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1 Introduction

In real-world settings we are often confronted with the task of finding the best possible
solution to a problem with a time limit. Such problems are called optimization problems.
Oftentimes interesting optimization problems are NP-hard. If the solution space for an
optimization problem is discrete we call it a combinatorial optimization problem [88]. NP-
hard combinatorial optimization problems arise for example in planning [63], scheduling
[75, 17], bioinformatics [46] and data analysis [14]. Algorithms that compute low cost
solutions to these problems can save money, time and various kinds of various kinds of
other resources. Therefore, there is lot of interest in developing algorithms that can be used
to solve NP-hard optimization problems efficiently. In this thesis we develop an incomplete
solution approach based on the so-called declarative paradigm for solving combinatorial

optimization problems.

Solution approaches for combinatorial optimization problems can be divided into com-
plete and incomplete approaches. Given enough resources, the complete approaches find
an optimal solution to a problem and prove its optimality These can be further divided
into problem-specific exact algorithms [12] and exact declarative methods [91]. Problem-
specific exact algorithms are algorithms developed for finding an optimal solution for
instances in a specific problem domain. FExact declarative methods offer a way to solve
instances from different problem domains. This is done by encoding a problem instance
into a constraint language for which there exists an efficient solver. A declarative solver is
an implementation of an algorithm designed for solving instances of constraint optimiza-
tion problems for specific constraint languages. Examples of commonly used constraint
optimization problems are maximum satisfiability (MaxSAT) [70] and integer linear pro-
gramming (ILP) [27, 25] both of which we detail in this thesis. Solutions for the instances
resulting from encoding can be then decoded back to solutions for the original problem

instance.

MaxSAT is an optimization extension of the well-known NP-complete problem known as
Boolean satisfiability, or SAT [24]. The underlying constraint language used by MaxSAT
is conjunctive normal form (CNF) formulas. Once a problem instance is encoded as a
CNF formula, we can use a MaxSAT solver to obtain a solution for the encoding. Many
different approaches have been proposed for MaxSAT solving [66, 64, 35, 5, 78, 92, 30, 13].
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The most important one for this work is to encode MaxSAT as integer linear programming
(ILP) [6]. ILP is also an exact declarative method used to solve combinatorial optimization

problems. ILP uses linear inequalities as the underlying constraint language.

In contrast to complete solution approaches, incomplete solution approaches are designed
to give the best found solution within a given time limit without guaranteeing the opti-
mality. Unless P = NP, no complete approach is not going to be effective on all instances
of an NP-hard optimization problem. Furthermore, in many real-world applications, we
are more interested in finding a good quality solution efficiently than finding an optimal
solution. As such there is an interest in developing incomplete approaches since they
scale better with real-world applications by sacrificing the guarantee of finding an opti-
mal solution. Incomplete approaches can be further roughly divided into two categories;
approximation algorithms [103, 47, 102] and local search algorithms [50]. A local search
algorithm finds a solution and tries to improve the already found solution by searching
the neighboring search space. Approximation algorithms obtain solutions for NP-hard
problems efficiently and the obtained solution is guaranteed to be a certain factor away

from an optimal solution.

One commonly used approximation algorithm for ILP is based on using linear program-
ming (LP) relaxation [89, 53] and rounding. Similarly to ILP, LP is a declarative method
based on linear inequalities. The main difference between these two is that compared to
ILP, LP does not have integrality constraints over variables which makes LP polynomial-
time solvable [61]. The LP relaxation on an ILP instance creates a related LP instance
with same linear inequality constraints but with the integrality constraint removed. Solv-
ing this related LP instance and rounding the solution to have integer values can create an
approximation algorithm for the original ILP instance. Using LP relaxations and round-
ing is a well-studied approach on obtaining a solution for NP-hard optimization problems
[23, 19, 2]. However, using LP relaxations and rounding to solve MaxSAT instances en-
coded as ILP has not gained as much attention, even if similar relaxation approaches using
semidefinite programming (SDP) [40] and SDP relaxation have shown promising results
on a special case of MaxSAT known as MAX-2-SAT [42] where each clause is restricted
to have exactly two variables. In the referred work it was shown that good quality lower
and upper bounds for optimal solutions could be found within seconds by using SDP re-
laxations. LP relaxations have also been shown to be effective on MAX-2-SAT in [57] and
have been used to improve a complete solver by obtaining lower bounds for MAX-2-SAT

and MAX-3-SAT instances [105]. In contrast to these works, we explore using an LP re-
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laxation approach with rounding for the general MaxSAT problem where clauses have no
restrictions on number of variables. Furthermore, we empirically evaluate the approaches

using crafted and industrial benchmark instances in addition to random instances.

More specifically we investigate the quality of solutions obtained by using LP relaxations
and rounding to solve MaxSAT instances. We describe multiple different rounding heuris-
tics and empirically evaluate them by running them on MaxSAT instances used in MaxSAT
Evaluations [10, 9]. We show that there are differences between rounding approaches. We
also show that our approach manages to obtain good solutions on some problem domains

for non-partial MaxSAT instances when compared to state-of-the-art solvers.

This thesis is organized as follows. In Chapter 2 we go over the definitions of MaxSAT
and give an overview of approaches used to solve MaxSAT instances. In Chapter 3 we go
over the definitions of ILP and LP, discuss what LP relaxation is and give an overview of
central approaches to solve ILP and LP instances. In Chapter 4 we describe how to encode
MaxSAT problems into ILP instances and further into LP, discuss different rounding
heuristics considered in this thesis and discuss how these approaches were implemented.
In Chapter 5 we present results from our empirical evaluation by comparing the considered
rounding heuristics against each other and against state-of-the-art incomplete MaxSAT

solvers. Chapter 6 concludes this thesis and discusses possible future work.



2 Maximum Satisfiability

As our goal is to develop an approach for solving maximum satisfiability (MaxSAT) we
start by defining concepts related to MaxSAT. Firstly in Section 2.1 we define what the
Boolean satsifiability problem is. In Section 2.2 we define the MaxSAT problem. Lastly

in Section 2.3 we review algorithmic approaches that are used to solve MaxSAT instances.

2.1 Boolean Satisfiability

Boolean satisfiability [34], or SAT for short, is the problem of determining whether a
given propositional formula is satisfiable or not. This is a well-known NP-complete prob-
lem [24]. Propositional formulas consist of atomic propositions and logical operators. A
propositional formulas in conjunctive normal formal, or CNF for short, are constructed as

follows.

o A literal [ is either a Boolean variable = or its negation —ux.

o A clause C' of length m is is a disjunction [; V ...V [, of literals.

e A CNF formula F' with k clauses is a conjunction Cy A ... A Cy.
Any propositional logic formula can be transformed into CNF without loss of generality.
This can be done so that the size of the resulting formula is linear in the size of the original
formula in a standard way using the so-called Tseitin encoding [101]. A truth assignment
T sets each literal to either true or false. More formally, given a set of Boolean variables
V', a truth assignment 7 is a mapping 7 : V' — {0, 1}, where zero corresponds to false and

one to true. For a CNF formula to evaluate to true at least one literal in each clause needs

to be satisfied by a truth assignment. More precisely:

« A literal [ is satisfied by 7, if [ is a Boolean variable « and 7(x) = 1 or if [ is negated

variable =z and 7(z) = 0.
o Aclause C =1y V...V, is satisfied by 7, if 7(Ix) = 1 for some 1,...,n.

o A propositional formula F', is satisfied by 7, if all clauses C; A ... A C} are satisfied.
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Since a CNF formula consists of clauses that are connected by conjunctions, we can view
a CNF formula F' = Cy; A ... A Cy as a set of clauses F' = {C},...,Cy}.

A SAT solver [76] is a program that, given a CNF formula F' as an input, decides if the
formula F' have a satisfying truth assignment. Advances in SAT solvers has made them
competitive in solving computationally hard problems [54, 90]. Instead of having to come
up with specific algorithm for some decision problem we can encode the problem to a CNF
formula and then use a SAT solver to solve the SAT instance. If a solution for the SAT
instance exists, a SAT solver can return the solution for the instance which can be mapped

back to a solution for the original problem instance.

Example 1 The k-coloring is a problem, where given a graph G = (V, E) and an integer
k, the goal is to decide if each of the vertices can be colored so that no adjacent vertices
have the same color assigned using k colors. This problem can be encoded into SAT as

follows.

A wariable x,; corresponds to a vertex v that has been assigned a color i. For each vertex

and for each i, where 1 <1 < k, we create the following clauses.

k
\/ Loy,
i=1

To enforce that there is only one color assigned to each vertex v € V we create the following

constraints.

k—1 k
A N (mzoiV-z,)
i=1 j=i+1

To enforce that, for each edge (v,u) € E, vertices v and u cannot have the same color

assigned we create the following constraints.

If the propositional formula consisting of these clauses is satisfiable, then there is an as-
signing of colors that colors the given graph G. If the propositional formula is unsatisfiable,

then there is no assigning of colors that colors the given graph G.



2.2 MaxSAT

Maximum satisfiablity, or MaxSAT [70], is an optimization extension of the Boolean sat-
isfiability problem. Whereas the goal in the Boolean satisfiability problem is to decide if a
given Boolean formula is satisfiable, in MaxSAT the goal is to find a truth assignment that
maximizes the number of satisfied clauses in a given Boolean formula. For some intuition

let us consider the following example.

Example 2 Let F' be the CNF formula

()N (xVy) Az Vy) A(xV -y A(—zV-y).

This formula is unsatisfiable. However, different truth assignments satisfy different num-
bers of clauses. If for example we set x to false then we can satisfy at most three clauses.
On the other hand, if we set x to true, then we can satisfy four clauses as x = 1 satisfies
clauses (), (x V y) and (z V —y), and the remaining clauses (—x V y) and (—x V —y) can

be satisfied by either setting y to true or to false.

The formula F in Example 2 is a non-partial MaxSAT instance. This means that there are
no requirements on which clauses must be satisfied. However, in many practical problems
we usually have some constraints that must be satisfied. In other words, when encoding
a problem to MaxSAT we would want to force certain clauses to be true in all solutions.
A partial MaxSAT instance may also contain clauses that must be satisfied. These types
of clauses are called hard clauses. Clauses that do not have to be satisfied are called soft

clauses.

Definition 1 Let F' be a partial MaxSAT instance F = {Fy, Fs}, where Fy, is a set of
hard clauses and F is a set of soft clauses. A solution for F is a truth assignment that

satisfies all hard clauses of F'.

Non-partial can be seen as a special case where the set of hard clauses is empty. Hence,

by the definition, any truth assignment for a non-partial MaxSAT instance is a solution.

Example 3 Let F' be a partial MazSAT instance F = {Fy, F}, where



Here a truth assignment T that sets x,y and z to true would not be a solution as it would
not satisfy the hard clause (—x V —y). On the other hand, a truth assignment 7' that sets

x and z to true and y to not true would be a solution.

Furthermore, weights can be associated with soft clauses of MaxSAT instances. These
types of instances are called weighted MaxSAT instances. Hard clauses have no assigned
weights as they need to be satisfied by a truth assignment for it to be a solution. If all
the weights of a MaxSAT instance are one, we call the instance an unweighted MaxSAT

instance. The cost of a solution is defined as follows.

Definition 2 Given a weighted MaxSAT instance F and a truth assignment 7, the cost
of T is the sum of all weights of the soft clauses of the F' not satisfied by 7. More formally
cost(F,7) = > w(C)-(1—-7(C)).

CEeF,

Definition 3 Let F' be a MaxSAT formula. An optimal solution for F is a solution that

has the smallest cost of all solutions.

Now we can define the MaxSAT problem as finding a solution for a MaxSAT instance F
that has the smallest cost over all solutions for F'. With these definitions let us consider

the following example.

Example 4 Let F' be a MazSAT formula F' = {F}, Fs}, where

Fp={(zVy). (xVz),(xV-y),(-zV-y)} and
Fs = {(m,S), (y72)7 (Z75)}

Here a truth assignment T that sets x to true and y and z to false has cost(F,7) = 7.
While this is a solution for F' it is not optimal. An optimal solution 7'sets x and z to true

and y to false and has cost(F,1') = 2.
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To give an example on how to encode a problem in MaxSAT let us consider the graph

coloring problem already discussed in the previous section.

Example 5 In the optimization variant of the problem presented in Fxample 1, the goal
is to find a minimum number of colors to color a given graph G = (V, E) such that no

adjacent vertices have the same coloring.

Let G = (V, E) be a graph. Since there cannot be more colors used to color a graph than
there are vertices we can use number of vertices as an upper bound on the number of colors
we consider. A variable x. corresponds to a color ¢ and setting x. = 1 means that the color
c is used. Since the goal in MaxSAT is to satisfy as many clauses as possible, the instance

contains following constraints as singleton soft clauses.

k
A .
c=1

Here each variable is negated since we want to minimize the number of colors used or in
other words, to maximize the number of colors not used. A wvariable x, . corresponds to
having the color ¢ assigned to the vertexr v. To enforce that each vertex v € V' has exactly

one color assigned, the instance contains the following constraints as hard clauses:

(\/ Tye) and

c=1
k-1 k
/\ /\ (_‘mv,ci v_\xU,Cj)'
i=1 j=it+1

The first constraint forces that each vertex has at least one color assigned and the second
constraint forces that for each vertex at most one color is assigned. (These kinds of cardi-
nality constraints are very common in MaxzSAT encodings and there are multiple different
ways to encode them as CNF [94, 11].) To enforce that no adjacent vertices have the same

color assigned, the instance contains the following constraints as hard clauses:

/\ (mZye V y).
(v,u)€EE

To force a literal to be true that corresponds to a color being used, the instance contains

the following constraints as hard clauses for each vertexr v € V:



k

/\ (mTye V xe).

c=1
Now if a vertex v is assigned a color c, these clauses will enforce x. = 1, falsifying the
corresponding soft clause. An optimal solution to this MaxSAT encoding will correspond

to a coloring of graph G using minimal number of colors.

2.3 MaxSAT Solving

Solution approaches to MaxSAT and more generally to combinatorial optimzation can be
divided into two different categories: complete and incomplete. Complete solvers will,
given enough time, will find the best possible solution and prove that it is an optimal
solution. Incomplete solvers on the other hand try to find the best solution they can find
in the amount of time given but will not guarantee the optimality of the found solution. In
this section we will give an overview of approaches in both of these categories for solving
MaxSAT instance.

2.3.1 Complete Algorithms

Approaches for MaxSAT that are SAT-based make use of SAT solvers as a subroutines
and have been shown to be an effective approach to solving MaxSAT instances [4, 10, 9].
Complete MaxSAT solution approaches that are SAT-based can be split into three distinct
algorithmic approaches: the linear search approach [66, 64|, the core-guided approach [35,
5, 78, 3, 82, 84] and the implicit hitting set approach [92, 29].

Linear search approach finds an optimal solution by using the currently best found solution
as an upper bound. Linear search approach is an upper bounding method, i.e., it starts
by finding a solution and then it keeps querying SAT solver for a solution that has a
better cost than the currently best found solution. First the algorithm finds any truth
assignment that is a solution for a MaxSAT formula F. Once the algorithm has found
such a truth assignment, a constraint which will be satisfied only if a lower cost solution
is found is added creating a modified formula F’. Then a SAT solver is called on this
modified formula F’. The algorithm keeps repeating this step until the solver returns
that the formula is unsatisfiable, meaning that the previously found solution is an optimal
solution for F'. This approach is used for example by the QMaxSAT [64] solver and has

been shown to be effective on some problem domains.
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Where as the linear-search approach is an upper bounding method, the core-guided ap-
proach is a lower bounding method. To help understand how this approach works let us
first define what a core is. A core of a MaxSAT formula F' is a subset F! C Fy of soft
clauses such that F!U Fj, is not satisfiable. A core can be obtained using a SAT solver [32,
13]. A core-guided approach finds a core for a given MaxSAT formula F', then relaxes the
clauses in the core by creating a new formula F” in which one of the relaxed clauses can
be falsified and adding new cardinality constraints over the relaxed clauses. Then a SAT
solver is called on this modified formula F’. The algorithm keeps iterating over this until
the modified formula F” is satisfied. The underlying idea behind this approach is that any

solution for F' has to falsify at least one clause from each obtained core.

The implicit hitting set approach also extracts cores iteratively. In contrast to the core-
guided approach, the implicit hitting set approach does not add cardinality constraints
to the formula. Instead a so-called hitting set over the accumulated cores is computed.
This is done by using integer linear programming (ILP) [93, 85, 27, 25]. Then the SAT
solver is given the MaxSAT instance F’, with this hitting set removed from the set of soft
clauses. This is done until SAT solver returns a satisfying truth assignment, which will
be an optimal solution to the MaxSAT instance [29]. This approach of not adding new
constraints at each iteration aims to improve the time spent in the SAT solver step in
comparison to the core-guided approach as the size of the formula given to a SAT solver
does not increase at each iteration. In contrast, implicit hitting set solvers might extract

more cores increasing the time spent on computing minimal hitting sets.

In addition to these SAT-based approaches the branch and bound approach has also been
proposed for solving MaxSAT [48, 71, 73, 72, 18]. Branch and bound is a widely used
algorithm design paradigm for solving discrete and combinatorial optimization problems
[45]. While for MaxSAT this is not competitive approach for large instances, for smaller

instances the branch-and-bound approach works rather well.

2.3.2 Incomplete Algorithms

The other central category of MaxSAT solvers are incomplete algorithms. Where as com-
plete algorithms guarantee optimality of found solutions, incomplete algorithms cannot
give guarantees of optimality for found solutions. The motivation for these incomplete
algorithms comes from the improved scalability. Complete algorithms, while guaranteeing

optimality, can be slow on some instances due to the algorithm having to find an optimal
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solution and prove that the solution found is actually an optimal solution. Removing
this requirement can improve the scalability of an algorithm. Especially for real-world
applications, we might be much more interested in finding a good quality solution fast
rather than finding the actual optimal solution. This does not necessarily mean that the
incomplete algorithms would be unable to find an optimal solution. The solution given by

an incomplete solver can still be optimal.

While we distinguish between complete and incomplete algorithms, complete algorithms
are often used as a basis for incomplete MaxSAT solvers. These types of algorithms that
are complete but can report solutions even when interrupted are called anytime algorithms.
For example, the linear-search approach, while being a complete approach, is used by many
incomplete solvers [80, 77, 56, 30, 13]. Since a linear-search algorithm finds intermediate
solutions and then improves on the found solution, a solver using a linear-search algorithm
can report the already found solutions that are not optimal even when interrupted. Core-
guided and the implicit hitting set approaches by themselves produce only optimal solution
as they are lower bounding approaches. However, depending on the implementation of

these approaches, they can be used as anytime algorithms [7].

Local search

A local search approach for MaxSAT [22, 98, 21, 20, 69] first picks randomly a truth
assignment for a MaxSAT instance F. Then it selects an unsatisfied clause and flips
the truth assignment of a variable found in the clause. An issue that arises with this
approach is the existence of hard clauses that must be satisfied. To combat this, solvers
implementing a local search algorithm employ ways to favor satisfying hard clauses over
soft clauses. For example, a solver called SATLike [69] uses a weighting scheme called
Weighting-PMS which adds weights to hard clauses. Whenever SATLike cannot flip truth
assignments in a way that decreases the cost it will update the weights. For unsatisfied
clauses weights are increased with a certain probability and for satisfied clauses the weights
are decreased with a certain probability. For hard clauses the weight increment is higher

than for the soft clauses. This is to help highlight hard clauses from the soft clauses.

Linear search approximation

Linear search approximation approach have a few different implementations. For exam-

ple some algorithms use enumeration of minimal correction subsets [80, 77]. A minimal
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correction subset is a minimal subset of clauses for which removing them would make the
formula satisfiable. Such a subset corresponds to a solution for the MaxSAT instance since
all the clauses not in this subset can be satisfied by a truth assignment. This approach has
shown to be promising on giving good quality solutions to MaxSAT instance compared to

other incomplete solvers [77].

Open-WBO-INC [56] is another notable incomplete solver. It is based on a linear-search
approach. Open-WBO-INC does uses different approximation techniques aiming at con-
verging to a good solution faster. One such technique that Open-WBO-INC uses is that it
clusters the clauses of a formula F' into k different weights. Another approach is subprob-
lem minimization. Instead of solving the weighted instance this approach solves sequence
of unweighted instances. This approach aims to speeds up the process of finding a good

quality solution.

LinSBPS [30] is another linear-search based solver. LinSBPS uses so the called varying
resolution approach. This approach simplifies the original problem by dividing the weights
of the clauses by a large number. This is done due to the fact that instances where the
weights are huge, the memory requirements might increase which slows down the solving
process. Decreasing the weights will improve the solving times. Once the simplified
solution is solved optimally the algorithm uses smaller number to divide the weights and
solves this new simplified instance again. This is done until the original problem is solved.

To further boost the performance LinSBPS also implements solution-based phase saving

[7].

Core-boosted linear search

One of the best incomplete solvers currently is Loandra [10]. Loandra uses a search strategy
called core-boosted linear search approach which is a combination of the core-guided and
linear-search approaches to solve MaxSAT instances [13]. This approach is split into two
phases. The first phase uses a core-guided algorithm for trying to find an optimal solution.
If the first phase finds an optimal solution the algorithm terminates. If it does not find an
optimal solution the algorithm moves to second phase where it gives the found solution
and working instance of the given formula to a linear-search algorithm. This linear-search

phase is run until time limit or finding an optimal solution.

From the results of recent MaxSAT Evaluations the best incomplete solvers are currently
Loandra, SATLike and LinSBPS for unweighted MaxSAT instances and TT-Open-WBO-
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Inc [83], Loandra and Open-WBO-Inc(inc-bmo-satlike) for weighted MaxSAT instances
[10].

2.3.3 MaxSAT With ILP

The approach studied in this thesis makes use of linear programming (LP) [60, 31, 100, 59,
26, 65] based on integer linear programming (ILP) formulation of MaxSAT [6, 41, 70, 74,
which can also be directly used to solve MaxSAT [6, 28]. Integer linear programming is
used by some SAT-based algorithms such as the implicit hitting set algorithms to compute
the hitting sets. Integer linear programming can also be used directly to solve MaxSAT
as well. This can be done by encoding MaxSAT to an integer linear program and then
using an integer linear programming solver to solve the ILP encoding of MaxSAT formula

[41]. We will detail this approach in the following chapters.



3 Linear Programming

Recall that our goal is to study the use of linear programming relaxation and rounding for
incomplete MaxSAT solving. In this chapter we first present the definitions for linear pro-
gramming in Section 3.1. Then in Section 3.2 we present the definitions for integer linear
programming. In Section 3.3 we present the concept of linear programming relaxation and
rounding. Lastly in Sections 3.4 and 3.5 we discuss about algorithmic approaches used to

solve both integer linear programming and linear programming.

3.1 Linear Programming Definitions

Linear programming, or LP for short, [60, 31, 100, 59, 26, 65] is a mathematical modeling
and optimization paradigm that aims to minimize a linear objective function consisting of

n variables x1, ..., z, while being subject to linear inequality constraints.

Definition 4 Linear programming is an optimization problem over n variables x1,. .., T,,
where the goal is to maximize linear objective function f(Z) = ciz1 + ... + ¢ o, with
coefficients c1, ..., c,, subject to linear inequality constraints a;1x1 + apmx, < b; for 1 <

1 < m.

An LP can be expressed in the following form.

n
Minimize ch “ X
j=1
n
subject to Zaij -x;00b;, 1=1,...,m,
j=1
T < R,
where oe{<, <, > > =} (3.1)

Definition 5 A solution to an LP is an assignment of variables that satisfy all the linear
constraints of the LP.
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Figure 3.1: Feasible region for constraints y < 4, x <6, 5z 4+ 2y > 10, and = + 3y > 6.

Definition 6 The feasible region of an LP is the set of all points that satisfies its con-

straints. In other words, it is the set of all solutions for an LP.

Example 6 In Figure 3.1 the shaded area represents the feasible region for a linear pro-
gram with linear inequality constraints constraints y < 4, x < 6, bx + 2y > 10 and

r+ 3y > 6.

Definition 7 A solution for an LP that minimizes the objective function value over all

solutions of the LP is an optimal solution.

If the feasible region for an LP is empty, then there are no assignments for variables that
satisfy the linear constraints of the LP. In this case we say that the linear program is
infeasible. To give more intuition on linear programming let us consider the following LLP

instance.

Example 7 Consider the following LP.

Minimize or + Ty
subject to 5r + 2y > 10
r+3y>6
<6
y<4

z,y > 0.
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Now in the Figure 3.1 a dashed line represents a contour line, i.e., all points that have the
same objective function value. Once we have decreased the value so that the line intersects
with the last extreme point, i.e., a corner of the feasible region, we have found an optimal
solution. For this linear program the optimal solution sets x = 18/13 and y = 20/13

resulting in an objective function value of 230/13 ~ 17.7

Finding a solution to linear program can be done in polynomial time [61]. Encoding

NP-hard problems compactly into LP instances cannot be done unless P = NP.

3.2 Integer Linear Programming Definitions

Linear programming is a special case of integer linear programming, or ILP [93, 85, 27,
25] for short. Similarly to a linear program, an integer linear program is an optimization
problem, where the goal is to minimize a linear objective function consisting of n variables
x1, ..., T, while being subject to linear inequality constraints. The difference is that the
problem also has integrality constraints meaning that some of the variables are forced to

be integers. More formally any ILP can be expressed in the following form.

n
Minimize: ch - T
j=1
n
subject to Zaij ~xjoby, 1=1,...,m,
j=1
Z; ez
where oe{<, <, >, >2,=}

As the integrality constraints in the ILP instances considered in this thesis are constrained
to be binary values zero and one, we can consider special case for the ILP known as 0-1
ILP or binary ILP.

Finding a solution for this binary ILP problem is known to be NP-complete [81] as SAT

can be reduced to it.

To give an example on how to model problems in ILP, let us consider the graph coloring

problem and the vertex cover problem.

Example 8 Consider again the graph coloring problem described in Example 5. Let k be

the number of vertices. The problem can be modeled as an linear program as follows.
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Minimize zk: ¢ for each color 1 <1<k,
il

subject to me > 0, for each vertexv eV |
i=1
Ty + Ty < 1, for each edge (v,u) € E and 1 <i <k,
Ty — ¢ <0, for each vertexv eV and 1 <1< k|
Ty ¢ € {0,1}, forallveV and1 <i<k.

The objective function corresponds to the sum of all used colors. The first constraint
corresponds to forcing a single color assignment on each vertexr. The second constraint
corresponds to forcing adjacent vertices to not have the same assigned color. The third
constraint forces assinging c; to one if the corresponding color has been assigned to some

verter. An optimal solution to this integral linear program corresponds to an optimal

solution for graph coloring problem.

Example 9 In the vertex cover problem, we are given an undirected graph G = (V, E),
for which we must find a minimum set of vertices, such that each edge of the graph is

incident to at least one of the vertices in the vertex cover. This problem can be formulated

as an ILP as follows.

Minimize Z Ty, forallveV
veV

subject to Ty + 2y > 1, for all edges (u,v) € E
z, € {0,1}, forallveV

Here x, = 1 corresponds to a vertex being picked for the vertex cover. With this formulation

we can find an optimal solution to an instance of the minimum vertex cover problem.

3.3 LP Relaxation and Approximations

While ILP is NP-hard, removing the integrality constraints creates a related LP problem
that can be solved in polynomial time. This is called an LP relaxation [89, 53, 52, 67, 68|

of the ILP. Removing the integrality constraint means that we relax the constraint x € Z
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to a constraint € R. For a 0-1 ILP we relax the binary constraint « € {0,1} to a linear
constraint 0 < z < 1. Solution for the LP relaxation can be used as a lower bound on an

optimal solution for the original ILP instance.

Example 10 Consider the following ILP.

Minimize St + Ty
subject to 5r + 2y > 10,
r+ 3y > 6,
x <6,
y <4,
y,r € N.

The LP relaxation of this ILP is obtained by relaxing the last constraint y,x € N to
y,x > 0. This results in the following LP.

Minimaize o + Ty,
subject to 5x + 2y > 10,
x+ 3y > 6,
x <6,
y<4

y,z > 0.

In Figure 3.2 we can see the feasible points for the ILP instance and feasible region for the

LP relaxation is the shaded area.

Solutions for the LP relaxation can be solutions for the original ILP instance but they do
not have to be. The solution might assign non-integer values for variables. For example,
if the goal was to maximize the sum z + y and the only linear constraint is x +y < 2,
an optimal solution assigns = or y a fractional value. However, if solving the relaxed
ILP instance assigns only integer values to the variables then it is also a solution for the

original ILP problem. In the former case, where the solution to LP relaxation is not a
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Figure 3.2: Feasible points for an ILP instance and feasible region for its LP relaxation.

solution original ILP instance, in some cases we can still use the solution for LP relaxation
instance to form a solution for the ILP instance. This can be done with rounding, i.e., by
rounding the non-integer values in the solution for LP relaxation to be integers. This then
gives us an approximation of the optimal solution for the ILP instance. This can create

an approximation algorithm for the original problem.

Definition 8 A c-approrimation algorithm gives a solution that is a factor of ¢ away from
the optimal solution for minimization problems. More formally, given an optimal solution

OPT, a c-approximation algorithm results in a solution S for which S < c-OPT.

Rounding approaches are problem-specific. This means that while certain rounding pro-
cedure can result in solutions for one problem, for other problems it might not. To give
intuition on how LP relaxation and rounding works, let us consider the previously men-

tioned vertex cover example.

Example 11 The LP relazation of the ILP formulation of the vertex cover problem in

Example 9 results in the following linear program.

Minimize Z Cy * Ty
veV
subject to Tyt 1y >1 for all {u,v} € E,

0<g, <1 forallv eV.
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Now with this relaxation, the variables can be assigned to values between zero and one.
To round the given solution to the relazed instance we can apply a very simple rounding
strateqy of using 1/2 as a threshold for rounding. All variables with value below this
threshold will be rounded to zero and wvariables with value equal or above this threshold
will be rounded to one. Now since each edge (v,u) € E has a corresponding constraint
Ty, + T, > 1, both of the vertices must have a value of at least 1/2, meaning the rounding
will set at least one of the variables to one. This corresponds to picking at least one vertex
for each edge in the vertex cover problem. From this it follows that all solutions obtained
from this rounding are solutions for the original vertex cover problem. In the worst case
where every variable has been assigned a value of 1/2 this rounding will result in a solution
that has two times the number of vertices in vertex cover compared to an optimal solution.
Therefore this rounding strategy gives us a 2-approzimation algorithm for the vertex cover
problem [102].

With some graphs this approach can result in an optimal solution but not always. Consider

the two following examples.

Example 12 Let G = (V, E) be a graph, where V- = {a,b,c,d,e} and E = {(a,b), (a,c),
(a,e),(b,c), (b,e),(e,d)}. Figure 3.3 illustrates this graph. With this graph, the LP relaz-
ation gives each vertex the following values a = 9/10, b = 3/5, ¢ = 2/5, d = 9/10 and
e = 2/5. Now if we use the previously mentioned rounding that uses threshold of 1/2 we
obtain an assignment, where a =1, b=1, ¢ =0, d =1 and e = 0 giving us a solution

with the objective function value of three. This is also an optimal solution to the problem

Figure 3.3: Undirected graph G

instance in question.

As we can see this simple rounding scheme gave us an optimal solution for a specific vertex
cover instance. Now let us consider an instance where the LP relaxation and rounding

does not result in an optimal solution.
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Example 13 Let G' = (V, E) be a graph, where V. = {a,b,c,d,e} and there is an edge
between each node (graph is a clique). Figure 3.4 illustrates this graph. Now for each vertex
the LP relazation assigns for each vertex v € V' a value of 1/2. Now if we use the same
rounding strateqy as before, we obtain a solution that that assignsa =b=c=d=e¢=1
which has the objective function value of five. However, an optimal solution to this problem

has four vertices in vertex cover, meaning that the solution given by the LP relaxation

AN
NoA

b e

rounding is not optimal.

Figure 3.4: Undirected graph G’

From Examples 12 and 13 we can see that the LP relaxation rounding can result in an
optimal solution to the problem in question but cannot guarantee it. Depending on the
problem there are other rounding strategies that can result in better quality solutions. For
example we could use randomized rounding where the rounding is decided by probability
of the assigned value, i.e., a variable x; is rounded to one with the probability of z; and
to zero with the probability of 1 — x;. However, depending on the problem we are trying
to solve, a rounding method like this could lead to solutions that do not satisfy the linear
constraints of the problem. In the vertex cover problem, for example, nothing guarantees
that for each edge (v,u) € E either z, or x, would be assigned a value of one which

corresponds to neither of them being guaranteed to be in the vertex cover.

3.4 ILP Solving

Central approaches for solving ILP problems include branch and bound [1, 99], the cutting
plane method [43, 44] and the branch and cut method [87, 16]. All of these methods use

the LP relaxation as a part of the solving process.

Branch and bound solves ILP problems by first solving the LP relaxation. Then the

algorithm checks if all variables are integers. If so an optimal solution is found. Otherwise



22

the algorithm branches, i.e., bounds the non-integer variables with lower bound on the
other branch and upper bound on the other branch. For example if 2 = 7/3 then branching
would be done by adding new bound x < 2 on the other branch and bound = > 3 to the
other branch. This is then repeated until an optimal solution is found or the ILP is found

to be infeasible.

The general idea of the cutting plane method is that the LP relaxation for the ILP instance
is first solved. Once we have the solution for LP instance we check if the variables are
integer. If yes then we found an optimal solution and the algorithm terminates. If not we
add a new constraint to the LP relaxation that essentially cuts the section of the feasible
region where an optimal solution for LP was found but does not have the solution for the

ILP instance.

Branch and cut can be considered a combination of branch and bound and cutting plane
methods. Similarly to branch and bound and cutting planes method, branch and cut first
solves the LP relaxation of the ILP instance. The algorithm then proceeds similarly to
branch and bound but for each node cutting planes are searched. This helps the algorithm
to have more tighter bounds on the non-integer values than regular branch and bound

approach.

3.5 LP Solving

Two notable types of algorithms for solving LP instances are simplex [26, 58, 33| and inte-
rior point [59, 79, 86] methods. Depending on the problem being solved one method might
work better than the other but for the most part both of these methods are competitive
with each other [51].

The simplex method

The simplex algorithm (or method) is a classic optimization method for solving linear
programs. The simplex method uses the fact that an optimal solution is found in one of
the extreme points of the feasible region formed by the linear constraints of the LP. The
algorithm starts from one extreme point and then checks if it is an optimal solution. If
not it moves along the edge of the feasible region to a next extreme point and again checks
the optimality of the found solution. Basically the simplex algorithm traverses along the

edges of the feasible region of a linear program finding increasingly better solutions until
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it finds an optimal solution. This algorithm can take exponential time in the worst case
[62]. However, in most real-life applications the simplex method runs in polynomial time
[95].

Interior-point method

Another central method to solve linear program is the interior-point method . Where as the
simplex algorithm traversed along the edges of the feasible region the interior point method
traverses through the interior of feasible region. At each iteration the algorithm checks if
it has converged to one of the feasible regions extreme points. If so the algorithm stops
and an optimal solution is found. Otherwise the algorithm computes a search direction,
moves and again checks for convergence. The algorithm keeps doing this until it finds an
optimal solution. This method has been shown to run in polynomial time [59]. Linear
programs were shown to be polynomial time solvable before with ellipsoid method [61] but
was too slow for practical use. Interior-point method had better worst case complexity
and created more interest in developing better algorithms for solving LP problems [96,
104].



4 LP Relaxations for Incomplete
MaxSAT Solving

We explore using LP relaxations and rounding to solve MaxSAT instances. As mentioned
in prior chapters ILP can be used to solve MaxSAT instances. In this chapter we first
go over in Section 4.1 how MaxSAT instances are encoded as ILP. In Section 4.2 we
go over the LP relaxation of the ILP and present rounding procedures which we will
empirically evaluate. Finally in Section 4.3 we discuss how these rounding procedures

were implemented.

4.1 Encoding MaxSAT to ILP

To solve MaxSAT via ILP we use a standard encoding of MaxSAT to ILP presented in the
literature [6, 41, 70, 74]. Given a MaxSAT formula F' we encode it to an ILP as follows.
For a clause C; € F, let C;" be the set of indices of the positive literals appearing in a

clause C; and C; the set of indices of the negative literals appearing in a clause C;.

Definition 9 Given a partial MazSAT instance F' = (Fj, Fs,w), let ILP(F) be the fol-
lowing ILP.

Minimize > w(Cy) - by, where w(C;) is the weight of clause C;
CieEe

subject to o+ Y, (1—x;) >0, for each C; € F),
jec;t jecy
S zj+ 3 (1—a;) +bi >0, for each C; € F,
ject jec;y

z,y,b; € {0,1}.

In this formulation, for each soft clause C; € I we introduce a new binary relaxation
variable b;. The objective function takes a sum over all the weights and the corresponding

relaxation variables as coefficient of the formula F'. This means that for every assignment,
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where b; = 1, the cost of the objective function increases by the associated weight. For
each clause C' € F' a linear inequality constraint is formed by taking the sum > ject Tj T+
Zjec;(l — z;) over all the literals in a clause. In order for this sum to correspond to a
satisfying truth assignment, the sum needs to be greater than zero. For the soft clauses
a corresponding relaxation variable b; is added to the sum. Now a solution for this ILP
must assign either z; = 1 for j € C;", x; = 0 for j € C; in each clause C' € F or b; = 1 for
each soft clause C' € F;. Therefore, any solution obtained for ILP(F') will be a solution
for the MaxSAT instance F. Furthermore, any optimal solution found for the ILP(F) will

be an optimal solution for F'. Let us consider the following example.

Example 14 Consider the MaxSAT instance ' = {(zVy,3), (mxVy,4), (xV-y,2), (~zV
-y, 10)}. Now ILP(F) is

Minimize 3:b1+4-by+2-b3+10-by
subject to r+y+b >0,
—x4+y+by > —1,
T —y+bg>—1,
—xr—y+by > -2,
x,y,b; € {0,1}.

An optimal solution for this integer linear program assigns x = 0,y = 1 and by = 1

resulting in the cost of two.

Solving MaxSAT instances encoded this way to ILP using ILP solvers has been shown to

be competitive in some problem domains [6, 28].

4.2 Rounding LP Relaxations for MaxSAT

Using LP relaxations and rounding to obtain a solution for NP-hard optimization problems
is well studied [23, 19, 2, 97, 49, 15]. As discussed in the previous chapter, ILP has been
found to be a rather efficient approach for some MaxSAT instances [6, 28]. Removing
the integrality constraints from the ILP formulation and rounding the solution for the

LP relaxation speeds up solving MaxSAT instances at the cost of losing (guaranteed)
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optimality of the found solution. To show that rounding a solution for LP relaxation does

not guarantee optimality, let us consider the following example.

Example 15 Let F be the same MazSAT instance as in Example 1. Now the LP relaz-
ation of ILP(F) is as follows.

Minimize 3-by+4-by+2-b3+10-0y
subject to x+y+b >0,
—xr+y+by>—1,
x—y+bg>—1,
—x —y+by > -2,
z,y,b; € [0,1].

An optimal solution for this LP assigns x =y = 1/2 and b; =0 for 1 < i < 4. Rounding
this solution to integers with a rounding strategy that sets x = 1 if 1/2 < x and x = 0
otherwise, we obtain a solution that assigns x = y = 1. The solution obtained using this
rounding satisfies the first three constraints. The constraint —x — y + by > —2 is not
satisfied meaning that we must assign by = 1. Assigning by = 1 incurs a cost of 10. This
is not an optimal solution since a solution that assigns x =0, y =1 and b3 = 1 has a cost

of two.

If we only consider non-partial MaxSAT instances and only apply rounding to non-
relaxation variables, we can always assign values to relaxation variables in a way that
guarantees the obtained assignment to be a solution. This is due to the fact that there
are no clauses that must be satisfied in order for a truth assignment to be a solution.
Rounding should hence be only applied on variables corresponding literals of the MaxSAT

instance.

Rounding relaxation variables can create too tight bounds creating assignments that are
not solutions for the ILP, which is why in this work we do not round relaxation variables.
While relaxation variables could be rounded in theory, it requires more care and is left as

future work. Consider the following example.

Example 16 Let F' be an unweighted non-partial MazSAT instance. Assume that F' has
a clause C = (xz Vy). ILP(F) contains the linear constraint x + vy + bo > 0. Assume that
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solving the LP relazation of the ILP(F') we would obtain an assignment x =y = bo = 5/12.
This would still be a solution for the LP relaxation as the sum x+y+bc = 3-5/12 > 1 > 0.
The rounding procedure that would round all variables below 1/2 to zero would result in
a solution that would not satisfy the linear constraint x + y + b > 0. Therefore, the

assignment resulting from this rounding would not be a solution for the ILP.

The rounding methods considered in this thesis can be split into two categories: threshold
rounding and iterative rounding. Threshold rounding methods solve the LP relaxation
once and then apply rounding to all non-relaxation variables. Iterative rounding methods
solve the LP relaxation, round at least one non-relaxation variable to either zero or one,
update LP relaxation by fixing said variable to what it was rounded, i.e., add constraint
x; = 1 or z; = 0 to the LP relaxation, and solve the updated LP relaxation. This
is iteratively done until all non-relaxation variables have been fixed. The most obvious
difference between these two types of rounding methods is that the threshold rounding
methods are faster than the iterative rounding methods. This is due to threshold methods
having to solve the LP relaxation only once. While iterative methods are slower, at each
iteration a new solution obtained for the updated LP relaxation can guide the approach

toward solutions of better quality.

4.2.1 Threshold Rounding

The first set of rounding methods we consider are threshold rounding methods. Algorithm
1 outlines a general threshold rounding algorithm. Given a MaxSAT instance F' the
algorithm first obtains the LP relaxation of ILP(F') on line 1. Then on line 3 it calls a
LP solver to solve the LP relaxation and saves the obtained solution into sol. Finally all

non-relaxation variables are rounded by a rounding procedure on lines 4-6. In this thesis

Algorithm 1: General threshold rounding
input: MaxSAT instance F

L" = LP relaxation of ILP(F')
literals = a set of all variables in F
sol = solve(L')

foreach x € literals do

‘ rounding procedure

end
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we consider three threshold rounding schemes which we will refer to as SIMPLE, RANDOM
and CF.

Algorithm 2 outlines SIMPLE, the first rounding approach we consider. This algorithm
rounds a variable x to one if v > 1/2 and to zero otherwise, where v is the value assigned
to x in the solution for the LP relaxation. More specifically, it first creates a variable v
on line 1 that gets a value that was assigned for the variable x in solution sol for the LP
relaxation. Then on line 2 it checks whether the value v is greater than or equal to 1/2.

If it is greater or equal, x is rounded to one and to zero otherwise.

Algorithm 2: Simple rounding (SIMPLE)

input: Variable z and solution sol
v = value assigned to x by solution sol
if v>1/2thenz =1

else x =0

Algorithm 3 outlines the second threshold rounding approach RANDOM. This algorithm
rounds a variable to one with the probability of v, where v is the value assigned to a
variable x in the LP solution sol and to zero with the probability of 1 — v. On line 2 the
algorithm computes for each variable x a random number r between zero and one. If the
number 7 is less than the value assigned to variable x in the sol, we set the variable to
one and to zero otherwise. For example, if we have a solution to the LP relaxation where
r =2/3 and y = 1/3,  would be more likely set to one and y to zero. However, there is
a possibility that both of these variables would be rounded to the opposite of what they
were closest to, i.e., if assigned value was closer to one it would be rounded to zero and vice
versa. Rounding variables this way has been shown to result in a (1 — %)—approximation
algorithm [41].

Algorithm 3: Random rounding (RANDOM)
input: Variable z and solution sol

v = value assigned to x by solution sol
r = random number between 0 and 1
if r<wvthen z=1

else =0

Algorithm 4 outlines the final considered threshold rounding method CF. CF takes the

previously mentioned RANDOM algorithm and combines it with a (1/2)-approximation
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Algorithm 4: Coin-flip rounding (CF)
input: Variable x and solution sol

r1 = random number between 0 and 1

if 1/2 < r then

RANDOM(z, sol)

else

r2 = random number between 0 and 1
if 1/2 <r2then z =1

else =0

end

algorithm [106, 55|, where each variable is set to one with probability of 1/2 and to zero
otherwise. For each variable x the algorithm first picks a random number r1 between zero
and one at line 1. If the value of r1 is greater or equal to 1/2, then at line 5 CF calls
the rounding procedure RANDOM. Otherwise, the algorithm picks a new random number
r2 between zero and one. If the value of 72 is greater or equal to 1/2, then the algorithm
assigns ¢ = 1 and z = 0 otherwise. This rounding approach has been shown to be a

3/4-approximation algorithm [41].

4.2.2 Iterative Rounding

The other set of rounding approaches we focus on are the so-called iterative rounding
methods. Given a MaxSAT instance F', algorithms that are iterative work by solving
the LP relaxation of the ILP(F'), then fixing at least one variable to one or zero and

then solving the instance again with the fixed variables. Compared to threshold methods,

Algorithm 5: General iterative rounding
input: MaxSAT instance F

L’ = LP relaxation of ILP(F)
literals = a set of all literals in F
while length(literals) > 0 do

sol = solve(L')

rounding procedure

end
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iterative methods tighten the feasible region at each iteration. This way the algorithm
can be, in theory, guided towards a better quality solution after fixing a variable. On the
other hand, iterative rounding can be more time-consuming as the LP relaxation must be
solved multiple times before we obtain a solution. Algorithm 5 outlines the structure of
the general iterative rounding algorithm. Lines 1-2 are the same as in Algorithm 1. At line
4 the algorithm starts a while loop that will terminate once the set literals is empty. At
each iteration each rounding procedure will remove the fixed variables from this set. First
step at each iteration is to solve the LP relaxation. Then the algorithm calls a rounding
procedure at line 6. In this thesis we consider the following iterative rounding schemes:

ITER, ITERBATCH, ITERRANDD and BORB.

Algorithm 6: (Simple) Iterative rounding (ITER)

input: Set literals, solution sol and LP relaxation L'

best = x € literals that maximizes |1/2 — value of z in sol |
v = value assigned to variable best in solution sol

if v > 1/2 then add var(best) =1 to L’

else add var(best) =0 to L’

remove var(best) from literals

Algorithm 6 outlines the first iterative rounding method ITER, where we round one variable
to either one or zero. After the LP relaxation has been solved the algorithm finds the
variable x that has been assigned value farthest away from 1/2 in the sol at line 1, i.e.,
the variable that maximizes |1/2 — z|. Once such a variable is found the algorithm rounds
the variable to which value it is closer to, zero or one. At line 5 the algorithm removes

the now fixed variable from the literals.

Algorithm 7: Iterative batch rounding (ITERBATCH)

input: Set [iterals, integer k, solution sol and LP relaxation L’
batch = pick k number of variables for which |1/2 — value of z in sol | is maximized
foreach z € batch do

if v > 1/2 then add var(z) =1 to L/

else add var(z) =0 to L'

remove var(x) from literals

end

The second iterative rounding approach we consider is ITERBATCH. Algorithm 7 outlines
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this approach. Overall this algorithm works similarly to algorithm outlined in Algorithm
6. However, instead of fixing only one variable, a batch of k variables are fixed at each
iteration. At line 1 ITERBATCH takes a k number of variables that have been assigned
a value farthest away from 1/2 in the sol. The LP relaxation is then updated by fixing
all variables in the batch to the value obtained by rounding each variable to which value
they are closest to, zero or one. Then the variables in the batch are all removed from the
set literals. The idea behind this approach is to keep the iterative approach but speed up
the solving process by fixing more variables at each iteration which lowers the number of

required solver calls.

Algorithm 8: Iterative randomized rounding (ITERRAND)

input: Set literals, integer k, solution sol and LP relaxation L'

batch = pick k number of variables for which |1/2 — value of x in sol | is maximized
x = uniformly at random chosen variable from batch

if v >1/2 then add var(z) =1 to L'

else add var(z) =0 to L'

remove var(x) from literals

[terative Randomized, or ITERRAND, rounding outlined by Algorithm 8 initially works
similarly to batching as it takes a batch of variables. The difference between these two
is that the ITERRAND at line 2 picks one variable from batch uniformly at random. The
LP relaxation is then updated by fixing this randomly chosen variable to value obtained
by rounding it to which value it is closer to, zero or one. Then the variable is removed
from the set literals. Randomizing the variable selection can direct the rounding algorithm

away from getting stuck in bad local optima.

Algorithm 9: Best of randomized batch rounding (BORB)
input: Set literals, integer k, solution sol and LP relaxation L'

randomBatch = pick k number of variables uniformly at random from [literals
r = x € randomBatch that maximizes |1/2 — value of z in sol |

if v > 1/2 then add var(z) =1 to L/

else add var(z) =0 to L'

remove var(x) from literals

Best of randomized batch, or BORB, rounding outlined in Algorithm 9 employs a more

aggressive randomization. At line 1 instead of picking batch of best variables as before,
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the algorithm picks uniformly at random k variables. From this randomized batch a
variable that has been assigned a value that is farthest away from 1/2. The LP relaxation
is then updated by fixing the variable to value obtained by rounding the variable to
which value it is closer to, zero or one. Then the variable is removed from the set literals.
Randomization in ITERRAND happened among the best candidates which might still leave
us stuck in a bad local optima. In BORB the randomization happens during selection
of the candidate variables To balance the aggressive randomization BORB picks a best

candidate for rounding.

4.3 Implementation

The rounding approaches SIMPLE, RANDOM, CF, ITER, ITERBATCH, ITERRAND and
BORB were all implemented on top of the SCIP [38, 39] framework. SCIP is a frame-
work for constraint integer programming that is developed at Konrad-Zuse-Zentrum fiir
Informationstechnik Berlin. The underlying LP solver in SCIP is SoPlex [36, 37] which

implements the simplex algorithm.

For each rounding approach, a given MaxSAT instance F' is first transformed into the
LP relaxation of ILP(F) with a Python script and then passed to the rounding proce-
dure. A simple bash script handles passing these files to rounding scripts and uses ulimit
-t <number-of-seconds> command to make sure rounding terminates in case of time-
out. We opted on implementing rounding scripts by using Python 2.7 and therefore used
PySCIPOpt which is a Python interface for SCIP.

SCIP Round
CNF to LP
Input ——— ) solve LP solution ——— Solution
transformation
LP to ILP

Figure 4.1: Flow of threshold script design

Scripts for SIMPLE, RANDOM and CF first read the problem into memory and calls SCIP
to solve the LP instance. Once the instance has been solved by SCIP, a simple for loop
fixes all variables using a corresponding rounding procedure. After rounding the cost of

the solution is computed. The flow of these three scripts is illustrated by Figure 4.1.

Scripts for ITER, ITERBATCH, ITERRAND and BORB were implemented by a simple

while loop that terminates once all variables have been fixed. At each loop SCIP is asked
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to solve the LP relaxation of the original instance with the fixed variables. After there are

no variables to fix the cost of the solution is computed. Figure 4.2 illustrates the flow.

Yes

Update LP

Input with new

bounds

SCIP Round

CNF to LP
solve at least one
transformation
LP variable

Figure 4.2: Flow of iterative script design

Variables
with

fractional

values left?

No

Solution

As a further heuristic in iterative methods we fixed all variables that were assigned to

zero or to one in the solution for LP relaxation obtained by SCIP. This is done to lower

the number of calls to SCIP. Otherwise many iterations would be spent on fixing only few

variables to zero or one and SCIP would return same solution on the next iteration.



5 Experiments

In this chapter we empirically investigate the rounding methods described in the previous
chapter. First in Section 5.1 we detail the evaluation setup. Then in Section 5.2 we
present results from an empirical evaluation comparing different rounding methods using
non-partial MaxSAT instances. In Section 5.3 we analyze rounding methods in more
detail for a couple of instances from different interesting families. Next in Section 5.4 we
investigate the quality of solutions obtained with the rounding approaches to state-of-the-
art incomplete MaxSAT solvers. Lastly in Section 5.5 we explore using these rounding

approaches to solve partial MaxSAT instances.

5.1 Evaluation Setup

The main focus in our experiments is on how well the considered rounding methods per-
form on non-partial MaxSAT instances. This is due to our rounding methods not being
able to guarantee assignments which would satisfy hard clauses. Our benchmark set is
a subset of the Master Set of MaxSAT Instances [8] which includes all instances used in
recent MaxSAT Evaluations [10, 9]. The benchmark set has 618 MaxSAT instances from
which 331 are unweighted and 287 are weighted instances. These benchmarks include
crafted, random and industrial instances. Families included are drmx-atmosk, drmx-
cryptogen, frb, generalized-ising, maxcut and ramsey for weighted instances and
maxcut, packup, ramsey and set-covering for unweighted instances. All the previ-
ously mentioned rounding approaches were run on these benchmarks while enforcing a

300-second per-instance time limit.

To compare the results of each rounding method an incomplete score ranking method was
used. This is a method that is used in the MaxSAT Evaluations [10, 9] for the incomplete
track. For each instance a ratio of the best solution found and the solution of the solver

is computed. The score of a solver s on an instance i is

(best found cost for i) + 1
(solution by solver for instance i) + 1°

score(s, i) =

If a solver timed out it receives a score of zero for that instance. The total score for a
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solver s is the average over scores for all instances:

1

(num of instances)

> score(s, ).

i1€instances

totalscore(s) =

When comparing multiple solvers, a higher totalscore for a solver means that the solver

obtained better quality solutions compared to other solvers in the evaluation.

5.2 Comparing Different Rounding Methods

The first experiment aims to compare all the different rounding approaches against each
other. We consider an instance as solved if variables are rounded within the given time
limit, i.e., for threshold methods LP relaxation must be solved once and for iterative

methods must have fixed all variables within the time limit.

Table 5.1: Total score comparison with different rounding methods

Rounding method | Total score | # solved instances
ITER 0.857 553
ITERRAND 0.854 264
BoRB 0.848 564
RANDOM 0.507 605
CF 0.494 605
ITERBATCH 0.422 297
SIMPLE 0.316 605

As we can see from Table 5.1 iterative methods result in better quality solutions compared
to threshold methods in terms of scores. However, ITERBATCH results in worse quality
solutions than RANDOM and CF. The simple iterative method ITER managed to score
the highest with also having the lowest number of solved instances overall. Seemingly
randomization of variable selection results in fewer LP solves in some instances as the
iterative methods ITERRAND and BORB managed to solve more instances. While from
Table 5.1 we can see that total scores for iterative methods were really close to each other,
from Table 5.2 we can see that ITER found the best solution in more instances than other
iterative methods. This would explain why ITER scored highest in the overall comparison

even while having lowest number of solved instances.
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Table 5.2: Comparison of how many times a rounding method scored 1

Rounding method | # times scored 1
ITER 317
ITERRAND 218
BoRB 187
RANDOM 11
CF 14
ITERBATCH 45
SIMPLE 23

From Table 5.3 we can see that both ITERAND and BORB managed to obtain a better
score than threshold methods in most instances against most methods and the former
managed to obtain higher score against ITERBATCH more times than other methods.
ITER seems to be held back by the number of solved instances in this comparison as
many times the difference of wins is the same as difference between solved instances.
ITER obtained a solution for 553 instances where as ITERRAND and BORB obtained
solutions for 564 instances. Furthermore, when we compare these three methods we can
see in Table 5.3 that ITER scored better than ITERRAND in 283 instances and ITERRAND
scored better than ITER only on 202 instances. Similarly with BORB which scored better

in 192 instances and ITER in 298 instances.

Table 5.3: Matrix representation of wins across different rounding methods. Cell represents number of

instances where rounding method M1 obtained higher score than rounding method M2.

M1 M2 SiIMPLE | RANDOM | CF | ITER | ITERBATCH | ITERRAND | BORB

SIMPLE X 103 150 | 52 33 42 41
RANDOM 492 X 329 | 53 381 42 43
CF 447 263 X 53 383 41 41

ITER 546 546 546 X 519 283 298
ITERBATCH 170 215 214 | 58 X 45 51

ITERRAND 556 557 558 | 202 531 X 256
BoRB 557 556 558 | 192 526 213 X

Figure 5.1 gives more details for instance specific scores of ITER and ITERRAND. Scores

for both are mostly concentrated within 0.8 — 1 range. However, when ITER scored one
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there is a wide spread of different scores given for ITERRAND in the range [0.2,1.0]. On
the other hand, when ITERRAND scored one, the scores for ITER are not as spread out
as they are mostly within [0.6,1.0] range. Majority of the spread was caused by both
weighted and unweighted instances within the ramsey family. This spread for scores for
ITERRAND would further explain why ITER scored higher in the overall comparison even

when it had more time outs than other iterative methods.
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Figure 5.1: Score comparison between ITER (x-axis) and ITERRAND (y-axis).

Table 5.4: Total score comparison between rounding methods in different families. For each row total

score was recalculated where only instances within corresponding family were considered.

Family ‘ SIMPLE ‘ RANDOM ‘ CF ‘ ITER ‘ ITERBATCH | ITERRAND | BORB
weighted 0.286 0.409 0.399 | 0.822 0.318 0.783 0.774
drmx-atmostk 0.12 0.034 | 0.022 | 0.989 0.137 0.878 0.863
drmx-cryptogen | 0.202 0.094 0.054 | 0.499 0.006 0.498 0.497
frb 0.0 0.001 0.001 | 0.999 0.0 0.991 0.991
generalized-ising | 0.961 0.988 0.985 | 0.0 0.961 0.0 0.0
maxcut 0.421 0.795 0.78 | 0.982 0.421 0.94 0.942
ramsey 0.094 0.135 0.152 | 0.838 0.432 0.79 0.744
unweighted 0.342 0.592 0.577 | 0.887 0.513 0.916 0.911
maxcut 0.425 0.752 0.753 | 0.968 0.425 0.966 0.958
packup 1.0 0.881 0.01 | 1.0 1.0 1.0 1.0
ramsey 0.122 0.171 0.252 | 0.907 0.487 0.884 0.88
set-covering 0.18 0.294 0.14 | 0.532 0.887 0.738 0.746
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In Table 5.4 we can also see that the rounding approach ITER had the best total score
across most instance families. The only exceptions were generalized-ising, where most
iterative methods obtained a total score of zero making threshold rounding approach
RANDOM obtain the highest total score and set-covering, where ITERBATCH rounding
approach obtained the highest total score. Instances in generalized-ising have a low
number of 125 variables and a high number of over 60000 clauses. These instances took
over a minute to solve for the threshold methods. On the other hand, some instances of the
frb family also have similarly high number of clauses but could be solved in seconds even
by iterative methods. However, these instances have higher number of variables compared
to generalized-ising. This would suggest that a higher clause to variable ratio makes
an instance harder to solve for iterative methods. The instances that timed out were
in general the ones that had high number of clauses. ITERRAND did manage to obtain
highest total score for the overall unweighted category. In Table 5.1 we see that while
ITER got the highest total score it solved less instances than its randomized counterparts
ITERRAND and BORB. All of these 11 instances were from set-covering family which

explains why ITER scored low when rounding methods were compared within that family.

Table 5.5: Runtime comparison of different rounding methods (in seconds).

Comparison | SIMPLE | RANDOM | CF ITER | ITERBATCH | ITERRAND | BORB
Mean 13.181 12.710 | 12.746 | 34.684 17.150 31.195 30.688
Median 0.081 0.08 0.081 | 01.0465 0.079 0.878 0.857
Cumulative 8146 7854 7876 21434 10598 19278 18964
# Timeouts 13 13 13 65 21 54 54

Table 5.6: Number of instances solved within time limit for each rounding method.

Solver/Method | # solved < 1s | # solved < 5s | # solved < 60s
SIMPLE 512 547 576
RANDOM 512 548 579
CF 511 548 579
ITER 301 474 551
ITERBATCH 491 523 564
ITERRAND 319 500 551
BoRB 320 503 551
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From Table 5.5 we can see that iterative methods were much slower than threshold meth-
ods. The number of timeouts also increased considerably going from threshold methods
to iterative. However, all rounding approaches managed to find a solution in under one
second for most of the of the instances. For most instances a solution was obtained fast
but a few of the instances took a long time to solve which can be seen from the fact that
mean is high but median is low. This can be seen in Table 5.6. Half of the instances could
be solved by any method within one second and around 500 instances could be solved
within five seconds by any method. Increasing time limit to one minute does not increase
the number of solved instances dramatically for any rounding method. However, there
are still few instances that none of the rounding methods could solve within the given

300-second time limit.

In Figures 5.2 and 5.3 we have omitted threshold methods from the comparison. This is
due to threshold methods producing poor quality solutions in general. However, a single
threshold runtime THRESHOLD is plotted as a reference on how time consuming a single
LP solve can be. From Figure 5.2, which shows times for the entire benchmark set, we can
see clear gap between iterative methods and threshold methods. Iterative methods outside
of ITERBATCH can be seen to need more time to solve more instances. ITERBATCH being
able to solve more instances faster is due to the fact that it requires fewer LP solver calls
compared to the other iterative methods. ITERBATCH is still noticeably slower than the
threshold methods.
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Figure 5.2: Entire benchmark set
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Figure 5.3: Figures where where runtimes are divided to (a) unweighted and (b) weighted instances.

From Figure 5.3 (a), which shows times for unweighted instances, we can see similar divide
between methods and ITERBATCH rounding is more separated from threshold methods.
in Figure 5.3 (b), which shows times for weighted instances, the rounding methods are
rather close to each other up until around 240 number of instances. After that the iterative
methods outside of ITERBATCH do not solve more instances even with a 300-second time
limit. As we can see, solving these instances took a lot of time even for threshold methods.
If even a single LP solver call can take up 200 or even 300 seconds it is clear that an iterative
method solving instances multiple times would result in time outs. Weighted instances

seem to be harder for the LP solver to solve compared to unweighted instances.

5.3 LP Relaxation Solution Analysis

In this section we take a more detailed look into two MaxSAT families: generalized-
ising and frb. These two families were chosen as they were the most divisive families
between threshold and iterative methods. Rounding approaches also were competitive
with state-of-the-art solvers for these families. We are especially interested in investigating
the assignments for variables in the LP relaxation solutions and how fixing variables affects

the assignments in the next iteration.

We will start by considering instances from the generalized-ising. Iterative methods
did not manage to obtain a solution for any of the instances from this family. We ran

three randomly selected instances from this family without a time limit using ITER. The
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Figure 5.4: Plots of averages of the obtained values for variables for each iteration for (a) instances of

the generalized-ising family and (b) instances of the frb family. These are obtained using ITER.

instances chosen all had 125 variables each and 60375 clauses, where each clause had on
average three variables. From the Figure 5.4 (a) we can see that fixing a variable had no
noticeable effect on next obtained solution. First solution obtained for the LP relaxation
assigned all variables to 1/2 and after fixing a variable, all variables were again assigned
a value of 1/2. Only when a majority of the variables were fixed, two of the instances,
[S7 and IS15, obtained solutions where some of the variables were assigned a value of
zero. It took ITER 122 iterations before a solution for the LP relaxation assigned different
values from 1/2 to variables for the IS7 instance and 111 iterations for the IS15 instance.
From Figure 5.5 (a) we can see that no other values than 1/2 and zero were assigned for
these instances. LP relaxations do not offer enough new information after fixing variables
for the iterative methods to be viable for these instances. For these instances using a
threshold methods will result in same or similar assignments. Therefore, depending on
how their solution quality compares to state-of-the-art solvers, for similar instances a
threshold method should be used.

Next we will consider instances from the frb family. Iterative methods managed to obtain
much better scores than threshold methods in this family. Threshold methods scored
zero or close to zero where as iterative methods scored close to one with the exception of
ITERBATCH. Three instances from frb were chosen randomly and they were ran without
a time limit using ITER. These instances were more varied than the chosen generalized-
ising instances in terms of how many variables and clauses each instance had. The

number of variables ranged from 135 to 450 and similarly the number of clauses ranged
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Figure 5.5: Spread of assigned values for variables in the obtained solutions (fixed variables are excluded)
for all iterations for (a) instances of the generalized-ising family and (b) instances of the frb family.

These are obtained using ITER.

from 2631 to 18350. For each instance the average number of variables in a clause was
two. From Figure 5.4 (b) we can see that fixing variables affected assignments obtained
from solving LP relaxation more than in the instances of the generalized-ising family.
Initially all the variables have been assigned a value of 1/2 but immediately on the next
iteration, the solutions for the updated LP relaxations has assigned different values for
variables. For these instances, the solutions for LP relaxations after fixing variables seem
to help to guide the algorithm towards a solution better and require fewer iterations
compared to generalized-ising. From Figure 5.5 (b) we can see that the variables in
these instances were only assigned values zero, one and 1/2. This means that a solution
for LP relaxation, outside of value 1/2, assigned mostly a value of zero to all variables
after fixing some variables. Since many variables were assigned to zero after a single fixed
variable it is clear that threshold methods would not obtain a good quality solution as all
the variables were assigned a value of 1/2 initially. For example using SIMPLE for these
instances would assign all variables a value of one which results in the following objective
function values: 339456 for frb15, 1245114 for frb20 and 8072900 for frb30. The optimal
objective function values are 120, 200 and 420 respectively. From Figure 5.6 we can see
that ITER obtained solutions that have objective function value that is very close to an
optimal solution values. The exact objective function values obtained by ITER for these
instances are: 123 for frb15, 203 for frb20 and 431 for frb30.

Seemingly when the clauses to variables ratio of the instance is high, as in the instances

of generalized-ising family, the solutions obtained to LP relaxations do not have assign-
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Figure 5.6: Objective function value on each iteration compared to an objective value of an optimal

solution.

ments that would help fixing more variables to integer values. Similar results have been

reported for special case of MaxSAT called MAX-2-SAT, where clauses are restricted to

exactly two variables [42]. This suggests that benefits of iterative methods might be lost

on these types of instances as the solution obtained will be same or close to same as a solu-

tion obtained by threshold methods. When the clauses to variables ratio of the instance is

lower, as in the instances of frb, fixing variables has greater effect on the next obtained LP

relaxation solution. For these types of instances the benefits of iterative methods become

more apparent.
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5.4 Comparison with State-of-the-Art Solvers

To see how LP relaxation based approach for incomplete MaxSAT solving compares to
current state-of-the-art incomplete MaxSAT solvers, we ran SATLike and Loandra on the
benchmark set. Both of these solvers have good results in recent MaxSAT Evaluations for
the incomplete track [10, 9]. For this section the total score is re-computed with respect

to all considered rounding methods and newly considered solvers in Table 5.7.

Table 5.7: Total score comparison with state-of-the-art solvers (non-partial instances)

Solver /Method | Total score | # solved instances
SATLike 0.969 618
Loandra 0.946 618

ITERRAND 0.671 564
ITER 0.669 953
BoRB 0.668 564
RANDOM 0.408 605
CF 0.395 605
ITERBATCH 0.324 297
SIMPLE 0.246 605

Table 5.8: Score comparison between rounding methods and state-of-the-art solvers in different families.

For each row score was recalculated where only instances within corresponding family.

Family ‘ SIMPLE ‘ RANDOM ‘ CF ‘ ITER ‘ ITERBATCH | ITERRAND ‘ BoRB ‘ SATLike | Loandra
weighted 0.215 0.332 0.324 | 0.646 0.232 0.621 0.617 0.936 0.976
drmx-atmostk 0.035 0.007 0.004 | 0.716 0.043 0.664 0.649 0.567 1.0
drmx-cryptogen | 0.002 0.001 0.0 |0.499 0.006 0.497 0.497 0.952 0.98
frb 0.0 0.001 0.001 | 0.973 0.0 0.966 0.966 1.0 0.999
generalized-ising | 0.945 0.971 0.968 | 0.0 0.945 0.0 0.0 0.998 0.99
maxcut 0.348 0.661 0.648 | 0.813 0.348 0.776 0.778 1.0 0.974
ramsey 0.07 0.081 0.064 | 0.386 0.16 0.365 0.347 0.982 0.934
unweighted 0.273 0.475 0.457 | 0.689 0.404 0.715 0.712 0.997 0.92
maxcut 0.333 0.595 0.596 | 0.76 0.333 0.755 0.748 1.0 0.942
packup 1.0 0.881 0.01 | 1.0 1.0 1.0 1.0 1.0 1.0
ramsey 0.1 0.134 0.187 | 0.567 0.299 0.561 0.563 0.983 0.975
set-covering 0.162 0.265 0.124 | 0.499 0.778 0.677 0.685 0.996 0.781

As we can see in the Table 5.7 all of the LP-based methods are very far behind state-

of-the-art solvers in general. state-of-the-art solvers managed to obtain a solution on all
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instances and in general resulted in better quality solutions. Even the best score iterative
methods obtained is 0.671 which is much lower than the worst score obtained by state-of-
the-art solvers which is 0.946. From Table 5.8 we can see that on some instance families the
rounding approaches appear to be competitive with SATLike and Loandra. On the drmx-
atmostk instances SATLike scored lower than ITER, ITERRAND and BORB. On the frb
instances the same iterative methods managed to score highly, well above 0.9. Threshold
methods, while generally produce generally low quality solutions, scored highly on the
generalized-ising instances with scores well above 0.9. Rounding methods managed
to obtain a better overall score for unweighted instances than for weighted instances.
However, in unweighted families all rounding methods still performed poorly outside of
the packup instances in wich almost all rounding methods managed to score one. On
the set-covering instances ITERBATCH rounding managed to score similarly to Loandra.
This shows that LP relaxation and rounding approach can result in good quality solutions

on some benchmarks even if in general the solution quality is much worse.

5.5 Results for Partial MaxSAT Instances

The final experiment aims to evaluate our rounding approach on partial MaxSAT in-
stances. Especially we are interested in how many times rounding methods could find an
actual solution for these instances. Recall that our rounding methods do not guarantee
that the obtained assignment is a solution for a partial MaxSAT instance. The benchmark
set we used for this experiment was a subset of weighted and unweighted MaxSAT instances
that were used to test incomplete MaxSAT solvers at MaxSAT Evaluation 2019 [10]. We
filtered out non-partial instances from this set and instances that were too time consum-
ing to transform into LP instances. There was a total of 330 instances from which 176
were unweighted and 154 were weighted instances. Similarly to our non-partial MaxSAT

benchmarks, this benchmark set included crafted, random and industrial instances.

As we can see from Table 5.9, using LP relaxations and rounding to solve partial MaxSAT
instances does not result in solutions for most of the instances. Iterative methods managed
to find more solutions compared to threshold methods. As threshold methods do not gain
any information if linear constraint is being satisfied or not after rounding variables this is
to be expected. At every iteration iterative methods can ask LP solver for a solution that
in theory would guide rounding algorithm towards a solution. Similarly to non-partial

instances partial instances had much more timeouts for iterative methods in comparison
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to threshold methods. However, even the iterative methods did not manage to obtain a

solution for majority of the instances.

Table 5.9: Partial benchmark results

Rounding method | # solved | timed out | infeasible
SIMPLE 29 26 275
RAaNDOM 10 26 294
CF 24 26 280
ITER 43 99 188
ITERBATCH 26 44 260
ITERRAND 47 70 213
BoRB 46 58 226

Table 5.10: Total score comparison with state-of-the-art solvers (restricted partial instances)

Solver/Method | total score | # solved instances
SATLike 0.909 44
Loandra 0.859 39

ITERRAND 0.794 43
ITER 0.789 43
BoRB 0.77 42
ITERBATCH 0.309 16
SIMPLE 0.206 11
CF 0.002 13
RANDOM 0.0 0

To compare the solution quality we ran the instances where at least one of the rounding
methods found a solution and no rounding method timed out on state-of-the-art solvers.
These restrictions were made as including all instances lowered the score for all rounding
methods significantly. There were 44 considered instances with these restrictions. From
Table 5.10 we can see that the solution quality for the iterative methods is rather com-
petitive when compared to state-of-the-art solvers. Introducing hard clauses to MaxSAT
instances using this approach requires more work to be done as clearly our implementation
does not result in enough solutions for this to be a viable approach. However, the solution
quality for the found solutions suggests that a better implementation using this approach

could be competitive with state-of-the-art solvers.



6 Conclusions

Using LP relaxations and rounding as an approximation algorithm for solving NP-hard
optimization problems is a well studied approach. However, this approach has not re-
ceived much attention in MaxSAT research. This thesis focused on using LP relaxations
as a way to solve MaxSAT instances and more specifically investigated the quality of the
solutions obtained by this approach. We defined the MaxSAT to ILP formulation used
and the multiple rounding heuristics considered. We presented experimental results of
using these rounding methods on multiple MaxSAT instances that are used to evaluate
incomplete MaxSAT solvers. These results showed comparison with the presented round-
ing heuristics and comparison against current state-of-the-art incomplete MaxSAT solvers.
Our implementation of using LP relaxation and rounding on MaxSAT did not result in a
competitive approach in general. Depending on the instance, solutions for LP relaxations
do not seem to offer much guidance on how variables should be assigned. However, for
some problem domains this approach did show promising results and as such this work
could be extended.

There are a few ways to extend this work. As many instances obtained a solution very
fast, these solutions could be used as further constraints on the original LP relaxation and
start a new round of iterations. This way rounding algorithms could be forced to find
new and better quality solutions under a longer time limit. Due to being able to obtain a
solution fast this approach could also be implemented in a SAT/IP hybrid solver, where
the initial assignment is obtained by LP relaxation and rounding and then SAT-based
approach would improve this found solution. Other implementation related future work
would be to implement a better variable selection which would take into consideration on
what clauses are not being satisfied. This becomes especially apparent in partial MaxSAT
instances were all rounding approaches resulted in infeasible solutions for most instances.
Once we end up with an infeasible solution a rollback could be implemented to change
fixed assignments until the solution is feasible again. Future work could also take a further
look into instances where rounding approaches resulted in good quality solutions and if

this knowledge could be used to improve solution quality in general.
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