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Slack is an instant messaging platform intended for the internal communications of
companies and other organizations. For organizations that use Slack extensively it may
provide an interesting source of insight, but as such the data is difficult to analyze. Topic
modeling, primarily latent Dirichlet allocation (LDA), is commonly used to summarize textual
data in a meaningful way.

Instant messages tend to be very short, which causes problems for conventional topic
modeling methods such as LDA. The data sparsity problem can be tackled with data expansion
and data combination techniques. For instant messages, data combination is particularly
attractive as the messages are not independent of each other, but form implicit, and sometimes
expicit, threads as the participants reply to each other. Most of the threads in the Slack data
are not explicit, but must be ’untangled’ from the message stream if they are to be used as a
basis for a data combination scheme.

In this thesis we study the possibility of detecting implicit threads from a slack message
stream and leveraging the threads as a data combination scheme in topic modeling. The
threads are detected using a hierarchical clustering algorithm which uses word mover’s distance,
latent semantic analysis, and metadata to compute the distances between messages. The
clusters are then concatenated and used as the input for LDA. It is shown that on a dataset
gathered from the Gofore Oyj Slack workspace, the cluster-based model improves on the
message-based model, but falls short of being practical.
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1 Introduction
Slack is an instant messaging platform designed particularly for the internal
communications of businesses and other organizations. At Gofore Oyj, an IT
consultancy company of about 500 people, Slack is in heavy use with around
12,000 messages sent daily. The Slack workspace is organized in channels,
some of which are public, meaning that they can be accessed by any member
of the workspace, and some of which are invitation-only. Discussion on the
public channels of the Gofore workspace range from daily work-related issues
to various professional and free time interests. The volume and diversity of
the discussions makes Slack a good source of data on the interest, concerns
and opinions of Gofore employees.

This thesis focuses on summarizing Slack data by identifying topics in
the data. Topic models, such as latent Dirichlet allocation (LDA) [7], are
often used for such purposes. In topic modeling, the term topic is defined
as a latent variable which is used to explain differences of word distribution
in a set of text documents. While the formal definition is not claimed to
match the intuitive concept, the topics tend to be easily interpretable and
semantically meaningful. Since LDA and other topic modeling methods rely
on word co-occurrences to fit the topics, they run into trouble when the
documents in the dataset are short. Since the instant messages in the Slack
data tend to be very short, out-of-the-box LDA solution can’t be expected
to perform well.

In the broad class of text documents, chat messages have several distinct
characteristics, the most apparent being their shortness. A single chat mes-
sage typically contains the worth of a single sentence to a short paragraph of
text. This translates to data sparsity which can cause difficulties particularly
for bag-of-words methods. However, chat messages are not meant to be
read separately but in the context of a discussion. The messages are not
independent of of each other, but associated by the explicit structures the
messaging platform uses to organize them, and also in the implicit way the
participants understand them as part of a discussion.

Syntactically, chat messages are often written in colloquial style, fre-
quently contain misspellings and lack a strict form, with more attention
given to expressiveness than correctness. However the style may vary ac-
cording to the writer’s preference; some may choose a more formal style
while others prefer to write in a style resembling casual speech. Emojis and
emoticons are particularly common, as well as other informal devices used
for emotional expression. These syntactical problems add noise and grow the
vocabulary, worsening the sparsity issue.

The sparsity issues caused by the shortness of the messages run deep.
Term overlap between documents, as well as co-occurrences of terms in the
documents carry much information, but they occur less frequently in sparse
data; the effects of sparsity for the simple bag-of-words scheme manifest
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dramatically in the clustering task presented in Section 6. Large volumes of
training data can alleviate the problem, as can heuristically expanding or
combining the data. In the expansion strategy, external data is leveraged to
add more information in to the dataset. For instance, data from the DBPedia
ontology has been used to improve classification [14] and web search results
have been used in measuring semantic similarity [30]. When the focus is not
on individual messages, it may not be appropriate to consider every message
a single data point. Instead, messages may be grouped and combined using
metadata or other knowledge on the data. For instance, in analyzing Twitter
users, all messages by a single user were concatenated into one document for
topic modeling [36].

The data combination strategy is particularly interesting due to the fact
that the interpretation of instant messages is so heavily dependent on the
context. The interface of a messaging platform informs the participants of
the context of a discussion, but does not necessarily reveal it explicitly. If the
messages are organized into suitable collections, we can simply change our
definition of a document. For instance, in a bulletin board type discussion
forum we might consider threads instead of individual messages, since we
know that the messages on a thread are strongly connected to one another.
In Slack, messages are organized into channels and threads. Depending on
user behavior, a discussion might takes place in a single thread, in several
threads, on a channel intertwined with other discussions, or even partly in
threads and partly on the channel. Nevertheless, the discussions tend to
follow a similar pattern: an initiating ’root’ message followed by a chain of
responses.

It is reasonable to expect that by identifying such discussion, and ag-
gregating individual messages to longer documents accordingly, one might
alleviate the data sparsity problem caused by document shortness. This
thesis explores solutions for detecting discussions in Slack messages and then
leveraging such solutions for deriving better topic models. The main problem
of discovering meaningful and informative topics in the data is divided into
the sub-problems of discussion detection and topic modeling.

There is little to no research specifically on the Slack platform in the NLP
context, but there is some research on IRC and similar platforms [33][1], to
which Slack is related. In Slack, messages are organized into channels, some
of which are public to all members of the workspace, and some are private.
Users can also send direct messages to one another, and reply directly to
a message, forming a thread. The data available through the Slack API
contains, among other things, the channel ID, thread ID, and the timestamp
of each message.

The solution for discussion detection is based on hierarchical clustering.
The distance measure for the clustering algorithm is a combination of the
word mover’s distance (WMD) and latent semantic analysis (LSA). The use
of pre-trained word embeddings to calculate WMD also acts as a form of
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data expansion, in that it introduces new semantic information to the data
from the larger dataset that was used to train the embeddings. Metadata
(timestamps and channel identifiers) is used to adjust term weights for
improved performance. The presence of threads in the Slack data enables
the discussion detection model to be easily tuned and evaluated, assuming
that a single thread represents a single discussion.

For topic discovery, the clusters are concatenated into single documents
and then used to train an LDA model. The results are evaluated against
a baseline LDA model trained on the individual messages. The focus of
evaluation is on the topic-word distributions, and their ability to express
knowledge about the dataset.

The thesis is structured as follows: Sections 3, 4, and 5 provide relevant
background information on text clustering and topic modeling at a general
level; Section 6 is dedicated to the sub-problem of discussion detection; in
Section 7, the discussion detection is applied to topic modeling, and the final
results in the core problem are presented.

2 Topic modeling
Topic models represent a set of text documents using latent variables known
as topics, which are used to explain the distribution of words in the documents.
In the context of topic modeling, the term topic is used in a formal sense;
although the concept is motivated by the intuitive meaning of the word,
these two should not be conflated. A topic in topic modeling is simply a
latent variable, which is used to explain the observed variables, occurrences
of words in a set of documents.

At the core of topic modeling is the notion that term occurrences in a
document are not independent of each other. The dependencies between term
occurrences suggests that the text data can be explained by a much smaller set
of latent variables. When applied to text data, the topics reflect semantically
meaningful aspects of the documents. Topic modeling algorithms can also be
applied to other kinds of discrete data, and have been found useful outside
of NLP [6].

Topic modeling originated in information retrieval to answer the need
for better relevance estimations between queries and documents [12] by
capturing the semantics, rather that lexicon, of text. The earliest form of
topic modeling is the non-probabilistic LSA, which is discussed in detail in
Section 4. Modern approaches are probabilistic; most notable of these is
latent Dirichlet allocation (LDA) [7]. In LDA, each document is associated
with a distribution over topics, and each topic is associated with a distribution
over terms. The terms of a document are assumed to have been selected by
a generative process, in which these distributions are sampled repeatedly.

Topic modeling has a clear relation with (semantic) text clustering. While
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topic models do not assign hard labels to documents, the topic distributions
of the documents can be seen as a soft clustering. The topic model also
provides a soft clustering of the terms in the vocabulary, in the form of the
topic-term distribution.

2.1 Latent Dirichlet allocation

Latent Dirichlet allocation estimates the document-topic distributions and
topic-term distributions for a set of documents by assuming each document
to have been produced by the following generative process: first, the total
number of words in the document as well as a topic distribution is chosen;
then each individual word is chosen by first sampling a topic from the topic
distribution, and then the word from the word distribution given the topic.

In the generative model, documents D = {d1, ..., dm} are associated with
distributions over topics Θ = {θ1, ..., θm}, and the topics are are associated
with distributions Φ = {φ1, ..., φk} over the terms in the vocabulary, where k
is the number of topics. Each token dij in a document di is selected by first
sampling a topic zij from θi, and then the word from φzij . The underlying
assumption is that each individual token in the document is explained fully
by a single topic, even though the whole document is not. More exactly, a
document di is assumed to have been generated by the following process:

• Choose N , the number of tokens in di

• Choose θi ∼ Dir(α)

• For each j = 1, ..., N , choose a token dij :

1. Choose a topic zij ∼ Multinomial(θi)
2. Choose a word dij ∼ Multinomial(φzij )

LDA is distinct from the earlier pLSA model in that the document-
topic distributions Θ are assumed to be Dirichlet distributed. The Dirichlet
distribution is controlled by the parameter α, a k-dimensional vector. The
topic-word distributions Φ are also assumed to have been drawn from a
Dirichlet distribution, controlled by the parameter η.

The assumption that Φ are Dirichlet is a form of smoothing, which is
necessary due to the fact that text data is typically sparse; that is, text
documents typically do not contain most terms in the vocabulary. This
would lead to zero probabilities in an unsmoothed model, which would in
turn produce zero probabilities for some unseen documents. In a smoothed
model, even unseen cases have a very small but non-zero probability, therefore
accounting for rare cases that are not present in the original dataset.

To find the optimal parameters for a given dataset, we would like to max-
imize the log-likelihood of the data, given by

∑m
i=1 logP (di|α,Φ). However,
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the computation of P (di|α,Φ) is intractable so it has to be approximated.
Approximation methods used for LDA parameter estimation include tech-
niques based on variational Bayes inference, Gibbs sampling, and maximum
a posteriori estimation [4].

3 Text clustering
Text, like any other form of data, can be clustered using general-purpose
clustering algorithms, given that it can be represented in a suitable format.
Finding such a representation for text is far from trivial, however. This
section provides an overview of some of the clustering algorithms typically
used in clustering text.

Since the family of clustering algorithms is vast, we limit our focus
on distance-based clustering. Many general-purpose clustering algorithms
are based solely on the distances between data points. Such algorithms
include, for instance, K-medoids, DBSCAN, and hierarchical clustering.
Such algorithms can be applied to text data granted that a suitable distance
measure can be provided. In text clustering, the choice of distance measure
is far from trivial and crucially important. Usually the text documents
are represented as vectors, and the distances between the vectors are then
calculated using a typical distance measure, such a cosine or Euclidean
distance. Methods for calculating document distances are discussed in
Section 4.

Text clustering and topic modeling are closely related, in that one might
see topic modeling as a dedicated form of soft clustering for text data. Topic
modeling does not assign hard labels to documents, however, and is equally
concerned with the terms as with the documents.

3.1 Notation

The following notation is used throughout the thesis. We are typically
concerned with a subset X of the corpus of all documents D. the ith
document of X is denoted xi and the ith document of D as di. Each
document di is a sequence of tokens representing a term from the vocabulary
V, and the jth token in di is denoted by dij . The vocabulary V is a set
of terms, where the ith term is denoted by ti. The number of terms in V
is denoted by nV and the number of documents in X and D by nX and
nD respectively. Finally, we are often concerned with the document-term
matrix of a set of documents, which is denoted by WX . The ith row of WX
represents xi and is denoted by wi, while the jth weight of wi is denoted by
wij .
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3.2 Hierarchical clustering

Hierarchical clustering is a family of clustering algorithms which produce a
tree-like structure instead of a fixed labeling. The tree is formed by merging
clusters iteratively based on a similarity criterion. At each iteration, the most
similar pair of clusters is merged into a single cluster, until only one cluster
remains. This can also be done ’in the opposite direction’ by iteratively
splitting clusters, starting with all data points in one cluster. The final
product either way is a tree-like structure, from which different clusterings
can be obtained using various criteria, the most obvious being the desired
number of clusters.

The method for calculating cluster similarity is essential in hierarchical
clustering, as different methods vary in the clusterings they produce as well
as their computational complexity:

• In Complete linkage, the similarity of a pair of clusters is determined
by the maximum distance between any pair of data points in the clusters.
Complete linkage ensures that no two points in a single cluster are very
far from each other, forming tightly packed clusters. Given a distance
measure d, the distance between clusters U and V in complete linkage
is maxu∈U,v∈V d(u, v).

• Single linkage is the exact opposite of complete linkage, where the
similarity of the clusters is determined by the minimum distance be-
tween any pair of data points. Formally, the distance between clusters
U and V is minu∈U,v∈V d(u, v). Single linkage produces clusters that
are more akin to an area of density. Single linkage can produce clusters
where some points are considerably far from each other. This is called
chaining and can lead to a low quality clustering.

• InAverage linkage, the distance between clusters U and V is the aver-
age distance of all pairs of points in U and V , that is 1

|U ||V |
∑

u∈U,v∈V d(u, v).

Generally hierarchical clustering has a time complexity of O(n3), which
in most cases is prohibitive. For some linkage methods however, including
each of the aforementioned linkage methods, the time complexity can be
reduced to O(n2).

3.3 Other clustering algorithms

The most significant shortcoming of hierarchical clustering is its computa-
tional complexity. When efficiency is key, centroid-based clustering algorithms
provide a less complex, but also a more limited alternative. Given a desired
number of clusters k, centroid-based clustering algorithms iteratively form
clusters around k centroids. Perhaps the most commonly known algorithm
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in this family is the K-means algorithm, in which the centroids are cluster
means. In K-means, the k centroids are first selected randomly from the
dataset and assigned to a cluster of their own, and the rest of the data points
are then assigned to the clusters with the centroid closest to them. New
centroids are calculated by taking the cluster means. Then, the data points
are re-assigned and new centroids are computed until optimal centroids
are found. Another alternative is the K-medoids algorithm, in which the
centroids are always taken from the dataset. [2]

The DBSCAN algorithm [13] is designed to find arbitrarily shaped clusters
effectively while relying on hyperparameters as little as possible. Notably,
DBSCAN does not require the number of desired clusters to be specified,
which is a clear advantage over centroid-based algorithms. In hierarchical
clustering on the other hand, there are a number of different ways to form
flat clusters from the cluster tree, and the quality of the flat clustering is
critically affected by the chosen method. DBSCAN is less reliant on such
external choices.

A particular feature of DBSCAN is that it discerns between clusters
and noise due to its density-based approach. Given the parameters ε and
minPts, DBSCAN first identifies a set of core points, which have a minimum
of minPts of points within a distance of ε from them. Clusters are then
formed around the core points based on connectivity, which is determined
by eachabilityr : a point p is said to be directly reachable from a core point
q if the distance between p and q is less than ε. A point p is said to be
reachable from a core point q if there is a path of core points q1, ..., qn such
that p is directly reachable from q1, every qi is directly reachable from qi+1,
and qn = q. Finally, a point p is connected to a point q if there is such a
point o that both p and q are reachable from o. A cluster C is defined by
the following conditions: Firstly, if a point p is reachable from q, and q ∈ C,
then p ∈ C; and secondly, if p, q ∈ C, then p is connected to q. Due to this
definition of a cluster, DBSCAN does not necessarily assign every point in
the dataset to a cluster. The remaining points are instead classified as noise.

DBSCAN assumes that all clusters have a similar density, which is
determined by the distance ε. This is a significant weakness, since the
algorithm will not perform well when there are clusters of varying densities.
A hierarchical extension of the algorithm, HDBSCAN, has been proposed to
solve the problem. [9]

4 Document distances
As such, text is an unstructured form of data, which encodes the information
contained in it in a deeply complex way. Transforming the data into an
appropriate, structured form is a critical step in finding a working solution
for a NLP problem. General purpose clustering methods rely on a distance
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measure, and deriving a measure for document distance, the distance between
text documents, is therefore an essential step in clustering text.

First, we must define what we mean by document distance, since the
term has no clear and obvious interpretation. For instance, the sentences ’I
like cheese’ and ’I don’t like cheese’ talk about the same thing, and on the
other hand express a very different sentiment towards it. In this case, we are
interested on the topic of a document, on what the document is about, not
what it says about it. The distance measures presented in this sections are
concerned with general semantic meaning of the documents in relation to
other documents.

Document distances can be calculated by first embedding the documents
in a vector space and then computing the distance using any conventional
measure of vector dissimilarity, such as cosine distance, or by a specialized
distance measure such as the word mover’s distance. All the methods
presented here are based on the bag-of-words assumption in that they discard
word order, focusing only on the frequency of words in a document. Note that
the terms bag-of-words and vector space model are often used interchangeably.
In this thesis, the term vector space model refers to the formally defined
model presented in this section, and the term bag-of-words to the general
principle.

The vector space model (VSM) is a rudimentary method of representing
text documents in a vector space. In VSM, a set of documents is represented
as a document-term matrix which describes the weight of each term in each
document. Relying on exact term overlap, VSM struggles with short docu-
ments. Latent semantic analysis (LSA) performs dimensionality reduction
on the document-term matrix in order to derive a vector representation that
captures the meaning, rather than just the lexicon, of the document. Both
VSM and LSA are tried and tested methods that have been used for decades.

A more modern approach relies on Word2Vec word embeddings, which are
vector representations for individual words learned from massive data using a
neural network model. Representations for whole documents can be derived
from word embeddings by aggregation. Embeddings can also be used to
compute the word mover’s distance, a semantic document distance measure.
Word2Vec embeddings can capture complex semantic relationships between
words, but their benefits are difficult to translate to entire documents.

4.1 Vector space model

While understanding the precise meaning of a text requires that all complex-
ities of natural language are taken into account, the words alone carry much
information. The vector space model [32] represents a text document as a
vector of term weights, relying only on term weights to carry the information
relevant to the task at hand. As such, the vector space model gives us a
rudimentary, yet often well-performing model which is easily usable with
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typical, out-of-the-box machine learning methods; on the other hand it has
clear limitations as it is oblivious to word order as well as the semantic
relationships between the words. The latter becomes more prominent with
short documents, which have a smaller chance of term overlap. VSM can
still act as starting point for methods that overcome this obstacle.

VSM describes a set of documents as a document-terms matrix, where
each column represents a term in the vocabulary. The rows of the matrix
represent the documents through the weights associated with each term.
Given a set of N documents D = {d1, ..., dN} and a vocabulary of M terms
V = {t1, ..., tM}, each document di is embedded in a M -dimensional vector
space, where the jth component of the vector represents the weight for the
term tj . In this thesis, the vector associated with document di is called the
term weight vector, or simply the term weights, of di. Together the term
weight vectors for D form a N ×M document-term matrix WD, where the
rows represents a document and columns the terms, the ith row being the
term weight vector for the corresponding document di.

The weights of the document-term matrix should reflect the significance
of the term in light of the task at hand. The term weighting scheme is of
crucial importance for the quality of the resulting representation. Simple
weighting schemes include term counts, frequencies, and boolean indicators.
All of these schemes assume that all terms are equally significant, which
does not tend to be the case. The TFIDF weighting scheme emphasizes
terms that appear frequently in the particular document, but rarely across
all documents [3]. It does so by normalizing the term frequencies (TF), with
their corresponding inverse document frequencies (IDF). IDF is argued to
reflect the specificity of a term, or how precise its meaning is [34].

The TFIDF weights for a document di in D is given by

wij = TF (tj , di) · IDF (tj ,D), (1)

where TF (tj , di) is the so-called term frequency of tj in di, and IDF (tj ,D)
is the inverse document frequency

IDF (tj ,D) = N

|{d ∈ D : tj ∈ d}|
, (2)

where |{d ∈ D : tj ∈ d}| is the number of documents in which the term tj
appears. The ’term frequency’ does not have to be an actual frequency, but
several different schemes are used. Counts and frequencies are typical choices,
but have been criticized in that they assume that a term’s importance is
proportional to the number of times it appears in the document. Sublinear
term frequencies or boolean indicators can be used instead.

Distances between term weight vectors can be computed using measures
such as Euclidean distance, or more typically, cosine similarity [3]. The
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cosine similarity between vectors v and u is given by

similarity(v, u) = v · u
‖v‖2‖u‖2

. (3)

Cosine similarity can converted into distance by 1− similarity(u, v). Cosine
distance is not affected by the magnitude of the vectors, which is usually
beneficial since the magnitude of a term weight vector tends to depend mostly
on the length of the document.

Since VSM relies on exact term matches, documents that do not share
any terms will have maximal distances. This becomes a problem with
short documents where the probability of such cases becomes larger. A
dramatic manifestation of this problem in clustering is presented in Section
6. Even where there is some overlap, the presence of synonyms and other
closely related terms is not reflected in the document distance. To overcome
this, the semantic relations between terms need to be integrated in to the
representation.

4.2 Latent Semantic Analysis

The overcome the shortcomings of VSM, the semantic relationships between
terms need to be considered, not just the terms themselves. While documents
that use the same words tend to have the same meaning, it is not necessarily
true the other way around. It is often possible to paraphrase a sentence
so that the meaning is intact but there are no shared words, stop words
excluded. In such cases, the distance between the term weight vectors would
not be reflective of the similarity of meaning between the two sentences.

Latent semantic analysis (LSA, also latent semantic indexing, LSI) [12]
finds semantic structure in text documents using matrix decomposition.
It relies on the assumption that semantically related words often tend to
appear in the same context, known as the distributional hypothesis [31]. LSA
applies singular value decomposition on a document-term matrix, producing
lower-dimensional representations for the documents. The components of
the resulting representation represent latent concepts, rather than individual
terms or even sets of them. As discussed in Section 2, LSA is the predecessor
of topic models such as LDA. However, it is notable that LSA was first
conceived in information retrieval as a method of comparing documents, i.e.
calculating document distance.

Singular value decomposition (SVD) is a matrix decomposition method,
which is typically used for dimensionality reduction in the context of machine
learning. Dimensionality reduction tends to lead to some degree of loss
of distinction between data points. While the resulting lower-dimensional
representation might generally be considered a worse representation because
of it, it is exactly what gives LSA its semantic nature. After dimensionality
reduction, superficially dissimilar term weight vectors can be very similar or
even indistinguishable.
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4.2.1 Singular value decomposition

The singular value decomposition of a n×m real matrix M is given by

M = UΣV>, (4)

where U and V are matrices with orthonormal columns of n× r and m× r
dimensions respectively, and Σ is a r × r diagonal matrix, r being the rank
of M. In LSA, M is document-term matrix of n documents and m terms.
SVD can be applied on any real or complex matrix, but only the real case is
considered here.

The values on the diagonal of Σ are known as the singular values of M,
and are given by the square roots of the eigenvalues of the matrix M>M, or
equivalently of MM>. The columns of U and V are given by the eigenvectors
of MM> and M>M respectively.

While the r singular values of M are required to reconstruct M exactly,
it is possible to approximate M by setting all but the k largest singular
values to zero, or by removing the corresponding rows from Σ as well as the
corresponding columns from U and V. Doing so yields the matrices Σk, Uk,
and Vk which give the rank k approximation of M

Mk = UkΣkV>k . (5)

Note that Mk is still a n×m matrix, albeit of rank k. The k-dimensional
representations for the rows of M (documents, if M is a document-term
matrix) are given by the matrix UkΣk. Similarly, the columns (terms) are
represented in k dimensions by the matrix VkΣk.

4.3 Word embeddings

Word embeddings represent words in a continuous vector space, so that the
distances between the word vectors correspond to their semantic relatedness.
The position of a word embedding in the vector space should capture the
meaning of the word in relation to other words. The Skip-gram and Contin-
uous Bag-of-Words (CBOW) algorithms, known collectively as Word2Vec
algorithms produce word embeddings based on the context of a word [20].
The algorithms are based on the same assumption as LSA, that the meaning
of the word is conveyed by the other words it tends to appear with. Word2Vec
embeddings can capture complex semantical relationships between words, as
evidenced by the famous example: the vector for king, minus the vector for
man, plus the vector for woman falls closest to the vector for queen. 1

Word2Vec algorithms employ a shallow neural network to solve an aux-
iliary prediction task; predicting the context given the word in Skip-gram,

1This example works in practice with both the English and Finnish pre-trained FastText
vectors found at https://fasttext.cc/.
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and vice versa with CBOW. The neural network consists of the input layer,
a single hidden linear layer, and a Softmax output layer, which gives the
predicted solution to the auxiliary task. After training, the final embeddings
are given by the hidden layer; the output layer is not relevant and can be
discarded.

Training a Word2Vec model requires plenty of training data. However,
the algorithms are purely unsupervised, which means that publicly available,
large corpora such as Wikipedia can be used. Also, precomputed embeddings
are publicly available, so one might get away without having to train a model
altogether. For the FastText implementation for instance, precomputed
CBOW embeddings trained on Wikipedia are available for 157 languages
[16] as of 2019.

While the original Word2Vec algorithms operate at the word level, an
extension [8] which uses sub-word information has been proposed. The
extension has been implemented in the FastText library. In addition to
entire words, embeddings are computed for character n-grams as well. The
motivation behind this is to improve performance particularly for morpho-
logically rich languages, such as Finnish, where the vast number of unique
terms would otherwise cause problems.

4.3.1 Definition

The CBOW model estimates word embeddings by predicting a word given
the c words closest to it, referred to as its context. Given a vocabulary V
of M words, each word in the context is inputted to the neural network as
M -dimensional one-hot vectors, that is, each dimension represents a word
in the vocabulary and each vector has exactly one nonzero component. In
total, the input then consists of c vectors in M dimensions. The inputs are
projected onto a p-dimensional projection layer. A shared weight matrix
is used for projecting each of the c vectors in the input. The result is a
single, continuous p-dimensional vector, which is similar to a Bag-of-words
representation in the sense that it is not affected by word order, giving the
model its name.

The Skip-gram model turns the CBOW approach around, predicting the
context of a word. The input consists of a one-hot vector representing the
focus word. The input is projected onto a projection layer, similarly as with
CBOW, only that projection layer now represents only a single word.

Given a sequence of T words w1, ...,wT , CBOW maximizes the objective
function

T∑
i=1

log p(wi | Ci), (6)

where Ci is the context of wi, the c nearest words before and after the focus
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word, a total of 2c words. The objective of Skip-gram is given by

T∑
i=1

∑
−c≤j≤c,c 6=0

log p(wi+j | wi). (7)

In the original formulation, the probabilities p(wi | Ci) and p(wi+j | wi)
are estimated by a Softmax layer, which is too computationally expensive to
be practical [22]. As each word in the vocabulary is an output class of its own,
the number of nodes in the output layer is as large as the vocabulary. The
number of words in the vocabulary is typically in the tens of thousands, and
so the number of weights to be estimated for the output layer is very large.
Training the full softmax classifier requires all weights to be re-estimated
after each pass, which would make training prohibitively expensive. This
creates a need for computationally less expensive approximations.

Using Negative Sampling (NES)[22][21], a purpose-built approximation
method, only the weights associated with a handful of words need to be
estimated during a single pass. Negative Sampling replaces the softmax
layer with a logistic classifier which is trained to separate a real estimated
vector from a small number of so-called negative samples. Negative Sampling
reduces the multi-class classification task into a binary classification task by
training a logistic classifier to distinguish the real focus word from noise. At
each pass a number of random words, negative samples, are chosen. These
are then fed to the classifier along with the correct focus word.

In the CBOW objective function, the probability p(wi | Ci) is replaced
by

log(1 + e−s(wi,Ci)) +
∑

wn∈NC

log(1 + es(wn,Ci)), (8)

where NC is a randomly selected set of negative samples. The scoring function
s is defined by

s(w, C) = 1
2c

∑
w′∈C

uᵀw′vw, (9)

where the vectors uw’ are word vectors for the context words, and vw is the
word vector for the focus word. Vectors uw and vw are not the same; these
are different parameterizations, representing the projection weights (vw),
and the output weights (uw). Similarly, the probability p(wi+j | wi) in the
Skip-gram objective function is replaced by

log(1 + e
−uᵀ

wi+j
vwi ) +

∑
wn∈NC

log(1 + euᵀ
wn vwi ). (10)

Here, the relationship of uw and vw to the weights of the neural network is
more clearly seen.

Appropriate values need to be selected for the hyperparameters; the
context size c, the dimensionality of the projection layer p, and the number
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of negative samples in NC . The resulting word embeddings will naturally be
p-dimensional as well. Typically, the dimensionality of the embeddings is in
the hundreds, and a context size of five is used. Increasing the dimensionality
and the context size can improve the quality of the resulting vectors, but
will also make training more expensive. For the number of negative samples,
5–20 samples for small datasets and 2-5 for large datasets are suggested.

FastText expands on the original Word2Vec algorithms by estimating
vectors for character n-grams, and representing whole words as sums of these.
Word-level methods typically struggle with morphologically rich languages,
which have a large number of inflected forms for each stem. With the
inclusion of subword information in the form of character n-grams, FastText
attempts to alleviate the problems caused by morphological complexity. As
an additional benefit, FastText can compute word vectors for words not
encountered in the training data, as long as the word contains at least one
character n-grams that is.

4.3.2 Document distances

Word embeddings represent individual words in a semantically meaningful
way, but deriving representations for whole documents from them is a non-
trivial issue. Word embeddings are often used as inputs for deep neural
networks, but much simpler methods can also yield decent results. The
methods discussed here share the Bag-of-words assumption in that they
rely on term weights, discarding word order. However, unlike VSM, these
methods don’t rely on exact term matches, but can capture deeper semantic
relationships between documents.

Aggregation Several simple methods for deriving document represen-
tations from word embeddings by aggregation have been explored. One
such representation is the weighted mean of the embeddings of the terms
present in the document. Terms may be weighted with a general-purpose
term-weighting scheme such as those presented in Section 4.1. A method
for learning optimal weights specifically for short documents has also been
proposed [11], but it requires labeled training data.

Given a set of documents D = {d1, ..., dN}, a vocabulary V = {t1, ..., tM},
and an N ×M document-term matrix W, the weighted mean of the embed-
dings of the terms in a document di is given by

MEAN(di) =
M∑

j=1
Wije(tj), (11)

where e(t) is the embedding for term t. The Euclidean distance between the
means MEAN(di) and MEAN(dj) is known as the Word Centroid Distance
(WCD) [19].
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Word mover’s distance Similarly as the distances between word embed-
dings are used to measure semantical similarity between words, the word
mover’s distance (WMD) [19] is used to measure the similarity of entire
documents. In WMD, documents are handled as distributions of points in
the vector space defined by the word embeddings. The word mover’s distance
between two documents is the minimal amount of ’work’ required to shift
one distribution to the other.

The word mover’s distance is a special case of a more general problem
known as the earth mover’s distance (EMD), from which the solution is
derived. An intuitive analogue of the EMD problem is finding the least
laborious way of filling a number of holes with the sand from a group of piles,
assuming that there is enough sand to fill the holes [28]. The earth mover’s
distance problem was first formulated as far back as 1785, and has been used,
with different names, in various fields of research [15]. In machine learning,
EMD was first applied in machine vision [28].

Efficient solvers are available for EMD due to its long history, and they
can be directly applied to WMD. The best average time complexity of WMD
is still of the order O(p3 log p), where p is the number of unique terms in the
documents. Computing WMD is therefore quite expensive for large datasets
with a high number of unique words. Solving a relaxed version of the WMD
problem has a more manageable time complexity of O(p3), and yields an
approximation known as the relaxed word mover’s distance (RWMD).

The starting point for the computation of WMD are the M -dimensional
weight vectors w and w′ for documents d and d′ and the embeddings for
the vocabulary V = {t1, ..., tM}. The weight vectors are normalized to unit-
length, so there is always as much ’sand’ as is required to fill the ’holes’. The
embeddings are used to compute the distance measure c(i, j), which defines
the cost of transporting term ti to term tj . In the original paper, c(i, j) is
defined as the Euclidean distance between the embeddings of the words. The
WMD problem is a linear programming problem that asks for a M ×M flow
matrix T that solves the optimization problem

minimize
T≥0

M∑
i,j=1

Tijc(i, j)

subject to
M∑

j=1
Tij = wi ∀i ∈ {1, ...,M}

and
M∑

i=1
Tij = w′j ∀j ∈ {1, ...,M}.

(12)

Tij is the flow from the ith term of w to the jth term of w′, that is, how
much of word ti is transported from document d to word tj of document
d′. The first constraint dictates that the flow from a word in d matches its
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weight in the document. Similarly, the second constraint requires that the
flow to a word in d′ equals its weight.

The WMD problem can be relaxed by dropping one of the constraints.
Since we now only have to balance the flows in one direction, the problem
becomes a nearest neighbor search. This is due to the fact that all the flow
from (or to) a word always goes to the nearest word in the other document.
It then follows that the solutions to the two versions of the relaxed problem
give the distances

`1 =
M∑

i=1
wi min

j
c(i, j) (13a)

`2 =
M∑

j=1
w′j min

i
c(i, j) (13b)

The distance `1 and `2 are both good lower bounds of WMD. A better lower
bound can be obtained by taking the maximum of these two approximations;
the maximum is the relaxed word mover’s distance.

5 Evaluation methods for clustering and topic mod-
eling

Precise evaluation of both text clustering and topic modeling is somewhat dif-
ficult since they are based on the intuitive and somewhat ambiguous notion of
texts sharing similarity on the semantic level. The chosen evaluation method
needs to accurately reflect what is considered desirable in the particular
task. Various evaluation measures have been developed for both classes of
algorithms, but their suitability to any given task needs to be considered
carefully, particularly when the ultimate judge is human intuition.

Both clustering and topic modeling are often used to gain insight from a
dataset by finding structures in it. The results must then be easy to interpret
intuitively. For example, it is often desirable that the topics of a topic model
are semantically coherent and capture relevant aspects of the texts. The
requirement of interpretability puts a human element into the mix, which
might lead to a disparity between what is actually desirable and what a
generic evaluation measure says. It is therefore important to understand the
underlying assumptions which define what an evaluation measure considers
’good’.

5.1 Clustering

Clustering can be used for very different end purposes, such as exploratory
analysis, as a part of a larger task, or to find natural segments in the data.
The choice of evaluation method should be informed by the intended purpose
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of the clustering algorithm. The measures used for evaluating clustering are
typically divided into (at least) the following categories [24]:

• Internal criteria, which use only the data itself, and

• External criteria, which compare the clustering to a ground truth
clustering that represents the ideal solution. A specialized similarity
function, several of which have been developed for clusterings, is used
for the purpose.

External evaluation criteria can very accurately reflect the quality of a
clustering if labeled data is available. This is often not the case however,
since such data is not needed in the clustering itself. Only external evaluation
is relevant for the purposes of this thesis, and therefore internal evaluation is
not discussed.

External evaluation of a clustering is superficially similar to the evalu-
ation methods used in classification, but requires specialized methods. In
a clustering task, neither the number of classes nor their labels are known,
which rules out the simple measures used for measuring performance in clas-
sification. Instead, the clustering is compared to a ground truth clustering
using a specialized similarity measure, which does not rely on labels or the
absolute number of classes. Such measures can be divided into two categories:
pair counting methods, the forefather of which is the Rand index [25][18];
and information theoretic measures, represented here by the V-measure [27]
and adjusted mutual information (AMI) [35].

Both pair counting and information theoretic measures are commonly
used, as there is no clear preference between the two. It has been suggested
that adjusted Rand index (ARI, the adjusted-to-chance version of Rand
index) should be preferred over AMI when the clusters are large and evenly
sized, and AMI should be preferred when the clusters are unevenly sized.
[26]. Whether the measure used should be adjusted to chance is also an
important consideration. V-measure and Rand index do not have a fixed
baseline to which the result could be compared, and tend to grow as the
number of clusters grows. ARI and AMI are normalized by the expected
score, making for a more interpretable measure with less bias towards larger
number of clusters.

5.1.1 ARI

The Rand index (RI) is a similarity measure for clusterings on the same
dataset, based on observing how pairs of data points are related in the two
clusterings being compared. Clusterings are said to agree when both assign
a pair of points to the same cluster, or both assign them to different clusters.
Rand index is the ratio of pairs on which the clusterings agree, of all possible
pairs.
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Let U = {u1, ..., uR} and V = {v1, ..., vC} be clusterings on a dataset
with N points. For convenience, let us establish that U is the ground truth
and V is the clustering to be evaluated. This is of no real importance however,
since the ordering won’t change the Rand index. When we draw a pair of
points from the dataset at random, one of the following case will apply

I. The points will be in the same class in both U and V

II. The points will be in different classes in both U and V

III. The points will be in the same class in U but in different classes in V

IV. The points will be in different classes in U but in the same class in V

The cases I. and II. are agreements and the cases III. and IV. are disagree-
ments. Let A be the number agreements and D the number of disagreements.
The Rand index of the clustering is given simply by A

A+D . The quantity
A+D is naturally the number of all possible pairs in the dataset, which is(N

2
)
. A can be computed using a R × C contingency table M , where each

cell nij is the number of points that are in the class ui and the cluster vj .
The sum of the ith row, which is the total number of datapoints in the
corresponding class ui in U , is denoted n·i. Similarly, nj· denotes the number
of datapoint in vj .

v1 . . . vj . . . vC Σ
u1 n11 . . . n1j . . . n1C n1·
...

...
...

...
...

ui ni1 nij niC ni·
...

...
...

...
...

uR nR1 nRj nRC nR·
Σ n·1 . . . n·j . . . n·C

Table 5.1: The contingency table M used for calculating RI. The value nij

in the ith row and the jth column represents the number of data points that
are in the ith class in C, and the jth class in K

The number of agreements of type I. and II. are denoted k11 and k00
respectively and can be computed from the contingency table M . The
number of agreements of type I., where the points are in the same class in
both clusterings, is given by

k11 = 1
2

R∑
i=1

C∑
j=1

nij(nij − 1). (14)
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The number of agreements of type II. is given by

k00 = 1
2
(
N2 +

R∑
i=1

C∑
j=1

n2
ij −

( R∑
i=1

n2
i· +

C∑
j=1

n2
·j

))
. (15)

Similarly, the number of disagreements of types III. and IV. are denoted k10
and k01 respectively, and given by

k10 = 1
2
( R∑

i=1
n2

i· −
R∑

i=1

C∑
j=1

n2
ij

)
, (16)

k01 = 1
2
( C∑

j=1
n2
·j −

R∑
i=1

C∑
j=1

n2
ij

)
. (17)

Intuitively, we can see that while the maximum and minimum number of
agreements depends on R, C, and the marginal sums ni· and n·j (the sizes
of the classes), the exact number of agreements depends ultimately on the
quantity

∑R
i

∑C
j n

2
ij . In a case of perfect agreement, each row and column

have exactly one non-zero value, which with an appropriate ordering of the
matrix fall on the diagonal. Making the clustering less similar, while keeping
the cluster sizes fixed, would distribute the ’mass’ from the diagonal, and
make

∑R
i

∑C
j n

2
ij smaller. The raw Rand index neither falls on a fixed range

in terms of best and worst possible score, nor establishes a baseline so that
’high’ and ’low’ scores can easily be identified. A more practical score can
be obtained by adjusting the index by chance; that is, by fixing it in terms
of the expected score of a random clustering and the best possible score. A
score of 1 then means that the clusterings are identical, and a score of 0
means that they are no more similar than any random clustering. A measure
can be adjusted to chance with the formula

Score− ExpectedScore
MaximumScore− ExpectedScore

. (18)

The adjusted index is much easier to interpret: An above-zero adjusted score
indicates a better-than-random clustering, and the best possible score is fixed
at one. Adjusted Rand index can be calculated from M by

ARI(U, V ) = 2 · (k00k11 − k01k10)
(k00 + k01)(k11 + k01) + (k00 + k10)(k11 + k10) . (19)

according to [35].

5.1.2 V-measure & AMI

V-measure is an information theoretic measure for evaluating clustering,
which relies on the homogeneity and completeness criteria derived from
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Shannon entropy. V-measure is defined as the harmonic mean of these
two measures. Homogeneity and completeness measure different desirable
qualities of a clustering given a ground truth clustering, and can also be used
separately for deeper analysis. Unequal weighting is also possible if either
aspect is deemed more important. A clustering satisfies the homogeneity
criterion when all data points in a cluster are from a single ground truth
class. Completeness is satisfied when all data points from a ground truth
class are assigned to a single cluster. There tends to be a trade-off between
the two criteria; a clustering solution where all data points would be assigned
in a cluster of its own would be fully homogeneous (since all clusters would
contain data points from a single class), but sacrifice completeness (since
all points from a single class would be in different clusters, assuming there
are classes with more than one point). Similarly, a clustering with all data
points in a single cluster would fully satisfy completeness at the expense of
homogeneity. These two degenerate clusterings are both clearly undesirable
and underline the insufficiency of either criterion alone. However when the
clustering and the ground truth classes are equivalent, both criteria are met.

Homogeneity and completeness are derived from conditional entropy,
which is intuitively the amount of information in a distribution that can
not be explained by the information in a given second distribution. The
conditional entropy H(X|Y ) equals the entropy of X when the distributions
are independent, and zero when the value of X always follows exactly from
the value of Y . The homogeneity criterion is satisfied when the conditional
entropy of the ground truth class labels given the cluster labels is maximal,
since the class label is always determined by the cluster label. Similarly, the
completeness criterion is satisfied when the conditional entropy of the cluster
labels given the class labels is maximal, as the cluster follows from the class
label.

The homogeneity and completeness scores for a clustering V given ground
truth classes U can be calculated using the contingency table M defined
in Section 5.1.1. V-measure, like the Rand index, does not depend on
which clustering we define as the ground truth. The same is not true for
completeness and homogeneity, as they would ’switch places’. For the correct
interpretation of the scores it is therefore necessary to explicitly define which
clustering is the ground truth.

The homogeneity score h is given by

h =


1 if H(U) = 0

1− H(U |V )
H(U) otherwise

(20)

where H(U |V ) is the conditional entropy of U given V , and the normalization
term H(U) is the entropy of U . 2 In the upper case there is only a single

2Note that the definition is slightly different from [27], where the is some vagueness;
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class, and therefore the clustering is guaranteed to be fully homogeneous.
Normalization is needed to bound the score within the fixed range [0, 1],
as the absolute value of H(U |V ) is dependent on the entropy of U , and
therefore on the size of the dataset and the classes. The terms H(U |V ) and
H(U) are given by

H(U |V ) = −
C∑

j=1

R∑
i=1

nij

N
log nij∑R

k=1 nkj
(21a)

H(U) = −
R∑

i=1

∑C
j=1 nij

N
log

∑C
j=1 nij

N
(21b)

Similarly, the completeness score c is given by

c =


1 if H(V ) = 0

1− H(V |U)
H(V ) otherwise

(22)

where

H(V |U) = −
R∑

i=1

C∑
j=1

nij

N
log nij∑C

k=1 nik
(23a)

H(V ) = −
C∑

j=1

∑R
i=1 nij

N
log

∑R
i=1 nij

N
(23b)

Finally, the V-measure of the clustering is given by the harmonic mean
of the homogeneity and completeness scores:

V = 2hc
h+ c

. (24)

As mentioned earlier, the mean can be weighted towards either criterion, but
typically they are given an equal weight, as in the formulation above.

The most significant drawback of the V-measure is that it is not adjusted
to chance, and therefore does not provide a stable baseline independent of
the number of clusters. As the number of clusters grows, so does the V-
measure. However, the adjusting does not change the rank-order of different
clusterings with a fixed number of clusters. When adjustment for chance is
required, AMI can be used instead. AMI is the adjusted-for-chance version of
normalized mutual information (NMI), which is identical to V-measure when
homogeneity and completeness are weighted equally [5]. When comparing
clustering with the same number of clusters against a ground truth, AMI and
NMI only differ in terms of normalization. In such a case, V-measure and
AMI therefore rank the clusterings identically. However, if the clusterings to
be compared differ in the number of clusters, AMI should be used.
the definition presented here matches the sklearn implementation, which was used for the
results presented in the later sections. See https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.homogeneity_completeness_v_measure.html
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5.2 Topic modeling

Topic models are difficult to evaluate much for similar reasons as clusterings.
The choice of the evaluation method must be informed by the intended
purpose of the topic model. For instance, topic modeling might be used as
an intermediary step in a larger task, in which case performance in that task
is the ultimate measure of quality. However, it is common that the topic
model itself is the end product. Very commonly, topic modeling is used to
find structure in a corpus. Quality is then not measured by the validity
of the model from a statistical perspective, but by its ability to capture
relevant information about the data in a way that is easy to for a human
to interpret. Evaluating the relevance and interpretability of a topic model
quantitatively is not a straightforward task, and often relies on some form of
external evaluation, either in the form of human input or semantic data.

The oldest method of evaluating a topic model from a statistical per-
spective is to measure its ability to predict unseen data by calculating the
log-likelihood or perplexity[7] of a held-out test dataset given the topic model.
However it has been shown that log-likelihood and perplexity do not always
reflect human judgment [10]. This is due to the fact that the validity of
a topic model from a purely probabilistic perspective does not reflect the
actual intended purpose of the topic model.

Human judgment is the golden standard for evaluating topic models when
interpretability and relevance are key. The word and topic intrusion tests
have been proposed for quantitative human evaluation, which involve random
manipulations to the topic model; the subjects must detect intruding words
inserted into topics, and intruding topics inserted into the topic assignments
of documents. If the topic model is good, the subject should be able to
correctly identify these intrusions by their random nature. However if the
topics are counterintuitive or difficult to understand, the subjects will be less
likely to identify the intruder.

Human evaluation is often too expensive or laborious to be feasible, but
fully automated alternatives exist. Coherence measures evaluate a topic
model from a semantical perspective by examining the internal coherence of
the topics as sets of words. Coherence measures are concerned with the most
relevant terms in a topic-word distribution, discarding the probabilities and
examining a topic simply as a set of words. Such a set is said to be coherent,
if the words support each other; that is, they increase each others likelihood.

5.2.1 Probabilistic methods

Much as one would evaluate a supervised model on a separate validation
dataset, a topic model can be evaluated using a holdout dataset. By calcu-
lating the likelihood of the holdout, the topic model’s predictive power can
be evaluated.
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Given a training dataset D, topic-word distributions Φ = {φ1, ..., φk},
and a holdout D′ = {d′1, ..., d′m}, the likelihood of D′ given Φ and α is given
by

P (D′|Φ, α) =
m∏

i=1
P (d′i|Φ.α), (25)

As the topic distributions are independent of one another, Φ and α are
sufficient to estimate the likelihood of D′ given the LDA model. As mentioned
in Section 2.1, exact calculation of the document likelihood P (d′i|Φ, α) is
not tractable, but approximation is. With approximate document likelihood,
different evaluation measures can be calculated. The log-likelihood is given
by

log-likelihood(D′) =
m∑

i=1
logP (d′i|Φ, α). (26)

Perplexity is a commonly used measure in NLP, and is given by

perplexity(D′) = exp
[
− log-likelihood(D′)∑m

i=1Ni

]
, (27)

where Ni is the number of tokens in d′i [7]. Clearly perplexity follows from
log-likelihood, so the measures always agree.

Log-likelihood and perplexity accurately measure the quality of the topic
model as a generative probabilistic model from a statistical perspective. Due
to the way LDA is typically used however, they do not correlate strongly
with human judgment, and in the worst case may even contradict it [10].

5.2.2 Human evaluation

Human judgment of a topic model can be tested quantitatively with the word
intrusion and topic intrusion tests, which measure the interpretability of the
topics themselves, and the relevance of the topics in light of the data [10].

In the word intrusion test, the topics are presented to the test subjects
as sets of their most probable words, with a single random word inserted
into each topic. The test subjects are tasked with detecting the randomly
inserted intruder. If the topic is easily interpretable, the test subjects should
be able to discern a meaningful pattern behind the words and therefore
correctly identify the intruder by its distinctive unrelatedness to the others.
On the other hand, if the test subjects find no such pattern, they must
choose at random since all of the words seem to them equally unrelated. A
higher likelihood of test subjects correctly identifying the intruder is therefore
considered to indicate a better model.

In the topic intrusion test, the test subjects are presented a snippet from
a document in the dataset, and four topics associated with it. Three of the
topics are the most probable ones associated with the document, and the

23



remaining topic is an intruder chosen randomly from the other topics in the
model. The test subject is again tasked with detecting the intruder. Similarly
as with word intrusion, if the true topic assignments seem relevant to the
snippet the test subject should have no trouble identifying the intruder.

Since human evaluation is always expensive, there is a need for fully
automated evaluation methods that correlate strongly with human judgments.
The word intrusion test has been automated with a high correlation to human
judgments, but in automated topic intrusion the correlation is much lower
[17].

5.2.3 Coherence

A more direct, fully automated approach to measuring the interpretability of
topic models is to use a coherence measure. The concept of coherence comes
from the philosophy of science, where a set of facts is considered coherent if
the facts support each other; that is, if they make each other more probable.
Words can support each other in a similar fashion, and by interpreting words
as facts the general concept of coherence can be applied to sets of words [29].
For instance, the set {dog, cat, rabbit} would be considered highly coherent,
since the words follow a pattern in that they all refer to animals and therefore
explain each other, while the set {dog, house,moon} has low coherence since
there is no discernible relation between the words.

Coherence measures can be used to evaluate topic models by considering
the topics as sets of their most probable words, similarly as in word intrusion.
Coherence does not consider the quality of the topic assignments to documents
at all, and therefore does not measure the topics’ relevance in light of the
data. Coherence can therefore only be used to evaluate the interpretability
aspect of a topic model, not the quality of the topic model as a whole.

Several different methods for calculating coherence have been proposed,
but all of them share a similar structure. The family of coherence measures
has been unified in a formal framework [29], which defines a coherence
measure through four dimensions. The various coherence measures differ in
the components of each dimension, but have the same basic structure. Each
of the components are interchangeable, so that new coherence measures can
be easily constructed.

The outline of a coherence computation is as follows: A set of words is
first segmented into pairs of subsets. Then, a confirmation measure is used
to compute the confirmation, or how much a subset supports another, for
the pairs. For this, word probabilities need to be estimated. Finally, the
confirmations for the pairs are aggregated into a single value.

The first dimension of a coherence measure is the segmentation strategy.
All coherence measures consider pairs of subsets at a time, but these pairs
can be formed any number of ways. The task of forming these pairs is
the responsibility of the segmentation strategy. Given a set of words W , a
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segmentation strategy produces a segmentation S = {S1, S2, ...}, where each
member is a pair Si = (W ′,W ∗), where W ′,W ∗ ⊆ W . Note that the pair
is ordered. The most typical strategy is to consider all pairs of individual
words, known as the one-one segmentation.

The second dimension is the method of probability estimation. Joint prob-
abilities for sets of words can be estimated by counting their co-occurrences
in a corpus. There are different ways for counting co-occurrences; a typical
way is to simply count the times the words occur in the same document,
known as the boolean document method. Another popular way is the boolean
sliding window method; the times the words occur within a fixed distance
(in words) of each other are counted.

The third dimension is the confirmation measure. The confirmation
measure is used to calculate how much a subset supports another using
the estimated word probabilites. In the process of computing coherence,
the confirmation measure is used to calculate confirmations for all pairs of
subsets in the segmentation S. Notable confirmation measures include the
pointwise mutual information (PMI) and the normalized PMI (NPMI), which
are given for a pair Si = (W ′,W ∗) by

PMI(W ′,W ∗) = log P (W ′,W ∗) + ε

P (W ′)P (W ∗) , (28)

NPMI(W ′,W ∗) = PMI(W ′,W ∗)
− log(P (W ′,W ∗) + ε) . (29)

Confirmation measures that use the word probability estimates of the com-
pared sets alone to calculate the confirmation are called direct confirmation
measures. The problem with direct confirmation measures is that some words
may occur rarely together, while still having related meanings. However,
such words should still appear in similar contexts, that is they should appear
frequently with the same words. They would therefore have a low direct
confirmation with each other, but their confirmations with the other words
in the set would be similar. This fact is leveraged by indirect confirmation
measures, which compute a context vector for each of the compared subsets.
The context vector of a subset W ′ of W is formed by first computing a direct
confirmation for W ′ with every word in W . The confirmation are combined
into a vector v so that the jth element of v is the confirmation of W ′ and
wj , the jth term in W . More formally, given a direct confirmation measure
m, the context vector for W ′ is given by

vm(W ′) =
{ ∑

wi∈W ′

m(wi, wj)
}

j=1,...,|W |
. (30)

Any direct confirmation measure can be selected asm. The final confirmation
for a pair of subsets can be calculated with any conventional measure of
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vector similarity, such as cosine similarity. A dedicated segmentation strategy
can be used with a indirect confirmation measure, known as the one-set
strategy. The one-set strategy compares each individual term with the entire
set W .

The final dimension is the aggregation method. The confirmation measure
produces confirmation values for each pair in S, and these need to be
aggregated to produce the final coherence score. The most typical aggregation
method is the arithmetic mean.

For example, the UCI coherence is produced when using the one-one
segmentation strategy, boolean sliding window probabilities estimated from a
large corpus such as the English Wikipedia, and PMI or NPMI confirmations
aggregated by arithmetic mean.

According to [29], the coherence measure with the highest correlation
with human judgments uses probabilities estimated from Wikipedia using the
boolean sliding window method, one-set segmentation and indirect NPMI
confirmations, aggregated by arithmetic mean. This coherence measures is
denoted CV , for lack of a better name.

6 Detecting discussions
Instant messages often resemble utterances in a face-to-face discussion, and
therefore rely on the context to communicate information reliably. The
participants are able to discern the context and understand each other
effortlessly, but taken out of context the meaning of an individual message
becomes obscure. Like face-to-face discussion, the discussions on an instant
messaging platform flow by participants replying and reacting to earlier
messages. However, unlike face-to-face discussions they can take place
across a much longer time span. Participants do not rely on exact temporal
information (other than ordering) to infer the context. Adjacency in the
temporal ordering is not required either, as the discussion are often ’tangled’
in the message stream with several discussions taking place simultaneously.
Finally, the discussion usually has a clear starting point, a message, from
which it evolves and branches off.

Instant messaging platforms provide various features to organize messages
in explicit structures, which provide some indication of the context. However
users use the features the way they see fit, which has to be taken into account
when working with such data. In Slack, users can post messages to a channel,
or reply directly to a message forming a thread. While most messages are not
posted in a thread, it is reasonable to assume that they still follow a similar,
implicit structure. The detection of such structures in message streams has
been studied previously [33]. These structures have been termed threads, but
to avoid ambiguity we call them discussions in this thesis, while the term
thread is reserved for the explicit structures present in the Slack data. In
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previous work, a discussion is defined by a root message and replies to it.
By requiring that a root message is clearly not part of another discussion,

the definition is clear. However, these could lead into meandering discussions
that may not be ideal for our purposes. Therefore we prioritize certain
aspects of an ideal solution over others. Since we are detecting discussions
for the purpose of combining individual messages into less sparse but still
coherent units of text, it is tolerable that a discussion is detected in several
parts. Mistaking several unrelated discussions as a single discussion is much
more problematic since the resulting unit of text is not internally coherent.
However if several, highly similar discussions are mistaken as one, the result
may still be coherent. In fact, if the actual discussions are very short, this
may be beneficial. Due to these considerations, we prefer firstly discussions
that are internally coherent, and secondly long enough to effectively alleviate
the sparsity issue. The completeness of the discussions, that a true discussion
is detected as a whole, is a lesser concern.

The problem of detecting discussions is related to the problems of topic
detection and tracking (TDT). The word ’topic’ has a very different meaning
in TDT than in topic modeling. TDT is concerned with recurring themes in
an incoming stream of documents; a good example is the detection of events
in a stream of news articles.

In order to disambiguate between the various meanings of the key concepts
in this thesis, the following definitions are used:

• Thread refers to the explicit structure found in the Slack data. A
thread consists of a root messages and messages posted as a reply to
it. As the root message is always posted on a channel, a thread is a
substructure of a channel.

• Discussion refers to an implicit thread. Every message is either a root
message or a reply and can therefore be assigned to a discussion. It is
possible however, that a discussion consist of a single message. For the
purposes of this thesis it is not necessary to establish the structure of
the discussion; that is, which is the root message and how the replies
relate to each other. Rather, a discussion is simply a group of messages.

• Topic has different formal definitions in topic modeling and TDT. In
this thesis, the topic modeling definition is used. Topic modeling was
discussed in Section 2.

In this thesis, we are ultimately interested in summarizing a stream of
Slack messages by extracting topics from it. For this purpose, the discussion
as such provide little value. Instead they are used to improve results in
a topic modeling. We explore, whether detecting these implicit structures
is a useful data combination scheme for topic modeling. The motivation
for this approach is practical. Firstly, dedicated topic models for the kind
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of data we are dealing with are not readily available; by first solving the
auxiliary task we hope to effectively apply a conventional topic model for the
task. Secondly, labeled evaluation data for the discussion detection task is
available, which makes fully automated external evaluation possible. This in
turn makes model selection and tuning easier and more reliable. Evaluating
the topic model is more difficult, and therefore it would be useful to shift the
burden of repeated evaluation in the tuning phase to the discussion detection
task.

6.1 The Slack dataset

The approach presented in this thesis is intended for Slack data, particularly
data from the Gofore Oyj Slack workspace. Data is available from the course
of about two years, and the target is to analyze a single months data at a
time, which might be anywhere between 5 000 to 12 000 messages depending
on the month.

The data from the Gofore Oyj workspace shares the qualities typical to
instant messaging data: sparsity and noisiness. However the data has its own
special characteristics that need to be considered as well. Since the company
is international but mostly based in Finland, both English and Finnish are
used. The language of each message is detected using the Polyglot library
for Python. The language detection is not perfect even if messages with
unreliable predictions are left out, leading to noise in the dataset in the form
of wrong language labels, as well as messages that contain both languages.
The dataset is then quite noisy, but on the other hand the messages are of
better quality in terms of correctness and length than, for instance, tweets
from Twitter.

In order to use external measures for evaluating performance in the
clustering task, a manually annotated ground truth dataset would be ideal.
Such data is not available, however. Instead, messages posted in threads are
used as the ground truth set, with the thread IDs acting as the class labels.
Threads are formed in Slack when users reply to a message directly; messages
in a thread therefore form a single discussion by the definition presented
earlier, as the are all replies to the same root message. However, it is possible
that there are several threads that in fact form a single discussion. It is also
common that a thread only includes part of a discussion, since users may
choose to reply on the channel instead of the thread.

To better reflect the actual task, the whole dataset, including the messages
not posted in threads, is clustered. Evaluation measures are then calculated
on the subset with ground truth class labels (thread IDs). Several months of
data was available, and separate dataset were used for tuning, testing, and
finally for the results presented in this thesis.

The evaluation dataset contains all public messages from the Gofore
Oyj workspace from the course of April 2018. The dataset contains 5456
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Figure 6.1: The distribution of word counts in the documents in the evaluation
dataset

messages, 1321 of which are assigned to a thread; there are 366 threads.
The number of messages in a thread varies from a single reply to dozens
of messages. The documents are mostly very short, 21 words by average,
the median being 13 words. The distribution of word counts can be seen in
further detail in Figure 6.1.

6.2 Approach

The solution presented here approaches the discussion detection problem in
an unsupervised manner, using complete linkage clustering. Several methods
for calculating the distances between documents are considered.

In addition to complete linkage, single and average linkage hierarchical
clustering, DBSCAN, and HDBSCAN were considered. Single and average
linkage ran into severe chaining issues, resulting in a very poor clustering.
DBSCAN and HDBSCAN also performed poorly. Complete linkage clustering
was the only clustering method of the ones explored that proved suitable.

6.2.1 Weighting scheme

Two different term weighting schemes are considered. The pure weighting
scheme uses TFIDF weights, trained on messages from the course of 18
months. Only messages in English are included. The features include
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unigrams and bigrams; for the FastText-based models, only unigrams are
used, since the precomputed vectors do not contain bigrams.

Filtering out features has a strong effect on the performance. Despite
IDF weighting, clusters often form around very common terms, leading to
an uninformative clustering. The stop words are determined partly in a
manually specified list 3, and partly by filtering out terms by document
frequency. Very rare terms tend to be typos or rare bigrams, and are filtered
out based on absolute count. A minimum of five occurrences and a maximum
document frequency of 0.01 are required. These values were selected based on
manual tuning. Note that the maximum document frequency is rather low,
as the documents are so short; a typical document contains only a handful
of terms, and even the most common terms therefore appear only in a small
portion of documents.

The context weighting scheme is based on the pure weighting, but empha-
sizes terms that appear with the neighbors of a message. The neighbors of a
message share the same channel and are sent within a given time interval
from the focus message. The messages in the neighborhood are weighted
by their time difference with the focus message and averaged. Terms that
do not appear in the focus message are discarded, and the remaining term
weights are summed with the focus message term weights.

The effect of the metadata-based weighting on performance is difficult to
evaluate using the threads, since the threads do not accurately reflect the
entire dataset when it comes to the metadata. The frequency of messages is
much lower in the threads subset than in the entire dataset, which has an
effect on hyperparameter selection. In terms of the timestamps the threads
are not at all comparable to a random sample, since individual threads appear
as isolated ’islands’ in the data. Emphasizing the metadata over and beyond
the actual optimum might therefore appear to increase performance, as these
’islands’ are clustered together simply based on metadata. In the entire
data, separate discussions are much more likely to appear closely adjacent
or intertwined with each other, and a too high emphasis on metadata may
have a negative effect on discerning between such discussions. Due to these
concerns, a fairly conservative approach of only including the terms that are
present in the focus message was chosen.

For a set of documents d = {d1, ...} we have channeli, the channel
ID of the message di, and tsi, the UNIX timestamp. Message dj is in the
neighborhood of di if and only if channelj = channeli and |tsj−tsi| ≤ maxdt,
where maxdt is the maximal allowed time difference between di and dj in
seconds. The set of indexes of the documents in the neighborhood of di is
denoted Ni. A context vector ci for di is computed by taking the mean of

3The list of stop words is from sklearn and can be found at https://github.com/
scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/stop_words.
py.
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the term weights for the documents in the neighborhood, weighted by their
time difference with di. The weights for the documents in the neighborhood
are given by

vi =
(
− (|tsj − tsi| −maxdt)

)
j∈Ni

. (31)

The context vector ci is then given by

ci =
∑

j∈Ni
vijwj∑

j∈Ni
vij

, (32)

where wj are the the term weights for document dj .
The modified term weights w′i for di are calculated from the original term

weights wi and the context ci as follows:

w′ij =
{

0 if wij = 0
(1− α)wij + αcij otherwise

(33)

Finally, w′i is normalized to unit length using the `2 norm.

6.2.2 Distance measures

Three different methods for calculating document distance were considered.
The methods have their own distinct advantages and disadvantages, and in
an effort to find a more balanced measure, combinations of the measures
were also considered.

The methods based on word embeddings use the FastText4 library with
300-dimensional embeddings trained on the contents of the English Wikipedia.
The pre-trained embeddings are not normalized by default; in this case, the
vectors are always normalized to unit length.

LSA The measure denoted by LSA is calculated by first reducing the
dimensionality of the term weight vectors to 500 using LSA. The relatively
large number of components needed is most likely due to the sparsity. Cosine
distance is then used to measure document distance. Note that LSA uses
bigram features, unlike the other measures.

WMD Word mover’s distance is computed using the cosine distances of the
embeddings as the distances of individual words. The original article assumes
the distances to be Euclidean, but cosine distances outperformed Euclideans
in this case. A significant drawback of WMD is its time complexity, which
in this case is within the tolerable range, but would not scale to much larger
datasets. On a up-to-date laptop computer, computing the full distance
matrix for a dataset of less than 10,000 documents takes up to 50 minutes.

4Both the FastText library and the pre-trained embeddings are publicly available at
https://github.com/facebookresearch/fastText
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The implementation is not parallelized, but given that the size of the distance
matrix grows quadratically, computing it would become intractable with
larger datasets. The WMD measure is denoted by WMD.

Aggregated FastText Since WMD is computationally so expensive, the
aggregated FastText approach as presented in section 4.3.2 was explored
as a substitute. For each document, the word centroid distance (WCD)
is calculated; that is, the mean of the embeddings for each term in the
document weighted by the corresponding term weights. Document distances
are then given by the cosine distances of the means. The measure is denoted
by WCD.

Combined measures The LSA, WCD, and WMD models all produce
quite different clusterings, each with their own distinct strengths and weak-
nesses. Like averaging outputs of several classifiers can increase performance
in a classification task, using a linear combination of different distance
measures can yield better results in clustering [23].

The combined measure Blend of δaand δb is given by

Blend(di, dj) = (1− α)δa(di, dj) + αδb(di, dj), (34)

where 0 ≤ α ≤ 1. The blend ratio α defines the weight of each measure
and must be manually tuned. For the results shown here, α was chosen by
calculating the average ARI over a range of cluster counts. The performance
of the combined measure seems to be quite sensitive to α, but wide range
of values improves on both measures. Also, the combined measure always
seems to perform at least as well as the worse of the two measures. Both
Blend(LSA,WMD) and Blend(LSA,WCD) performed better than any
single measure. These are denoted by BLENDWMD and BLENDWCD
respectively.

6.3 Results

In this section, the performance of the WMD, WCD, and LSA measures
and the combined measures BLENDWMD and BLENDWCD are analyzed
in the sub-problem of discussion detection. The clustering algorithm is
ultimately used as a middle step in a topic modeling task, and the ultimate
measure of quality for the clustering algorithm is the performance gain in
the primary task. However, in this section we treat the discussion detection
as a separate problem, and evaluate it as such.

The clustering algorithm is evaluated using the external measures ARI
and V-measure. Though manually labeled evaluation data is not available,
thread IDs are present in the Slack dataset and are used as the ground truth
dataset instead. Most of the messages in the dataset do not have thread IDs,
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Figure 6.2: The plain vector space model manages to produce clusters
only when the number of clusters is sufficiently high.

and therefore the accuracy of their cluster assignments cannot be evaluated
using external measures. The threads alone do not represent the dataset
accurately in terms of metadata, however, and therefore the whole dataset is
clustered. ARI and V-measure are then calculated on the subset of the data
with thread IDs.

As previously discussed, the plain vector space model runs into trouble
with very short documents. In Figure 6.2, the cosine distances of the term
weight vectors are used to compute the cluster hierarchy. The cutoff at about
1500 clusters is due to the fact that at that point, the distances between all
pairs of clusters are maximal. That is, if any pair of clusters was merged the
resulting clusters would have a pair of documents with the maximal document
distance. The complete linkage clustering algorithm cannot therefore produce
a flat clustering without merging clusters arbitrarily when the number of
desired clusters is below the cutoff point. The problem affects complete
linkage clustering in particular, as merging is based on the maximal distance
between any pair of documents; all pairs are therefore required to have some
term overlap in order to be clustered together. Single and average linkage
clustering are not as severely affected, but are unsuitable due to the chaining
issues mentioned earlier.

The scores are presented here for a wide range of cluster counts. All
cluster counts are not equally important for our purposes, however. If we
expect a similar ratio of discussions to messages as there are in the threads,
we would expect around 1500 clusters to be suitable. The number may be
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Figure 6.3: The ARI scores of the WMD, WCD, and LSA models.

too high however, as the threads may represent only partial discussions. In
Figure 6.3 we see that the performance of each distance measure peaks in the
range of 500 to 1500 clusters. Manual inspection of the clusters reveals that
when the number of clusters is very low, clusters tend to become internally
less coherent, being combinations of several loosely related sub-clusters. On
the other hand, when the number of clusters is very large, the clusters
become needlessly fractured. A wide range of cluster counts produce decent
clusterings, however. Based on manual inspection, the number of clusters
should be at least in the hundreds in order for them to be coherent. When
the number of clusters is in the thousands on the other hand, the clusters
are very small, with many comprising only of a single message. For model
selection and tuning, the focus range was set to 200 to 2000 clusters.

The most notable result is that combining measures improves performance
significantly. In Figure 6.3, we can see that LSA performs well when the
number of clusters is low, but WMD quickly overtakes it at about 700
clusters. However the combination of LSA and WMD, BLENDWMD,
outperforms both measures across the board as can be seen in Figure 6.4. The
WCD measure performs clearly worse than WMD in the significant range
of cluster counts, which translates to the performance of BLENDWCD. The
BLENDWCD still outperforms every individual measure overall, although
we can see that LSA has a very slight advantage over it when the number
of clusters is low. Curiously, the WCD measure performs better than any
other measure when the number of clusters is over 2000; this is insignificant
for our purposes, however.
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Figure 6.4: The performance of the BLENDWMD and
BLENDWCD models, compared to WMD.

There are significant differences on how the LSA measure and the word
embedding based measures behave. The LSA measure produces topic-like
clusters, being at its best when the number of clusters is relatively small.
However, the performance drops sharply as the clusters get smaller, since
the small clusters are not particularly coherent. The WMD measure on the
other hand produces very coherent small clusters, but when the number of
clusters is small the clusters become very unevenly sized and not particularly
meaningful. The large clusters produced by WMD do not have a topic-
model-like quality, but rather messages with rare words, particularly those
not present in the pre-computed embeddings, and other outliers get singled
out while the rest of the messages reside in very large, heterogeneous clusters.
The BLENDWMD measure improves the performance of WMD particularly
when the number of clusters is small, while behaving similarly as WMD
when the number of clusters grows. When the number of clusters is small,
V-measure somewhat favors LSA over BLENDWMD as can be seen in
Figure 6.5. By investigating homogeneity and completeness individually,
that is the components of V-measure, we find that homogeneity particularly
favors LSA while BLENDWMD wins in completeness. This speaks well
for LSA since homogeneity is for our purposes more desirable. However,
BLENDWMD overtakes it in homogeneity as well at about 750 clusters.
The homogeneity and completeness scores can be seen in detail in Figure 6.6.
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Figure 6.5: The performance of BLENDWMD, LSA, and WMD
by V-measure. Homogeneity and completeness are weighted evenly.
Note the disagreement with ARI.

Figure 6.6: The homogeneity (left) and completeness (right) of the
clusterings produced by BLENDWMD, LSA, and WMD.
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7 Discovering topics
Our primary goal is to extract from a dataset of Slack messages a number of
topics, that correctly and informatively represent the contents of the dataset.
Conventional topic models, such as LDA, are typically able to produce such
topics. However, the messages in the dataset are very short on average, which
cause a data sparsity issue. In order to alleviate the sparsity problem, we use
a data combination scheme based on certain assumptions about the Slack
data. In the previous section, we noted that there are implicit structures
in instant messages, and explored the problem of detecting these structures
which we call discussions. In this section, the discussions are leveraged in
topic modeling as a data combination scheme.

The hypothesis is that LDA will produce a better topic model from
the smaller but less sparse dataset of clusters produced by the discussion
detection algorithm, than from the raw dataset of individual messages. LDA
assumes that the documents are independent of each other, which is not true
of instant messages. Instead, instant messages form threads, or discussions,
which may be both explicitly and implicitly presents in the data. Since the
messages in the same discussion are heavily dependent on each other, and
messages in different discussions are not, it is justifiable to segment the text
into discussions rather than individual messages. Hypothetically the better
segmentation will lead to a better topic model. However, the detection of
implicit discussions is not perfect, and will therefore add some noise to the
dataset. In the worst case, this may mean that any benefits of the better
segmentation are countered by the added noisiness.

7.1 Approach

The models considered in this section are all LDA models, which differ only in
the segmentation of the text data. The same preprocessing and tokenization
are used. In the preprocessing stage, the data is cleaned by removing emojis
and the various formatting tokens used by Slack. In the tokenization step,
the messages are divided into unigram tokens, with phrase detection. Very
rare and very common terms are filtered out, according to the same criteria
which were specified in Section 6.2.1. The input of LDA model training
algorithm is a term-document matrix; the term weights are counts.

7.1.1 Baseline model

In order to evaluate the effect of data combination on the quality of model,
the models that use data combination are compared to a rudimentary baseline
model. The baseline LDA model is trained on the individual messages; that
is, each row in the document-term matrix represents a single message. It
does not leverage the metadata in any way, nor is the data expanded with
any additional information. The baseline model is denoted BASELINE.
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7.1.2 Discussion-based models

In the discussion-based models, The clustering models presented in Section
6 are leveraged as a data combination scheme. LDA is applied to clusters
of messages instead of individual messages. First, the data is clustered and
word counts for each cluster are counted to form a cluster-term matrix. This
is equivalent to concatenating the documents in the clusters to form a new
document, and computing a document-term matrix for it. Finally, an LDA
model is trained on the cluster-term matrix.

Based on the findings presented in the previous section, the best-performing
clustering models, BLENDWMD and WMD, were selected to be used in
the topic modeling task. The discussion-based models are denoted in this
section by their respective clustering models.

In addition to the number of topics, the discussion-based models also
require us to choose the number of clusters. Based on the performance
in the discussion detection task, as well as brief experimentation in the
topic modeling task, the number of clusters is set to 1000 for the dataset in
question. However, the model does not seem to be particularly sensitive to
the number of clusters.

7.2 Results

Our ultimate goal is to gain insight on a large dataset of text documents,
which is a typical motivation for topic modeling. As discussed in Section 5.2,
the ability of a topic model to convey information about the data is often
characterized in terms of interpretability and relevance. Human evaluation,
as described in Section 5.2.2, would be ideal in such a case, but was ruled
out as too laborious. Interpretability can be measured in a fully automated
fashion with a high correlation with human judgments using a coherence
measure, but relevance can not. This leaves the evaluation presented in this
section somewhat incomplete.

Interpretability alone is not a sufficient indicator of quality in this case,
since the discussion detection algorithm incorporates external semantic infor-
mation through the word embeddings. The information in the word vectors
is reflected in the resulting topic model, giving cause for concern that the
model trades relevance for interpretability. Messages with similar words, as
determined by the embeddings, are more likely clustered together, which
then causes co-occurrences that are not present in the original data. This is
generally desirable, but may be harmful when a word is used in a context
specific way which differs from its typical meaning. The word embeddings
are learned from a very large and diverse corpus, whereas the datasets we
target are from a very specific context (the internal discussions of an IT firm).
In some cases this disparity can cause unrelated messages to be mistakenly
clustered together, particularly due to synonymy. For instance, the word
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Figure 7.1: The approximate log-likelihood of the models.

mouse quite consistently refers to the device rather than the animal in the
kind of data we are dealing with, but a synonymy problem could emerge due
to the generic word embeddings. While the data expansion is expected to
alleviate the sparsity problem, it may also introduce bias. The bias would
not hurt interpretability as the topics taken from the context of the data
would be coherent, but as to the actual content of the data they might be
irrelevant or even misleading.

We have a clear need to evaluate relevance, but as discussed earlier, fully
automated solutions with a high correlation with human judgments do not
exist. This leaves us with holdout log-likelihood as the best indicator of
overall model quality. The major shortcoming of holdout log-likelihood is
that it does not reflect interpretability, but we can measure interpretability
separately with a coherence measure.

The approximate log-likelihood of the holdout for the discussion-based
models and the baseline model are shown in Figure 7.1. The discussion-based
models score somewhat better than the baseline, although they seem to
be more sensitive to the number of topics, the BLENDWMD model in
particular. Note again, that a model’s ability to predict unseen data does
not necessarily mean the model produces interpretable or meaningful topics.

In Figure 7.2 we see the coherence scores of the BLENDWMD and
BASELINE models, plotted by the number of topics. The coherence
measure used is the CV measure, as presented in Section 5.2.3, which has
been found to have the strongest correlation with human judgments. The
probabilities are estimated from the English Wikipedia, using the same
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Figure 7.2: The coherence scores of the models, plotted by the number
of topics

preprocessing and tokenization algorithms as in the topic model training.
The BLENDWMD model performs clearly better, particularly when the
number of topics is lower than 40. However the BLENDWMD model does
not seem to be very robust to the number of topics, as evidenced by the
sudden drop in performance at about 45 topics. The BASELINE model
fluctuates less wildly; this can be seen with approximate log-likelihood as
well.

In Figures 7.3 and 7.4, the top topics produced by the BASELINE
and BLENDWMD models are presented. 10 largest topics by marginal
probability are shown for each model, and for each topic, 10 most probable
words are shown along with their relative probabilities in the topic-word
distribution. The individual topics for each model are denoted BASELINE#1
to BASELINE#10 and BLEND#1 to BLEND#10 respectively. One can
immediately see that neither the topics produced by the BASELINE nor
the BLENDWMD model are particularly easily interpretable. Some of the
topics produced by BLENDWMD are interpretable, however. The topic
BLEND#7 is clearly related to web development, and the topic BLEND#8
contains terminology related to frontend development along with unrelated
terms. BLEND#4 is recognisably about business intelligence and analyt-
ics, and includes the terms hohto and näe_gofore which refer to relevant
internal projects. BLEND#2 seems to refer to a particular customer project.
BLEND#9 seems to be a composite of two distinguishable topics – shirt,
shirts, and seppo (a company mascot) refer to marketing materials, while
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salts, compromised, and perhaps memory, point towards computer security.
The other topics are less recognisable.

In summary, the discussion-based model improved the coherence of the
topic model, as well as its predictive power when measured by holdout
likelihood. We may conclude that the discussion detection based approach
produced a more interpretable model, as indicated by increased CV coherence.
We may also conclude that the discussion based approach has benefits beyond
increased interpretability, which suggests that the increased coherence does
not come entirely from a tradeoff between interpretability and relevance.
However, the overall quality of the discussion-based topic model is not very
good in objective terms, as demonstrated by the topics in Figure 7.4. Due to
the low interpretability of the topics they are not very useful in summarizing
or gaining insight on the data.

7.3 Summarizing the dataset using clustering

Ideally we would have wanted a moderate number of easily interpretable
topics that could be represented as sets of words. However, the quality
of even the best topic model proved to be too low for such summaries
to be understandable. The clustering alone proved to be more useful for
summarizing the data. This section briefly discusses using the clustering
presented in Section 6 to produce a summarizing visualization of the Slack
dataset.

Although clustering algorithms do not produce topics per se, it is possible
to use clustering for similar purposes as topic modeling. They key difference
is that cluster assignments are hard, and so a cluster always represents only a
specific part of the dataset, while topics may represent more general aspects
of the data. Hierarchical clustering has the benefit of producing a cluster tree
instead of a flat clustering. The whole tree can be leveraged in visualization.

Figure 7.5 shows a screenshot of a visualization tool that was imple-
mented on the basis of the BLENDWMD clustering model. It presents
the hierarchical clustering using a visualization known as a circle pack or
a circular treemap. The original binary tree produced by the clustering
algorithm has been flattened so that each level has an appropriate number
of clusters for the visualization. Each circle in the circle pack represents a
cluster, and the size of the circle is relative to the size of the cluster. The
user may zoom into a cluster to see its sub-clusters, all the way down to the
individual messages.

The most significant problem with the clustering approach is that there
is no natural way of presenting the cluster contents. One might use statistics
like term frequencies or TF-IDFs, but these do not accurately reflect why
the documents were clustered as they were, and may therefore be misleading.
Sharing terms will make documents more likely to be clustered together, but
so will similar but distinct words. A term that does not appear frequently in
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Figure 7.3: The top topics produced by the BASELINE model, represented
by their most probable words.
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Figure 7.4: The top topics produced by the BLEND model.
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Figure 7.5: A screenshot of the visualization tool that was imple-
mented using the clustering algorithm presented in Section 6. Pic-
tured is a single cluster with subclusters and their word cloud sum-
maries. (Note that some words have been redacted, hence the black
blocks.)
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a cluster as a whole may still have a strong effect on a particular document
being assigned to that cluster. Simple term statistics may therefore make a
cluster look far more specific than it actually is.

In the visualization shown in Figure 7.5, cluster contents are summarized
using word clouds, where the size and color of a word is relative to the word’s
relevance to the cluster. The relevance is based on the aggregate weights
of the terms in the cluster. To alleviate the aforementioned issues with
summarizing a cluster in such a way, the term weights are scaled according
to the term’s similarity to a mean vector using the word embeddings. This is
an ad hoc solution however, and the choice over using simply the aggregate
term weights, word frequencies, or any other method is simply a matter of
taste. The clustering algorithm is based purely on the document distances,
and lacks any knowledge of the individual terms. Therefore estimating the
effects of individual terms on the clustering is a complicated affair.

The clustering and topic modeling approaches are rather different, and a
proper comparison between the approaches would have to be done through
user studies, which is beyond the scope of this thesis. The two approaches
should be seen as complementary, particularly as the clustering is useful in
improving the topic model as well.

8 Conclusions
Data from the Slack instant messaging platform is a potential source of
valuable insight, but the data is difficult to analyze using typical NLP
techniques. This is due to data sparsity issues caused by the shortness of
typical Slack messages. We noted however, that there are both explicit and
implicit structures in the Slack data which may be leveraged to alleviate the
issues caused by data sparsity.

The purpose of this thesis was to discover topics in a dataset of Slack
messages. Conventional topic modeling methods run into trouble with sparse
data however, as evidenced by the poor performance of the baseline model
presented in Section 7. The proposed solution involves an auxiliary task of
detecting discussions, or implicit threads, in the message stream. A solution
based on hierarchical clustering and word embeddings was introduced in
Section 6.

An LDA topic model was then trained on the clusters. The discussion-
based topic model showed improvement over the baseline model in coherence
and approximate holdout log-likelihood. However, the overall quality of the
topics remained low. A purely clustering-based approach for summarizing
was presented as a complementary solution.
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