
Using Reinforcement Learning and Task Decomposition for
Learning to Play Doom

Ivan Kropotov

Helsinki June 5, 2020

UNIVERSITY OF HELSINKI
Master’s Programme in Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/328853793?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Faculty of Science Study Programme in Computer Science

Ivan Kropotov

Using Reinforcement Learning and Task Decomposition for Learning to Play Doom

June 5, 2020 49 pages + 0 appendices

reinforcement learning, modular reinforcement learning, multi-objective reinforcement learning

Thesis for the Algorithms study track

Reinforcement learning (RL) is a basic machine learning method, which has recently gained in
popularity. As the field matures, RL methods are being applied on progressively more complex
problems. This leads to need to design increasingly more complicated models, which are difficult
to train and apply in practice.

This thesis explores one potential way of solving the problem with large and slow RL models, which
is using a modular approach to build the models. The idea behind this approach is to decompose the
main task into smaller subtasks and have separate modules each of which concentrates on solving
a single subtask. In more detail, the proposed agent will be built using the Q-decomposition
algorithm, which provides a simple and robust algorithm for building modular RL agents. The
problem we use as an example of usefulness of the modular approach is a simplified version of the
video game Doom and we design a RL agent that learns to play it.

The empirical results indicate that the proposed model is able to learn to play the simplified version
of Doom on a reasonable level, but not perfectly. Additionally, we show that the proposed model
might suffer from usage of too simple models for solving the subtasks. Nevertheless, taken as a
whole the results and the experience of designing the agent show that the modular approach for
RL is a promising way forward and warrants further exploration.

ACM Computing Classification System (CCS):
Computing methodologies → Machine learning → Learning paradigms → Reinforcement learning
Computing methodologies → Machine learning → Machine learning algorithms
Computing methodologies → Artificial intelligence → Distributed artificial intelligence → Cooper-
ation and coordination

Tiedekunta — Fakultet — Faculty Koulutusohjelma — Studieprogram — Study Programme

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Ohjaajat — Handledare — Supervisors

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

ii

Contents

1 Introduction 1

2 Reinforcement Learning 3

2.1 The Reinforcement Learning Setting 3

2.2 Rewards and Policies . 4

2.3 Exploration-exploitation Dilemma . 6

2.4 RL Algorithms . 7

2.4.1 Q-learning . 7

2.4.2 Sarsa . 8

2.5 Function Approximation in RL . 9

2.5.1 Linear Function Approximation 10

2.5.2 Other Function Approximation Methods 11

3 Modular Reinforcement Learning 11

3.1 Motivation . 12

3.2 Definitions . 12

3.3 Representative Approaches . 13

3.4 Q-decomposition . 14

4 Video Games as Research Platforms for AI 15

4.1 Motivation . 15

4.2 Overview of Video Game Research Platforms 16

4.3 ViZDoom . 17

4.4 Doom . 18

4.5 Previous Doom Agents . 18

5 Agent Architecture 19

5.1 State Representation . 20

5.1.1 Object Grid Representation 21

5.1.2 Distance Grid Representation 22

5.2 Object-Based Modules . 22

5.3 Area Exploration Module . 25

6 Experimental Setup 26

iii

6.1 Task Description . 27

6.2 Training and Testing Environments 27

6.3 Training Procedure . 29

7 Results 30

7.1 Performance on the Training Environments 31

7.2 Performance on the Validation Environment 36

7.3 Visual Inspection of Trained Agent Performance 38

8 Analysis of Q-decomposition Performance 39

8.1 Performance Comparison of Different Training Methods 39

8.2 Analysis of the Performance Drop Caused by Finetuning 40

8.3 Shortcomings of the Proposed Agent 42

8.4 Practical Considerations When Using Q-decomposition 44

9 Conclusion and Future Work 45

1

1 Introduction

Reinforcement learning (RL) is a machine learning approach, were the goal is to learn
how to solve a problem by interacting with the environment and trying to maximize
the received numerical feedback [33]. This approach has had many successes in recent
years, with applications ranging anywhere from robotic manipulation [9] to playing
video games [13, 19, 25]. These accomplishments were typically achieved using single
monolithic learning systems, that were trained end-to-end on a single task. However,
once the focus moves onto more and more complex problems, traditional learning
systems may not be enough to cope with them in large part due to the curse of
dimensionality.

The curse of dimensionality in RL means that the state space of the problem grows
increasingly fast as the task gets more complicated. To illustrate this, we can think
of a binary vector representation of a state, with two, four and sixteen features. Now,
with two features we would end up with 22 = 4 states, with four features we would
have 24 = 16 states, with sixteen features 216 = 65536 states and so on. Naturally,
when the state space is large representing it and searching in it becomes increasingly
difficult or even infeasible. Consequently, large state spaces necessitate the usage of
function approximation, which may lead to further optimization difficulties as the
interesting functions may be very difficult to learn due to their shapes. Dividing
a large problem into smaller, more manageable, parts is a standard approach in
computer science, which may be a potential solution to building learning systems
for increasingly complex tasks.

The idea to divide RL problems into smaller pieces is not new and has been previ-
ously done in various ways. These methods can be roughly divided into two classes.
The first one is hierarchical reinforcement learning (HRL), where the task is di-
vided into hierarchy of temporally abstracted (macro-)actions, i.e. we allow actions
to take multiple time steps and consist of smaller actions [34]. The other way is
sometimes referred to as modular reinforcement learning (MRL) where the idea is
to decompose the original task into subtasks, use a separate model learn to solve
each of the subtasks and then to combine the learned behaviors in some meaningful
way [12, 26, 28, 31]. In this setting separately doesn’t necessarily mean that the
subtasks are optimized individually, and often learning happens in parallel.

Reinforcement learning techniques have traditionally been evaluated on simple toy
problems to show their correctness and performance. However, to truly appreci-
ate the benefits of more modular approaches and to evaluate the applicability and
limits of these methods in real life tasks, the problems to be solved should be com-
plex enough. In other words, while toy problems are extremely useful in research,
these results may correlate poorly with applicability and performance on real world
problems, due to a toy problem’s contrived nature and possible research bias in the
experiment setting. To battle the shortcomings of the simplest of toy problems,
video games have been proposed, and used, as a test platform for reinforcement
learning and AI research in general [4, 10, 17, 19, 23, 25]. Usage of video games in
research is motivated by them having many desirable properties for a test platform:

2

1) Video games are easy to run on computers, which makes experimenting cheaper
and easier, 2) One can find a video game of any desired difficulty and complexity, 3)
Video games are designed to be played and enjoyed by humans and primarily not
as an experiment, which means that the task is complex enough to be difficult for
humans and additionally might help in alleviating the research bias.

Some of the popular testing platforms based on video games are the Arcade Learning
Environment (ALE) [4], where the task is to play various classic Atari arcade games,
and ViZDoom [17], where the agent must learn different tasks in an environment with
dynamics from a video game called Doom. Among these and other current video
game-based research platforms, the ViZDoom platform provides a very complex
problem, which makes it an interesting case for RL research.

In this thesis, we will explore one way to transition towards a more modular ap-
proach for RL models, where each module would have its own state representation,
potentially coming from a separate ML model, and concentrate on solving one prob-
lem well. To do this a modular RL agent for playing a simplified version of the
original Doom will be presented. Doom was chosen as the main task, because in
our opinion the problem must be complex and varying enough to truly see the ben-
efits of MRL, and Doom happens to provide such task in a convenient way via the
ViZDoom library [17]. More specifically, a model based on the Q-decomposition al-
gorithm [28, 32] is designed and implemented. This algorithm was chosen due to its
simplicity as well as theoretical guarantees of its convergence and optimality [28].
The proposed model comprises of modules that solve specific subtasks, e.g. combat,
navigation, item gathering, etc., and a way for choosing which action to perform.
Each module will have their own reward signal and state abstraction function to
reduce the state space and make the subtasks easier to learn.

Additionally, we also explore a few different ways such modular RL agent could
be trained so that the process would be more efficient and produce better results.
These proposed training methods mainly concentrate on pretraining the modules
separately and then finetune them all together, which should reduce the total train-
ing time as the individual module pretraining can be done in parallel.

The thesis is structured in the following way. We begin by introducing reinforce-
ment learning together with the related concepts and issues, including two basic
algorithms, in the Section 2. Section 3 introduces modular reinforcement learning
and the motivation behind it, provides a short overview of related approaches and
introduces the central algorithm of this thesis called Q-decomposition. Section 4
tells about using video games for AI research, explains the video game Doom and
motivates its usage in this work. The architecture of the proposed Doom playing
agent, i.e. modules, rewards functions and state representations, is presented in de-
tail in the Section 5. Section 6 describes the final task that the agent must learn and
provides a detailed description of the how the agent will be trained. The detailed
results of the performance of the proposed agent are presented in the Section 7. Sec-
tion 8 analyses the gathered results and provides some explanations to the questions
raised by them. Finally, Section 9 contains the final thoughts and outlines potential

3

directions for the future work.

2 Reinforcement Learning

In this section reinforcement learning and related topics are introduced. The section
starts by introducing and defining reinforcement learning in general after which some
of the related concepts are introduced in more detail. After this two relevant RL
algorithms, Q-learning [38] and Sarsa [27], are presented and in the end of the
section we explain function approximation methods in RL at a level needed for
understanding the rest of the thesis.

Reinforcement learning (RL) is a machine learning paradigm that focuses on learning
from interaction. The problem we are trying to solve is how to learn action strategies,
or policies, to reach the goal while being in a potentially unknown environment. The
difficulty is that a priori we do not know the outcome of the actions and whether
they are good or bad from the perspective of reaching the goal. However, we do get
some feedback that tells us something about the outcome of the chosen action after
it has been executed.

The inspiration for reinforcement learning comes from the field of psychology, where
the idea of trial-and-error learning is from. Some of the methods are also inspired by
concepts taken from neuroscience, and conversely some of the reinforcement learn-
ing algorithms have found uses in that field. Additionally, reinforcement learning is
closely related to dynamic programming and optimal control. For a thorough intro-
duction to reinforcement learning, including the history of the field, see e.g. Sutton
and Barto [33].

2.1 The Reinforcement Learning Setting

Reinforcement learning setting can be thought of as having two interacting entities:
the agent and the environment. The agent is the one that actively acts in the
environment by modifying its state by taking actions. The environment on the
other hand contains everything that the agent cannot change arbitrarily and reacts
to the agent’s actions by changing its state and providing feedback.

To make the idea clearer, we can think of a now popular self-driving cars as an
example. Our task is then to design an agent that can drive a car from one place
to another. In this example the agent would be the computer that can turn the
wheel and press the pedals. The environment is everything else, including the car,
since the agent cannot for example set the speed of the car in an arbitrary way, but
the wanted pace must be reached by a sequence of appropriate gas or brake pedal
presses and waiting for the physical state of the car to change.

Now, the basic interaction loop between the agent and the environment is very
simple. In discrete time case, at each timestep t the agent gets an observation of
the current state of the environment st and chooses some action at. After the action

4

has been executed, the environment reacts to it and changes its state. Finally the
environment gives the agent a numerical feedback, called reward, rt+1 and the new
state st+1 that resulted from the agent’s action.

As for most problems in science, it is very useful to have a mathematical model of the
problem. For reinforcement learning problems the model that is almost universally
used is called (finite) Markov decision process (MDP) [11]. Formally MDP is defined
as a tuple (S,A, δ, R), where

• S is a finite set of states.

• A is a finite set of actions.

• δ : S × A × S → [0, 1] is a (stochastic) transition function, which tells the
probability of moving from state s to state s′ after choosing an action a.

• R : S × A× S → R is a reward function which associates a scalar number to
a state transition.

The main assumption behind the MDP model is that the state transition has a
Markov property, i.e. that the next state is fully defined by the current state and
the chosen action. The Markov assumption is quite a strong one and unfortunately
doesn’t hold on most of the interesting problems. Nevertheless, MDPs are have been
shown to be a very useful tool for both theoretical analysis and building practical
algorithms.

The usefulness of the, MDP model is emphasized by its abstractness and flexibility
for modeling RL problems with different assumptions. The way we have defined
MDP above is for the most basic discrete and fully observable cases. However, the
formalism can be extended to cover continuous state and action spaces, partially ob-
servable environments (POMDP) [2] and multi-objective problems (MOMDP) [26],
as we will see and use later in section 3.

2.2 Rewards and Policies

The overall setting of reinforcement learning is quite simple and intuitive, but how
exactly do we make the agent do what we want? In RL there is an underlying
assumption, called the reward hypothesis. This hypothesis states "That all of what
we mean by goals and purposes can be well thought of as maximization of the expected
value of the cumulative sum of a received scalar signal (reward)" [33].

Using the reward hypothesis, all goals for RL agents are defined by the given reward
signal. The reward must define which outcomes are favorable and which should
be avoided from a perspective of reaching the goal. For example, continuing with
the self-driving car problem, we could give a positive reward to the agent when the
car reaches its destination and give a large negative reward if the car crashes into
something. By trying to maximize the reward given this way, the agent will learn

5

how to get to the set destination without crashing, which is exactly the goal we set
for the agent.

So, the goal of a reinforcement learning task is defined as maximization of the
cumulative reward. To formalize this idea, we introduce the (discounted) return Gt,
which is the sum of rewards starting from timestep t

Gt =
T∑
k=0

γkrt+k. (1)

In this definition T is the final timestep, i.e. the timestep when the terminal state
is entered, and an episode ends. This of course only makes sense for episodic tasks,
or continuous tasks where we only want to optimize for a finite horizon. However,
this leads to poorly defined return if the interaction doesn’t end, since if T =∞ the
return could become unbounded. To remove this possibility we have the discount
factor γ ∈ [0, 1]. It controls the current value of future rewards with γ = 0 meaning
that only the next reward is taken into account and increasing discount rate results
in agent taking future actions more into consideration. By disallowing setting both
T =∞ and γ = 1 we have a well-defined notion of return. In practice the return in
both episodic and continuous task is written with T =∞ and adding an absorbing
state which is entered from terminal state from which any action results to returning
to the terminal state with a reward of zero.

The purpose of learning in RL is to find a strategy of choosing the actions so that
the cumulative reward is maximized. In RL such strategy is called a policy π and it
is a mapping from state to actions, or to action probabilities. Formally a policy is
a function π : S × A → [0, 1], which for a given state returns the probability of an
action, which in deterministic case is zero for all but one of the actions.

For a given policy π we can then define value functions that describe the expected
consequences of being in a state via the expected reward. Two of the most important
value functions are state-value functions V π and action-value functions Qπ.

Informally the state-value function expresses how good a given state is from a per-
spective of solving the task. Formally, a state-value function V π for a policy π gives
the expected return when starting in a state s and following the policy π afterwards:

V π(s) = Eπ [Gt|st = s] = Eπ

[
∞∑
k=0

γkrt+k

∣∣∣∣∣st = s

]
. (2)

The action-value function, also known as state-action-value function and Q-function,
is similar to state-value function, but it tells us the desirability of an action in a
given state instead of desirability of a state. Formally, the action-value function for
a state-action pair (s, a) is the expected return after choosing an action a in the
state s and following policy π thereafter:

6

Qπ(s, a) = Eπ [Gt|st = s, at = a] = Eπ

[
∞∑
k=0

γkrt+k

∣∣∣∣∣st = s, at = a

]
. (3)

As we have stated before, solving a reinforcement learning problem means finding
an optimal policy π∗ that maximizes the expected discounted cumulative reward
E [Gt]. Since value functions define a partial ordering over policies with a policy π
being better π′ when Vπ(s) ≥ Vπ′(s) ∀s ∈ S, we can define the optimal state-action
function as

V ∗(s) = max
π

V π(s) (4)

and equivalently optimal action-value function as

Q∗(s) = max
π

Qπ(s, a). (5)

Now, we can find an optimal policy by first finding an optimal value function and the
acting greedily with respect to it, i.e. we always choose the action that has the largest
action-value in each state. This is called action-value method because the resulting
policy is defined by the learned value functions. The relevant algorithms for finding
optimal policies, which fall under the action-value methods, will be introduced in
section 2.4. Naturally, there are other approaches to RL, like policy gradient, but
these are out of scope of this thesis.

2.3 Exploration-exploitation Dilemma

At the heart of RL is the idea of learning from interactions, but how to interact in a
way to get enough information is not straightforward. On one hand we would like to
explore a lot to see as many states as possible so that we wouldn’t miss any promising
ones. On the other hand, pure exploration will lead to a policy that often chooses
non-optimal actions, which is not desirable from a point of view of achieving a good
performance in the task. This leads to a problem called exploration-exploitation
dilemma, which means that we must somehow balance exploring new states and
exploiting already learned knowledge to find a good solution.

Obviously, we want the learned policy to be such that exploits its knowledge as
much as possible while still looking for new, better ways of achieving its goal. So,
we would like to have our policy to stay explorative, but such policy cannot be
optimal in general. However, we are always learning about a policy that we are
following, which leads us to a problem where we would like to act according to an
explorative policy but learn about the optimal one.

In RL there are two ways of approaching this problem. The first one is to use a
single policy and bake exploration into it, so that the policy is close to optimal but

7

still explores a bit. This method is called on-policy learning, because in it the policy
that is learned about is the same that is used to choose the actions.

The other approach is to use one, exploratory, policy for choosing the actions, called
behavior policy, and another policy that we are actually trying to learn, called
target policy. This is called off-policy learning, since we are learning about one
policy using the data collected from following another policy. Off-policy learning
might seem superior to on-policy learning, and indeed it is in some respects like in
ability of using any policy for data generation. However, off-policy methods also
typically have larger variance, slower convergence and in some cases even divergence
(see Deadly Triad [33]). Additionally, for some problems on-policy methods are just
better suited, one example of which will be seen further in the thesis (Section 3.2).

Exploration in both off and on-policy methods is often achieved using an ε-greedy
strategy. The idea of the method is quite simple, given a small ε ∈ [0, 1] the agent
chooses the greedy action with probability of 1− ε and a random action with prob-
ability of ε. This rule has the effect of the agent trying some non-optimal actions
even though it acts greedily most of the time. Often, the ε term is reduced as the
learning goes on, so that the agent would concentrate more on exploitation rather
than exploration as the training progresses.

To illustrate the differences between on-policy and off-policy learning we can once
again think of the car driving example. If we would use on-policy learning, we would
have to gather the data and behave using the same policy, which sometimes may
make a non-optimal exploratory action. However, the agent is aware of this and
will learn to compensate for such behavior. On the other hand, if we use off-policy
learning, we could use any driving data available to us, e.g. from other human
drivers, and improve our policy using that data.

2.4 RL Algorithms

During the last few decades of RL research many different algorithms have been
developed. In this section two algorithms, Sarsa and Q-learning, are introduced
that are important for the methods developed in the subsequent chapters. Both
algorithms are based on action-values and are model-free, which means that they do
not use a model of the transition dynamics of the environment. Algorithms in this
chapters are also assumed to be tabular, in other words the action-value function
can be represented as a table of |S| rows and |A| columns, i.e. each row represents
the estimate of action-value function for one state and each action.

2.4.1 Q-learning

We will start with perhaps one of the most widely known RL algorithms called
Q-learning [38]. This is an off-policy model-free algorithm that approximates the
optimal action-value function Q∗. The algorithm is quite simple: at each timestep
the agent chooses an action a, transitions from the current state s to the next state

8

Algorithm 1: Q-learning
1 Initialize Q(s, a) for all pairs (s, a) and initialize the first state s
2 repeat
3 Choose a using ε-greedy rule
4 Observe r, s′
5 Q(s, a) = Q(s, a) + α [r + γmaxa′ Q(s

′, a′)−Q(s, a)]
6 s← s′

7 until s is terminal

s′, receives reward r and updates the estimate of the action-value function of the
current state s according to the Q-learning update rule:

Q(s, a) = Q(s, a) + α
[
rt + γmax

a′
Q(s′, a′)−Q(s, a)

]
, (6)

where γ is the discount rate and α ∈]0, 1] is the learning rate (sometimes called step
size). Pseudocode of the algorithm is shown as Algorithm 1.

In the equation (6) the quantity rt + γmaxa′ Q(s
′, a′) − Q(s, a) is called temporal

difference (TD) error. It measures the error between the current value function
estimate Q(s, a) and the more recent and accurate one rt + γmaxa′ Q(s

′, a′), which
is sometimes called TD target. Intuitively the algorithm iteratively updates the
estimate of the action-value function by pushing the estimate towards the TD target
with the intensity of the update controlled by the learning rate.

The exploration policy in Q-learning is typically just an ε-greedy strategy with
respect to the current estimate of action-values. The target policy is then such,
where ε = 0.

Q-learning has a nice property of provably converging to an optimal policy in tabular
case [39]. The policy found by the algorithm converges to an optimal policy in the
limit as long as learning rate satisfies Robbins-Monro conditions and all the state-
action pairs are visited infinitely often in the limit, i.e. Qt(s, a)→ Q∗(s, a) as t→∞
if α decays appropriately.

2.4.2 Sarsa

Another widely known RL algorithm is Sarsa [27]. Like Q-learning, Sarsa is a action-
value based and model-free algorithm, but it is on-policy instead of off-policy. The
origin of the algorithm’s name is related to its update rule, since for the update it
uses current state s, current action a, the reward gained from transition r, next state
s′ as well as the next action a′, whose symbols combined form the name Sarsa. The
Sarsa update rule is quite similar to Q-learning with a difference that it also uses
the next action for the update, which is chosen by the current policy thus making
the algorithm on-policy:

9

Algorithm 2: Sarsa
1 Initialize Q(s, a) for all pairs (s, a) and initialize the first state s
2 Choose a based on s using ε-greedy rule
3 repeat
4 Observe r, s′
5 Choose a′ based on s′ using ε-greedy rule
6 Q(s, a) = Q(s, a) + α [r + γQ(s′, a′)−Q(s, a)]
7 s← s′, a← a′

8 until s is terminal

Q(s, a) = Q(s, a) + α [rt + γQ(s′, a′)−Q(s, a)] . (7)

So, instead of taking the best possible, i.e. greedy, action from the next state,
this algorithm uses the estimate that results from the action that will actually be
taken as determined by the behavior policy. The pseudocode for Sarsa is shown as
Algorithm 2.

Sarsa also provably converges to an optimal action-value function in tabular case [27].
The conditions for convergence are similar to Q-learning, i.e. state-action pairs are
visited infinitely often and learning rate decays fast enough, but with additional
condition that the policy must become greedy in the limit, i.e. the exploration rate
must diminish as the learning goes on.

2.5 Function Approximation in RL

The tabular methods introduced in the previous chapter have many nice properties:
they are simple and easy to prove theoretical results on. Additionally, they work
very well on simple problems and provide the most precise value functions for the
problems they can be used on. However, it is easy to see that using tabular methods
on larger and more complicated problems is not feasible, since the state and/or action
spaces will grow fast.

The obvious consequence of the growth of the state space is that at some point
we will run out of memory to hold the value-functions in. Another, perhaps even
more important aspect, is that as the state space grows the agent must visit an
increasing number of states in order to learn good value function. Ultimately visiting
all of the states enough times, or even visiting all of them at least once, becomes
computationally very costly and eventually intractable. To battle this problem, we
need a way to generalize the knowledge gathered from the visited states to new,
similar states.

This generalization can be achieved using function approximation, which has been
successfully used in RL. The goal of function approximation is to find a function
that resembles the target function as much as possible. The function used for ap-

10

proximation is usually chosen from some family of parameterized functions, so the
goal is often to find the right parameters.

In RL function approximation is typically used to find a parameterized approxi-
mation to a value-function, i.e. to find some parameters θ s.t. fθ(s) ≈ V (s) for
all states s. Because the number of parameters is typically much smaller than the
number of states, changes to the parameters often affect values of multiple states,
that are hopefully similar, through which the generalization effect is achieved.

2.5.1 Linear Function Approximation

The simplest function approximation scheme, that will be extensively used in this
thesis, is linear function approximation (LFA). In this method, we must define a
feature vector for each state x(s) ∈ Rn, that describes the state, and a weight vector
w ∈ Rn, which the agent must learn. Now the value function, e.g. state-value
function, is approximated by the inner product between the weight and feature
vectors:

V̂ (s,w) = wTx(s), (8)

where the parameter w signifies that the state-value function approximation is pa-
rameterized by the weight vector w.

The weights of the linear function are often optimized using stochastic gradient
descent (SGD), because it is simple and effective method. In SGD we iteratively
update the weights in the direction of the steepest decent, which is the negative
gradient of some loss function. The stochastic part of SGD come from the fact that
the gradient is calculated based on a random sample from the data distribution,
which is often useful as it is impossible to compute the gradient using all the data
points.

In particular, when using linear function approximation the gradient w.r.t. the
weights of the approximate value function is really simple: ∇V̂ (s,w) = x(s). As
an illustrative example, here is the Sarsa update rule from Equation (7) with linear
approximation:

w = w + α
[
rt + γQ̂(s′, a′,w)− Q̂(s, a,w)

]
∇Q̂(s, a,w)

= w + α
[
rt + γwTx(s′, a′)−wTx(s, a)

]
x(s, a). (9)

Linear function approximation is a very compelling method due to its simplicity,
but at the same time that simplicity makes it quite limited. The reason for that is
that in this method the feature vectors are assumed to be independent, which means
that any interaction between the features is not accounted for. Interactions can be
modeled with careful function construction, e.g. using polynomial basis where the
interaction between features xi and xj can be modeled by adding xixj as a feature

11

to the feature vector. There are of course many other ways to construct features for
linear approximation ranging from coarse coding to Fourier basis and combinations
of those (see e.g. [8, 18]). However, these methods are far from automatic, and
the feature selection and construction must be done carefully, which means that it
usually takes a lot of effort to engineer the right state representation.

2.5.2 Other Function Approximation Methods

Another popular function approximation technique is artificial neural network (ANN)
which is a non-linear function approximator and thus more powerful than linear func-
tion approximator introduced previously. The topic of ANNs and their usage in RL
is very broad one and goes beyond the scope of this thesis. However, it is still useful
to introduce them as they are very popular at the moment and their computational
complexity serves as a motivation to using simpler methods.

An early and notable success in using ANNs with RL is due to Tesauro who used
multilayer ANNs to teach an agent how to play a game of backgammon with minimal
prior knowledge already in the 1990’s [35, 36]. More recently the success stories of
using deep neural networks with RL, e.g. learning to play classic Atari games from
raw visual information [25] and learning to play Go [29, 30], have reinvigorated the
research in the field. The widespread usage of deep ANNs has been motivated not
only by their non-linearity but also by the ability of deep neural networks to perform
a kind of automatic feature extraction from the raw input, which potentially makes
it easier to design the features.

However, on the downside ANNs are computationally very demanding and typi-
cally require extremely large amount of data and time to learn, which is not very
surprising as these are very flexible models. This leads to the problem with sam-
ple inefficiency, i.e. deep RL methods require enormous amounts of interactions to
learn, e.g. millions in Atari games [25], which makes them difficult to use in many
practical applications.

Other types of function approximation have been used as well, including nonpara-
metric methods, but unfortunately all these methods are out of scope of this thesis.
A short review of different function approximation methods used for RL can be
found for example in in [33].

3 Modular Reinforcement Learning

In this section modular reinforcement learning is introduced and its connection
to multi-objective reinforcement learning is illustrated. Some representative ap-
proaches are described together with an introduction of the Q-decomposition algo-
rithm that is in the main component of the Doom playing agent that is proposed
this thesis.

12

3.1 Motivation

As mentioned before, one of the main problems with RL is the curse of dimen-
sionality, which arises from having either a large state space, action space or both.
One way to try to reduce the problem with large state spaces is to somehow reduce
their sizes. Obviously, one could just remove some features from the states, but
this would lead to diminished performance especially if we assume that the states
already mostly contain only crucial information needed for solving the task. How-
ever, if we assume that the task can be decomposed into a number of subtasks, so
that each subtask doesn’t require all of the available information. Then we can use
only a subset of features for solving each subtask, since we can ignore the features
a subtask doesn’t depend on.

For example, say that we want to build an AI whose goal is to drive a car to some
destination as fast as possible while following the traffic rules. This task could be
decomposed into two tasks DriveFast and FollowRules. Now, DriveFast agent
wouldn’t need to pay attention to the speed limits as its only goal is to drive as fast
as possible, while FollowRules probably doesn’t need all the information provided
by the handling system of the car. In this example, we could then reduce the
state space of both subtasks by removing the features that are unneeded for solving
them. This way we get both the benefit of smaller state space and possibly an easier
function to optimize for when using function approximation, as we have potentially
less irrelevant noise terms.

3.2 Definitions

The idea of decomposition of the full task into smaller pieces is the motivation
behind an approach sometimes called modular reinforcement leaning (MRL). More
specifically, in MRL each subtask is learned by a separate module and the action
to be carried out is selected using some arbitration rule based on the outputs of
the modules in a way that should provide an optimal policy for the full task. The
term MRL itself is not very well defined in the literature and is sometimes used
interchangeably with multi-objective reinforcement learning (MORL) that is a field
which tackles problems that consist from multiple, possibly conflicting objectives [22,
26]. However, MORL is, arguably, a more general problem that includes the case of
computing a set of policies that contain an optimal policy for any prioritization of
the subtasks. Consequently, this field contains MRL as a special case: it is similar
to the known weights scenario in MORL [26]. In this work we will use MRL to mean
specifically the approaches where the idea is to reduce computational complexity of
a problem via utilization of task decomposition and having a separate agent for each
subtask.

Since MRL is so closely related to MORL, we will use the notation and some tools
from that field to give a more precise description of the MRL problem. The setting
of MRL, and MORL, is that we have decomposed our task into multiple subtasks
that each have their own reward function and possibly state representation. To

13

model this setting, we can generalize the standard MDP model from the single
objective case into multi-objective case. This model is called multi-objective MDP
(MOMDP) and differs from a standard MDP by having a vector valued reward
function R : S × A × S → Rn, where each component is a reward associated with
a subtask [26]. Since the rewards and by extension the value functions are now
vectorized, it is not clear anymore what is the best policy. This is because now we
can have a situation where for a single state one policy may have larger value for one
subtask while having smaller value for another subtask than another policy. This
means that we cannot choose between such policies unless we know the priorities
of the subtasks. To choose between tasks we can transform the vectorized value
functions into scalar ones by using a scalarization function f which encodes the
priorities among the subtasks in some way. The choice of a suitable scalarization
function is a nontrivial question but is often chosen to be a linear combination of the
vectorized value function with some weights. And indeed, all of the MRL methods
presented in this work assume that the scalarization function is linear.

3.3 Representative Approaches

There have been many proposed RL algorithms that fall under MRL approach.
Before describing the Q-decomposition algorithm in detail this section will introduce
some other relevant MRL methods and motivate the choice of Q-decomposition.

One of the simplest approaches to MRL is to use a separate switch that chooses,
using some technique, e.g. Q-learning [21, 31], the module that will be allowed to
choose the next action . In this method the switch, called arbitrator, is a RL agent
itself that has its own state space and reward function and its actions consist of
choosing among the modules. This approach has very few restrictions, e.g. we can
choose the learning algorithm(s) more freely (e.g. Sarsa or Q-learning) [31], and the
design of reward functions is easier as we do not have to assume the additive property
of reward, i.e. linear scalarization function. However, this method introduces more
design choices to consider when designing the arbitrator, which include designing
an appropriate state representation for it. In general, to choose the optimal module
for each state, the arbitrator should have all the information it needs for such a
decision, which may include all the available state features. Since our goal is to
make the tasks easier to solve via decomposition, creating a very complex arbitrator
is counterproductive. Due to this issue, it is very difficult to apply this approach to
an actual problem, since for it to make sense we should either have an extremely
large action space, choosing from which would be delegated to modules, or some
task where most of the state features are not needed for module selection. This
downside is the main reason why it was decided not to use this kind of an approach
in this work.

Humphrys [12] has explored different arbitration techniques one of which, sometimes
called modular Q-learning, is using Q-learning to learn action values for each module
and choose the action that maximizes the sum the modules’ action values (similar
approach also studied by Karlsson [16]). However this approach is problematic, as

14

discussed in [32] and [28], and can lead to a suboptimal policy. This problem, called
illusion of control, follows from the properties of the Q-learning update rule 6, due
to which each module assumes that it can choose all of the future actions. In reality,
however, the arbitrator is the one choosing the actions which leads to potentially
suboptimal policy.

To counter the illusion of control Russel & Zimdars [28] and Sprague & Ballard [32]
propose using Sarsa instead of Q-learning. Sarsa being an on-policy algorithm
doesn’t suffer from this problem, since each of the modules use the arbitrator’s
policy as the behavior policy. Moreover, Q-decomposition converges to the optimal
policy, at least in the tabular case [28]. The whole Q-decomposition algorithm is
described in detail in section 3.4.

The ideas behind Q-decomposition were later combined with artificial neural net-
works and general value functions by van Seijen et. al. [37]. This approach is quite
interesting, but was not pursued in this work, since the idea of this thesis was to use
the as simple models as possible and show that complex methods such as ANNs are
not necessary. Another notable example is the W-learning by Humphrys et.al [12].
This method while interesting was not explored here due to time limitations.

3.4 Q-decomposition

Q-decomposition is an MRL algorithm whose main idea is to simplify the agent
construction and improve task learning by decomposing the full task into subtasks
which are learned by separate modules. The name Q-decomposition is from [28] but
it is also called modular Sarsa(0), e.g. in [32]. The underlying assumption behind
the algorithm is that we have a linear scalarization function, i.e. the reward function
of the full task can be expressed as a sum of the subtasks’ rewards. As mentioned
before, this setting is equivalent to MORL with known weights.

More formally the problem is defined similarly to a standard MDP formalization,
but with addition of modules. We begin by decomposing the main task into n
subtasks, which gives us as many modules. This gives us a vector valued reward
function R : S × A × S → Rn. Now, for each module j ∈ 1, . . . , n we define the
modules’ action value function as

Qj(s, a) = E (R|s, a, π) (10)

The action selection at each state s is performed based on the action-values returned
by the modules. The selected action a is the one that has the largest combined
action-value i.e.

a = argmax
a∈A

n∑
j=1

Qj(s, a) (11)

The state-action values for each modules are learned with a standard Sarsa update

15

Algorithm 3: Q-decomposition
1 Initialize Qj(s, a) for all pairs (s, a) and modules j and initialize the first state s
2 Choose a based on s using ε-greedy rule
3 repeat
4 Observe r, s′
5 for a′ ∈ A do
6 Q(s′, a′) =

∑n
j=1Qj(s

′, a′)

7 end
8 Choose a′ based on s′ using ε-greedy rule based on Q(s′, a′)
9 for module j ∈ 1, . . . , n do

10 Qj(s, a) = Qj(s, a) + α [r + γQj(s
′, a′)−Qj(s, a)]

11 end
12 s← s′, a← a′

13 until s is terminal

rule (7) adapted for multiple modules,

Qj(s, a) = (1− α)Qj(s, a) + α (r(s, a, s′) + γQj(s
′, a′)) (12)

where the next action s′ is the actual action chosen by the arbitrator using (11).
The usage of an on-policy update rule like Sarsa, which uses the actual reward
chosen by the arbitrator for action-value update, removes the illusion of control
present in Q-learning. In tabular case Q-decomposition has the same optimality
and convergence guarantees as standard Sarsa, i.e. it will converge to the optimal
policy with the standard conditions [28]. The pseudocode for the Q-decomposition
is shown as Algorithm 3.

4 Video Games as Research Platforms for AI

This section explains motivation behind usage of video games in AI research as well
as introduces some notable examples. Here we will also introduce the video game
Doom, which is used as the main task in this thesis as well as the library called
ViZDoom [17], which enables the interaction between the agent and the game. In
the end a few previous notable AI agents that were proposed for playing Doom are
presented.

4.1 Motivation

Development of AI algorithms requires having good benchmark problems that are
easy to experiment on while being complex enough to show that the algorithm
that is being studied is capable of solving difficult tasks. Traditionally simple toy

16

problems were used in research that were quite limited and often had to be designed
for testing a particular algorithm. While these kinds special purpose experimental
environments are undoubtedly useful in research, they are often not complex or
general enough, or are difficult to implement or build. Special purpose benchmarks
may also introduce research bias, where a researcher can (subconsciously) design an
experiment that will influence the results in a certain way.

Video games can be considered as a type of toy problems, since they are typically
heavily abstracted representations of the real world with objectives that often relate
to some real-world tasks. However, as they are designed to be played and enjoyed
by humans, games contain many complex and challenging tasks, solving which take
quite a lot of effort even from human players. Additionally, video games are designed
to be run on computers and typically have standard implementations, which makes
using them fairly straightforward. And, perhaps most importantly, video games
provide quite constrained environments, at least compared to the real world. This
enables the researchers to concentrate on solving specific problems, instead of forcing
to cope with everything that an agent could face in a real world. Furthermore, video
games often provide different settings, which change the nature of the tasks, e.g.
difficulty setting, and this can be used for starting with simpler cases and gradually
continue towards the full-fledged problems.

4.2 Overview of Video Game Research Platforms

The properties given in the previous section, make video games seem as promising
platforms for research and development of AI approaches. And indeed video games
have been used in AI research since at least the early 1980’s [23] and are continued
to be used more and more to this day with promising results [13, 19, 20, 25, 41].
To facilitate the development of AI algorithms a number of different games and
platforms based on them have been proposed. Some of the more notable ones are
presented here, among other things to serve as a comparison to ViZDoom which is
introduced in section 4.3.

Currently, perhaps the most widely known video game based research platform is
the Arcade Learning Environment (ALE), which provides a suite of classic Atari
2600 games [4]. This platform has a large number of games, that are very simple
and abstract and can be solved even by quite simple methods. However, it has
become the de facto benchmark for RL research, that many seminal works have
used, including the famous Deep Q-learning paper [25].

Deepmind lab [3] is a more complex research platform based on a game called Quake
III, though heavily modified. This platform provides a visually rich 3d environment
that can be used for solving various tasks including navigation and simple puzzles.

Obstacle Tower is a recently proposed benchmark for AI systems, which consists
of navigation tasks and light puzzle elements that are performed in a rich 3D en-
vironment [14]. This platform provides good API for interacting and a way of
randomizing details in the levels, which helps in avoiding overfitting and it has tasks

17

that require memorization. However, this is not strictly a video game platform but
rather "game-inspired", since it is not based on any existing video game.

Lastly, roguelikes, which is a genre of very challenging games with high degree
of randomness, have been used for testing AI algorithms since at least the 1980’s
[23]. Recently there have been numerous papers using or advocating for usage of
roguelikes as a testbed for AI and reinforcement learning in particular [1, 6, 7, 15].

4.3 ViZDoom

Most of the recent and famous approaches that used video games as benchmarks
used very simplistic video games like those for the Atari 2600. These games while
being quite difficult to humans, are still extremely simple and do not really resemble
any real-life tasks. Other platforms provide more complex environments, but either
modify the base game very heavily or are not video games in the strict sense at all.
To provide a solution to this problem a research platform based on the classic video
game Doom was proposed, which is called ViZDoom [17].

The main goal of ViZDoom was to provide a platform that is more complex than
some of the popular environments, while being closer to the real world by being a 3D
environment and enabling easy experimentation with visual learning. It provides a
fast implementation that is computationally efficient while being extremely flexible
in terms of the design of experimental setting. While the main emphasis is on visual
learning, i.e. learning from raw visual information, ViZDoom provides easy access to
other game information besides the frame buffer, e.g. object position and bounding
boxes.

The environment provided by ViZDoom has the player, or the agent, that sees the
environment from a first-person view and the task is to navigate and/or survive
in a complex 3D maze-like environment while battling enemies. The possible task
settings range from simple navigation and collection objectives to battling other
computer-controlled enemies and solving light puzzles, or any combination of these.
The environments along with the tasks can either be easily built by the experimenter
with the readily available tools or premade environments can be used, with the latter
being helpful with upholding reproducibility of the experiments.

Most importantly, ViZDoom has an excellent API that makes interacting with the
game easy and has built in tools for input preprocessing, e.g. depth information.
Additionally, ViZDoom can provide different kinds of auxiliary information, e.g.
objects seen on the screen, which are helpful in constructing state representations.
The different tasks, scenarios and levels can be easily constructed with provided
tools and they can even be randomly generated by using additional software. The
large number of different environments makes it easy to separate them to training
and testing sets in order to assess the algorithm’s generalization capability and to
reduce the effect of overfitting. The flexibility of the platform also means that it is
possible to convert the more standard visual RL setting into a setting that utilizes
object information as was required by the methods used in this thesis.

18

4.4 Doom

Since ViZDoom is based on the game Doom, its dynamics, appearance and typical
goals are identical or very similar to the original. So, before introducing the partic-
ular tasks and environments that the final agents are trained on, which will be done
in chapter 6, it is useful to introduce the game here.

Figure 1 shows an example screen from the game that has many of the gameplay
elements. The player has few resources, which are health, armor and ammunition.
Health is the most important quantity whose depletion means game over. It can be
gained by picking up medikit, the small white box in Figure 1, and will be drained
by the enemy attacks and various elemental hazards, e.g. lava floors. Armor is a
helpful bonus that can be picked up during the gameplay which reduces the amount
damage, i.e. reduction in health, that is inflicted on the player. Ammo is self-
explanatory as it describes the number of projectiles for any given weapon that the
player carries. In addition to these, the player also has a collection of weapons,
that can be used on enemies, and keys, that are used for opening locked doors in
the level. Doom also has some special items, but these are not important for our
purposes.

The task of the player is to navigate to the exit of the level, whose location is typically
unknown in the beginning, without dying. In any given level, there are also enemies
that are of different types with different behaviors, whose task is to stop the player
by attacking him. Besides the enemies and maze-like environments, there are also
doors that require finding keys from the level before they open. Combining all
these features, makes Doom quite challenging even for a human player and remains
a largely unsolved problem by any AI approach [41]. Therefore in this thesis we
will concentrate on solving a simplified version of a full Doom game that is closely
related to the limited deathmatch task in [41] which will be introduced in detail in
chapter 6.

4.5 Previous Doom Agents

There have been quite a few Doom playing agents proposed during the last few
years, in part because of the ViZDoom competitions that were held [41]. Most of the
proposed ViZDoom agents were made using some different kinds of neural network
based architectures, reinforcement learning and typically had some hardcoded rules.
Some notable examples are presented in this section, but for a more comprehensive
survey see [41].

Lample and Chaplot made a reinforcement learning agent that used a modular
architecture [19] that had two neural networks for different phases of the game that
were trained using DQN [25] using different reward functions. The first network
was a simple ANN, used for map exploration. The other was a more complicated
recurrent neural network, which allowed for rudimentary memory, that was used
for battling enemies. The network to use for action selection was chosen via a

19

Figure 1: A typical screenshot from a Doom level. At the bottom of the screen are
shown the attributes of the player. In the middle an enemy is seen. On the right
there is a medikit and in the far middle back there is an ammo pack.

simple rule: the battle network was used when an enemy was seen on the screen and
exploration network was chosen otherwise. Ground truth object information was
used in the training phase and together with some hardcoded rules, e.g. the agent
was programmed to be always crouching.

Wu et.al developed a deep RL agent [40], that was trained using the A3C algo-
rithm [24]. The "trick" behind their approach was in using curriculum learning, i.e.
training the agent on a sequence of increasingly difficult training environments. This
is a similar idea to the "task rotation" training evaluated in this thesis, In "task
rotation" the agent is trained on different maps that are designed to train specific
skills. However, the difference here is that they used the same task with different
difficulty levels instead of different tasks altogether as in the method proposed here.

5 Agent Architecture

This section provides a detailed description of the proposed architecture of the agent.
The agent is built using the Q-decomposition method, which means that it is in-
herently modular in its design. Each module of the agent is designed for learning a
single task, which was chosen to be as simple as possible to make it learnable with
an extremely simple method, which in this case is linear function approximation.
The task decomposition used in this work produced the following subtasks: ammo
gathering, health gathering, armor gathering, shooting and area exploration. Agent
has one module for each of the tasks and the construction of the modules will be
described in this section. An overview of the agent architecture is shown in the

20

Action
Arbitrator

Ammo
gathering

Health
Gathering

Armor
Gathering

Exploration Shooting

Depth grid Object grid

Object gridObject gridObject grid

Depth buffer Enemies

Green
armor

Blue
armorShell Shell

box Medikit

Q(s,a)

Q(s,a)

Q(s,a)

Q(s,a)Q(s,a)

Figure 2: A diagram representing the architecture of the proposed agent. The
white boxes represent the modules, grey boxes the state representation they use and
the green boxes show the main information included in the state. The arbitrator
represents the act of choosing an action in Q-decomposition, i.e. the choice of the
action that has the largest summed action value across the modules.

Figure 2.

5.1 State Representation

The engineering of the state representation is one of the most important, and dif-
ficult, tasks of RL and choosing a particular function approximation method can
restrict the choice of suitable representations. For linear function approximation,
the one considered here, there are many ways of constructing the state ranging from
tabular representation in the degenerate case to using complex basis functions like
Fourier basis [18].

The representation used for the modules is one of the most basic ones, being
quite close to tabular representation in simplicity, called fixed sparse representa-
tion (FSR) [8]. In this representation method each state is mapped to a binary
vector where each component is representing a presence of a feature. Each feature
in a given state can be active independently of the others, which reduces the po-
tential state space when compared to the tabular case, where each combination of
features must be represented as a separate state. More formally FSR is a mapping
x : S → {0, 1}k where x(s) = (x1(s), . . . , xk(s))

T and each xi indicates the presence
of a feature i in the state s. FSR is quite limited state representation method and
can be a bad choice in general [8]. However, it proved to be quite a good match for

21

the item-position based state representation we chose for most of the modules.

5.1.1 Object Grid Representation

One natural representation of a state is through objects, and their attributes, that
are present at that moment. Luckily it is easy to locate the items relevant to each
task through the ViZDoom API and get their attributes. Therefore, the positions
of the objects are used as the basis of state representation for most of the modules.
Because the item positions, i.e. coordinates, are continuous values, discretization
is used, which leads to a grid-like state representation. This kind of representation
will be referred to as object grid representation.

In detail, the state is represented as a grid, that divides the space in front of the
agent into small sectors. Polar coordinates are used instead of the standard Carte-
sian coordinates, because they lend themselves better for the chosen representation.
With polar coordinates an object’s position with respect to the origin, in this case
the agent, is defined by the distance and the angle from it, denoted by ρ and φ
respectively. Thus, the coordinates of an object are written as (ρ, φ), where ρ > 0
and φ ∈]− π, π].
Since both of the coordinate values are continuous, they must be discretized in order
to utilize them as features in the FSR based state representation. This is done by
dividing each dimension into a finite number of intervals, or "bins", and using the
interval as the approximate coordinate. For example, if we have an interval for
angles [j, k] then all angles in that interval are mapped to the same approximate
coordinate i using the discretization function, i.e. ∀φ ∈ [j, k], φ→ i.

When the discretization is done for both dimensions, the resulting bins produce a
grid, which is visualized in Figure 3. Each such grid cell, or rather its occupancy,
is a feature in the corresponding FSR. This way, in state s if there is an object in
a cell i then xi(s) = 1 and zero otherwise. Since the state vector is binary, it can
only represent the fact that there is an object in a given cell but not the number of
objects present in that cell. This is a clear limitation of the chosen method, but it
can be sidestepped by choosing the grid cells to be small enough, which is seemingly
enough for the tasks considered here as will be seen in chapter 7.

The object grid representation has a few hyperparameters that can be chosen for
each module separately depending either on prior knowledge or experimentation.
For range ρ we have the maximum range max_r, which represents the maximum
distance the agent can detect objects at. We can define the resolution of the grid in
"ρ"-dimension by choosing the number of bins n, that divides the interval [0,max_r]
into intervals of equal length. Since the values of the angle φ are bounded, we only
have the number of bins k as a hyperparameter, which divides the range of possible
angles into k bins of equal size. Additionally, we can add an extra constant feature
to the state, that would represent a bias. This feature allows to get a nonzero value
from the linear function approximation, when all of the actual features are zero and
can be useful in some cases.

22

Figure 3: Schematic representation of a object based state representation. Red dots
indicate the presence of an object of interest in that sector. This means that the
binary features corresponding to the occupied sectors will have a value of one.

5.1.2 Distance Grid Representation

The state representation for the exploration task needs a different approach and so
is different from object grid representation, though it still utilizes FSR. Since the
goal is covering as much ground as possible, it is very important not to get stuck
in the geometry of the level, i.e. walls and other obstacles. This means that the
agent must see the walls and other obstacles around it so that it could learn to avoid
them. The representation presented here uses information of the distance to walls
and objects and will be referred to as distance grid representation.

Since we are constrained to using only linear function approximation, using the raw
video information is infeasible. Luckily, ViZDoom provides a depth buffer, which
shows the distance to an object or a wall from the player. The frame buffer is
provided in a way that is visualized as an image in Figure 4. Since the depth buffer
is very large, using it in its entirety with linear approximation is still unpractical,
but we can use small parts of it.

To build the representation, we choose a small number of values along one row in the
depth buffer. These points can be thought as "laser rays" that measure a distance
at that point. These "rays" return distance to a point on screen which, being a
continuous value, is discretized into bins, whose number is a hyperparameter. So,
the final state representation consists of n×k binary features, where n is the number
of "rays" and k is the number of bins used for discretization of the distance values".

5.2 Object-Based Modules

This section explains the design of the modules, whose representation only depends
on object positions and use the object grid representation. These modules are health,
armor and ammo gathering modules as well as the shooting module.

Picking up different items is one of the basic skills needed for playing Doom, since
most of the interactions deplete the finite resources of the player, e.g. ammo when
shooting, that can be replenished only by gathering more from the level. There are

23

Figure 4: A visual representation of a depth buffer. The lighter the pixel, the further
it is from the player. The red line represents the row on which the "rays" are located.

quite a few items in the full game of Doom, ranging from new weapons to temporary
invulnerability, but in the limited setting considered in this work only three main
item types are kept: ammunition, health and armor. Ammunition and armor both
have two different variants that give different amount of the corresponding resource,
while health can be gained only from a single kind of item.

Collecting each of the item types can be considered a separate task, and indeed this
is how it is used here. However, the state representation for each of the item types is
very similar, so the module structure of these tasks is the same. In fact, the resulting
optimal policy, as represented by value functions, should be very similar between
the tasks, albeit with different numerical values due to differences in the reward
scale. This means that, in theory, one could try and use the same action values for
all of the three tasks if the values are scaled properly, though it may be that the
different reward scales could result in significantly different value functions. In any
case, in this work it was decided to learn all the weights separately to investigate if
the Q-decomposition algorithm can handle a larger number of modules.

Perhaps the most important skill needed in Doom is shooting, thus it has its own
module. To be able to shoot at the target one only needs to see the target and know
its location from the shooters point of view. Therefore, the shooting module only
pays attention to the enemies seen on screen. Since the enemies are objects, the
shooting module uses an object grid representation as well.

The state representation for each of the object-based modules is based on the object
grid representation, however there are small differences in the final state represen-
tation. The differences between the modules are mainly in the item types they see
and how they handle the resource cap, i.e. the maximal amount of a resource a
player can have, and not having some resources. The object-based modules must
keep track of the resources, since for example if the health capacity is full the agent
cannot pickup more health so going towards it is pointless. More importantly if
the agent doesn’t know that it has full health, then not being able to pick a health
item up is completely arbitrary from its point of view. This implies that without

24

the resource information the state representation does not have all the needed in-
formation for solving a task. So this information is also included in the modules via
rules when to ignore the items, though these rules should be seen as additional state
information provided to the agent.

The summary of how each of the object-based modules sees its world is provided in
the following list:

• Ammo gathering module

– This module sees the two item types that give ammunition: Shell (4
ammo units) and Shell Box (20 ammo units).

– If the current ammo count is at least 30, then the Shell Box items are
ignored (maximum ammo count is 50).

– If the current ammo count is at least 47, then all items are ignored.

• Health gathering module

– This module see the only health related item: Medikit (25 health units).

– If the health is full (100 health units) then all items are ignored.

• Armor gathering module

– This module sees the two items that give armor: Green Armor (100%
armor) and Blue Armor (200% armor).

– When the armor is at least at 100%, then the Green Armor is ignored.

– When the armor is at least at 200%, then all items are ignored.

• Shooting module

– This module only sees enemies.

– If the agent has no ammunition, all enemies are ignored.

To complete the description of the object-based modules we need to define the
reward signal. Because of the task decomposition the subtasks became very simple
and the reward signals for the object-based modules are quite straightforward.

For the item gathering tasks, the agent is rewarded with a fixed positive reward each
time it collects the wanted item, e.g. medikit for health gathering module, etc. Each
of the items has a bit different reward due to importance of the item, e.g. health is
more important than ammo because losing all health means game over.

The reward for the shooting task is more complex, with the agent receiving a posi-
tive reward for killing an enemy and a smaller negative reward for shooting, which
discourages the agent from wasting the finite ammo. The positive reward of shooting
module is chosen to be the highest, since destroying demons is the most important
thing to do in order to achieve good performance in the task.

25

All of the object-based modules also receive a so called "living" penalty, which is a
small negative reward given at each timestep regardless of the chosen action. This
kind of reward is quite often used in reinforcement learning, and here it was observed
to improve the performance of the modules. The reward signals of all of the modules
are shown in table 1.

Subtask Reward

Ammo gathering Picking up "Shell" or "Shell Box" +10
Living reward −0.001

Health gathering Picking up "Medikit" +10
Living reward −0.001

Armor gathering Picking up "Green Armor" or "Blue Armor" +10
Living reward −0.001

Shooting
Destroying an enemy +100

Shooting (when ammo is used) −10
Living reward −0.001

Exploration Change in distance to the current center divided by 100
Living reward −0.001

Table 1: The reward signals for each subtask.

5.3 Area Exploration Module

Efficient exploration of the map is extremely important for a good performance,
since finding new items and enemies is impossible by staying at the same place. The
importance of this task has also been noticed in previous work where exploration
was for example encouraged via reward shaping [19, 40] or induced using hardcoded
rules [41]. In the proposed agent, exploration is considered a separate subtask with
a goal of getting as far as possible from the previous position. The reward signal of
the exploration task is similar in its idea to displacement reward used in [19, 40],
where a reward proportional to the distance traveled since the last step is given to
the agent to encourage movement.

To calculate the reward, we define a displacement circle with a center point (x0, y0),
which is set to be the current position of the agent, and a radius r, which is a
hyperparameter. The reward then is the change in the distance from the center
point since the last step scaled by some constant, here 100−1 is used to avoid overflow
issues. This means that if the agent moves toward the center point, the reward will
be negative, and if it moves away from it, reward will be positive. When the agent
gets out of the displacement circle, i.e. its distance from the current center point is
larger than r, the center point is updated to the current position of the agent.

The reward defined this way encourages the agent to move away from the position
it was recently at, while allowing it to revisit old areas after some time. The choice
of the radius of the displacement circle is an important one, since by setting it

26

too small, the agent can fail to move far away, while too large radius can result in
getting stuck, e.g. by being unable to leave dead ends. After some experimentation
the radius was chosen to be equal to 210 in all experiments.

Finally, the area exploration module is provided a small shaping reward to further
discourage bumping into objects. When any of the "rays" shows that the distance is
under some threshold, the agent is given a small fixed penalty. Both the threshold
and the penalty are hyperparameters that are chosen by experimentation. As with
the other modules, a small "living" penalty is added to the module’s reward, which
in this case discourages it from staying still. Summary of the reward function is
shown in Table 1.

6 Experimental Setup

In this section the experimental setup is explained. The goal of the experiments is
to provide answers to the two of the research questions. The first question is that
can the proposed agent learn the task and how good can it get, and the second is
how the training method affects the learning process and the final performance. To
assess these questions the agent will be trained on the ViZDoom environments that
were specifically made for the experiments. To evaluate the performance, the score
gathered by the agent during the training and testing phases will be collected, since
the score directly measures the level of performance of the agent. For more qualita-
tive assessment of the agent’s performance videos of trained agents performing the
main task will be recorded.

The expected results follow the hypothesis presented in the beginning. The agent
should be able to learn to play the game quite convincingly, but not perfectly,
with performance close to a simple game AI or a novice human player, since each
of the subtasks are quite easy and should be possible to learn using the chosen
methods. However, due to simplicity of the proposed models, it is not expected
that the agent will be able to come up with any complex strategies that require
memorization or reasoning thus not being able to get to the expert human level.
Due to model’s simplicity it is also expected that it will show some non-human-like
behavior, e.g. forgetting items and enemies that were in its view just a second ago.
As for training methods, the simpler methods should result in slower learning and
worse performance. This means that for example the methods utilizing task rotation,
i.e. the agent is trained on different (sub)tasks in an alternating fashion, should
outperform those that don’t and agents using warm start, i.e. whose pretrained
weights are finetuned, should outperform those that don’t.

The structure of the section is following. First the task that is intended for agent to
learn will be described in detail. After this the used environments, i.e. Doom maps,
will be introduced. In the end a detailed explanation of the training procedures and
hyperparameters will be given.

27

6.1 Task Description

The task to be learned is related to the limited deathmatch setting from [41] but
with a few crucial differences. Originally it was intended to use the standard limited
deathmatch, but due to technical issues and time limitations the current setting was
devised.

The main goal of the agent is to destroy as many enemies as possible before its health
reduces to zero, which ends the episode. The enemies are all of the same type, namely
"imps", that have the basic Doom behavior provided by the original game AI. The
agent interacts with the environment via six actions that are SHOOT, TURN LEFT,
TURN RIGHT, MOVE RIGHT, MOVE LEFT and MOVE FORWARD. Choosing
an action is comparable to pressing a button corresponding to that action on a
virtual keyboard.

The agent is limited to having only one weapon, which is a shotgun. The shotgun
was chosen instead of a rocket launcher that was used in the limited deathmatch
setting in [41] due to technical issues with ZDoom. In addition to shooting enemies,
the agent can collect ammo, health and armor bonuses, which are scattered across
the map in predefined locations. The enemies spawn continuously according to
a schedule, but the items do not respawn. This leads to an eventual end of the
episode as the agent will inevitably be overrun by enemies after exhausting all of
the ammunition present in the map.

The performance metric for the main task is the score gathered during the episode,
which is calculated as the number of the destroyed enemies multiplied by 100. Since
the goal is to destroy as many enemies as possible, higher score implies better per-
formance.

6.2 Training and Testing Environments

The environments used during the experiments, also referred to as maps and scenar-
ios, can be divided into two classes with the first being single task setting and the
other full task setting. The single task environments are, as their name suggests,
designed for learning a single (sub)task, while the full task environments require
mastering all the subtasks to get a good score. All the environments, regardless of
their class, share the same reward signals, available actions and object information,
as well as environment dynamics. The scores used to evaluate performance in each
of the scenarios are closely related to the reward signal of the agent as defined in
section 5. First, we will go through the single task environments and then full task
environments.

The environments designed to teach different item gathering tasks are similar in
structure. They represent a large rectangular hall with a fixed number of items of a
single type scattered around the room. The episode ends when either all the items
are gathered, or the timeout is reached. The score of the episode is the number of
gathered items multiplied by 10.

28

Figure 5: Full task training map. The white dots represent items and enemy spawn-
ing locations.

Shooting is one of the most important skills in the game and it has a separate single
task training environment. This map is a rectangular hall filled with a predefined
number of enemies that roam across it but are not hostile towards the player. The
player has a limited amount of ammo, enough for eliminating all the enemies if
playing in a sensible way and must destroy as many enemies as it can. The episode
ends when all enemies are gone, the player runs out of ammo or the timeout is
reached. The agent gets a score of 100 for each eliminated enemy and a penalty of
10 for each shot it takes, with the final score being the sum of these.

The last but not least is the navigation skill. This subtask has the most complicated
setting due to its more complex goal and reward function. The environment consists
of two rooms that are not connected to each other and the agent is spawned randomly
at one of the predefined locations. Each room has a different shape and has different
number of obstacles in the form of walls and pillars. The score for this task is the
same as the navigation module reward, but without living penalty.

There are two full task environments one that is trained upon and another that is
used exclusively for evaluating the performance, i.e. investigating the generalization
capabilities of the agent. These environments are referred to as "training map"
and "validation map" respectively and their top view is shown in Figures 5 and 6
respectively. Notably, the validation map is only used in the final testing and it is not
used for any parameter tuning nor for training. Both of these environments contain
enemies and items, but in different amount and with different spawning schedules.
The training map is the smallest of the two and the enemies are spawned six at
a time, with the next batch spawning each time the agent manages to eliminate
the current ones. The validation map is significantly larger and more complex.
The enemies here are spawned in a different manner with first six enemies being
spawned immediately at the beginning, after which a new enemy is spawned every

29

Figure 6: Full task validation map.

4.3 seconds. The score for these environments is the main task score, i.e. the number
of the destroyed enemies multiplied by 100.

6.3 Training Procedure

In this subsection the details of the experiments are presented. Before running the
final experiments, hyperparameters of the model were chosen via combination of
manual experimentation and grid search over a subset of parameters. The weights
of all modules were initialized to be vectors of ones before training.

Each experiment was run with 20 random seeds for a total of 3e6 learning steps cor-
responding to 9e6 in-game steps. Each step equals to three in-game frames, because
frameskip of three frames was used for all of the final experiments. Frameskip was
used, because it sped up the runs and skipping three frames did not negatively affect
the performance during the preliminary testing. The performance of the agent was
also evaluated by running the agent, with fixed weights, on the validation map for
50 episodes at several points in time during training roughly every 500 000 steps
and before the start of training.

The full task only training procedure is quite simple. The agent is trained from
scratch on the full task training map, also referred to as ’deathmatch practice’, for
all of the 3e6 steps. The learning rate α is linearly decreased from 0.5 to 0.001
during the duration of training, and exploration rate ε is linearly decreased from 0.3
to 0.01 during the first 2.5e6 steps and stayed constant afterwards.

Training with task rotation is similar to the full task only training except that
instead of using only a single map, the agent is trained on multiple the training maps
in the following sequence [’health gathering’, ’ammo gathering’, ’armor gathering’,

30

’shooting practice’, ’navigation practice’, ’deathmatch practice’]. The ’deathmatch
practice’ map is the same as the one used in the full task only method and all other
maps are designed for single task learning. The agent is trained on each task for
10 episodes until switching to the next one. Learning rate and exploration rate
are annealed with the same schedule as with full task only method. Importantly,
the whole agent, i.e. all the modules, are working and learning on all of the maps
simultaneously.

When pretraining is used, a separate single task agent is trained for each of the
subtasks for 3e5 steps with learning rate linearly decreasing from 0.5 to 0.001 and
exploration rate linearly decreasing from 0.5 to 0.01 for the first 2e5 steps and stayed
constant for the rest of the training. During the single task training a constant
feature was used, which allowed for learning a bias term, since it was observed to
help with the training process. The constant feature allows for a single action to be
learned when the feature vector is otherwise zero, i.e. when no objects of interest
are present, and usually the agent learns to rotate itself until it finds an object of
interest. This rudimentary seeking behavior is helpful in this case because unlike
full agents the single task agents do not have map exploration module (unless that
is the only module). After training on the single tasks, the full task agent’s weights
are initialized with the learned weights and the agent is trained on the full task
for additional 1.5e6 steps either on full task only or with task rotation. For both
single map and task rotation settings the learning rate was decreased from 0.01 to
0 during the whole training and the exploration rate decreased 0.1 to 0.01 for the
first 1e6 steps and kept constant afterwards. In total the pretrained agents see the
same number of steps as those not using pretraining, i.e. 5 ∗ 3e5 + 1.5e6 = 3e6.

7 Results

In this section the results of the experiments will be presented. We will show the
learning curves for all the training variants. The learning curves for training maps
and tasks will be presented for the analysis of the individual tasks. The validation
scores, i.e. the full task scores obtained on the validation map, will be used to help
with comparison of the different training methods and are shown as Figure 15. All
of the results are calculated over 50 runs with random seeds for each method. This
makes the robustness of the approach clearer, but since learning is stochastic and
can fall into the local minimum, the results may also contain very bad runs. For
better understanding of the best-case performance, the maximal results over runs
are presented as well. Additional videos of the trained agents in action can be found
online 1.

1https://helsinkifi-my.sharepoint.com/:f:/g/personal/ivkropot_ad_helsinki_fi/
Ehy2yY8qjs9HkxP1NTQZy9oBlV_Na8CjSmZkRQzlXAAWdQ?e=AwBsgY

31

7.1 Performance on the Training Environments

In this section we will present the learning curves that were achieved on the training
environments for all of the training methods. These results show whether the agent
was able to learn the task at all and how quickly.

0 2000 4000 6000 8000 10000
episodes

0

200

400

600

800

1000

sc
or

e

Learning curve on deathmatch train map, full task only

Figure 7: The average episode rewards of single task setting during training.

0 2000 4000 6000 8000 10000
episodes

0

500

1000

1500

2000

2500

3000

sc
or

e

Minimal and maximal scores on deathmatch train map, full task only
Maximum over runs
Minimum over runs
Mean over runs

Figure 8: Minimal and maximal episode rewards of single task setting during train-
ing. The mean score, i.e. the blue line, is the same as the bold line in Figure 7.

Starting from the simplest training setting, which is training on the full task only

32

from scratch, i.e. not using any pretrained weights, we can see the learning curve
of the full task on the training map in Figure 7. From this curve we can see that
the agent trained this way steadily improves its performance, even though it doesn’t
reach the highest rewards in general. Looking closer, a considerable variation in the
scores is observed, which is even more clear in the Figure 8 that shows the highest
and lowest scores obtained each episode across runs that use different random seeds.
This graph also illustrates that while the average performance may be mediocre,
some runs can get quite good results.

0

200
Ammo gathering

0

200
Health gathering

0

200
Armor gathering

0

500

Shotgun practice

2500
5000
7500

Navigation practice

0

2000

4000
Deathmatch practice

Figure 9: Learning curves during training for all tasks of task rotation. Bold lines
indicate the mean and the shaded region the 95% confidence interval.

33

0

1000

2000

3000

4000

sc
or

e

Minimal and maximal scores on deathmatch train map, task rotation
Maximum over runs
Minimum over runs
Mean over runs

Figure 10: Minimal and maximal episode rewards of task rotation setting during
training. The blue line is the same as the bold line in lower right of Figure 9.

Next is the case when the agent is trained without using pretrained weights but
with task rotation, i.e. the agent is trained to solve individual subtasks on specially
designed environments that are rotated in a sequence. Figure 9 shows the learning
curves for each of the subtasks during training. From these graphs we can see
that this training method also results in learning of the task. Moreover, we can
also see that it learns each of the subtasks fairly well, especially considering that the
theoretical maximum score in the item gathering tasks is 200 and in shooting practice
it is 800. The Figure 10, which shows the full task train map performance in more
detail, further confirms the fact that the agent learned a non-trivial policy. Moreover,
we can also see that using task rotation favorably compares to the performance of
an agent trained on full task only.

34

0 500 1000 1500 2000
episodes

0

500

1000

1500

2000

2500

sc
or

e

Learning curve on full task train map, finetuned

Figure 11: Learning curve of training on deathmatch task of an agent which whose
weights were finetuned on full task only.

0

1000

2000

3000

4000

5000

sc
or

e

Min and max scores on full task train map, finetuned
Maximum over runs
Minimum over runs
Mean over runs

Figure 12: Minimal and maximal episode rewards during finetuning of an agent
whose weights were finetuned on single task only.

Now that all the methods that were learning from scratch are covered, we turn
to their variants that use pretraining, i.e. the weights for a module are initialized
to those of an agent that was trained to solve the corresponding task. Beginning
with an agent whose weights are finetuned on a full task training map only, the
Figure 11 shows the learning curve on deathmatch task during the finetuning phase,

35

and the Figure 12 shows the same data but with minimal and maximal values over
runs explicitly stated. It can be seen that the performance of the agent during the
finetuning phase immediately drops by a large amount, to the level similar to or even
worse than without pretraining. The performance doesn’t recover over the course of
training, and by the end of finetuning phase the performance is nowhere close even
to the starting point.

0

200
Ammo gathering

0

200
Health gathering

0

200
Armor gathering

0

500

Shotgun practice

2500
5000
7500

Navigation practice

0

2000

4000
Deathmatch practice

Figure 13: Learning curves during finetuning of pretrained agent for all the tasks of
task rotation. Bold lines indicate the mean and the shaded region the 95% confidence
interval.

36

0

1000

2000

3000

4000

5000

6000

sc
or

e

Min and max scores on deathmatch train map,
 finetuned with task rotation

Maximum over runs
Minimum over runs
Mean over runs

Figure 14: Minimal and maximal episode rewards during finetuning of an agent
whose weights were finetuned with task rotation.

However, when finetuning a pretrained agent with task rotation, the picture changes
significantly. As evidenced by Figures 13 and 14 the performance once again drops
rapidly during the beginning of the finetuning phase. However, the performance
quickly recovers and even gets better on some tasks than in the beginning of the
training. Notably, the average performance on many of the subtasks, namely item
gathering and shooting practice, gets very close to the best theoretical score, which
means that the agent can solve these subtasks successfully almost always.

7.2 Performance on the Validation Environment

In this section the performance on full task validation environment is presented.
These results show how well the agents are able to generalize to unseen environments,
as well as allow for easier comparison between the training methods since all of them
are run on the same validation environment with the same intervals between training
steps. The validation score plots shown in this section also include the validation
score for an agent, that uses pretrained weights but is not finetuned. This agent,
surprisingly, achieves the best overall performance, which will be discussed further
in Section 8.

37

0.0 0.5 1.0 1.5 2.0 2.5 3.0
steps 1e5

0

200

400

600

800

1000

1200

1400

1600
sc

or
e

Validation score for different training schemas
Full task (FT)
Task rotation (TR)
Finetuning with FT
Finetuning on TR
No finetuning

Figure 15: Validation results for all of the training setup variants. The purple line is
the average validation reward over 1200 episodes for a pretrained agent that wasn’t
finetuned. The curves for the finetuning variants are offset for 1 million steps to
accommodate for the learning used for pretraining the individual modules. Bold
lines represent the mean and the shaded areas indicate the 95% confidence interval.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
steps 1e5

1000

2000

3000

4000

5000

sc
or

e

Maximum validation score
Full task (FT)
Task rotation (TR)
Finetuning on FT
Finetuning w/ TR
No finetuning
No finetuning mean

Figure 16: Maximum validation scores. The purple line, which is the same line as
in Figure 15, is included for reference. The maximal score for an agent without
finetuning is higher than the starting value of those with finetuning due to it being
calculated over more episodes.

Starting again from the agent trained on full task only without pretraining, the
performance of the agent on the validation map can be seen in Figure 15 in blue.

38

The average performance is indicated by the bold line and the shaded area is the
95% confidence interval. This curve shows that the agent trained on full task only in
general achieves the worst performance amongst the training methods and has the
slowest learning, though the final performance is close to all of the training methods
except for finetuning with task rotation. Furthermore, the maximal validation map
score is much larger than the average and is again quite close to the performance of
two of the four other training methods as seen in Figure 16.

Continuing to validation results of training with task rotation from scratch we see
from the Figure 15 that this method achieves better performance than both methods
that use only a single map for training. Additionally, we also see that using task
rotation results in faster learning. However, when looking at the maximal scores in
Figure 16, the best scores at the end of the training are comparable to the best scores
of the single map methods, which indicates that despite being better in general this
method doesn’t get that much better in the best case.

When looking at the performance of the methods that use warm start in Figure 15
we notice quite an interesting picture. When the finetuning is done using only a
single map, the validation performance drops very much and doesn’t recover at all.
The final performance of the agent trained in this way is on par, or even worse, than
training on from scratch. The maximal validation score of Figure 16 tells the same
story.

Interestingly, when using task rotation for finetuning, the validation results look
much better than finetuning without it. This training method still has a large drop
in performance, though it is much smaller than when task rotation is not used.
Even though the agent finetuned on task rotation doesn’t recover to its starting
point nor reaches the performance of purely pretrained agent, it still achieves very
respectable scores and has the best overall performance, when the "no finetuning"
case is ignored. The best runs, whose scores are shown in the Figure 16, mirror the
results on average, by having a large drop in the beginning but still being better
than other variants where the modules are trained together.

7.3 Visual Inspection of Trained Agent Performance

A visual inspection of the models was performed for all training methods. This
inspection mostly confirmed the results presented in this section, i.e. that all of the
methods resulted in learning, but some were better than others. However, the visual
inspection allowed to identify some bizarre behaviors and failure modes.

Perhaps the most visible behavioral artifact that most of the agents exhibited was
oscillatory behavior, where the agent could get stuck in one place choosing same,
but opposite actions at each timestep, e.g. by continuously turning left and then
right. This behavior was mostly observed with the worse performing agents, with
the agent that was finetuned with task rotation showing only a little of this behavior
and the pretrained agent didn’t have this problem almost at all.

39

Getting stuck in general was quite common, especially among the worst performing
agents, with them often getting stuck in corners or backing up to a wall. The weakly
performing agents also seemed to sometimes develop some strange item picking
behavior where they would try to approach them from a peculiar direction instead
of just going straight towards it. Some seemingly random shooting was also observed
in almost every configuration. None of the agents managed to come up with clever
tactics and even the best performing ones would mostly just storm towards the
enemy, sometimes dodging the enemy projectiles, though this could be attributed
to random chance.

8 Analysis of Q-decomposition Performance

The results presented in the Section 7 paint a complex picture about the applicability
and performance of the Q-decomposition method as applied in this work. On one
hand, the agent learned to play quite well, especially considering how extremely
simple the models used for learning the subtasks were. On the other hand, the
design of the agent, in particular task decomposition and state engineering, required
a considerable effort and, in the end, the modules pretrained on separate tasks
outperformed all other methods using a fraction of their training time. All of these
issues will be discussed in this section, starting with detailed discussion of the results
and investigation of the finetuning performance droop. After this successes and
failures of the trained models will be presented, and at the end general issues of
applicability and working with Q-decomposition will be considered.

To make it easier to put the numbers into perspective, we can consider some example
human scores, which were alluded to in the Section 7. The human scores mentioned
in this work were collected from a sample size of only a couple of people in a weakly
standardized way and are only intended to roughly illustrate the performance level
that the agent achieves. A person, who has very little experience with video games,
after being told the rules and given about 15 minutes to practice on the training
map can achieve a score of up to 800 on the validation map, though most of the
trials will be below it. In contrast, a person familiar with Doom, can easily achieve
a score on the validation map of over 5000 and, with a bit of effort, over 10000, with
possibly even higher scores achievable with more advanced tactics.

8.1 Performance Comparison of Different Training Methods

We will begin by comparing the different training methods between each other,
which will give us understanding of the performance in general and highlight some
interesting questions, which will be handled later in detail. Going through the
methods in order of increasing performance following the validation scores we start
with the simplest method where the agent is trained on a single map from scratch.
This method has the slowest learning and its performance is among the lowest, but
it still beats a novice player’s performance, especially when looking at the maximal

40

scores.

The next in line is training on a single map but starting with pretrained weights,
which starts strongly but during finetuning quickly drops to the level of training on
single map from scratch. This result was very surprising, since it was expected that
the warm start would result in better performance. The finetuning case will be gone
through in more detail later in this section.

Next comes the agent trained from scratch with task rotation that achieves better
performance than training on the single map while also learning faster. This behavior
was expected, since task rotation allows the agent to concentrate only on training a
single module on each of the single task maps, which in turn eliminates a big part of
the randomness and noise coming from other modules’ action preferences, resulting
in faster learning of individual subtasks.

The benefits of task rotation are clearly seen in the second-best performing training
method which is finetuning with task rotation. While this method also shows a large
drop in average performance, it nevertheless gets average score not far from the best.
Furthermore, the maximal score is, arguably, very impressive since it doesn’t degrade
and at the mark of 2.5e6 steps achieves a score that is very close to the highest score
achieved by any of the methods. This is a very good result considering that the
agent was evaluated less times at that point than the pretrained only agent (red line
in Figure 16). The fact that this method achieved such a performance can again be
attributed to the task rotation method giving the agent chance to concentrate on a
single task and reducing the noise in action selection. This claim will be investigated
in more detail further in this section together with closer look on finetuning.

Finally, the best performing, and perhaps most surprising, agent is the one that
simply consists of pretrained modules and is not finetuned in any way. This agent
not only achieves the best scores, but it also seems to be the most stable during the
visual inspection of its gameplay, with the least amount of irrational behavior, like
oscillation, and getting stuck. This aversion to getting stuck is perhaps the main
reason that the average score of this agent is higher than the one finetuned on task
rotation, which demonstrates such behavior. The main thing that makes this result
so unexpected is the fact that all the modules were trained one by one, which means
that the behavior policy they trained on didn’t take any other modules into account.
However, the point in using the Sarsa based Q-decomposition algorithm was the
claim that the modules which assuming total control over the action selection, as
is the case with modules trained in isolation, lead to suboptimal policies, i.e. the
illusion of control [28].

8.2 Analysis of the Performance Drop Caused by Finetuning

It is a very interesting question as to why the agent with pretrained modules performs
better than any real Q-decomposition agent in spite of the illusion of control. This
behavior is most likely due to a combination of factors.

41

One element contributing to the issue, is purely due to the proposed task decompo-
sition and state representation. The main task is decomposed into several smaller
tasks, like individual item gathering, shooting and exploring the map. However,
while all of these subtasks are essential parts of the main task, they often don’t need
to be solved at the same time, in a way making the subtasks independent. The
proposed reward function structure makes concentrating on one module even eas-
ier, since e.g. the action-values of shooting module dominate other modules, health
gathering dominates exploring, etc. This means that, for example, when no items or
enemies are present, the agent only explores, or if health, armor and ammo are full
but there are enemies in view, the agent will concentrate on shooting, since it always
dominates on navigation module. So, in the end there aren’t that many occasions
when the agent needs to learn a useful compromise which in part leads to the good
performance of individually trained modules. As a side note, while the performance
of the pretrained agent is the best, the visual inspection of the gameplay seems to
suggest that the finetuned agent (with task rotation) behaves in a bit smoother and
more natural way as opposed to quite sharp actions of the pretrained agent.

Another component that contributes to the surprisingly good performance of the
pretrained modules agent is also the one that is the most likely the cause of the
sudden drop in performance during finetuning. This problem seems to arise from
the chosen function approximation method and the state representation, and in short
it manifests itself in inability to learn well in the presence of noisy action selection.
This also largely explains why finetuning with task rotation resulted in much smaller
mean performance drop, which is because during task rotation most of the time the
agent is essentially only using one module, excluding navigation module, for action
selection and thus having very little noise in action selection.

The effect of noise on the performance is illustrated in Figure 17 that shows the av-
erage validation map score for an agent whose modules are initialized to pretrained
weights, except that shooting module is finetuned by its own on a shooting practice
map with different values of exploration parameter ε, i.e. the probability of making
a random action. The shooting module was chosen to be the subject of finetuning,
because it was observed that finetuning it or the exploration module had the largest
impact on the performance. As can be seen in that figure, the larger the amount of
random actions in the agents behavior policy, the lower is the final reward, which
seems to indicate that the noise in the action selection is the main culprit. Inciden-
tally, during a normal finetuning run the shooting module is not obeyed about 10%
of times it has an action to offer.

Digging deeper, we can also look at the learned weights with different configurations
in Figure 18. In this figure we can see that shooting modules weights after finetuning
with all modules (Figure 18b) and finetuned alone (Figure 18c) look quite similar,
with both being more spread than the weights immediately after the pretraining 18a.
Furthermore, the larger the ε the more the weight mass is spread.

All this suggests that the chosen function approximation and state representation
may be unable to learn well in the presence of the noisy action selection, thus being

42

unable to take full advantage of the Q-decomposition. In essence what is happening
is that the agent still learns to solve its subtask, it just tries to compensate for the
actions taken following other modules, which are seemingly random from its point of
view. This is perhaps also one of the drawbacks of the Q-decomposition approach,
since the presence and intent of other modules is signaled to the modules implicitly.

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
steps 1e5

600

800

1000

1200

1400

1600

sc
or

e

The effect on validation score of noisy training of the shooting module
Finetuning on FT
Finetuning with TR
No finetuning

= 0.05
= 0.10
= 0.20

Figure 17: Mean validation map scores for an agent consisting of pretrained modules
that where not finetuned with exception of shooting module. The shooting module
was trained starting from pretrained weights by itself on a shooting practice map
with different possibilities of random actions ε ∈ {0.05, 0.10, 0.20} .

It needs to be noted that the explanations provided above are at this point practi-
cally hypotheses and truly confirming them would need more experiments involving
multiple models, algorithms and, ideally, different tasks, which is beyond the scope
of this work. To this end, here are some other possible explanations, that were
considered but deemed highly unlikely to be the cause. The most obvious expla-
nation would be, of course, wrong hyperparameters, since not all of the possible
combinations were tried out due to limited time and their large number. However,
a lot of the sensible hyperparameters were tested, both manually and using grid
search, so that we can dismiss this hypothesis as unlikely. Another possible reason
could be related to the reward function, since maybe the agent does actually find
the optimum for the given reward function. This explanation is unlikely as well,
because different sensible reward functions were tried and all of them showed the
degradation of the agent’s performance during finetuning.

8.3 Shortcomings of the Proposed Agent

Now that the results have been gone through, we can say that the presented agents
that use Q-decomposition succeeded in learning to play better than a complete

43

ATTACK TURN_LEFT TURN_RIGHT

MOVE_RIGHT MOVE_LEFT MOVE_FORWARD

Shooting module weights before finetuning

(a)

ATTACK TURN_LEFT TURN_RIGHT

MOVE_RIGHT MOVE_LEFT MOVE_FORWARD

Shooting module weights after finetuning

(b)

ATTACK TURN_LEFT TURN_RIGHT

MOVE_RIGHT MOVE_LEFT MOVE_FORWARD

Shooting module weights trained with = 0.05

(c)

ATTACK TURN_LEFT TURN_RIGHT

MOVE_RIGHT MOVE_LEFT MOVE_FORWARD

Shooting module weights trained with = 0.10

(d)

Figure 18: Weights of the shooting module before finetuning and after finetuning in
different ways. The difference in vertical spread between (b) and others is due to
them being trained/finetuned on different maps, whose sizes were different.

novice or baked in game AI, using all of the training methods, which is undoubtedly
a success. However, even the best of the agents fails to get to the "expert" human
level both in maximum score and in average.

There are a few reasons for the presented agents’ inability to reach the heights of
good human players, one of which is the issues with learning with noisy action se-
lection covered before. Another factor, which is perhaps even more important, is
the extreme simplicity of the used models. This simplicity mainly comes from the
usage of linear function approximation, which greatly reduces the ability of exploit-
ing interaction between state features. Furthermore, the state representation used
doesn’t have any memory, meaning that anything it doesn’t immediately see doesn’t
exist making the states non-Markovian as well, since the state doesn’t have all the
needed information. Moreover, the agent doesn’t build nor use any models. Finally,
the Q-decomposition algorithm that was used for enabling task decomposition itself
is a very simple approach, in essence being just a fancy version of Sarsa, that doesn’t
provide much help for the learning of the modules together.

Of course, the goal of this work was to design components that use the simplest
possible methods to achieve a goal together that would not be possible by these
methods individually. This goal was indeed achieved. However, playing Doom well,
i.e. on human level, requires, among others, remembering item positions and build-

44

ing models of one’s surroundings and enemies. Human players use these techniques,
while it is practically impossible for the proposed agent to utilize this knowledge. In
the simplest case this is seen when the agent detects an enemy in the corner of its
view and at the next step loses it from its field of view. On the next step it wouldn’t
turn towards that enemy since it doesn’t exist anymore from the perspective of the
agent, while a human player would remember everything and act correspondingly.
All of this taken together makes it unreasonable to expect the proposed agent to
reach "expert" level performance, while making its final performance of beating
"novice" performance and even matching average run of "expert" look somewhat
even more impressive.

8.4 Practical Considerations When Using Q-decomposition

The last part of the discussion will be about using Q-decomposition for task solving
in general. The promise of using modular reinforcement learning is in the ability
of this technique to reduce problems with large state spaces into more manageable
parts, while being an obvious choice for a large number of natural tasks. This in
turn should allow us to use simpler models and less computation, make designing the
reward a bit easier and the engineering of state representation should also become
simpler.

All in all, Q-decomposition did deliver on its promises when applied to the simplified
Doom task of this work. It allowed us to use extremely simple models to learn a
task that would be practically impossible for such methods but became possible
after decomposing the main task into natural subtasks.

However, this approach is in no way a silver bullet that is able to solve any problem
without additional effort from the designer. Deciding on the suitable task decom-
position and creating sensible reward functions took a surprisingly long time, and
it is easy to make a wrong decision at this level. Furthermore, even with simple
subtasks designing a good state representation is still quite an undertaking. Most
importantly, even when all the components, decomposition, reward function, state
representations and function approximation, are chosen and are looking like a sensi-
ble choice, it is still not guaranteed that they will behave well when working together
during learning and take full advantage of Q-decomposition, as evidenced by discus-
sion earlier in this section.

To summarize, MRL is in practice a very powerful and promising approach, and Q-
decomposition in particular does seem to work even on complex problems like Doom.
However, there are a lot of hidden considerations and Q-decomposition might be a
bit too simple of an approach to become widely useful.

45

9 Conclusion and Future Work

In this thesis we presented an agent for playing a simplified version of Doom that was
built using Q-decomposition [28] and linear function approximation. Together with
the agent, three methods of training such an agent were presented and evaluated.
The results indicate that the proposed agent was able to learn how to play Doom,
trained with any of the proposed training methods. However, it turned out that the
best performance was actually achieved with an agent whose modules were simply
pretrained individually on specially designed training environments and combined
without further learning together. This was likely the result of the usage of linear
function approximation, which indicated difficulties with learning in presence of
multiple competing modules.

There are many possible directions for future work. The most obvious direction
would be to just add more modules to the current agent. For example, a module
that tries to avoid enemy projectiles would probably improve the performance quite
a lot.

Another easy target would be to try out the similar agent as presented here, but
with another function approximation methods, such as ANNs, and possibly another
state representation. This could also shed some light on the limitation of LFA used
in this work when combined with Q-decomposition.

It would be also interesting to apply, compare and potentially combine some other
MRL approaches such as W-learning [12], Arbi-Q [21, 31] or, since it seems that it
is quite possible to separate the subtasks very well, even GM-Q [12, 16].

Promising direction from the perspective of applying this method to real Doom,
would be to apply machine vision approaches for extraction of the object informa-
tion, instead of relying on ground truth provided by the ViZDoom environment, and
adding map information e.g. with SLAM [5].

Another direction for future work would be exploration of this problem from the
point of view of MORL approaches, for example by learning policies so that the
agent’s policy could be changed during the acting phase through changes to the
priority of subtasks, e.g. by making health gathering more important when the
agent is low on health. Parallel to exploration of other MORL/MRL methods, it
could be quite fruitful to do a further study of possibilities of alternative training
methods for modular agents, e.g. by using adaptive training to detect a failure of a
particular module or task to learn and training/retraining it online.

References
1 Asperti, A., De Pieri, C., and Pedrini, G. Rogueinabox: an environment

for roguelike learning. International Journal of Computers 2 (2017).

2 Astrom, K. Optimal control of markov processes with incomplete state infor-

46

mation. Journal of Mathematical Analysis and Applications 10, 1 (1965), 174 –
205.

3 Beattie, C., Leibo, J. Z., Teplyashin, D., Ward, T., Wainwright, M.,
Küttler, H., Lefrancq, A., Green, S., Valdés, V., Sadik, A., Schrit-
twieser, J., Anderson, K., York, S., Cant, M., Cain, A., Bolton,
A., Gaffney, S., King, H., Hassabis, D., Legg, S., and Petersen, S.
Deepmind lab. CoRR abs/1612.03801 (2016).

4 Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. The
arcade learning environment: An evaluation platform for general agents. Journal
of Artificial Intelligence Research 47 (jun 2013), 253–279.

5 Bhatti, S., Desmaison, A., Miksik, O., Nardelli, N., Siddharth, N.,
and Torr, P. H. S. Playing doom with slam-augmented deep reinforcement
learning. CoRR abs/1612.00380 (2016).

6 Campbell, J. C., and Verbrugge, C. Learning combat in nethack. In Pro-
ceedings of the Thirteenth AAAI Conference on Artificial Intelligence and Inter-
active Digital Entertainment (AIIDE-17), October 5-9, 2017, Snowbird, Little
Cottonwood Canyon, Utah, USA. (2017), B. Magerko and J. P. Rowe, Eds.,
AAAI Press, pp. 16–22.

7 Cerny, V., and Dechterenko, F. Rogue-like games as a playground for
artificial intelligence–evolutionary approach. In International Conference on En-
tertainment Computing (2015), Springer, pp. 261–271.

8 Geramifard, A., Walsh, T. J., Tellex, S., Chowdhary, G., Roy, N.,
and How, J. P. A tutorial on linear function approximators for dynamic
programming and reinforcement learning. Foundations and Trends in Machine
Learning 6, 4 (2013), 375–451.

9 Gu, S., Holly, E., Lillicrap, T., and Levine, S. Deep reinforcement
learning for robotic manipulation with asynchronous off-policy updates. In
2017 IEEE international conference on robotics and automation (ICRA) (2017),
IEEE, pp. 3389–3396.

10 Higgins, I., Pal, A., Rusu, A. A., Matthey, L., Burgess, C., Pritzel,
A., Botvinick, M., Blundell, C., and Lerchner, A. DARLA: improving
zero-shot transfer in reinforcement learning. In Proceedings of the 34th Interna-
tional Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia,
6-11 August 2017 (2017), D. Precup and Y. W. Teh, Eds., vol. 70 of Proceedings
of Machine Learning Research, PMLR, pp. 1480–1490.

11 Howard, R. A. Dynamic Programming and Markov Processes. MIT Press,
Cambridge, MA, 1960.

12 Humphrys, M. Action selection methods using reinforcement learning. From
Animals to Animats 4 (1996), 135–144.

47

13 Jaderberg, M., Czarnecki, W. M., Dunning, I., Marris, L., Lever,
G., Castañeda, A. G., Beattie, C., Rabinowitz, N. C., Morcos, A. S.,
Ruderman, A., Sonnerat, N., Green, T., Deason, L., Leibo, J. Z.,
Silver, D., Hassabis, D., Kavukcuoglu, K., and Graepel, T. Human-
level performance in 3d multiplayer games with population-based reinforcement
learning. Science 364, 6443 (2019), 859–865.

14 Juliani, A., Khalifa, A., Berges, V., Harper, J., Teng, E., Henry, H.,
Crespi, A., Togelius, J., and Lange, D. Obstacle tower: A generalization
challenge in vision, control, and planning. In Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao,
China, August 10-16, 2019 (2019), S. Kraus, Ed., ijcai.org, pp. 2684–2691.

15 Kanagawa, Y., and Kaneko, T. Rogue-gym: A new challenge for general-
ization in reinforcement learning. CoRR abs/1904.08129 (2019).

16 Karlsson, J. Learning to Solve Multiple Goals. PhD thesis, University of
Rochester, 1997.

17 Kempka, M., Wydmuch, M., Runc, G., Toczek, J., and Jaśkowski, W.
ViZDoom: A Doom-based AI research platform for visual reinforcement learn-
ing. In IEEE Conference on Computational Intelligence and Games (Santorini,
Greece, Sep 2016), IEEE, pp. 341–348. The best paper award.

18 Konidaris, G., Osentoski, S., and Thomas, P. Value function approx-
imation in reinforcement learning using the fourier basis. In Proceedings of
the Twenty-Fifth AAAI Conference on Artificial Intelligence (2011), AAAI 11,
AAAI Press, pp. 380–385.

19 Lample, G., and Chaplot, D. S. Playing FPS games with deep reinforce-
ment learning. In Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence, February 4-9, 2017, San Francisco, California, USA (2017), S. P.
Singh and S. Markovitch, Eds., AAAI Press, pp. 2140–2146.

20 Liang, Y., Machado, M. C., Talvitie, E., and Bowling, M. H. State
of the art control of atari games using shallow reinforcement learning. In Pro-
ceedings of the 2016 International Conference on Autonomous Agents & Multi-
agent Systems, Singapore, May 9-13, 2016 (2016), C. M. Jonker, S. Marsella,
J. Thangarajah, and K. Tuyls, Eds., ACM, pp. 485–493.

21 Lin, L. J. Scaling up reinforcement learning for robot control. In Machine
Learning, Proceedings of the Tenth International Conference, University of Mas-
sachusetts, Amherst, MA, USA, June 27-29, 1993 (1993), P. E. Utgoff, Ed.,
Morgan Kaufmann, pp. 182–189.

22 Liu, C., Xu, X., and Hu, D. Multiobjective reinforcement learning: A com-
prehensive overview. IEEE Trans. Systems, Man, and Cybernetics: Systems 45,
3 (2015), 385–398.

48

23 Mauldin, M. L., Jacobson, G., Appel, A. W., and Hamey, L. G. C.
Rog-o-matic : a belligerent expert system.

24 Mnih, V., Badia, A. P., Mirza, M., Graves, A., Harley, T., Lillicrap,
T. P., Silver, D., and Kavukcuoglu, K. Asynchronous methods for deep
reinforcement learning. In Proceedings of the 33rd International Conference on
International Conference on Machine Learning - Volume 48 (2016), ICML16,
JMLR.org, pp. 1928–1937.

25 Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Belle-
mare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostro-
vski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King,
H., Kumaran, D., Wierstra, D., Legg, S., and Hassabis, D. Human-
level control through deep reinforcement learning. Nature 518, 7540 (Feb. 2015),
529–533.

26 Roijers, D. M., Vamplew, P., Whiteson, S., and Dazeley, R. A survey
of multi-objective sequential decision-making. J. Artif. Intell. Res. 48 (2013),
67–113.

27 Rummery, G. A., and Niranjan, M. On-line q-learning using connectionist
systems. Tech. rep., 1994.

28 Russell, S., and Zimdars, A. L. Q-decomposition for reinforcement learning
agents. In Proceedings of the Twentieth International Conference on Interna-
tional Conference on Machine Learning (2003), ICML’03, AAAI Press, pp. 656–
663.

29 Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den
Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam,
V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbren-
ner, N., Sutskever, I., Lillicrap, T. P., Leach, M., Kavukcuoglu,
K., Graepel, T., and Hassabis, D. Mastering the game of go with deep
neural networks and tree search. Nature 529, 7587 (2016), 484–489.

30 Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang,
A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y.,
Lillicrap, T., Hui, F., Sifre, L., van den Driessche, G., Graepel, T.,
and Hassabis, D. Mastering the game of go without human knowledge. Nature
550 (Oct. 2017), 354–.

31 Simpkins, C. L., and Jr., C. L. I. Composable modular reinforcement learn-
ing. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI
2019, The Thirty-First Innovative Applications of Artificial Intelligence Con-
ference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - Febru-
ary 1, 2019. (2019), AAAI Press, pp. 4975–4982.

49

32 Sprague, N., and Ballard, D. Multiple-goal reinforcement learning with
modular sarsa(o). In Proceedings of the 18th International Joint Conference
on Artificial Intelligence (San Francisco, CA, USA, 2003), IJCAI’03, Morgan
Kaufmann Publishers Inc., pp. 1445–1447.

33 Sutton, R., and Barto, A. Reinforcement Learning: An Introduction. Adap-
tive Computation and Machine Learning series. MIT Press, 2018.

34 Sutton, R. S., Precup, D., and Singh, S. Between mdps and semi-mdps:
A framework for temporal abstraction in reinforcement learning. Artif. Intell.
112, 1-2 (Aug. 1999), 181–211.

35 Tesauro, G. Practical issues in temporal difference learning. Mach. Learn. 8
(1992), 257–277.

36 Tesauro, G. Td-gammon, a self-teaching backgammon program, achieves
master-level play. Neural Computation 6, 2 (1994), 215–219.

37 Van Seijen, H., Fatemi, M., Romoff, J., Laroche, R., Barnes, T., and
Tsang, J. Hybrid reward architecture for reinforcement learning. In Advances
in Neural Information Processing Systems (2017), pp. 5392–5402.

38 Watkins, C. J. C. H. Learning from Delayed Rewards. PhD thesis, King’s
College, Oxford, 1989.

39 Watkins, C. J. C. H., and Dayan, P. Technical note q-learning. Mach.
Learn. 8 (1992), 279–292.

40 Wu, Y., and Tian, Y. Training agent for first-person shooter game with
actor-critic curriculum learning. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings (2017), OpenReview.net.

41 Wydmuch, M., Kempka, M., and Jaśkowski, W. Vizdoom competitions:
Playing doom from pixels. IEEE Transactions on Games (2018).

