1’s since the start of this superblock.

For rank(i), the superblock index s = i / 512 and relative count block index r = (i - s) /
64 need to be calculated, with both division operations being integer divisions. Then the
number of 1 bits from index r to i are calculated from the original bit array. These three
values add up to rank(i). Rankv5 is a lighter structure: its superblock size is 2048 and
relative counts are taken for every 384th bit. This causes the final bit calculation to be
more costly, but reduces memory requirements to a quarter.

The rank data structures are based on (Vigna, 2008). A rankv superblock covers 512 bits
and is divided to 512/64 = 8 relative blocks. This means a relative block needs to be able
to store a number up to 512 in itself, which takes log2 512 = 9 bits. The first relative
block always equals 0, because a relative block counts the number of 1 bits from the start
of the superblock. Therefore the remaining 7 relative blocks take 63 bits and fit into one
64-bit word. For every 512 bits, this implementation requires 64 bits for the superblock
and another 64 bits for the relative blocks, resulting in additional 128/512 = 25% space.

The rankv5 superblock covers 2048 bits and is divided to 6 relative blocks of 384 bits,
requiring log2 2048 = 11 bits each. The first relative block again equals 0, so the rest
of the blocks fit to a 64-bit word. The rankv5 implementation requires an additional
(64+64)/2048 = 6.25% space.

The select data structure works in a similar way to rank. The index location of every

9

4096th set bit is stored in the superblock and the location of every 64th set bit is stored
relative to the superblock. With similar calculations, the location of the closest 64th set
bit is calculated and then the bit array is iterated until the required amount of bits is
reached. The selectMCL is a practical variant of a PAT tree, the data structure described
by Clark, 1997. The memory requirement of the select implementation depends on the
portion of 1 bits in the bit array.

For both rank and select, one function call always gets a value from the superblock and
then from the superblock’s relative block. The only variable factor is the manual bit count
from relative block’s index to wanted index. This is at most the size of one relative block
and thus both of the functions can be made work in constant time using modern popcount
instructions (González et al., 2005). The implementations are explained in greater detail
in Gog et al., 2014.

4 Directly addressable codes

The ability to process large amounts of data fast is one of the key challenges in the field of
search engines. Compressed data structures are applied to reduce the size of data so that
it fits into cache, memory or even hard drive while still allowing it to be accessed easily.
Directly addressable codes (DAC), a direct access to any element in a compressed list or
array, is one of the basic building blocks in compressed data structures. For example, it is
needed in inverted index compression (Culpepper and Moffat, 2007) and compressed text
search (Moura et al., 2000).

It is not natively possible to decode the i-th element in variable-byte compression algo-
rithms, because the position of the element in the compressed list depends on the length
of the preceding compressed data. Direct access is achievable with supporting data struc-
tures. A naive solution would be to store the location of each element to an array, but
this adds a very large overhead which removes the benefit of compression.

4.1 DAC via rank

Directly addressable VB codes were first introduced by (Brisaboa et al., 2009). In their
solution, the chunks are stored in separate arrays by their significance. For each integer,
the block of the least significant chunk is stored in the first array A1, and its continuation
bit to the first bit array B1. Then if the number was stored in multiple chunks, the block
of the next chunk is stored to A2 and its continuation bit to B2 and so on.

After the data has been arranged this way, a rank data structure is built for each bit
array. The data structure does not require additional space on top of that used by the
normal VB encoding apart from that used by the rank structure. Figure 4.1 contains a
visualization of the data structure. The C array is the original VB encoded data, which
is split into separate block arrays Ak and contiuation bit arrays Bk.

To decode an element from index i, first block is fetched from A1[i]. Because each encoded
element is composed of at least one block, the first block is obtainable via directly indexing
A1. With small integers, this is all that is required. If the data has a lot of small integers,
the rank method thus has a huge advantage.

11

C1,2C1,1

The chunk array. Ci,j = Bi,j : Ai,j

C = C2,1 C3,3C3,2C3,1 C4,2C4,1 C5,1 ...

A1,1A1 = A2,1 A3,1 A4,1 A5,1 ...

0B1 = 1 0 0 1 ...

A1,2A2 = A3,2 A4,2 ...

1B2 = 0 1 ...

A3,3A3 = ...

1B3 = ...

Figure 4.1: Data structure by Brisaboa et al., visualized

However if the element was stored in multiple blocks, the index of the next block in A2

is obtained from i ← rank0(A1, i). Rank0 returns the number of zeros in the bit array
preceding index i. In other words, it returns the number of elements before i that continue
to the next array. This in turn means that i is the index of desired element’s next block
in array A2. This process is repeated until the i-th bit of the bit array of the current level
(the continuation bit for the current block) is 1. The resulting integer is constructed from
the blocks of the fetched chunks. A pseudo code example of DAC with rank is shown in
Figure 4.2 with block length of 8.

As an example, the fourth element from the data structure shown in Figure 4.1 is decoded.
The first block of data is fetched by directly accessing A1[3]. Then the continuation bit
B1[3] is checked. It is not set, which indicates that the element continues to the next
block. The index of the next block is obtained via a Rank(B1, 3) call. There are two
zero bits in B1 before B1[3], which means the next block is in A2[2]. The continuation bit
at B2[1] is 1 so the decompression is completed.

Interestingly, the block length of this method can be allowed to change within different
array levels which opens a possibility for further compression optimization. Brisaboa et
al. experiments with a few different block length setups and leaves open the problem of
finding optimal block lengths. While the problem of finding the optimal block length for
each data set in regular VB encoding is interesting, the possibility to optimize it for each

12

block level separately is surely more challenging.

index← wanted index
A← block arrays
B ← continuation bit arrays
level← 0
number ← 0
while B[level][index] = 0 do

block ← A[level][index]
number ← number� 8
number ← number + block

index← Rank(B[level], index)
level← level + 1

block ← A[level][index]
number ← number� 8
number ← number + block

Figure 4.2: Example pseudo code of DAC with rank by Brisaboa et al.

5 DAC with select query

Using select on the continuation bit array to achieve direct access is more intuitive than
using rank. The element locations are already marked with 1’s in B and a single select1

query gets the desired starting point, while the aforementioned version (Brisaboa et al.,
2009) used one rank query for each chunk beyond the first. Minimizing the amount of
select and rank queries is important. They run in constant time but their impact is huge,
because rest of the VB decoding consists of just a few bit operations.

To use select with VB, continuation bits need to be separated from chunks to their own
bit array and a select1 structure built over it. Because every compressed element has
1 only on its last block, Select1(i) returns the location of the end byte of i-th element.
Therefore the start of j-th element in the block array is at block bs = select1(j-1) + 1. In
this thesis, the implementation was simplified by using only block sizes 4 and 8 to prevent
block splitting between bytes.

Unlike the standard VB encoding, the continuation bits are removed from the chunks and
stored in their own bit array, which leaves the blocks in their own array. This allows the
compressed number to be read from the memory block and removes the need to do block
concatenation. The data in blocks is written into memory as they appear in the original
integer, so that when reading a word from the block byte array, the bits and bytes are
already in correct order.

For example, let the integer bit length be 32 and the original data be compressed to 5
blocks of 4 bits. First, the byte location of the first block is needed. The index location x

of the desired block is calculated x = select1(i-1) + 1, but since the block length differs
from byte length, the starting byte location s needs to be calculated s = (x× 4)÷ 8, the
latter operand being for integer division. The first block might not be at the start of the
byte s. This is why offset o = (x× 4) mod 8 is needed (in the example case, o is equal to
either 0 or 4). Then a 32-bit word w is read from memory from byte location s.

At this point, w contains the wanted bits, but also has extra bits from the previous and
next compressed integers. If the offset was not zero, there are o trailing bits in w from
the previous integer. These can be conveniently removed by bit-shifting w right for o

bits. Then a pre-calculated bitmask (0xFFFFF in this case) is applied and w contains the
desired value. Most systems are able to read memory only from byte addresses, which leads

14

to a corner case where the compressed integer is stored in more bytes than are contained
in a word. In the aforementioned situation, this happens if the compressed length was 8
blocks and offset was 4. In this case, another step of reading another byte and storing
the remaining bits to w is required. This is entirely avoidable if the integer length can be
constrained. If the maximum integer length was set to 28 bits, the bits would be within
a single word in memory and reading the extra byte would not be needed.

The most intuitive way to calculate the block length of the i-th element is to subtract
select1(i-1) from select1(i). This however causes an additional select1 query, which is
costly. A much faster option is to calculate the block length from the continuation bit
array. This can be done by reading a word from the bit array and bit-shifting the word
until the bit representing the start of the i-th element is on the rightmost end and then
counting the trailing zeros (for example, by using the GCC function builtin ctz). The
trailing zeros equal to the number of blocks in the i-th element that do not have the
continuation bit set. This number is then incremented by one to also count the ending
block which has the continuation bit set to 1.

Figure 5.1 contains an example of VB decoding with DAC with select and block size 8.
Different block sizes need extra calculation to get the block location from the byte array.
In the pseudo code, CalculateLength returns the length of the number in blocks and
ByteMask(k) returns a bit mask for k bytes. In line 8, a long word is read from memory
starting at memory address A[begin].

1: i← wanted index
2: A← block byte array
3: B ← continuation bit array
4: begin← Select(B, index)
5: len← CalculateLength(begin)
6: mask ← ByteMask(len)
7: word← A[begin]
8: word← word & mask

Figure 5.1: Pseudo code of DAC with select with block length 8

Figure 5.2 portrays an example of the bit array and the block array. Select1(k − 1)+1
returns the index of the starting byte of ith compressed element. The length of the
compressed element is 3, which is obtainable, e.g., via select1(k). Then a word is read
from the block array, starting from block Ai and blocks not belonging to the element are
removed for example with a bit mask, resulting in k-th element being decoded.

15

... 0 1 0 0 1 0 B...

Bit array

index:

k-1th 1

i− 1 i i + 1 i + 2 i + 3 i + 4

kth 1

... Ai−2 Ai−1 Ai Ai+1 Ai+2 Ai+3 A...

Block array

Figure 5.2: Relation of continuation bits and data blocks in VB encoding.

5.1 Elias-Fano encoding

Direct access via select can also be implemented with Elias-Fano encoding, but the data
has to be sorted. This is usually a given in inverted index lists of search engines. In
Elias-Fano encoding (Elias, 1974; Vigna, 2013), the data is at first split into low and high
bits. The low bits, the k least significant bits, are stored to their own array. Direct access
to the lower bit array is trivial. The higher bits are gap-encoded and then encoded in
unary. For example, [1,3,5,8,11] becomes [1,2,2,3,3] and then is encoded as a unary bit
array B = 0100100100010001.

Select1 has an interesting interaction with gap encoded unary arrays. k = Select1(B, i)
returns the location of i-th 1 in B. Up to index k, the bit array has had i ones and i− k

zeros. The i corresponds to the number of compressed integers in B and every zero in the
array means an increment of 1 in the numbers. In other words, i− k equals to the integer
at position i before gap-encoding. Therefore select1(i) - i returns the original higher bit
number. The split between bits is made to reduce the gap sizes.

Elias-Fano encoding is an excellent tool if the elements are sorted and the higher bits
are reasonably small, because large integers cause a very inefficient unary encoding. This
can be further optimized by finding clusters in the integers and partitioning the indexes
(Ottaviano and Venturini, 2014). Elias-Fano encoding is not compared in this thesis,
because the data considered is not necessarily sorted.

6 Subarray access

After locating and decompressing one value from a compressed data structure, decom-
pressing the subsequent elements can become significantly easier. Calculating the memory
location of the next element may not be needed if the next compressed value is located
next to the previously fetched element. This is especially beneficial to the select-based
VByte decoding, where calculating the start byte location takes majority of the runtime.
In addition to this, the length of the next compressed integer is very fast to calculate
because the required data is already in memory and immediately local to the last point of
access.

6.1 Subarray access with select

A single direct access with select needs to calculate the length of the desired element.
This is done by reading a word from the continuation bit array, bit-shifting until the bit
representing the first block is on the rightmost end, and then counting the trailing zeros
in the word. Subsequent length calculations are done by bit-shifting the word equal to the
length of the previous element and then counting trailing zeros. Once the word is shifted
through, another word is read and the process continues.

... 0 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 1 0 0 1 0 1 1 0 1 0 1 ...

k-1th 1

B1 B2 B3 B4

word w

Figure 6.1: Continuation bit array, the bits are grouped by the bytes they are in

Figure 6.1 shows an example of a continuation bit array. The index of the 1 bit returned
by the select query issued for the starting index is marked, and the desired starting index
i = select(k − 1) +1 is the following bit on the right. The byte where the i-th bit is
located can be calculated by doing an integer division i/8. In the example, a 16-bit word

17

w is read from the byte location B1. It is beneficial to read as large word as possible, but
16-bits is used in this example for the sake of simplicity. Next the starting bit is shifted
to the start of the word, the offset being 6 in this case. After the operation, w contains
bits 00110010 10000000, with the least significant bit being on the left. The length of
the current element is l = 1 + TrailingZeros(w). The number of trailing zeros can
be efficiently calculated with the GCC function builtin ctz (or bits::lo from the
’SDSL-lite’ library).

The length of the desired element l and the location i can now be used to decompress the
desired element. For the next element, i is incremented by l and w is bit shifted l bits and
the process is repeated. When w has no 1 bits, another word is read from the following
bytes. A few extra steps are required, because the old w might have continuation 0 bits left
for the current word. The number of leftover zeros is added to the first length calculation
after reading a new word for w. This number can be calculated either by adding bit shift
amounts together and subtracting the result from word-length. Another option is to count
leading zeros of the old w before the first switch. In the example, one zero is left over from
the byte B2.

6.2 Subarray access with rank

The shown rank method by Brisaboa et al. described earlier can also effectively decompress
the next value with slight modifications. When fetching a subarray, the goal becomes to
minimize rank calls. When a new block level is reached for the first time during a subarray
query, the index is fetched with rank as normal, and the result of the query is stored. When
a new index is needed from a previously used level, the desired block is known to be right
next to the previously fetched one. Therefore the stored index value is incremented by
one and that value is used instead of issuing another rank query. This way the number of
rank calls needed is equal to the number of rank calls needed to decompress the largest
number in the subarray.

An example situation from a previous chapter is pictured in Figure 6.2. A subarray of
four elements will be decoded from the start of the array. The starting location could very
well be anywhere, but the start was chosen for simplicity. The array P is used to store
the block indices. Initially the values in P are set to -1 to denote that the value is unset
and that level has not been reached yet. When a block level is queried for the first time,
the index value from the rank call is stored in P and used instead of further rank calls.

18

The subarray is in this case started from index 0. The value of P for the current level is
checked at the start of every block fetch. P [1] is unset, so a value needs to be fetched and
stored there. Because the rank method does not need an actual rank call in the first block
array, P [1] is set to the starting index 0 and that value is used to fetch the first block.
B1[0] shows that the element is continued to the next block level. P [2] is -1 (because this
is the first time the second level is reached), so a P [2] = rank0(B1,0) call is needed to
fetch the second block. B2[0] indicates that the element is not continued anymore.

For the location of the first block of the second element, P [1] is checked. It is set, so the
value it contains is increased by one and used as the index. The bit array shows that this
element is only one block long. The first two blocks of the third element are fetched the
same way. P [2] is unset and a P [2] = rank0(B2,0) is used to fetch the index. The fourth
element does not reach to a new block level, so each block location is fetched from P .

A1,1A1 = A2,1 A3,1 A4,1 A5,1 ...

0B1 = 1 0 0 1 ...

A1,2A2 = A3,2 A4,2 ...

1B2 = 0 1 ...

A3,3A3 = ...

1B3 = ...

-1Initial: -1 -1 -1

P1 P2 P3 P4

0After C1: 0 -1 -1

1After C2: 0 -1 -1

2After C3: 1 0 -1

3After C4: 2 0 -1

Figure 6.2: Index lookup array demonstration in rank based subarray query.

7 Experimental results

The following experiments were run on a AMD Phenom(tm) II X6 1055T Processor@2.8Ghz
with 64kB+64kB L1 cache, 512kB L2 cache, 6144kB L3 cache and 32GB of DDR3
1333MHz. The computer runs Ubuntu 14.04.4 (3.13.0-91-generic x86 64) with minimal
programs running in the background. The implementations were written in C++ and com-
piled with g++-7 -std=c++11 -DNDEBUG -O3 and with libraries -lsdsl -ldivsufsort

-ldivsufsort64.

The implementations for these results can be found online at https://github.com/mozzie/vbyte.

7.1 VB decoding comparison

The list of implementations is depicted in Table 7.1. Three different VB decoding imple-
mentations were compared with two different block lengths. Two rank-based implemen-
tations of VB used are based on (Brisaboa et al., 2009) and use rankv and rankv5 data
structures from the SDSL-library (Gog et al., 2014). The different rank data structures
achieve different trade-offs between memory and speed. The select algorithm is the one
proposed in this thesis and it is implemented using the selectMCL data structure from
the SDSL-library. Different block lengths were used to illustrate how block size affects
the runtime and memory requirement. Lengths 8 and 4 were chosen because they are
relatively easy to implement.

Each implementation compresses and decompresses 64-bit unsigned integers. The rank

Table 7.1: Generated datasets

Algorithm Explanation
Bris4 Bris implementation with block size 4, using rankv

Bris4v5 Bris implementation with block size 4, using rankv5

Bris8 Bris implementation with block size 8, using rankv

Bris8v5 Bris implementation with block size 8, using rankv5

Select4 Proposed implementation with block size 4, using selectMCL

Select8 Proposed implementation with block size 8, using selectMCL

https://github.com/mozzie/vbyte

20

Table 7.2: Generated datasets

Dataset Explanation
all all integers randomly 1-4 bytes long
twolarge one eighth of integers 4 bytes long, one eighth 2 bytes long, rest 1 byte
onelarge one eighth of integers 2 bytes long, rest 4 bits or less
onlysmall all integers 4 bits or less

Table 7.3: Results in milliseconds, smaller is better. Smallest time is bolded

bris8 bris4 bris8v5 bris4v5 select8 select4

all (5M) 191.80 471.50 234.00 569.40 149.20 175.90
all (50M) 269.20 573.80 323.00 785.00 245.40 275.00
all (500M) 298.50 677.80 368.20 941.80 355.90 382.20
twolarge (5M) 96.70 275.50 110.70 329.00 125.60 151.90
twolarge (50M) 140.40 379.70 159.80 456.80 227.70 242.20
twolarge (500M) 168.20 441.00 191.50 584.70 330.20 341.00
onelarge (5M) 25.80 40.10 28.30 49.20 95.90 100.40
onelarge (50M) 49.80 91.30 50.90 105.70 212.70 213.20
onelarge (500M) 55.00 100.00 58.50 124.00 315.80 307.70
onlysmall (5M) 16.50 20.20 16.50 23.80 84.70 88.40
onlysmall (50M) 31.20 51.80 32.10 57.00 201.20 198.80
onlysmall (500M) 34.10 56.00 35.00 63.10 297.90 293.80

and select implementations are explained in detail in Section 4.1 and Chapter 5, respec-
tively.

Table 7.2 describes four different types of synthetic datasets that were used for the ex-
periments. Each dataset was generated to three different sizes (5M, 50M, 500M). The
content of the datasets were chosen in order to see how different implementations work
with different sized data and different magnitudes of integers.

All implementations read the data set from a file and compress it in memory, randomize
one million query indexes and store these indexes to an array. The times shown in Table 7.3
are times taken from looping through the index array and VB decoding the number at
each index. Additionally, each run is iterated 10 times and an average of the runtimes is
taken.

The results show that the proposed select method outperforms rank when the data set

21

contains several integers that are encoded into more than one block. The difference is
explained with how rank and select use the data structure. Select is always called once,
while rank is called once for each block beyond the first. Figure 7.1 shows average times
of one million rank and select calls with different average integer lengths. The effect of
multiple rank calls is visible, as is the single select call behavior, which leads to a much
flatter curve.

The 8-bit versions tend to perform better than the 4-bit versions. This is because the 8-bit
version stores more data in one block and so less block readings are required. However,
the 4-bit versions achieve better compression in data sets containing small integers. The
select versions do not depend as much on the block size, because all the blocks in the
compressed element are read at the same time. Interestingly the 4-bit version of select

performs better than the 8-bit version with some data sets, even though the 4-bit version
should execute at least the same commands as the 8-bit version in every scenario. This is
most likely an effect of caching, because the stored data set is smaller in the 4-bit version,
and thus more of it fits in higher levels of memory.

The rankv5 naturally has worse performance because more calculations are needed in the
last phase of calculating the rank sum. As a trade-off, it requires significantly less memory
than rankv, as seen on Table 3.1.

1 2 3 4 5 6 7 80

100

200

300

400

500

600

700

800

average integer byte length

m
s

pe
r

m
ill

io
n

qu
er

ie
s

bris8
bris8v5
select8
select4

Figure 7.1: Rank and select performances

22

dataset compressed size bris8 bris8v5 select8

all 168.4MB 4.67MB 1.17MB 1.54MB
twolarge 112.4MB 3.12MB 781kB 1.48MB
onelarge 63.2MB 1.76MB 439kB 1.43MB
onlysmall 56.3MB 1.56MB 391kB 1.43MB

Table 7.4: Memory requirement for 50M 64-bit numbers 8bit blocks, smaller is better.

dataset compressed size bris4 bris4v5 select4

all 177.7MB 7.65MB 1.91MB 1.63MB
twolarge 116.1MB 4.66MB 1.14MB 1.54MB
onelarge 42.5MB 2.12MB 531kB 1.44MB
onlysmall 31.3MB 1.56MB 391kB 1.43MB

Table 7.5: Memory requirement for 50M 64-bit numbers 4bit blocks, smaller is better.

7.2 Memory usage

Tables 7.4 and 7.5 show memory size requirements for rank and select data structures
with data sets consisting of 50 million 64-bit numbers. The compressed size column is
the sum of the sizes of the continuation bit array and the data blocks. The tables show
that the static requirement of rankv5 is superior with these datasets. If the dataset had
even larger integers, select would be dominant. For rank and select methods used in this
thesis, the total space taken by the extra data structures is only a small fraction of the
overall size.

The static memory requirement of select is easily noticeable, as is the relation between the
memory requirement of rank and the total number of blocks. Data structures in versions
with smaller block size naturally take more space, but smaller block size allows better
compression in some data sets and therefore a smaller total size. This can be seen when
comparing the two forementioned figures: All 4-bit versions of the algorithms require more
space than the 8-bit versions, but the compressed size of the data is significantly smaller
in the bottom two data sets. The data structure memory usage for the bottom row is
similar in both versions due to the fact that the continuation bit array is exactly the same
in both cases.

23

7.3 Subarray access results

The subarray access experiments were run similarly to the experiments of previous sections.
The data sets used contained 50 million numbers each. Most of the numbers were 4 bits
long, with a varying amount of 32-bit integers randomly among them. The numbers in
the x-axis correspond to the number of 32-bit integers per 1000 integers. One million
indexes were randomized and both the index numbers and the data sets were preloaded
into memory. A subarray of length 50 was decompressed from each randomized index
location. Some precaution was used in the index randomizing to prevent reading from an
out of bounds location. The time shown in the figure is milliseconds taken to decompress
one million subarrays. Each result is an average of 10 runs.

Figure 7.2 shows results for subarray fetching. The probability of having a long integer
within the subarray range is visible from the results of the rank based methods. When
the density of the long integers increase, so does the need to access multiple block layers
and thus the average time increases. The results of the select based methods visualize
the static need of singular select query. The 4-bit version of select requires a few more
instructions during the block location phase and is therefore slightly slower overall.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16400

500

600

number of 32bit integers per 1000 integers

m
s

pe
r

m
ill

io
n

su
ba

rr
ay

qu
er

ie
s bris8

bris4
bris8v5
bris4v5
select8
select4

Figure 7.2: Rank and select performance with subarray fetching. The scale of the y-axis was selected
to clarify the difference of the results.

8 Conclusions and Future work

This thesis explained variable-byte encoding, a compression method that stores the data
in fixed length blocks and omits empty leading blocks. A continuation bit is added to each
block to signal where an element ends and a new one begins. Rank and select, two array
operations were explained and efficient implementations over bit arrays were introduced
in detail.

An efficient solution to direct access to any element in a compressed data structure was
previously introduced by Brisaboa et al. Their solution uses VB encoding and a rank data
structure. An alternative solution using select was proposed in this thesis. Both solutions
were experimented with a few different data structure implementations. As expected, the
rank version performed better with data sets that contain small integers. This is largely
due to the clever block reorganizing technique that allows the first block to be fetched
with just an array lookup. The rank query is also slightly faster than a select query,
and therefore the dataset needs to have a large portion of longer elements before select

performs better.

All implementations were slightly modified to support subarray fetching. The order of how
data is stored with select compression enables an efficient fetching of a subarray. Only one
select query is needed in the beginning, and the decoding of the elements past the first one
consists of just a few bit operations. The amount of rank queries depend on the length of
the subarray and the average size of the elements. Therefore even a small amount of large
elements in an array otherwise filled with small elements causes the runtime to increase
significantly. This leads to the conclusion that the select method, if not strictly superior,
is a strong contender and a good option in particular when decompressing subarrays is
required.

8.1 Future work

There has already been a few successful attempts to decompress VB encoded integers
sequentially with SIMD instructions (Lemire et al., 2018; Plaisance et al., 2015). It is
worthwhile to check if the select based approach presented in this thesis benefits from
SIMD. The data needs less manipulation because it is already stored in the correct order,

25

but calculating the integer block lengths might benefit from SIMD.

The rank operation can be created with a small number of instructions utilizing a modern
POPCOUNT machine instruction (Zhou et al., 2013). The select approach is known
to be slower, ranging from 50 to 80 machine instructions. Intel’s Haswell CPUs offer
two new interesting machine instructions, PDEP and TZCNT. PDEP stores bits from
its first operand based on the location of 1 bits in the second operand. TZCNT is a
machine instruction to count trailing zeros. These two can be used to create a select1

query on a machine word with just 4 instructions (Pandey et al., 2017b). They have
been tested with the select algorithm of the SDSL-library (which is also used in the
proposed method of this thesis) and show an improvement of 2-15% (Pandey et al., 2017a).
Additionally, a trailing zero count function is used to calculate the length of the element.
Some improvement in speed may happen if the implementation is changed to use the
TZCNT machine instruction instead.

One more interesting improvement to VB encoding is to see whether the compressed
numbers can be changed. This is trivial until the block length of the compressed num-
ber changes. Then an additional data structure or cache is needed and the supporting
rank/select data structure needs to be recalculated.

Bibliography

Anh, V. N. and Moffat, A. (2005). “Inverted index compression using word-aligned binary
codes”. In: Information Retrieval 8.1, pp. 151–166.

Apache (2013). Apache Lucene - Index File Formats. url: https://lucene.apache.org/

core/3_5_0/fileformats.html#VInt (visited on 04/10/2020).
Bhattacharjee, B., Lim, L., Malkemus, T., Mihaila, G., Ross, K., Lau, S., McArthur,

C., Toth, Z., and Sherkat, R. (2009). “Efficient index compression in DB2 LUW”. In:
Proceedings of the VLDB Endowment 2.2, pp. 1462–1473.

Brisaboa, N. R., Ladra, S., and Navarro, G. (2009). “Directly Addressable Variable-Length
Codes”. In: String Processing and Information Retrieval. Ed. by J. Karlgren, J. Tarhio,
and H. Hyyrö. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 122–130. isbn: 978-
3-642-03784-9.

Clark, D. (1997). “Compact pat trees”. PhD thesis.
Culpepper, J. S. and Moffat, A. (2007). “Compact set representation for information re-

trieval”. In: International Symposium on String Processing and Information Retrieval.
Springer, pp. 137–148.

Elias, P. (Sept. 1975). “Universal Codeword Sets and Representations of the Integers”.
In: IEEE Trans. Inf. Theor. 21.2, 194–203. issn: 0018-9448. doi: 10.1109/TIT.1975.

1055349. url: https://doi.org/10.1109/TIT.1975.1055349.
Elias, P. (1974). “Efficient storage and retrieval by content and address of static files”. In:

Journal of the ACM (JACM) 21.2, pp. 246–260.
Gog, S., Beller, T., Moffat, A., and Petri, M. (2014). “From Theory to Practice: Plug and

Play with Succinct Data Structures”. In: 13th International Symposium on Experimental
Algorithms, (SEA 2014), pp. 326–337.

González, R., Grabowski, S., Mäkinen, V., and Navarro, G. (2005). “Practical implemen-
tation of rank and select queries”. In: Poster Proc. Volume of 4th Workshop on Efficient
and Experimental Algorithms (WEA), pp. 27–38.

Google (2019). Protocol Buffers Encoding. url: https : / / developers . google . com /

protocol-buffers/docs/encoding#varints (visited on 02/26/2020).
Hon, W.-K., Shah, R., and Vitter, J. S. (2010). “Compression, indexing, and retrieval

for massive string data”. In: Annual Symposium on Combinatorial Pattern Matching.
Springer, pp. 260–274.

https://lucene.apache.org/core/3_5_0/fileformats.html#VInt
https://lucene.apache.org/core/3_5_0/fileformats.html#VInt
https://doi.org/10.1109/TIT.1975.1055349
https://doi.org/10.1109/TIT.1975.1055349
https://doi.org/10.1109/TIT.1975.1055349
https://developers.google.com/protocol-buffers/docs/encoding#varints
https://developers.google.com/protocol-buffers/docs/encoding#varints

28

Huffman, D. A. (1952). “A method for the construction of minimum-redundancy codes”.
In: Proceedings of the IRE 40.9, pp. 1098–1101.

Konow, R., Navarro, G., Clarke, C. L., and López-Ort́ız, A. (2017). “Inverted treaps”. In:
ACM Transactions on Information Systems (TOIS) 35.3, pp. 1–45.

Lemire, D., Kurz, N., and Rupp, C. (Feb. 2018). “Stream VByte: Faster byte-oriented
integer compression”. In: Information Processing Letters 130, 1–6. issn: 0020-0190. doi:
10.1016/j.ipl.2017.09.011. url: http://dx.doi.org/10.1016/j.ipl.2017.09.

011.
Manning, C. D., Raghavan, P., and Schütze, H. (2008). Introduction to Information Re-

trieval.
MIDI Manufacturers Association and others (1996). “The complete MIDI 1.0 detailed

specification”. In: Los Angeles, CA, The MIDI Manufacturers Association.
Moura, E. Silva de, Navarro, G., Ziviani, N., and Baeza-Yates, R. (2000). “Fast and flexible

word searching on compressed text”. In: ACM Transactions on Information Systems
(TOIS) 18.2, pp. 113–139.

Ottaviano, G. and Venturini, R. (2014). “Partitioned elias-fano indexes”. In: Proceedings
of the 37th international ACM SIGIR conference on Research & development in infor-
mation retrieval, pp. 273–282.

Pandey, P., Bender, M. A., and Johnson, R. (2017a). “A fast x86 implementation of select”.
In: arXiv preprint arXiv:1706.00990.

Pandey, P., Bender, M. A., Johnson, R., and Patro, R. (2017b). “A general-purpose count-
ing filter: Making every bit count”. In: Proceedings of the 2017 ACM international con-
ference on Management of Data, pp. 775–787.

Pibiri, G. E. and Venturini, R. (2019). Inverted Index Compression.
Plaisance, J., Kurz, N., and Lemire, D. (2015). Vectorized VByte Decoding. arXiv: 1503.

07387 [cs.IR].
Salomon, D. (2007). Variable-length codes for data compression. Springer Science & Busi-

ness Media.
Scholer, F., Williams, H. E., Yiannis, J., and Zobel, J. (2002). “Compression of inverted

indexes for fast query evaluation”. In: Proceedings of the 25th annual international ACM
SIGIR conference on Research and development in information retrieval, pp. 222–229.

Shareghi, E., Petri, M., Haffari, G., and Cohn, T. (2016). “Fast, small and exact: Infinite-
order language modelling with compressed suffix trees”. In: Transactions of the Associ-
ation for Computational Linguistics 4, pp. 477–490.

Trotman, A. (2003). “Compressing inverted files”. In: Information Retrieval 6.1, pp. 5–19.

https://doi.org/10.1016/j.ipl.2017.09.011
http://dx.doi.org/10.1016/j.ipl.2017.09.011
http://dx.doi.org/10.1016/j.ipl.2017.09.011
http://arxiv.org/abs/1503.07387
http://arxiv.org/abs/1503.07387

29

Venturini, R. (2013). Compressed Data Structures for Strings: On Searching and Extracting
Strings from Compressed Textual Data. Vol. 4. Springer Science & Business Media.

Vigna, S. (2008). “Broadword implementation of rank/select queries”. In: International
Workshop on Experimental and Efficient Algorithms. Springer, pp. 154–168.

– (2013). “Quasi-succinct indices”. In: Proceedings of the sixth ACM international confer-
ence on Web search and data mining, pp. 83–92.

Wan, J. and Pan, S. (2009). “Performance evaluation of compressed inverted index in
lucene”. In: 2009 International Conference on Research Challenges in Computer Science.
IEEE, pp. 178–181.

Williams, H. E. and Zobel, J. (1999). “Compressing Integers for Fast File Access”. In:
COMPJ: The Computer Journal 42.3, pp. 193–201.

Zhou, D., Andersen, D. G., and Kaminsky, M. (2013). “Space-efficient, high-performance
rank and select structures on uncompressed bit sequences”. In: International Symposium
on Experimental Algorithms. Springer, pp. 151–163.

Ziv, J. and Lempel, A. (1977). “A universal algorithm for sequential data compression”.
In: IEEE Transactions on information theory 23.3, pp. 337–343.

Zobel, J. and Moffat, A. (1995). “Adding compression to a full-text retrieval system”. In:
Software: Practice and Experience 25.8, pp. 891–903.

	Introduction
	Variable-byte encoding of integers
	Variable-byte encoding
	Variable-byte decoding

	Rank and Select
	Rank and Select implementation

	Directly addressable codes
	DAC via rank

	DAC with select query
	Elias-Fano encoding

	Subarray access
	Subarray access with select
	Subarray access with rank

	Experimental results
	VB decoding comparison
	Memory usage
	Subarray access results

	Conclusions and Future work
	Future work

	Bibliography

