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1 Introduction

Machine learning algorithms have traditionally been executed in one central location
or entity (e.g. a computer, server or even a cluster) [MR17]. However, with the
recent advancements in mobile devices’ processors, Konečný, McMahan, et. al.
from Google, developed a new machine learning technique called federated learning
[KMY+16]. In contrast to centralized learning, in which data and processing take
place at a central entity (e.g. a server), their main idea was to distribute data and
its processing into a set or federation of these devices, coordinated only by a central
server (Figure 1). As a consequence, this also had an impact in data privacy, since
user data remains in-device and only model updates were transferred to a different
location. However, the main goals for this thesis are evaluating the feasibility of
distributed learning for radio networks and finding evidence of its advantages.

(a) centralized learning. (b) federated learning.

Figure 1: Centralized and federated learning. In centralized learning (Figure 1a)
sampled data flows from devices to a central entity (e.g. server), which performs all
of the training. In federated learning (Figure 1b) training is performed on-device
and only updates are sent to the server for aggregation. Then, the updated global
model is sent back to the devices.

To account for the advantages, two main hypotheses will be presented. The first
one is that communication costs should reduce, given that the data is no longer
transmitted to a central location (only the model weights) and that the computation
is parallelized among the end devices. The second hypothesis is that training time
should also diminish for a new radio network entity (in this case a radio cell) by
transferring a trained federated model to it. This should give a better starting point
than training this cell’s model from scratch. If the previous hypotheses prove to be
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true, I believe they could be generalized to other kinds of federations, for instance
an Internet of Things (IoT) network for industrial control.

In order to prove these hypotheses, the federated learning algorithm was applied
to a time series dataset provided by Nokia, which was generated from several radio
network cells’ data. The evaluation was performed by forecasting future values for
different learning and training configurations, as well as for simulating the addition
and modelling of new cells to a radio network. Forecasting of these values could be
useful to allocate resources more effectively. For instance, if traffic were predicted,
more bandwidth could be provided before a higher demand from users occurs.

Section 2 will introduce the necessary background from the fields of machine learning
and time series. Next, the federated and transfer learning settings will be described.
This section will also comment on similar distributed learning attempts. Section 3
will elaborate on the methods implemented for this research’s experiments, such as
how the data was initially analysed and pre-processed, clustering, embeddings, and
learning configurations. Section 4 describes the machine learning models that were
applied for performing the KPI prediction. It also depicts how these models were
evaluated, optimized and tuned. Section 5 will present and discuss the experiments’
results. Lastly, Sections 6 and 7 will summarize the findings from this thesis, leading
to the concluding remarks and the suggested future work.
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2 Background

In this section, the most relevant concepts and definitions will be briefly presented.
Topics from time series data as well as machine learning will be covered.

Section 2.1 will introduce time series, given the nature of the dataset at hand. Next,
deep learning will be characterized in Section 2.2. Having covered the previous, in
Section 2.3 the federated learning scenario and its relationship to time series data
will be described, particularly for radio networks. Section 2.4 will illustrate the
technique called transfer learning, which was applied in this thesis’s experiments
(Section 5) to pass on a learned federated model to new cells. Lastly, Section 2.5
will comment about related previous work on time series modelling and distributed
machine learning.

2.1 Time Series and Forecasting

Time series consist in ordered sequential data, distributed in regular time inter-
vals [Die15, p. 234]. They are often represented as one or more random variables
denoted by a time index. Some examples of time series are weather data, sensor
measurements, product sales, and a country’s population. The previous phenomena
are known to change over time and one or more of their characteristic variables de-
pend on previous information. Then, they can be modelled in order to get a forecast
(also known as prediction). Predictions are calculated as a function of one or more
time-dependent random variables and a set of parameters (commonly denoted as Θ)
[SS17, pp. 8-11,18,102-104]. An example of a linear model for forecasting can be
observed in Equation 1, where xt+1 (the next value of random scalar variable x at
time index t+ 1), is calculated as a function of its two previous values, xt and xt−1,
and adjusted by scalar parameters θ0, θ1 and θ2:

xt+1 = θ0 + θ1xt + θ2xt−1 (1)

where Θ = {θ0, θ1, θ2} ∈ R and x ∈ R and t ∈ Z+. Less or more previous values of
x with their corresponding parameters could be included depending on the desired
model complexity.
Time series’ main attributes are the following:

• Trend. It describes the movement of time series values’ across long time pe-
riods (e.g. monthly trend, yearly trend). It can be increasing, decreasing or
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constant[Die15, p. 235].

• Cycles. They are present in time series when a pattern repeats itself with
a certain frequency, such harvest periods, product sales, or the moon cycle.
We refer to seasonality when the cycles coincide with calendar factors such as
holidays, weekdays/weekends and seasons [Nie19], [SS17, pp. 166.169].

• Stationarity. Stationary time series have constant mean, variance, and covari-
ance. If a series is non-stationary, we can approximate the linear trend to some
extent by differencing it or via linear regression [Pal16].

For time series the order of the data samples is relevant, in contrast to non-temporal
data (like in image classification). Samples should also be continuous and learned
in an incremental manner. This means that the sample rate should be uniform
among the input samples and that the data should keep its order with respect to
time (not shuffled). For instance, if there is daily sample rate, then the days from
the input sample should be uniformly consecutive and uninterrupted. Otherwise,
the relationship between samples will lose its significance and interpretation.

One notable advantage from learning the relationship(s) between time series samples
is that the resulting model will allow forecasting of future values. Forecasting relies
on the previous statistical properties (trend, cycles and stationarity). If the time
series have cyclical values, patterns become clear and they become easier to char-
acterize. It is also preferable that the time series are stationary. When time series
are stationary, their variances are bounded and their estimated mean and variance
remain closer to their true values. On the other hand, when time series are non-
stationary, their variances are unbounded and tend to escalate over time, causing
oftentimes that the forecasting model’s prediction to under or overshoot [YM00, pp.
71-72].

A simple prediction example is the auto-regressive model, where a phenomena is
represented as a linear relationship between variables [GWHT13, p. 61]. However,
for this thesis, time series values had non-linear behaviour. Thus, they were fitted
with non-linear models, more specifically, deep learning models (presented in the
following section). The outputs were step predictions, whose number n is a positive
integer corresponding to how many steps (e.g. time indices or samples) ahead of the
current one will the output value be [SS17, p. 102 -103].
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2.2 Deep Learning

Deep learning is the product of recent advances in hardware and software, supporting
machine learning algorithms. Success of deep learning occurred due to algorithmic
improvements such as the idea of stacking multiple layers in artificial neural net-
works to achieve different levels of abstraction. For instance, in image classification,
deep neural networks identify low-level features, such as edges, in their first layers;
then shapes and lastly, high-level features such as faces or eyes. Deep learning’s
success was also possible due to the back-propagation [RHW86] and the gradient
descent [Cau47] algorithms. Even nowadays they are one of the standard methods
for training multi-layer neural networks [GBC16, pp. 18, 98].

2.2.1 Exploding and Vanishing Gradients

Further challenges for deep learning were the vanishing and exploding gradients.
Both refer to the gradient update that is performed during back-propagation. When
a neural network contains multiple hidden layers, the number of gradients to mul-
tiply increases as well. If the gradient values are large, then the updated weights
can be moved too far away from their optimal value (a.k.a. exploding gradients).
On the other hand, if gradients are too small, their update will become close to null
as it propagates to the lower layers. This is called the vanishing gradients prob-
lem. The exploding gradient was tackled by a technique called gradient clipping,
which consists in limiting the gradients’ magnitude by a heuristic while keeping the
direction of the update. The vanishing gradient was a more complex issue, which
was counteracted with algorithmic techniques, such as batch normalization, weight
initialization combined with ReLU activations, and the use of residual and LSTM
networks [GBC16, pp. 175, 193-195, 290, 304, 317-321, 403, 415-416].

For the experiments in this thesis weight initialization was applied. The LSTM neu-
ral network architecture (See Section 2.2.3) was considered during model selection,
and ReLUs for the candidate activation functions during hyper-parameter selection.

Rectified Linear Units (ReLUs) are to date one of the most common activation func-
tions for deep neural networks. Examples of the most utilized activation functions
are:

• Linear:
f(x) = x (2)
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• Sigmoid:

f(x) =
1

1 + e−x
(3)

• Hyperbolic Tangent (Tanh):

f(x) =
ex − e−x

ex + e−x
(4)

• Rectified Linear Unit (ReLU):

f(x) = max(0, x) =

{
x, if x > 0

0, otherwise
(5)

• Leaky ReLU:

f(x) =

{
x, if x > 0

0.01 ∗ x, otherwise
(6)

• Softmax:
f(x)i =

exi∑K
j=1 e

xj
where i, j ∈ N (7)

One main reason for the popularity of ReLUs is that they are non-linear functions
and when activated, their derivative is the same as for the linear function: the
gradient will be 0 if the input value is less than or equal to 0; otherwise, it will be 1.
This means that ReLUs can represent non-linear behaviour systems and that their
derivative will not be affected by non-linear saturation, such as those found in the
sigmoid and tanh activation functions. Furthermore, ReLUs can introduce sparsity
into training, allowing for easier computation: only a subset of the neurons will have
non-zero output/gradient. In addition, sparse activations have greater potential of
being linearly separable [GBB11].

2.2.2 Data and Computing Availability

Another catalyst for the deep learning boom was the availability of larger datasets,
which has allowed deep learning algorithms to reach human performance of tasks,
most notably in the fields of computer vision and natural language processing
[GBC16, pp. 18-21]. Together with this increment in data availability came also a
considerable rise in computing load and processing time. This trade-off was tack-
led by the application of Graphics Processing Units (GPUs) combined with related



7

software developments. GPUs were noted to be fast and efficient for calculating
matrix operations, which are commonplace when performing back-propagation and
gradient descent in neural networks. Main software developments were the efficient
application of distributed computing (including multi-GPU) as well as deep learning
libraries, such as Theano, Tensorflow, Caffé, Keras and Torch.

2.2.3 Architectures

Deep neural networks can have different architectures, depending mainly on how
the neurons are connected and activated. For this thesis, the architectures explored
were Multi-Layer Perceptron (MLP) and Long Short-Term Memory (LSTM).

Multi-Layer Perceptron
The Multi-Layer Perceptron (MLP) consists of several layers of artificial neurons,
connected as it can be observed from Figure 2. The first layer is called input layer
and it is where the input data is provided for training and prediction. The interme-
diate layers are called hidden layers and within them, multiple neurons’ interactions
take place. If multiple hidden layers exist in an artificial neural network, then this
process is called deep learning. Its interpretation is that at each deeper layer there
is a higher level of abstraction from the learning objective. The last layer is called
output layer and it is where the result is returned. In contrast to the single neuron
or perceptron, MLP allows with its combination of neurons and activations, to solve
more complex problems including non-linear classification and regression.
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Figure 2: Example Multi-Layer Perceptron. A MLP is built by stacking layers of
neural units (represented by nodes), where non-linear operations take place. Their
connections are represented by arrows, indicating the direction of information flow.
The basic layer types are: input, hidden and output layers. Image credits [via18]

Long Short-Term Memory
The Long Short-Term Memory (LSTM) architecture, developed by Hochreiter and
Schmidhuber (1997) [HS97], is based on the recurrent neural networks (Rumelhart,
1986) [RHW86]. Recurrent neural networks (RNNs) were designed to deal with se-
quences, and examples of their main applications include text and speech processing.
Each of their neurons contain a hidden state which depends on previous neurons’
hidden states and/or outputs. In other words, the information flows from the past
towards the present or future. In contrast to MLP, RNNs perform parameter shar-
ing, meaning that the same parameters are used for different timesteps. Even though
they process a sequence from step 1 to τ , these step numbers are a relative position,
not the actual values in time. In this manner, generalization for future sequences
can be performed; otherwise, a set of parameters should be learned for each timestep
to be introduced during testing/deployment [GBC16, pp. 373-374].

In spite of these advantages, RNNs suffer from gradient vanishing and exploding.
An architectural solution for this issues in RNNs is the Long Short-Term Memory
(LSTM). LSTM networks resemble RNNs, but with LSTM units instead of the typ-
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Figure 3: Unrolled RNN. Inputs at consecutive timesteps are represented by blue
nodes xi. Non-linear operations (e.g. tanh), occur at the recurrent neural units
A represented by rectangular blocks, producing hidden states h. The internal or
hidden states are transmitted forward as input to the next RNN unit and they can
be extracted from each RNN unit (as represented in the violet nodes) or only from
the last RNN unit, to produce the desired output. Image credits [Ola15]

.

ical RNN hidden unit (with a non-linearity function after a matrix multiplication),
as can be seen in Figure 4.

Figure 4: Unrolled LSTM chain. Notation for inputs and hidden states is the same
as in Figure 3. However, for the LSTM units A, multiple operations corresponding
to its regulating gates occur instead of RNN’s single non-linearity. Hidden states
travel forward through the lower arrows, and candidate updates, through the upper
ones. Image credits [Ola15]

The LSTM unit is composed of regulating gates which control how much of the
long-term information is retained and how much is forgotten. Their formulas are
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simplified as follows:

• forget gate: This section of the LSTM unit regulates with a sigmoid activa-
tion how much of the previous information will be forgotten.

Figure 5: forget gate. Image credits [Ola15]

• input gate: This operation regulates how much of the input will pass to the
next hidden state. C̃ is the candidate update.

Figure 6: input gate. Image credits [Ola15]

• update: The update operation, being a combination of the candidate update
and input gate value.

Figure 7: update. Image credits [Ola15]
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• output gate: It regulates how much of the hidden state will pass to the next
LSTM unit or the final output.

Figure 8: output gate. Image credits [Ola15]

With this configuration, then it is possible to control the information and memory
flow of the neural network.

2.3 Federated learning

Federated learning (FL), as mentioned in Section 1, is a way of distributing machine
learning. Having covered the required background, it can now be presented in detail.
First, we should notice that the FL scenario contains two main types of entities: the
global entity (e.g. server) and the local entities or clients (e.g. mobile devices). As
a consequence, there will be global and local models respectively.

2.3.1 Federated averaging

The federated averaging algorithm (McMahan, et. al., 2016) [MMR+16] is the core
of federated learning (See Algorithm 1). Federated averaging (FA) begins by ini-
tializing the global model’s parameters w0 at the global entity or server (e.g. with
random weight initialization). Then, a fraction C of the clients K are selected ran-
domly (forming set St). Each of these clients receives the global model’s parameters
and performs one or more training rounds E with batches B of collected local data
P. After training, each client sends back the updated parameters back to the server
where they are aggregated as a weighted average. For this operation, each client’s
parameter’s weight wkt+1 corresponds to the number of samples its client used for
training nk, divided by the total number of training samples from all clients n. The
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results then become the global parameters and the cycle repeats for a limited num-
ber of rounds or indefinitely (depending on the application).

Algorithm 1: FederatedAveraging. The K clients are indexed by k ; B is the
local minibatch size, E is the number of local epochs, and η is the learning rate.
From [MMR+16]
Server executes:

initialize w0

for each round t = 1, 2, ... do
m← max(C ·K, 1)

St ←(random set of m clients)
for each client in parallel do

wkt+1 ←ClientUpdate(k, wt)
end
wt+1 ←

∑K
k=1

nk

n
wkt+1

end

Function ClientUpdate(k, w): // Run on client k
B ←(splitPkinto batches of size B)
for each local epoch i from 1 to E do

for batch b ∈ B do
w ← w − η∆`(w; b)

end
return w to server

end

Some highlights about the previous will be presented next:

• Federated learning requires the model to be parametric, which means that it
should have a set of variables to optimize over training.

• Moreover, the model should be improvable in an iterative manner. In order to
perform the averaging, all end-devices and the global model should have the
same parameters.

• During federated averaging, the weighted average operation is performed with
respect to the number of training samples belonging to each end device. Its
purpose is to give higher relevance to updates obtained from more training
samples, since statistically they represent better the current sample population
of federated devices.
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Typical data in a federated learning scenario comes from remotely connected de-
vices. In contrast to the distributed learning approach, McMahhan, et. al. (2016)
[MMR+16] describe this data by the following properties:

• Non-IID The training data for a local entity is generated by local sources (e.g.
a user’s mobile device or a telecom radio station). Thus, it will reflect partic-
ular traits of the user or geographical characteristics pertaining to the radio
station, for example. Then, it can be concluded that it will be unlikely that it
represents the whole federated population’s distribution (or independent and
identically distributed).

• Unbalanced Users, IoT devices and radio network stations are as well, un-
likely to generate the same amount of data among their population. Thus, the
training data as a whole will be unbalanced source-wise.

• Massively distributed Looking towards the future, it is expected that the
number of federated devices will surpass the amount of samples per optimiza-
tion round per source.

• Limited communication Remote devices are bound to have varying latency
and connectivity. Thus, data samples will not flow at a constant rate. More-
over, devices will not always be online.

2.3.2 Comparison with centralized learning

Even though a central entity remains involved in federated learning, it still has sig-
nificant differences with respect to centralized learning. One of them is that all of
the user data remains in the mobile devices, and it is processed in each of them as
well. Furthermore, only the learned parameters and number of training samples are
sent back to the server. As a consequence, less data has to be transferred, reducing
latency and bandwidth. For telecom companies these aspects could translate into
monetary savings. Furthermore, this configuration introduces an extra layer of pri-
vacy for the end-users, since their personal data never leaves their device [BEG+19].

A shortcoming from federated learning, in comparison to the traditional approach
(e.g. with supercomputers as central servers), could be the lack of high-end proces-
sors and GPUs which can enable faster updates. This would be expensive to have
in thousands of mobile devices. However, at some point, distributing the processing
at a large enough amount of devices can surpass this bottleneck. Considering that
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there are globally more than 3 billion smartphones [New18] and 7 billion connected
devices [Las18], and that AI chips are now present in phones from major companies,
such as Samsung, Apple, Huawei, as well as in Amazon’s IoT interfaces (Echo and
Alexa) [Ago18], I am convinced that if not already, in the upcoming years, federated
learning devices will surpass the capability of high-end servers.

Another difference with respect to centralized learning is that when modelling data
from mobile devices, not all of them might be connected at the same time and
communication latency will also vary among them. Centralized algorithms are not
designed for this scenario; nonetheless, federated learning does, by updating the
global model with samples of connected devices, and then updating the whole fed-
eration as soon as the devices meet the right conditions (e.g. battery, bandwidth)
[BEG+19].

Considering the case for this thesis, by installing lower or mid-range GPUs at base
stations, the relative cost would not be as high as installing them in mobile phones.
In addition, base stations are more likely to have a stable and continuous connection
than other mobile devices (e.g. IoT gadgets and phones), which had been identified
as a weakness of FL [KMY+16].

Given these advantages, I trust that federated learning has potential for providing
a distributed, cost-effective, and more robust solution for telecom.
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2.4 Transfer Learning

As mentioned in Section 1, another experiment of interest is transferring a federated
model to a new cell within a telecom network. Transfer learning basically consists
of taking advantage from a previous dataset or model in order to attain two main
goals:

• To have enough data for training an algorithm when data is scarce. Adding
data from a similar domain or application to augment the dataset, or transfer-
ring a model trained on similar data can compensate for its absence. Further-
more, it can help to generalize given shared features [GBC16, pp. 536-541]
(See Figure 9a).

• To accelerate the learning process of an algorithm. When a trained model
from a similar application and/or domain is available it can be used as a
better starting point for learning, instead of doing so from scratch [GBC16,
pp. 536-541] (See Figure 9b).

For the current case, a previous model was obtained by training a federation of radio
cells over the prediction of a target KPI. Then, this model was transferred to a new
cell whose data was kept aside, so that both its score and learning curve could be
compared with respect to training its own model from scratch.
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(a) Scarce Data. Image credits [McG17]

(b) Training Acceleration. Image credits [TS10]

Figure 9: Transfer Learning Advantages. The diagram in Figure 9a represents the
knowledge transfer between a previous (source) model and a new (target) model.
Figure 9b shows the expected learning curve resulting from transfer learning.

2.5 Previous work

In contrast to recent deep learning neural network models, classical time series fore-
casting has been addressed by statistical autoregression models (AR). These are
commonly combined with moving-average models (MA), resulting in hybrid mod-
els such as ARMA (Whittle, 1951) [Whi51] and ARIMA (Box and Jenkins, 1970)
[BJ70]. With this combination, they can account for the current value of the target
variable, as well as for its random variation, given previous observations. AR, MA
and ARMA require that the data is stationary. In contrast, ARIMA removes most
of the non-stationarities as part of its algorithm by differencing the random variable
or input xt. ARIMA also performs model selection (AR or MA) by evaluating AIC
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and BIC information criteria [Zha18].

An autoregressive model is a function of parameters φ and inputs xt−1:p and Gaussian
noise wt, where p is the order. An autoregressive model of order p or AR(p) is
expressed as:

xt = φ1xt−1 + φ2xt−2 + ...+ φpxt−p + wt (8)

A moving average model approximates the noise (or errors from past forecasts) wt
linearly with respect to parameters θ. A moving average model of order q or MA(q)
is expressed as:

xt = wt + θ1wt−1 + θ2wt−2 + ...+ +θqwt−q (9)

Thus, an ARMA model of orders p and q or ARMA(p,q) has the form:

xt = φ1xt−1 + φ2xt−2 + ...+ φpxt−p + wt + θ1wt−1 + θ2wt−2 + ...+ +θqwt−q (10)

If p were 0 and q were greater than 0, then it would be equivalent to the moving
average model; in the opposite way, it would be equivalent to the autoregressive
model [SS17].

In addition to ARMA’s autoregressive order p and moving average order q, ARIMA
adds parameter d, which stands for the order of differencing for xt.

More recent approaches to solve the time series analysis include linear machine
learning methods (e.g. linear regression, lasso), non-linear machine learning methods
(e.g. random forests, support-vector machines) and ensemble methods (e.g. random
forests, boosting algorithms).

The closest distributed machine learning algorithms to federated learning, accord-
ing to [BEG+19] and [MMR+16], are the ones presented in Large scale distributed
deep networks (Dean, 2012) [DCM+12], Distributed GraphLab (Low, Y., Bickson,
D., et. al., 2012) [LBG+12], Distributed training strategies for the structured percep-
tron (McDonald, 2010) [MHM10], and Parallel training of deep neural networks with
natural gradient and parameter averaging (Povey, D, Zhang, X. and Khudanpur, S.,
2014) [PZK14]. However, "these algorithms do not consider datasets that are unbal-
anced and non-IID" (McMahan, et. al., 2017) [MMR+16]. Federated learning, by
design, considers the data that these approaches fail to support (See Section 2.3.1)
and that "each client will only participate in a small number of update rounds per
day" [MMR+16].
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For the case presented in this thesis, radio station datasets are likely to be un-
balanced and non-IID, as users’ behaviour changes over time or geography. For
instance, there will not be the same amount of connected users in daytime hours as
in night-time hours, or during week days as during weekends. In a similar way, data
models learned from radio stations in the countryside are not likely to be enough to
generalize for behaviour in cities. However, it should be noticed that radio stations
are less prone to be as massively distributed as mobile phones.
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3 Methods

In this chapter the procedures for data selection, preprocessing, and batch genera-
tion will be described. Sections 3.1 to 3.5 will introduce the telecom dataset and how
it was pre-processed, with procedures such as splitting it (into training, validation
and test data), removing invalid samples, handling missing samples, and scaling the
different feature values. The rest of the chapter will be about how different models
were trained during my experiments. Sections 3.6 and 3.7 will address alternatives
for capturing similarities within the data sources and for encoding timestamp data.
Section 3.8 will provide details about how data was transformed into training, vali-
dation and test batches to train the deep learning models. Finally, Section 3.9 will
present different scenarios that were explored for learning the telecom data.

3.1 Data Description

The data was collected from 33 radio cells for over 4 months at 15 minutes intervals.
Each record contains the radio cell’s id, the timestamp and values from 180 different
Key Performance Indicators (KPIs). See Table 1.

Table 1: Time Series Dataset

Cell ID Timestamp KPI 1 KPI 2 ... KPI 179 KPI 180
Number or
hashed ID

Year-Month-Day
Hour:Minute:Second

Numeric
value

Numeric
Value

... Numeric
Value

Numeric
Value

... ... ... ... ... ... ...

From the 180 available KPIs, Nokia domain experts selected 11 from the business
perspective and their causality. The target KPI was then further selected (from
these 11) by observing the auto-correlation plots (see Section 3.4). Thus, these 11
KPIs (including the target KPI) would be used for predicting the next value(s) of
the target KPI.
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3.2 Train and test periods

The data was not collected continuously as it was revealed by its time plots (See
Figure 10), which is not optimal for time series prediction as discussed in Section 2.1.
Thus, the longest semi-continuous period was chosen for performing experiments.
This period contained records from August 6, 2018 till September 17, 2018 making
a total of 6 weeks or 42 days. Then, the first 5 weeks were selected as the training
set and the last one as the testing set for the experiments. Weeks were selected as
measurement for two reasons: because of the shortness of the dataset and because
of user’s behavior cycles (again confirmed by Nokia’s domain experts); for instance,
weekdays’ and weekends’ behaviors.

Figure 10: Target KPI Time Series. This plot is helpful for understanding the target
variable in terms of its magnitude range as well as its sampling periods. By taking
a closer look as in Figure 12 we will be able to observe more properties.

3.3 Data Sanitizing

After selecting the dataset by its relevant KPIs and by its time period, the following
measures were taken in order to have clean train and test data. Although the number
of missing values per feature were relatively small with respect to the total number
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of records (see Table 2), their proportion within each radio cell could be significantly
larger. Therefore, missing values (or NaNs) were accounted for by dropping radio
cells with missing value percentage higher than 10% for any feature within the train
or test periods. This resulted in 25 radio cells fulfilling the condition. The purpose
for this was to interpolate the missing values afterwards with as small as possible
amount of missing values per feature and per radio cell, so that most of the real data
would remain in the datasets. In addition, wider gaps that could not be interpolated
were filled with the mean value of the series. There were also some records sampled
out of the 15 minute sampling rate, which were dropped in order to keep consistency
of the time series.

Table 2: Missing values per feature. Total number of records: 224025

Feature Missing Values
ID 0
Period start time 0
FT0 1411
FT1 992
FT2 1531
FT3 1531
FT4 992
FT5 1529
FT6 1531
FT7 1411
FT8 1531
FT9 1543
FT10 1411
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3.4 Autocorrelation

With sanitized and uniformly sampled data within a consistent period, the target
KPI could now be selected. As mentioned in Section 3.1, it was chosen after ap-
plying the autocorrelation function (ACF) to each of the 11 pre-selected features.
Autocorrelation is a measurement of how much related (correlation) is the present
value from a time series with respect to its previous values (lags) [GWHT13, p. 94].
In order to know how much steps ahead can we forecast given time series data, we
should observe its autocorrelation plot, which is the representation of the ACF. Its
resulting values range from (-1,1):

• 1 being 100% correlated

• -1 being 100% inversely correlated

• 0 being 0% correlated

In Figure 11 the autocorrelation plot can be observed for the selected target feature,
which has high autocorrelation, as well as for a lowly autocorrelated feature for
comparison.
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(a) High autocorrelation example. The target variable FT0 has
high autocorrelation as its ACF plot displays values above 0.5

(b) Low autocorrelation example. FT3 has low autocorrelation
as its ACF plot only displays a value above 0.5 for the 0 lag
setting.

Figure 11: Autocorrelation Examples
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3.5 Feature Scaling

Since values among features varied in terms of magnitude and distribution, the input
data (independent variables) was standardized. This was performed by removing
the mean and scaling the data to unit variance. If this did not happen, there
might be unbalanced feature contribution, making the algorithm’s optimizer to learn
unevenly as well. This process was applied feature-wise in the training set and the
obtained scaling parameters were applied to the validation and test sets. Moreover,
it was verified that the pattern, distribution and auto-correlation were preserved
after scaling (See Figure 12).

MinMax scaling was also tried. This method scales the vector’s values into prede-
fined minimum and maximum values, in this case 0 and 1. However, the results
were not as satisfactory as with the previous method (Standard Scaling).

For both, the default parameters of StandardScaler and MinMaxScaler from the
sklearn library were used.
At this point data preprocessing has been covered. The methods in the following
sections will describe how the models were trained.

(a) Cell0: Time series visualization of target KPI without scaling
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(b) Cell0: Time series visualization of target KPI with scaling

Figure 12: Scaling Example: Cell0 PRB time series before and after scaling. Pro-
duced with code provided by Nokia’s MN SoC R&D ML&AI team

3.6 Clustering

One hypothesis that emerged during this thesis was that similar cells could be
trained together to improve model performance and to counteract the lack of data
given the discontinuous sampling constraint. Thus, clustering was explored with
two main methods: Principal Component Analysis (PCA) and Uniform Mani-
fold Approximation and Projection (UMAP). PCA (Pearson, 1901 and Hotelling,
1933)[Pea01, Hot33] and UMAP (McInnes, et. al., 2018) [MHM18] are both dimen-
sionality reduction techniques and part of the unsupervised learning algorithms. The
idea is that data can be represented in a more compact form (with less dimensions)
while keeping some of its properties (global distance between features, variance,
etc.). PCA transforms data with a high number of dimensions into a lower dimen-
sional representation. These lower dimensions are linearly uncorrelated and they are
known as principal components. The first principal component summarizes most of
the data’s variance, and each of the following ones summarize as much as possible
of the remaining variance. However it does not capture non-linear structure.
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Uniform Manifold Approximation and Projection (UMAP) was derived from man-
ifold learning methods and topological data analysis. An important advantage is
that it can reduce dimensionality while preserving global (linear and non-linear)
structure better than similar approaches, such as t-SNE and PCA.

During initial clustering attempts, PCA was the first option to test given its sim-
plicity and widespread use in machine learning tasks. Nonetheless, after plotting the
two main components, there was no structure (defined clusters) to be found (Figure
13a).

I was then advised by Nokia experts to apply UMAP, which as can be seen in Figure
13b had more defined clusters. Other methods that were explored were K-Means,
X-Means, and Factor Analysis.
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(a) PCA

(b) UMAP

Figure 13: Clustering by Dimensionality Reduction. The above plots show the two
main components resulting from applying PCA and UMAP to the data from the
25 viable radio network cells. Each blob represents a cell, and the distance between
each of them represents their similarity. Thus, clustering can then be performed
based on this measurement (e.g. with k-nearest neighbours or DBSCAN).
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3.7 Embeddings

Another emergent hypothesis was that timestamp values could be valuable for the
model to learn time-dependent patterns. Embeddings are a common and effective
way of translating these kind of values into float numbers that can be computed by
deep learning models. Embeddings represent concepts (e.g. words, symbols, dates)
as vectors of real numerical values. As opposite to one-hot encoding, embeddings
keep the relationship between variables (concepts) and represent it as distance. For
embeddings, distance is the result from vector difference. Thus, distance will be
closer for concepts which are similar and further for those which are different or
unrelated.

For the experiments presented in this thesis, embeddings were obtained via the
Keras embedding layer. An embedding’s output size is arbitrary, however, there are
existing heuristics that can be considered. For this thesis, I applied the heuristic
from [How19] based on [GB16], which recommends to divide the cardinality of each
categorical variable by two and then add one to acquire the embedding size per
categorical variable. The embedding parameters can be observed in Table 3. As
it will be demonstrated in Section 5.3 in the end, they did not improve the model
performance.

Table 3: Embeddings Parameters. All dimensions (dim) refer to the maximum
number of possible values that the variable con have. The total size of the resulting
concatenated embedding vector was 30

Parameter Input dim Output dim
ID 25 (max number of sources) 13
hour of day 24 (max hours in a day) 13
day of week 7 ( max days in a week) 4

3.8 Data Generators

Data generators are useful constructs (commonly defined as a Class) for automating
batch generation for training, validation and test sets. When training or evaluat-
ing a model, the batch generator will iteratively transfer it the required (training,
validation or test) batches. When using a data generator, we can specify whether
the data samples will be transferred to the algorithm in order or shuffled, the latter
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usually applied for training generalization. Other aspects that can be specified are
training, validation and test splits, as well as batch size. Together with a gradient-
based optimizer’s learning rate, batch size can impact the variation in the sample
distribution, memory usage, and training speed. Larger batches will represent bet-
ter the data distribution but will take longer to compute and will require a larger
amount of memory [GBC16, p. 279]. According to Wilson and Martinez (2003)
[WM03], mini-batches will be helpful in adding regularization, yet will require more
time as well, since more batches will be needed to train for one epoch, that is, to
cover the full training set. Therefore, one should evaluate with different batch sizes
before determining the most suitable for the task.
With the previous in mind, and in order to have greater variety and control over
the data samples, data generators were applied for my experiments (code provided
by Nokia’s MN SoC R&D ML&AI team). These generators provided data splitting
and batch generation. After splitting the datasets, shuffling was applied only for
the training set. An important characteristic of these particular generators was pro-
ducing target sequences of the target KPI, together with input sequences of their
corresponding input features (KPIs used to predict the target). These sequences
would then be submitted as training samples to the model (described in more detail
in Section 3.9.3).

3.9 Learning Scenarios

Going further from splitting the data into training and evaluation sets, different
learning scenarios were explored by splitting it with respect to its cells. In this
section the following scenarios will be presented: centralized learning, cluster-wise
learning, cell-wise learning. Except for centralized learning, the other two cases can
be applied in federated learning, so at the end of the section the procedure for this
will be shown.

3.9.1 Multi-cell Scenarios

Centralized learning was chosen as the opposition for de-centralized learning. It
consisted of only one neural network model which was trained and tested with data
from all cells. In order to have a uniform comparison, for this and the following
scenarios, each cell’s data was tested independently.
Cluster-wise learning was an alternative between centralized and cell-wise learning,
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with the addition of trying the hypothesis that cells with similar time series should
better be trained together. Clusters were selected as described in Section 3.6. Then,
one model was trained per each cell cluster with its corresponding cells’ data. Test-
ing was performed in the same manner.
Cell-wise learning was also explored given that it is the extreme case of de-centralized
learning and that on the federated learning setting, cells were going to be trained
individually as well. Each cell was trained with its corresponding data and evaluated
in the same fashion.

3.9.2 Federated Learning Scenario

With the intuition obtained from the previous scenarios, a series of federated learning
cases were attempted. As a starting point, the federated update period was to be
found by comparing short, mid and long-term updates.
Once having established this parameter, two cases were to be compared. The original
or naive case was the first one. There was a model per each cell in addition to the
global shared model. In the first phase, data was fed to each cell depending on
the update size (daily or weekly updates being equivalent to 96 and 672 timesteps
respectively), so each would train and produce a new update to their model. In
the second phase, all model updates (weights) were sent to the federated averaging
algorithm for updating the global model. The last phase consisted of sending the
global model back to each cell and repeating the process with the consequent daily
or weekly slice of data.
The second case was to evaluate federated learning in a cluster-wise manner, thus
having a shared global model per each cluster. For both cases, testing was performed
individually for each cell.

3.9.3 FL Transfer Scenario

Since cluster-wise learning proved to be the most beneficial for the telecom scenario
(See Sections 5.4 and 5.5.3), transfer learning of a cluster’s federated model to new
cells was assessed as a final experiment. The following steps were performed on the
most populated cluster from Section 5.5.3:

• 25% of its cells were picked at random from within the cluster (as test sets).
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• One federated model was trained per each of the previously selected cells with
each one of them kept aside at a time, thus, producing different federated
models.

• For each test cell, the federated learning model trained in its absence was
transferred to it.

• Then, each cell was evaluated (without further training) to get the starting
performance of which a new cell would benefit if a (cluster) federated model
was transferred to it.

• Next, these models were trained with a day of their corresponding cell’s data
at a time to simulate the development of their performance at deployment.
The validation set was 20% of records from the following day.

• In a separate instance, an untrained model was generated for each test cell
and as in the previous step these models were trained and evaluated on a daily
basis.

Finally both cases, with and without transfer learning were compared.

For each learning setting described in this section, the global model’s neural network
weights were initialized with the Xavier Initialization [GB10] method and then these
were replicated for all cells. The input data received from the generators was a
concatenated time series, defined by input length (see Figure 14). This means how
much into the past we look to predict the future (e.g. 2 hours = 8 timesteps, 1
day = 96 timesteps). It is important to notice that the update step and input
length are not the same. Update step refers to the total amount of data to be fed
to the neural network before updating the global model, and input length is the
amount of concatenated data that is fed as one training sample. Moreover, before
a global model update was achieved, several training samples were passed to the
neural network to train with.

Figure 14: Input Data
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As step predictions were performed, the output of the neural networks was also
a concatenated time series containing the target KPI’s values. The forecast was
defined by the desired output length (See Figure 15). This means how much into
the future we want to predict.

Figure 15: Ouput Data
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4 Models

Models are a way of explaining different phenomena. In mathematics, a model is the
relationship between one or more independent variables and one or more dependent
variables. For time series, it is the relationship between the past values of different
kinds of variables (time dependent and independent) and the future values of one
or more time-dependent variables. Some examples of machine learning models that
satisfy the necessary conditions for federated learning (Section 2.3) are: linear and
logistic regression, neural networks and support vector machines [Har18]. Neural
networks were selected for the federated learning scenario, as they are parametric,
they can solve complex non-linear problems and weights are easy to extract, which
is a relevant quality for performing the federated averaging algorithm.
In this section the KPI modelling approaches will be described. Section 4.1 will
illustrate how the base performance for time series prediction was computed via a
simple (non-machine learning) time series prediction model called persistence model.
Neural networks and two of their architectures were already presented in Section
2.2.3, so the evaluation procedures or metrics, as well as the optimization algorithms
will be depicted in Sections 4.2 and 4.3. Last but not least, the neural network
hyper-parameters and their tuning procedures will be presented in Sections 4.4 and
4.5.

4.1 Baseline Model

A baseline is the starting point when comparing and/or optimizing solutions. The
most common baseline model for time series is the persistence model. As the name
suggests, it "persists" (repeats) the last observed value from 1 (See Equation 11) to
n times for an n-step forecast (See Equation 12). The persistence model is a simple
non-machine learning model, so in that sense, when I compared its performance
against the upcoming machine learning models, it helped to determine whether
machine learning is a feasible and relevant approach for solving the task of telecom
KPI prediction.

xt+1 = xt (11)

xt+1:t+n = [xt for i = 0; i < n; i+ +] (12)



34

4.2 Metrics

Metrics are the way in which the algorithms’ performance is measured. For the
experiments related to this thesis, the following were selected:

• Mean-Squared Error (MSE):

MSE =
1

N

N∑
i=1

(yi − ŷi)2 (13)

• Root Mean-Squared Error (RMSE):

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (14)

• Mean Aboslute Error (MAE):

MAE =
1

N

N∑
i=1

|yi − ŷi| (15)

• Mean Absolute Percentage Error (MAPE):

MAPE =
1

N

N∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣ ∗ 100 (16)

MSE (Equation 13) was selected for training the models and MAPE (Equation 16)
was selected for evaluating and comparing them. The reason for choosing MSE
for training was that it is a smooth and convex function, which makes it easier to
minimize the gradient. In contrast to MAE and MAPE, MSE penalizes large errors
more than smaller ones given the square of the error which is desirable for optimal
predictions. Some disadvantages are, that it is sensitive to outliers, which in this
dataset could be considered as the spikes (discussed further in Section 5.4) and that
it underestimates the error when targets and predictions have small magnitudes.
MAPE has the advantage that it is a relative error with direct interpretation, so we
could understand how distant was the predicted value from the target value with a
standardized unit (percentage). This was needed to compare the experiments’ results
given the different data aggregations and update settings in which the models were
trained. It should be noted that MAPE has instability when the true (or target)
value is small, but this was rarely the case for the target KPI.
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4.3 Optimizers

Optimizers in machine learning are algorithms that shift the parameters towards
fitting the target or objective function. Based on the gradient descent criteria, the
following optimizers were tested:

• Stochastic Gradient Descent (SGD) In contrast to gradient descent, which
runs over all the training data for the update, SGD runs over a random small
portion of the dataset or mini-batch at a time (See Algorithm 2). This accel-
erates the learning process and provides regularization [WM03].

• RMSProp RMSProp is an adaptive learning optimizer. This means that
each parameter has its own learning rate, which is adapted while training.
RMSProp does so by scaling the learning rates inversely proportional to a
factor of the historical squared gradient values− ε√

δ+r
(See Algorithm 3). Thus,

the update will weigh more on the direction of smaller gradients, providing
smoother updates. A similar optimizer, AdaGrad, does the same, but it does
not perform well in non-convex settings. RMSProp could be thought of as an
improved version of it [GBC16, pp. 307-308].

• Adam Adam is another popular adaptive learning optimizer. It includes first
and second order momentum terms, together with their bias correction (See
Algorithm 4). Then, it divides the first moment by a factor of the second one
to scale the learning rates, similarly to RMSProp [GBC16, pp. 308-309].

Algorithm 2: Stochastic gradient descent (SGD) update at training iteration
k. Source [GBC16].
Require: Learning rate εk
Require: Initial parameter θ
while stopping criterion not met do

Sample a minibatch of m examples from the training set
{
x(1), ...,x(m)

}
with corresponding targets y(i).
Compute gradient estimate: ĝ ← + 1

m
∇θ
∑

i L(f(x(i);θ),y(i))

Apply update: θ ← θ − εĝ
end
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Algorithm 3: The RMSProp algorithm. Source [GBC16].
Require: Global learning rate εk, decay rate ρ.
Require: Initial parameter θ
Require: Small constant δ, usually 10−6, used to stabilize division by small

numbers.
Initialize accumulation variables r = 0

while stopping criterion not met do
Sample a minibatch of m examples from the training set

{
x(1), ..., x(m)

}
with corresponding targets y(i).
Compute gradient : g ← 1

m
∇θ
∑

i L(f(x(i);θ),y(i))

Accumulate squared gradient: r ← ρr + (1− ρ)g � g
Compute parameter update: ∆θ = − ε√

δ+r
� g. // − 1√

δ+r
applied

element-wise

Apply update: θ ← θ + ∆θ

end

Algorithm 4: The Adam algorithm. Source [GBC16].
Require: Step size εk (Suggested default: 0.001).
Require: Exponential decay rates for moment estimates, ρ1 and ρ2 in [0,1).

(Suggested defaults: 0.9 and 0.999 respectively)
Require: Small constant δ used for numerical stabilization. (Suggested

default: 10−8)
Require: Initial parameters θ
Initialize 1st and 2nd moment variables s = 0, r = 0

Initialize time step t = 0

while stopping criterion not met do
Sample a minibatch of m examples from the training set

{
x(1), ..., x(m)

}
with corresponding targets y(i).
Compute gradient : g ← 1

m
∇θ
∑

i L(f(x(i);θ),y(i))

t← t+ 1

Update biased first moment estimate s← ρ1s+ (1− ρ1)g
Update biased second moment estimate r ← ρ2r + (1− ρ2)g � g
Correct bias in first moment: ŝ← s

1−ρt1
Correct bias in second moment: r̂ ← r

1−ρt2
Compute update: ∆θ = −ε ŝ√

r̂+δ
(operations applied element-wise)

Apply update: θ ← θ + ∆θ

end
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4.4 Hyper-parameters

Hyper-parameters, in contrast to parameters, are not learned from the data, rather
they are tuned by whoever performs the experiment. They also affect on how the
learning algorithm will learn, for example, learning speed, model complexity, and
over-fitting prevention. The following are the neural network hyper-parameters that
were selected for tuning:

• Input sequence length It refers to how many steps into the past are sent
into the algorithm.

• Max number of epochs During naive experimentation overfitting occurred,
mainly with LSTM. Therefore, Keras’s EarlyStopping callback was added with
a fixed patience of ten. This means that the algorithm would stop running
epochs if after ten of them the validation error had not improved. Then, max
number of epochs would be the upper bound for the algorithm run (in case
Early Stopping was not called).

• First layer’s number of units For simplicity, only the first NN layer’s num-
ber of units could be defined explicitly. If more than one layer was present,
each of the following ones would have the previous number of units halved.

• Number of layers The number of NN layers before the output layer.

• Optimizer Optimization algorithm which shifts the parameters towards their
optimal values (e.g. Adam, RMSProp, SGD).

• Activation function It is a non-linear function g applied element-wise within
a neural unit, usually after a an affine function (See Equation 17). Cybenko
(1989) proved that any continuous function can be approximated with a two-
layer (1 hidden layer) neural network, if the activation function is non-linear
[Cyb89].

hi = g(xT )W:,i + ci (17)
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4.5 Hyper-parameter Tuning

Three methods were considered to optimize the performance of the neural networks:

• Grid Search This method explores all possible combinations from a set of
values (in this case, hyper-parameter values) and after all of them are evalu-
ated, the best one can be selected. It can take up to nk evaluations where n
is the size of the largest set of test values for an hyper-parameter and k is the
number of hyper-parameters.

• Guided Search (a.k.a. coordinate descent) Starting from an arbitrary con-
figuration, one hyper-parameter is tuned at a time. This is done for all hyper-
parameters and each time, the best configuration achieved so far is saved.

• Bayesian Optimization By means of the Bayes Rule this method shifts
hyper-parameters values in the direction of highest probability of improve-
ment. It begins by fitting a Bayesian statistical model to the data based on
the target function. Following this, an acquisition function, calculates the
expected improvement of candidate points, given the posterior distribution
[FH19, Fra18]. Hyper-parameter candidate values can now be continuous and
their range is provided instead.



39

5 Results and Discussion

In this section, the results from various experiments will be presented. These will
range from how was the model selected until the evaluation of federated learning
and the transferring of a federated model to new radio cells. Section 5.1 will begin
by presenting the baseline model performance. Subsequently, the machine learning
model selection and tuning outcomes will appear in Section 5.2. Afterwards, the
embeddings alternative will be depicted in Section 5.3. Section 5.4 will compare
different learning scenarios for this KPI forecasting task from telecom cells. Finally,
in Sections 5.5 and 5.6 the outcome of federated and transfer learning experiments
will be presented and discussed.

5.1 Baseline Performance

As a starting point, the persistence model was applied to the dataset in order to
forecast the target KPI. Recalling from Section 4.1, this model is one of the least
complex ways to tackle time series and it does not apply statistical nor machine
learning methods. For this and for further experiments, the forecast lengths tested
were 15mins, 1 hour and 6 hours with MAPE as metric.

Table 4: Baseline Model MAPE

Forecast Length MAPE
15 mins 36.59
1 hour 49.49
6 hours 126.21

By observing the results from Table 4, it can be observed that long-term predictions
are unreliable, since the mean average error surpasses the predictions magnitude
(the predictions are off by 126% of the target’s value).

5.2 Model Selection and Hyper-parameter Tuning

After knowing the base performance to achieve so that the following machine learn-
ing models were significant, neural networks were evaluated. Neural networks were
selected as the model architecture for federated and other machine learning settings,
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because of the requirements described in section 2.3, to account for non-linearity,
and because it was the method applied in the original paper [KMY+16], thus to have
a proven and valid reference. Within neural networks, two of their most frequently
used configurations for time series prediction were chosen: Multi-Layer Perceptron
(MLP) and Long Short-Term Memory (LSTM).

In order to have an objective comparison, each configuration’s hyperparameters
were tuned. Then, for evaluation, the performance was measured with MAPE for
short-term, mid-term and long-term target KPI forecast. These time periods were
defined by Nokia according to the business case and their KPIs domain knowledge;
more specifically: predicting the next fifteen minutes, the next hour and the next
six hours.

As mentioned in Section 4.5, three methods were contemplated to tune the hyperpa-
rameters defined in Section 4.4 for MLP and LSTM. Because of the computational
complexity to perform a Grid Search (9216 hyper-parameter combinations per model
architecture type), and because Bayesian Optimization didn’t converge during the
maximum run-time at the server (7 days), Guided Search was the approach to per-
form hyper-parameter tuning. However, this was not the best choice as it will be
discussed in Section 7.

The test values were the following:

Table 5: Hyperparameter test values

Hyperparameter Test Values
Model type MLP, LSTM
Sequence length 8, 24, 48, 96
Max epochs 25, 50, 100
Batch Size 32, 64, 128, 256
First layer’s units 32, 64, 48, 96
Number of Layers 1, 2, 3, 4
Optimizer rmsprop, adam, sgd
Activation Function tanh, relu, leaky relu

Early stopping with default patience 10 was applied since LSTMs were overfitting.

Table 6 presents the results from the hyper-parameter selection. From all hyper-
parameter combinations used during the search, MLP obtained lower average MAPE
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and runtime than LSTM, so it became the chosen configuration. From the LSTM
results, it can be observed that it got slightly better short-term performance and
considerably worse long-term performance in comparison with MLP. Makridakis,
et. al. (2018) [MSA18] confirmed this behaviour. On their paper they reported
that indeed, LSTMs fit the data better than simpler models like MLP, but they will
not have as good future predictions. Also, the results from both configurations in
Table 6 show significantly lower MAPE than the baseline model for mid and long-
term predictions, and for short-term a relatively small difference of ±2% MAPE.
Therefore, it was safe to proceed with neural networks for further experiments.

Table 6: Hyperparameter Selection. This table describes the MLP and LSTM con-
figurations with lower average MAPE, including the hyper-parameter combination,
the MAPE per each forecast period, number of epochs until convergence, runtime
and average MAPE (over these three forecast periods)

model type MLP LSTM
sequence length 96 24
output length 24 24
max epochs 50 50
units Layer1 64 256
number of layers 2 2
optimizer adam adam
activation leakyrelu relu
batch size 64 128
MAPE 15 mins 38.76 37.16
MAPE 1 hour 41.44 41.25
MAPE 6 hours 46.83 55.03
total epochs 38 21
Runtime (seconds) 275.08 1295.18
Average MAPE 42.35 44.48

5.3 Embeddings

In order to capture the time dependent features (in this case, the day of the week,
hour of the day and cell ID), embeddings were proposed as a solution. To assess
whether embeddings improved the model’s predictions, MLP was tested with and
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Table 7: MAPE results with and without the embedding layer. In this table the
MAPE resulting from adding the embedding layer to the individual or cell-wise
models as well to the centralized model is reported. This was done for the three
previously defined forecast lengths

Forecast MAPE
Learning Embeddings Length mean std min max
Cellwise Yes 15 min 28.45 5.75 17.59 42.67

1 hour 29.67 5.86 19.06 40.65
6 hour 31.60 6.38 20.95 44.65

No 15 min 28.94 6.25 18.12 41.41
1 hour 30.11 6.59 18.82 44.28
6 hour 31.61 6.61 20.86 44.73

Centralized Yes 15 min 38.26 7.81 20.57 55.82
1 hour 41.34 8.55 22.21 57.44
6 hour 45.48 9.83 25.01 61.17

No 15 min 38.55 8.05 19.73 54.63
1 hour 41.41 8.33 22.11 55.55
6 hour 47.43 9.04 29.33 63.23

without the embedding layer for centralized and per cell learning.

From the results in Table 7 it can be observed that there was no significant difference
in MAPE by adding the embedding layer. This observation applied for both learning
configurations, so in order to optimize neural network’s architecture, the embedding
layer was not kept for future experiments.

5.4 Multi-Cell Learning

Having settled the model’s architecture, different learning scenarios were evaluated
as described in Section 3.9.1. The first one was centralized learning, in which there
was only one model and all the data from all cells was used to train it. The next
one was, per-cell (or cell-wise) learning, in which there was a model per each cell
and each was learned only from that cell’s data. Finally, with clusters obtained by
applying UMAP, cluster learning was performed, meaning that a model was obtained
per each cluster.
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For all scenarios, the network hyperparameters remained the same, as in Table 6.
Each cell’s evaluation was compared within learning scenarios as it can be observed
in Figure 16.

From these results, it could be noticed that training cells individually will provide
lower MAPE, contrary to a centralized model that combines all observations at
once. However, as a starting point for a new cell, the centralized model provides
a head-start of less than 50% MAPE (for the first two output length options).
Moreover, clustering cells to generate several "global models" can provide an even
better starting performance. Therefore, I concluded that this configuration would
be more beneficial for the telecom transfer-learning objective. My hypothesis is that
providing a federated model trained from a cluster of similar cells to the new ones
will reduce the time to learn their model as they gather and learn from their own
data. Afterwards, training by themselves will provide the best forecasts, as was
proven for the per-cell configuration.

Furthermore, the KPI time-plots were analysed to obtain the relationship between
the learning setting and its performance against the others. My observations were
the following:

• In cells with spikes considerably larger than the pattern, MAPE was high for
all settings. See Figure 17a and in Figure 16 notice cells 4, 6 and 15.

• MAPE was similar for all settings when the autocorrelation of the predicted
KPI was high (closer to 1 with respect to other cells). See Figure 17b and in
Figure 16 notice cells 1, 12 and 13.

• Cell-wise learning outperformed the other settings when the pattern shifted in
shape or magnitude. In addition, the auto-correlation decreased faster. Thus,
more local data was needed to adjust the model rather than from other cells.
See Figure 17c and in Figure 16 notice cells 9, 23 and 24.

I suggest that being able to identify these behaviours beforehand (spikes and high,
low, constant, increasing, or decreasing autocorrelation) could enable better results
not only for federated learning, but in general for radio networks time series predic-
tion.

Other clustering methods were also evaluated resulting in very similar MAPE (±1.4%
average MAPE difference) as achieved with UMAP (See Appendix A).
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(a) 15 minutes forecast

(b) 1 hour forecast

(c) 6 hours forecast

Figure 16: Multicell forecast of target KPI
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(a) Example of high MAPE for all learning settings

(b) Example of similar MAPE for all settings

(c) Example of cell-wise MAPE better than centralized and cluster-wise

Figure 17: Multicell Forecast Analysis. Visualization produced with code provided
by Nokia’s MN SoC R&D ML&AI team



46

5.5 Federated learning experiments

5.5.1 Federated Updates

For evaluating the federated learning setting, the update period had to be estab-
lished. From Nokia’s domain experts, I was recommended that radio networks’ KPI
behaviour changes drastically between months. Then, three different update peri-
ods’ outcomes were compared: daily, weekly and full-training-dataset updates (See
Figure 18). The reason for the last one was to test the case of updating the model
with the largest of the available data segments (in this case 5 weeks).

Figure 18: Federated Update Periods and Centralized Learning MAPE

5.5.2 Data Transfer

At the same time, update sizes and data size to be transferred were compared re-
spectively for federated and centralized learning (See Figure 19). By observing these
results combined with the similar performance between weekly-update federated and
centralized leaning, I can confirm that federated learning can have MAPE equiva-
lent to the one from the centralized model for short and mid-term predictions, while
minimizing data transfer.
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Figure 19: Data transfer sizes for Federated and Centralized Learning

5.5.3 Naive FL vs cluster-wise FL

Afterwards, weekly updates for one federated model for all cells, as well as for one
federated model per cluster scenarios were analysed. Again, testing was done per
each cell and compared accordingly. From the results in Figure 20 it can be noticed
that clustering similar cells has the potential for further improving the default fed-
erated learning setting’s performance, like in Figure 20 (a). Also, for the long-term
forecast, cluster-wise federated learning overcame its default version for all clusters.
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(a) FL: standard vs cluster1 (b) FL: standard vs cluster2

(c) FL: standard vs cluster3 (d) FL: standard vs cluster4

Figure 20: FL: Standard vs Clusterwise learning

5.6 Transfer Learning Score

As a last experiment, the performance from transferring a federated model to new
cells was explored, following the steps described in Section 3.9.3. For the purpose
of statistical significance, the largest cluster (cluster 4, consisting of 11 cells) was
selected. The random test cells were 3, 16, and 22 (approximately 25% of the
cluster’s cells).

The starting performance from transferring the federated model obtained from the
rest of the cells can be observed from Table 8. When compared to the average
baseline performance of the centralized model (See Section 5.1) we can notice that
for short-term predictions the baseline MAPE was lower by 5% and for middle-
term it was roughly the same. For long-term predictions, however, the transferred
federated model’s starting performance MAPE was 59% lower, which also makes it
viable in comparison to the baseline (which surpassed 100% MAPE). This evidence
shows that federated learning is already beneficial for telecom’s problem of modelling
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new cells.

Table 8: Transferred FL model starting MAPE

cell ID mape 15min mape 1h mape 6h
3 42.88 50.55 67.09
16 38.58 48.19 66.79
22 43.12 50.58 67.12

Average 41.53 49.77 67.00

Next, these trained federated models were transferred to new untrained models
corresponding to the new cells which would be added to the network. Afterwards,
the transferred models were trained with data from their corresponding cell’s time
series. Initially, I would have trained them with weekly updates as it was proven
to be better in Section 5.5. However, to compare with more granularity the MAPE
evolution of transfer learning against its opposite scenario (without transferring the
model), the test cells were trained and evaluated on a daily (dataset) basis. This
means that the amount of data that was used per update was equivalent to one day
of data samples.
With regards to the opposite scenario or transfer learning baseline model, training
was performed from scratch for each of the three test cells on a daily basis and
tested in the same way as for the transferred model (with 20% of the following
day’s data). In Figure 21 the comparison from transferring a federated model or not
can be regarded. This resulted in the transfer learning outperforming training the
new cells from scratch, for short and mid-term predictions; for the long-term, the
performance was relatively similar.
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In Table 9 the final MAPE scores are shown. The transferred model was able to
outperform the TL baseline model’s final scores as well as the centralized learning
baseline model’s; in this last case, with the exception of the long-term prediction,
in which for both, it was not viable for telecom deployment (greater than 100%
MAPE).

Table 9: Last day evaluation MAPE. This table displays the MAPE scores for each
of the three test cells in both settings: with and without TL. The scores shown are
the ones obtained when testing after the last day of training, as well as the average.

Without TL (baseline) With TL
cell ID mape 15min mape 1h mape 6h mape 15min mape 1h mape 6h

3 36.95 48.38 278.92 23.66 36.70 152.60
16 56.04 55.83 220.40 22.44 37.03 142.35
22 32.08 50.10 265.33 23.35 37.02 164.11

Average 41.69 51.44 254.88 23.15 36.92 153.02
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6 Conclusion

From the initial experiments in Sections 4.5 and 5.2 it was confirmed that neural
networks, particularly MLP, can contribute to predict the future of radio networks’
KPIs. Furthermore, in Section 5.4 the advantages of cell-wise, global and cluster-
wise learning were revealed. Then, the federated learning experiments in Sections
5.5 and 5.6 provided evidence that for telecom radio networks’ KPI prediction,
this setting can have almost equivalent performance as the centralized one, with
the added advantage of significantly reducing data transfer. Moreover, clustering
similar cells together to train as federations and using their global model to train
new cells proved to be better than training them from scratch. It should be noted
that clustering will not always be better than a single federation as it was observed
in Section 5.5.3, but if correctly tuned, clusters can obtain better performance.

Last but not least, in Section 5.6 the initial hypothesis about reducing the training
time to learn a new radio cell’s model by means of transfer learning of a pre-trained
federated model was confirmed.

Given the results and analysis from this thesis, I conclude that the de-centralized
learning of radio networks data via federated learning is not only feasible, but it also
has significant advantages as the following:

• If having a federated model available, transferring it to a new cell will reduce
several days of training for this cell, contrary to doing it from scratch.

• In contrast to centralized learning, the federated setting will considerably re-
duce the amount data transfer, and it is possible to keep an equivalent perfor-
mance as with its centralized counterpart.
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7 Future Work

One main point of improvement would be to compare the outcome of the guided
search against the last result from the Bayesian Optimization for the hyper-parameter
tuning, as iteration convergence is not a requisite for achieving at least a sub-optimal
result. Sources such as Making a science of model search: hyperparameter optimiza-
tion in hundreds of dimensions for vision architectures [BYC13], Practical bayesian
optimization of machine learning algorithms [SLA12], Auto-WEKA: Combined se-
lection and hyperparameter optimization of classification algorithms [THHLB13],
and Meta-surrogate benchmarking for hyperparameter optimization [KDH+19] con-
firm how superior this algorithm is in contrast to optimization performed by experts
(where guided search can be found) as well as previous commonly used algorithms
(e.g. Differential Evolution, Covariance Matrix Adaption Evolution Strategy and
Random Search).
For the case of radio networks and their KPI prediction, I suggest a co-existence
of federated and cell-wise learning. Thus, each cell will contain both, a shared fed-
erated model which can be transferred to new cells, and a local model to predict
future KPI values. Additionally, more complex hybrid models than this one should
be experimented with (e.g. ensemble methods, a model selector). Given a higher
amount of data it might be better to forecast not only from a cell’s training experi-
ence, but from the federation’s, as it was the case for the Google keyboard [MR17].
One particular hybrid model that I suggest is proposed by Hu, Zhang and Zhou
[HZZ16]. Their approach (originally meant for Transfer Learning) if applied to fed-
erated learning would consist of performing the federated averaging on all neural
network layers except the last one to learn the time series patterns from all feder-
ated cells. Then, the last layer would be only updated locally for learning the cells’
individual behaviour.

All the same, considerations to be taken into account are KPI autocorrelation, pres-
ence of spikes, and clustering cells with highest similarity. These could be tackled in
the following manner: using anomaly detection/prediction for discarding (from the
federated training) cells with high number of spikes and unstable or low autocorre-
lation. Then, these problematic cells should be only trained individually.

I also suggest acquiring higher resolution (e.g. per minute, 500ms, or every 100ms)
in data sampling to have more instances to learn from. The reason for this is that
deep learning models typically learn better when the magnitude of data samples is in
the order of millions, while traditional machine learning approaches tend to plateau
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Figure 22: Data vs Performance. Image credits [Cor17]

after a certain amount of data [Ng18] (See Figure 22). However, it should be noted
that hardware and software should be able to handle an increment of computation,
since input and output sequences will also have to increase in order to keep the
desired forecasts (at 15 minutes, 1 hour, and 6 hours).

Last but not least, I would suggest to use more adhoc libraries/functions such as
tensorflow-federated [ten19] or the combination of Pytorch and PySyft [RTD+18].
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Appendix A. Other Clustering Methods

(a) 15 minutes forecast

(b) 1 hour forecast

(c) 6 hours forecast

Figure 23: Clustering Techniques for Multicell forecast of target KPI


