
Date of acceptance Grade

Instructor

On the Quality of Crowdsourced Programming Assignments

Nea Pirttinen

Helsinki June 2, 2020

Master’s Thesis

UNIVERSITY OF HELSINKI
Department of Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/328853791?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Faculty of Science Department of Computer Science

Nea Pirttinen

On the Quality of Crowdsourced Programming Assignments

Computer Science

Master’s Thesis June 2, 2020 64 pages + 1 appendix pages

crowdsourcing, computer science education, quality

Crowdsourcing has been used in computer science education to alleviate the teachers’ workload
in creating course content, and as a learning and revision method for students through its use in
educational systems. Tools that utilize crowdsourcing can act as a great way for students to further
familiarize themselves with the course concepts, all while creating new content for their peers and
future course iterations.

In this study, student-created programming assignments from the second week of an introductory
Java programming course are examined alongside the peer reviews these assignments received.
The quality of the assignments and the peer reviews is inspected, for example, through comparing
the peer reviews with expert reviews using inter-rater reliability. The purpose of this study is
to inspect what kinds of programming assignments novice students create, and whether the same
novice students can act as reliable reviewers.

While it is not possible to draw definite conclusions from the results of this study due to limitations
concerning the usability of the tool, the results seem to indicate that novice students are able to
recognise differences in programming assignment quality, especially with sufficient guidance and
well thought-out instructions.

ACM Computing Classification System (CCS):
Information systems → World Wide Web → Web applications → Crowdsourcing
Social and professional topics→ Professional topics→ Computing education programs→ Computer
science education

Tiedekunta — Fakultet — Faculty Laitos — Institution — Department

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Oppiaine — Läroämne — Subject

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

ii

Contents

1 Introduction 1

2 Background 2

2.1 Crowdsourcing . 3

2.1.1 In online education . 7

2.1.2 Systems in computer science education 7

2.2 Quality . 16

2.2.1 In computer science education 19

2.3 Inter-rater reliability . 20

3 Methodology and research design 22

3.1 System description . 23

3.2 Data collection . 28

3.3 Research design . 29

3.4 Expert review grading criteria . 32

4 Results 35

4.1 Categorizing student-created assignments 36

4.2 Student perceptions of assignments 39

4.3 Agreement . 40

4.3.1 Reliability by statement . 40

4.3.2 Reliability by assignment . 41

4.4 Assignment characteristics . 42

5 Discussion 44

5.1 Analysis of the results . 44

5.1.1 Categorizing student-created assignments 44

5.1.2 Student perceptions of assignments 45

5.1.3 Agreement . 46

5.1.4 Assignment characteristics . 49

5.2 Limitations . 50

5.3 Future work . 51

6 Conclusion 54

iii

References 56

Appendices

1 Inter-rater reliability by assignment

1

1 Introduction

The rapid rise of online education has provided new avenues for both lower and
higher education in a variety of fields, computer science being no exception. On-
line education has been hailed as a solution for a variety of problems traditional
schooling systems tend to have, such as expanding access across gender, racial, and
financial borders [1]; alleviating capacity constraints [2]; and working with the grow-
ing demand of lifelong learning [1]. Computer science tends to dominate the lists of
the most popular courses on the largest online education sites1,2, with topics such
as introductory programming, machine learning and algorithms.

Setting up and maintaining online courses brings its own set of challenges, different
from the regular university lecture courses that are offered for a limited number
of students each year. Model solutions tend to leak even during regular courses,
and this problem is amplified with a larger group of unknown students. To make
plagiarizing more difficult, exercises should be changed or updated between course
iterations, which can bring the upkeep of an open online course to an exhausting
level for an instructor who has to manage both online and lecture courses at the
same time. Thus, alternative methods of creating exercises and course content are
required.

Crowdsourcing is a practice of obtaining ideas, content or services from a large,
usually open group of people. Since its popularization in the early 2000s [3], the hype
around crowdsourcing has simmered down to a steadier level. With crowdsourcing
efforts like reCAPTCHA [4] and Wikipedia3, some Internet users do not realize
that they are participating in or reaping the benefits of a crowdsourcing effort.
Crowdsourcing not only produces content, whether that is an idea, a draft, or a
fully working end product, but can also work as a game4 or a learning experience for
the worker [5]. This idea has been utilized in online education – as a part of their
course work, students participate in crowdsourcing efforts, creating new materials
and revising the course content at the same time.

Part of the contribution of this thesis is a system called CrowdSorcerer, developed
by the Agile Education Research Group (RAGE), including the author, at the Uni-
versity of Helsinki. CrowdSorcerer [6] is a computer science education tool used for
creating programming assignments. The tool can be embedded into online course
materials, and the entire process of creating a full programming assignment can be
done within the tool. Students create the assignments based on the specifics given by
the instructor: the condition can be, for example, to create an assignment that uses
conditional clauses. The end result is a programming assignment with a handout, a
model solution, a code template and test cases. The assignments are automatically
tested for compilation errors and run through the user-generated tests to make sure
the program functions as intended.

1https://jwel.mit.edu/news/most-popular-moocs-focused-computer-science-self-help%C2%A0/
2https://www.onlinecoursereport.com/the-50-most-popular-moocs-of-all-time/
3https://www.wikipedia.org/
4https://crowdsource.google.com/imagelabeler/

2

CrowdSorcerer also has a peer reviewing functionality, which gives the students (and
if need be, the instructors or assistants) the opportunity of grading each other’s as-
signments. The reviewer has access to both the code template and the model solu-
tion, as well as the given tests. Reviews are conducted using an instructor-provided
set of review statements, such as “The assignment handout is clear” and “The test
cases are reasonable”. The reviewer is also required to give written feedback.

The programming assignments created and collected with CrowdSorcerer could be
used, for example, to help struggling students by giving them more small exercises
covering the topic they have trouble with. However, since the tool is fairly new, the
studies on its effect are far from comprehensive as of now, and more research into
the created programming assignments is required before the assignment bank can
be used in this manner.

The purpose of this thesis is to explore what kinds of programming assignments stu-
dents on an introductory programming course create, and whether their peer reviews
to the said assignments are reliable when compared to reviews done by an expert.
If the peer reviews are deemed to be reliable enough and reasonable in quality, it
would be possible to use a crowd of students to both create the assignments and
review them, greatly alleviating the instructors’ workload when it comes to creating
short programming assignments. This thesis extends the work by Pirttinen et al. [7]
on the analysis of the quality of the assignments created with CrowdSorcerer. The
previous study found out that novice programmers are able to give as good reviews
as more experienced students. This suggests that crowdsourcing the review process
can produce fairly good quality assignment databases, which is also supported by
previous studies on similar tools [8, 9].

Computer science education tools using crowdsourcing that have been developed
prior to CrowdSorcerer include, for example, PeerWise [10], CodeWrite [11], and
StudySieve [12]. These systems are described in Section 2.1.2, alongside other ex-
amples of crowdsourcing in computer science education. Parts of this thesis are
based on previous work by the author and her colleagues [6, 7, 13, 14], and the
specifics of these studies are described in detail when relevant to this study.

This thesis is organized as follows. Section 2 gives an overview to the relevant
literature, namely crowdsourcing, software quality, and statistical methods. Section
3 gives a more detailed system description for CrowdSorcerer, and describes the
research design and relevant data collection methods. Section 4 presents the results
of the analysis, and Section 5 further discusses the implications of the results, as
well as the limitations and future directions of this research. Finally, Section 6
summarizes the findings of this thesis.

2 Background

The following subsections introduce the background literature of this thesis, focusing
heavily on crowdsourcing and code quality. Section 2.1 describes crowdsourcing

3

generally, after which Sections 2.1.1 and 2.1.2 review its usage in online education
and computer science education, respectively. Section 2.2 defines the concept of
quality from computer science and software engineering point of view, and Section
2.2.1 further discusses quality from the computer science education point of view.
Finally, Section 2.3 describes the statistical methods used in the data analysis of
this thesis.

2.1 Crowdsourcing

Crowdsourcing is a method of obtaining services, ideas or goods from an open net-
work of people, usually on the Internet. The term first appears in a 2006 article
by Howe [3], and it was born as a portmanteau between the words crowd and out-
sourcing (employing workforce outside of one’s own company to perform required
tasks).

Howe’s article discusses the idea of companies using the Internet to outsource their
workload to a (usually very large) crowd of people. The difference between outsourc-
ing and crowdsourcing is the party who is chosen to complete the task, as depicted
in Figure 1. In outsourcing, the task is usually moved from one company to another,
and the one requesting the favour pays salary for the one completing the task. In
crowdsourcing, the requester is not as necessarily a company, but an individual, a
collective or some other kind of organization. While the issuer can pay for those
who meet the set standards of their crowdsourcing initiative, monetary payoffs are
usually low or nonexistent.

Nowadays, crowdsourcing is a term that is very much associated with the Internet
[15], but it is not necessary that the talent of the crowd is collected online. Idea
or resource collection can happen in real-life as well [16]. During the last decade,
the hype around crowdsourcing has grown to new heights, and the growth of social
media platforms has made both advertising and participation easier. Thus, ever
wider audiences can join the activity, and companies using crowdsourcing may profit
hefty sums [17].

A well-known example of crowdsourcing is Wikipedia5, a multilingual online ency-
clopedia that is maintained through user effort based open collaboration. Crowd-
sourcing is also commonly used for small, tedious tasks that can be performed si-
multaneously by a large crowd. This approach is used for example by Amazon
Mechanical Turk6, a website through which businesses can hire users to complete
discrete tasks that cannot be done automatically or computationally (see Figure 2
for the basic workflow between requesters and workers).

Idea collection through crowdsourcing does not produce tangible results immedi-
ately, but acts as a way for companies to reach out to their customers and scout for
potential future products and services. Many major companies, such as Coca-Cola,

5https://www.wikipedia.org/
6https://www.mturk.com/

4

Heineken and Threadless, have used crowdsourcing as an idea collection method to
decide on new designs or products [18].

Implicit crowdsourcing is a form of crowdsourcing where it is not made obviously
clear for the crowd participating in the activity that they are producing information
for some party. One way of implicit crowdsourcing is reCAPTCHA, a system that is
seemingly used to establish whether the user of a website is a computer or a human
[4]. While the system does exactly that, for example through image identification, it
can also help with things such as improving machine learning or map accuracy. For
example, blurry images of Google Street View have been included in reCAPTCHA
challenges, making the user identify the house number or street name not readable
by computers.

As mentioned before, monetary payoffs for the user are rare, and even when used,
the hourly rates are very low. Analysis of Amazon Mechanical Turk, one of the
crowdsourcing services that uses a wage system for users who complete requested
tasks, revealed that the workers earn a median hourly wage as low as approximately
two US dollars [20]. According to the same analysis, only about 4% of the workers
manage to earn more than 7.25 USD per hour (the US federal minimum wage), even
though average requester pays more than 11 USD per hour. However, lower-paying
requesters post tasks more frequently, and the calculations are affected by the time
spent on not working on a task, that is, time spent on finding a suitable task, working
on a task that gets rejected in the end, or tasks that are not finished for user-based
reasons [20]. Despite the low wages, Amazon Mechanical Turk is still a very popular
system for users who want to have some extra earnings: according to a population
dynamics and demographic analysis from 2018, the system has more than 100,000
workers available at any given time, with around 2,000 actively working [21].

Since monetary payoffs are not usually the driving force for users to complete crowd-
sourcing tasks, companies and other requesters need other methods of sparking
interest and maintaining motivation in users. On the user side, motivations for
crowdsourcing can be intrinsic or extrinsic – actions driven by personal interests
and emotions, or by external factors such as outcome, recognition or payoff [22].
Self-efficacy seems to play an important part on one’s willingness to contribute to
communal online activities in general [23], and the feeling of being able to help
someone boosts intrinsic motivation [24]. On the other hand, extrinsic motivations
such as recognition within a community and a sense of belonging act as ways of
attracting new users and retaining existing ones.

Main concerns with crowdsourcing have to do with the end-product quality and
the trustworthiness of the crowd. This is given – when crowdsourcing a task, the
issuer cannot be entirely sure of the level of skill their crowd has. Strict checks
on the expertise of the workers hinders the basic advantages of crowdsourcing over
outsourcing, that is, flexibility, swiftness and ease of access. Thus, companies or
individuals wanting to use crowdsourcing usually accept the additional workload of
going through low-quality contributions. Contributions of low quality are not nec-
essarily only due to varying levels of competence in the crowd, but also because of

5

Figure 1: The differences of outsourcing and crowdsourcing. Figure adapted from
[17].

6

Figure 2: Amazon Mechanical Turk workflow. Figure adaped from [19].

intentional maliciousness, either for the person’s own amusement or to hurt the com-
pany. The format in which tasks are given also affects the quality of crowdsourcing
[25]: free-format seems to produce better quality contributions, even though the for-
mat is more difficult for the issuer, as the contributions need to be carefully checked
before they can be used.

On the other hand, ethical issues such as using crowdsourcing as free workforce are
also present. For example, Amazon Mechanical Turk has received some criticism [26,
27] for its low hourly wages [20], also presented above. However, one of the studies
[26] also surveys the workers’ attitudes, which indicate that most of the workers
do not feel extorted with the wages they are receiving after being presented the
realized hourly wages, and vast majority will continue with crowdsourcing activities
in the future. Personal benefit in the form of recognition, experience, feelings of
contentment from being able to help, or reciprocity outweigh the lack of monetary
benefits.

Critics have also noted that crowds are not necessarily as uneven or lacking in their
skills as is commonly believed [28]. Instead, many users participating in crowdsourc-
ing activities are actually professionals or experts in the field, and take part willingly
as a pastime, or for additional recognition and experience in the field. Thus, labeling
crowdsourcing as an amateur-only activity undermines the expert-level contributions
from professionals, and further reduces the incentive to pay proper salaries for the
crowdsourcing activities where a payment would be suitable [28]. The prevalence of
expert-level participants also means that even though the crowd might be uneven in
skills, crowdsourcing activities are capable of producing good quality end products.

7

2.1.1 In online education

During the recent decade, online education has surged in popularity. Ranging from
self-study materials to open university courses, online courses have been regarded
as a vital part of making different levels of studies available for all. For example,
Coursera7 offers hundreds of free courses, topics ranging from particle physics to
social studies.

Online education has become core part of computer science studies [29]. Especially
MOOCs (massive open online courses) have become a very popular way to tackle
courses [30, 31, 32], as they are readily available for a range of people of all ages,
genders, and education levels, regardless of their physical location and monetary
situation [1]. MOOCs on programming have even been used as an entrance exam to
bachelor’s studies in computer science [33, 34], and have been proposed to alleviate
the lack of computer science related studies before university level [35]. In addition,
MOOCs have also been used to teach various other computer science related top-
ics beside programming, such as databases, algorithms and machine learning, and
introducing teachers to teaching computer science [36, 37].

While ease of access and flexible scheduling help the participating students [29,
31], online education brings its own set of challenges, one of them being the sheer
number of people attending the course at the same time. This means that one course
instructor will not necessarily have the time for personal assistance, at least not very
intensively, and many of the evaluating procedures require some level of automation
[38]. Also, as the model solutions tend to leak to the Internet during the course,
it would be beneficial to change the exercises at least partially between the course
iterations to make straightforward plagiarizing more difficult. Changing exercises
for every course iteration requires a massive pool of exercises and answers, which in
turn takes time and effort to build and maintain. Such efforts might be infeasible
for a course instructor who most likely teaches regular lecture courses and can not
spend all of their time for creating new exercises.

One way of alleviating the pressure of creating new material and exercises for each
course iteration is crowdsourcing. The specific uses of crowdsourcing in computer
science education are discussed further in the next subsection.

2.1.2 Systems in computer science education

Computer science education is a field of science that concentrates on teaching and
learning computing, computer science, and computational thinking [39]. Besides
physical textbooks, the field heavily utilizes online textbooks and different tools to
both improve the learning experience and collect research data from the student
populations. These tools can, for example, try to teach programming syntax [40],
ask students to arrange code blocks into a correct order [41], or require students
to create their own exercises [6, 10, 11, 12]. This thesis concentrates on the last-

7https://www.coursera.org/

8

mentioned tools, as they can be used to crowdsource content while also working as
practice and revision tools for students.

The main benefit of using crowdsourcing in computer science education is balancing
the workload required for creating new exercises and updating course materials.
There are two main ways of using crowdsourcing to create materials – using a crowd
of students, or using a crowd of educators.

Using students as a crowd is usually preferred, especially if the materials to be
produced are simple, but the amount required is great. Generally, introductory pro-
gramming courses attract more students than the advanced courses, offering a large
group of students for crowdsourcing activities with each iteration. Crowdsourcing
activities can be merged with the practice portion of the course so that the activity
itself is more or less hidden from the student – instead, they focus on completing an
exercise, or revision. Thus, learning and collecting happen simultaneously, in prefer-
able cases with minimal overhead for the student. The most notable disadvantage of
using students as the crowd comes from the unbalanced skillsets and varying levels
of expertise. Since most students, especially on introductory programming courses,
are novices in the topics they are studying, it is natural to doubt the capabilities of
the crowd when it comes to creating viable materials via crowdsourcing. The effects
of a mostly novice crowd are investigated in this thesis – however, based on previous
studies [7, 8, 9], the end product quality is not estimated to be drastically different
compared to using more experienced crowd, as long as the crowdsourcing tasks are
presented in a meaningful way.

Using a group of educators as a crowd has its benefits compared to using students.
The quality concerns mentioned previously should not rise as an issue. Besides
this, teachers and instructors have a concrete understanding of the curriculum and
the course contents, as well as the topic at hand. Thus, they have a better grasp
of what kind of material is useful and necessary for the learning process, meaning
that the way crowdsourcing tasks are presented need not be as strictly stuctured,
unless a very specific type of material is required. Educators also understand the
different levels of comprehension a student may have on the topic, and are more
capable of creating exercises of various difficulty levels. Moreover, especially face-
to-face crowdsourcing sessions may be beneficial in networking, and can encourage
educators to seek collaboration in other ways as well. However, as one of the main
reasons to use crowdsourcing in educational purposes is alleviating the workload
educators have, this method does not provide clear advantages over the regular
situation. Teachers and instructors may have restrictions on their available time and
resources, and participating in crowdsourcing of materials rarely substitutes parts
of existing work during the creation process, thus adding to the workload instead of
easing it. Some instructors may also feel that they are not gaining enough from the
end product for it to necessitate their input. Sharing previously created materials
for common use might feel unfair if the gain is not clear enough.

The rest of this subsection presents computer science education tools and material
banks that utilize crowdsourcing in one way or another. The first three tools, Peer-

9

Wise, CodeWrite and StudySieve, are used by students, who also act as the crowd
for the crowdsourcing efforts. These tools are similar to CrowdSorcerer, which is in-
troduced in detail in Section 3.1. The last three are used by educators, and present a
wider variety of crowdsourcing tasks. Besides introducing the relevant systems and
material banks, this subsection also discusses some general benefits and difficulties
these systems may have.

PeerWise [10] (Figure 3 from the documentation8) is a web-based tool used to crowd-
source multiple choice questions. While the format of multiple choice questions
makes them applicable for wide range of educational fields, this background liter-
ature review focuses on the studies on the usage of the tool in computer science
courses.

When creating a multiple choice question, the user provides a question stem and two
to five answer alternatives, as well as the indication of the correct answer, and an
explanation of why the marked answer is correct. All of the questions entered to the
system are available as exercises for other users. After completing the question, the
answering user can give feedback and rate the exercise. The user who created the
question can track how their exercise is doing, whether it is rated overtly difficult
or not, and if there are any mistakes in the question stem or the answer.

PeerWise is largely a self-correcting system, as mistakes in short multiple choice
questions are easily spotted by those who try to solve the exercises. This was thor-
oughly investigated by Denny et al. [42], and it was noted that even if the exercises
originally had some mistakes, all of them were corrected through feedback. The
system has also received very positive feedback from students who have described
the system as a very good way to review concepts of the course [10, 43]. The ever-
growing number of multiple choice questions also benefits the course instructors, as
they have practice material available even at the beginning of a course, collected
from the previous iterations.

CodeWrite [11] (Figure 4) is a web-based programming education tool that provides
drill and practice support for Java programming. The user first writes both a brief
and a more detailed description of the purpose of the method they need to construct.
The user also creates the descriptions and other necessary information needed to
complete the exercise, such as the return type and the method name, as well as
parameters of the method. After filling out the method as instructed, the user
creates test cases for their program. These test cases are used directly to test that
the implementation given works as intended. The user receives direct feedback of
their exercise through the test results. All tests must pass before the exercise is
shared with other users. When published, other users can attempt to solve the
exercises that have been created by peers on the course.

Based on student reports, CodeWrite helped the users to learn programming con-
cepts, as they spent time investigating each other’s solutions and comparing them
to their own [11]. The same study also noted that the exercise database built using
only student-generated exercises covered all the topics on the course, giving users a

8https://peerwise.cs.auckland.ac.nz/docs/students/

10

Figure 3: Overview of the question creation process in PeerWise [11].

11

Figure 4: CodeWrite [11]. The student enters their solution to the question into the
provided text field.

12

Figure 5: StudySieve [12]. Students must complete and rate their own answer before
they can see the answers of the other students.

comprehensive set of exercises to practice on.

Since exercises created on CodeWrite are published for use as soon as they pass
the tests, there have been some issues with the exercise description and demanded
method not matching [44]. This causes issues for those attempting to solve the
exercise, as they will not get the model solution before they submit a working
solution of their own, which can lead into a guessing game if the description is vague
or erroneous.

StudySieve [12] (Figure 5) is a web-based tool for forming free-response questions.
Similarly to PeerWise, while it is possible to use StudySieve on various fields besides
computer science education, this background literature review focuses on the usage
of the tool on undergraduate computer science courses.

The user creates a question according to the guidelines given by the instructor. The
guidelines are to remind of checking the quality of the question before submitting
it, as well as to remind of the preview function to make sure the submitted question
is formatted properly. To avoid repeated questions, the question text the user is
writing is compared to the database of existing questions, and similar ones are
shown below the text field. This encourages the user to alter their own question,
and decreases the number of duplicates.

The existing questions can be answered, and though there are no checks for the

13

correctness of the solution, the answering user only sees the other possible solutions
to the question after they have submitted their own answer. Then, they can compare
their answer to others’, and use the peer reviewing functionality of the system to
discuss the answers submitted, as well as the question itself. The peer reviewing
functionality for both the questions and the answers includes statements that are
rated from one to five (such as “Correctness of the answer”) and a field for written
feedback.

Studies on StudySieve state that the student responses to the use of the tool were
very positive, and that the students enjoyed creating more questions than it was
required, as they believed it helped them to revise and learn concepts of the course
[45]. It has also been found out that those students who actively participate in these
types of question-and-answer creation activities perform better in exams, even when
considering their prior abilities [46, 47].

As mentioned before, crowdsourced materials created by educators can be very dif-
ferent from those created by students. Materials crowdsourced from students are
usually simple exercises with their answers. To get the most out of the educators’
time and resources put into the crowdsourcing efforts, the materials produced are
usually more on the line of course content, such as online text books, visualisations,
or extensive sets of exercises.

Canterbury QuestionBank [48] is a comprehensive set of multiple choice questions
suitable for first-year computer science courses, developed at ITiCSE 2013 conference
by a working group of computer science educators. The working group produced
over 650 questions and answers suitable for, for example, quizzes and exams. The
question bank can be found and contributed to through its website9.

Each of the exercises consists of the question itself, the correct answer with an
explanation, at least one other answer alternative, tags to describe the question and
its topic, and quality and difficulty ratings, as well as some additional comments
from reviewers. All the questions in the question bank are created and reviewed by
instructors to ensure good quality and beneficial assignments.

The working group identified twelve distinct patterns for multiple choice questions
[48]. These include, for example, fixed-code debugging (finding an error from the
code given in the question), purpose (given a code segment, explain the purpose
of the particular piece of code), and algorithm and data structure tracing (such as
order of nodes visited in in-order traversal).

CodingBat [49] is an online repository10 of small programming exercises in Java
and Python. The idea of the site is to give the user lots of short exercises with
simple descriptions and immediate feedback. While coordinated by a computer
science lecturer at Stanford University, exercises can be added to the repository by
teacher profiles. Since CodingBat is not crowdsourced through users, but through
instructors, the repository is noticeably smaller than those using much larger masses

9http://web-cat.org/questionbank/
10https://codingbat.com/

14

to build up the database.

OpenDSA [50] is a collection of online materials meant to support a wide range
of computer science courses, such as data structures and algorithms, programming
languages, and formal languages. The materials provided by the system are available
on the webpage11 of the project. The materials include visualisations, full course
books, exercises and singular modules that can be used as a part of any course
material.

Contributing to the OpenDSA collection happens through its GitHub repository’s12

pull request feature, which makes it possible for the original developers to review
the additions the contributor wishes to make. The pull request feature enables line-
by-line commenting, which makes it easy to point out issues in the contribution,
and opens a place for discussion.

Results of learning from student-generated content have been very promising as
well [46, 47, 51, 52, 53, 54]. Again, when examining the use of StudySieve, Luxton-
Reilly et al. [53] found a positive correlation between question-generation exercises
and exam performance that cannot be simply explained with prior experience or
knowledge, though the exact effect of the tool usage is very difficult to measure due
to variables like the pressure of the exam situation. Revision of topics for exams has
been mentioned as a clear benefit for PeerWise and CodeWrite, while systems like
CodingBat can act as a supporting revision measure without active crowdsourcing
from the students. For example Denny et al. [43] report that students create, answer
and review more multiple choice questions than is required of them, especially right
before final exam, and student reports say that the tool is very practical for intensive
revision and recalling the most important topics at the end of the course.

The use of PeerWise has also been studied to encourage deep learning as opposed to
surface learning, as the students need to analyze the presented exercises on a deeper
level for the reviews [10]. Using the database for purely revision without the creation
and reviewing parts would reduce the system to a simple drill practice. Deep learning
is also supported through reflection, as in order to create relevant multiple choice
questions, the students must first understand and reflect on the learning outcomes
of the course [10]. The students must also be able to give alternative answers
besides the correct one as distractors, which means that they need to know their
question topic well enough to come up with possible misconceptions that might
occur. Sufficient understanding of the topic at hand is also required to properly
reason why one answer is correct and why the other ones are not.

Denny et al. [10] note on their analysis of PeerWise that one significant benefit of
crowdsourcing systems outside of the range of student learning experiences is the
time saved by collecting a large question bank through the use of the system on
courses. Besides getting a repository of potential quiz exercises, the database can
also be used for analysis of student performance and common misconceptions. The
same benefits can be applied to StudySieve and CrowdSorcerer, and to some extent,

11https://opendsa-server.cs.vt.edu/
12https://github.com/OpenDSA

15

CodeWrite, though the latter lacks the increased quality of reviewed exercises. From
another point of view, systems like Canterbury QuestionBank and OpenDSA provide
instructors ready-made materials to use on their courses, which also serves as a time-
saver.

Denny et al. [8] also examine the coverage of course topics in a database generated
with PeerWise, and conclude that the database covers all the major topics of the
course, despite students having complete freedom on choosing the topics for their
questions. The same study reports that a large part of the questions used multiple
topics from the course, sometimes creating very complex exercises, which indicates
that the problem of students taking the easy route and creating only very simple
exercises to spend as little time as possible with the tool was not observed.

Weld et al. [55] note the difficulty of personalisation on online courses, and propose
to solve some of the presented problems with crowdsourcing. Their solutions include,
for example, peer reviewing processes for support through feedback and engagement
through a large database of crowdsourced exercises that can be automatically given
to students depending on their process on the course. This is directly what tools
like PeerWise, CodeWrite, StudySieve and CrowdSorcerer strive to achieve.

The most pressing difficulty encountered with crowdsourced materials is with the
quality of the produced content. Every person contributing is not as talented or well-
versed in the field they are partaking in. For example, when creating programming
assignments, novice programmers may not yet fully understand what is required from
a good description, or they may have a lacking knowledge of good testing practices,
such as test coverage. This might allow mistakes to slip into the finalized exercises,
even if the systems have some checking measures, like for example CodeWrite and
CrowdSorcerer have. On the other hand, experienced programmers might find it
hard to create an assignment that is simple enough for the level of the introductory
programming course they need to participate in, as many programming practices
not yet addressed on the course may seem self-explanatory to them.

One way to combat the quality issues is expert reviewing, or a system that only
accepts contributions from experts. CodingBat is one example of a system using
the latter approach. While the quality of the exercises in the system is guaranteed to
be good, it is very clear that the system suffers from the lack of exercises when com-
pared to, for example, the larger databases constructed with tools like CodeWrite.
Fewer exercises means that students will go through them more quickly, have less
materials to revise from, and will require exercises from other sources, which in turn
takes up the instructor’s time. The time and resource limitations are also a rea-
son why expert reviewing does not seem to be a popular choice for crowdsourcing
quality management in computer science education. Joint projects like Canterbury
QuestionBank can produce a large database through one coordinated working group
effort, but also suffer from lack of updates – only two questions have been added
since the publication of the original article in 2013.

Another way to avoid quality issues is to use peer reviewing. This procedure can be
seen in use in PeerWise, StudySieve and CrowdSorcerer. While it would seem that

16

it is risky to use the same students who may produce wildly erroneous assignments
to review said assignments, multiple studies [8, 9] show that the quality of peer
reviewed assignments can be good. There are no significant differences in peer
reviews and expert reviews [9], nor with reviews done by novices or more experienced
programmers [7, 9]. That being said, a study by Hui et al. [56] notes that anonymous
reviews are more honest than those with the reviewers name attached to it, so the
way the review process is handled may affect the end results noticeably.

Some systems, such as CodeWrite, work without any review measures. However,
Denny et al. [44] do note that student feedback has indicated problems such as
vague exercise descriptions, mistakes in program code and so forth. This presents
an obvious quality issue, and causes issues for both the students and the instructor.
The students may get misleading information from erroneous exercises, or may not
be able to complete some exercises due to lacking descriptions. On the other hand,
the instructor can not use the exercises as a database for following iterations of the
course, at least not without running a laborious review process beforehand.

Besides quality issues, one difficulty the crowdsourcing process itself might run into
is lack of crowd interest. For example, only third of the course population tried
CrowdSorcerer in its first iteration [6]. Lack of data leaves the database small, and
makes the process of collecting exercises slower. Similarly, small set of data can
hinder studies of the tool, as the userbase is too marginal to present any relevant
results. The same study notes that students were more keen on peer reviewing
than creating assignments, which might be due to seemingly larger workload of
constructing an assignment from scratch.

Preparing course materials takes time, and though many instructors want to make
their courses look their own, it is still very useful and time-saving to have ready-
made, freely usable databases of course materials online. The labour needed for
creating course materials discourages creators from openly sharing their content,
which means that many potential tools stay in their university indefinitely [57].
Good quality open materials like OpenDSA are difficult to come by, and require
extraneous effort from at least instructor-level expert to manage.

When it comes to the benefits of crowdsourcing in computer science education, there
is a multitude of great experience reports available. The current research implies that
crowdsourcing is a very usable and beneficial method when it comes to educational
purposes, and that the difficulties it can bring are mostly avoidable, as discussed
above. The benefits can be seen more clearly with extended research, as has been
noted for example with PeerWise and CodeWrite. Continuous research in varying
environments, such as different universities or subjects, gives all the more reliable
overall picture of the effects of these tools and materials.

2.2 Quality

One key term in this thesis, also present in the title, is quality. In the context of
software development, quality is a concept that is somewhat hard to define. Usually,

17

what is seen as a good quality product or process depends on the phase the develop-
ment is in, such as production or integration [58, 59]. Thus, quality can concern the
security of the software, whether it fulfills the goals set for it, how readable the code
is, how detailed the documentation is and so forth. In the context of this thesis,
quality under evaluation is defined as the suitability for a specified task, that is, how
well the assignments produced with CrowdSorcerer meet their goal and whether this
can be measured.

Garvin [60] uses five different views to inspect the prospect of quality in various
fields such as philosophy, economics and marketing. These five viewpoints have
been applied to various other fields [61, 62] beyond Garvin’s original description,
including software quality management [59, 63]. The most relevant for this thesis
are the following three views.

• User view sees quality as the fit of a product to its intended purpose. It
expects that the quality of a product or idea is supposed to bring some kind
of benefit to its user, and the better the product or idea benefits the user, the
greater quality it also is. User view of quality can be broadened to inspect
wider userbases, or to the level of an individual – how well the product or idea
serves its entire intended audience as a whole, or how beneficial and usable it
is for each singular user.

• Manufacturing view inspects quality from the perspective of conformance to
specifications. It is assumed that there is a plan or a specification document
that is used at the producing phase, and the quality of the item is evaluated
only through how closely the finished product resembles the specification. This
can be a hindrance from the user view. If the specification is faulty, the
end product will also contain these errors, if manufacturing view is the sole
measurement for quality.

• Product view evaluates quality as something tied to the inherent characteristics
of the product. In the case of software quality, this would mean valuing the
inherent quality of the program more than the external, such as focusing on
the documentation and readability of the code, and expecting that internal
quality will inherently produce external quality (user view quality) as well.

As mentioned before, Garvin’s views for quality can be used to assess quality in
various fields. Kitchenham and Pfleeger [59] focus on describing measuring the
quality of a software product from user view and manufacturing view. Measuring
quality requires not only the definition for quality, but also baselines. For example,
one mentioned baseline for measuring quality from user view is reliability, that is,
how long the product is able to function without failures [59, 64]. Other possible
measurement of quality from the user view is usability, including everything from
installation of the software to learning to use it, and performing the tasks with the
software regularly. Both examples here, reliability and usability, are possible to be
measured using set characteristics, like time between failures for reliability, and time
spent on learning the use of software for usability [64, 65].

18

Similarly, Kitchenham and Pfleeger [59] give two characteristics to measure for the
manufacturing view when it comes to software quality: defect counts and rework
costs. Defects are recorded during the development process and usage across all
modules, and must be evaluated in the same way throughout the entire process.
Rework costs relate closely to defects – while some defects are very minor, and easy
to fix when found, while some are disastrous to the entire system. The latter defects
can end up being very costly, causing issues before they are found and being tricky
and laborious to fix when encountered. This increases the rework cost, that is, the
effort required to report and fix defects during production and after launch.

Tian’s article [66] presents evaluation models as a way of estimating and measuring
software quality. The article divides software quality characteristics roughly into
two categories: those that are directly related to functional correctness or to the
conformance of specifications, and those more on the user-side of the product, such as
usability and portability [67, 68]. Evaluation models can be used to identify defects,
error-prone areas and predict resulting quality, thus improving project management,
optimisation and resource handling [69, 70].

There are similarities between Tian’s models [66] and the quality viewpoint for soft-
ware engineering presented by Kitchenham and Pfleeger [59] from Garvin’s quality
viewpoints [60]. Both concentrate heavily on defects, Kitchenham and Pfleeger giv-
ing special attention to the effects such as reworking costs in the description of
manufacturing view of software quality. Kithcenham and Pfleeger also concentrate
more on usability through the user-side view, while Tian’s perspective is heavily on
the manufacturing view. Kitchenham and Pfleeger actually mention quality models
in their article, though they introduce a wider variety of models than Tian. Both
articles mention ISO 9126 [68], perhaps the most well-known code quality standard,
that defines quality through six characteristics: functionality, reliability, usability,
efficiency, maintainability and portability. As many of these characteristics are heav-
ily from the user view of quality, Tian does not put much emphasis on these.

Conversely, Dromey [71] states that the term software quality has been used too
loosely in relation to the product and the process. He argues that this has created
confusion and diversion from the primary goal of the industry – that is, improving
the quality of the software during various phases of software development. Dromey
introduces a quality model framework to alleviate the semantic confusion and vague
terminology of quality to distance the conversation from subjective ideas of “good-
ness” and “fitting the purpose”. He also states that the idea “quality should be built
into software” inherently distracts from the real issue of how to build a software that
has high-quality characteristics.

Dromey notes that he is not the first one trying to tackle the problem of software
product quality in a systematic and comprehensive manner [72, 73, 74]. However,
previous attempts of building a suitable quality model framework have stalled, for
example, because of the diversity of defects in software, and the perceived scale of
the quality problem in general. To overcome these hindrances, Dromey proposes a
strategy of always proceeding from the tangible and measurable quality character-

19

istics to the less tangible, higher level ones. To accomplish this, Dromey presents
a generic quality model and a process to build such a model for different software
products. The details of this model are outside of the scope of this thesis – see [71]
for details.

2.2.1 In computer science education

In general, the concepts of quality that software engineering uses also apply for com-
puter science education. This section mainly focuses on inspecting and improving
students’ code quality. As novice programmers may not write quality code by them-
selves, the job of the instructors is to ensure that not only are the examples in the
course materials of good quality, as this is what students mainly use as reference
when they write their first programs, but also that students learn to pay attention
to what features good quality code has.

Measuring students’ code quality is not a simple task, as it cannot be assumed that
novice programmers can adhere to the quality standards commonly used in the work-
ing life [68]. Thus, code quality measurement studies tend to end up rather context
specific [75]. In their study, Breuker et al. [75] compared first year computer science
students’ code to that of second year students, and found no significant differences
in the static code quality with their measurements. They do note, however, that
their results may be skewed due to the more complex programming assignments the
second year students are expected to complete, and how their measurement system
does not suitably acknowledge this change, thus rating programs it deems too long
or complex as low quality.

One gentle way of introducing novice programmers to code quality management is
through code reviewing, which can be approached through pair programming. Stud-
ies have found many benefits for pair programming in general, including increased
confidence and performance, improving laboratory experience, and fewer “give-ups”
due to lack of teaching assistant’s time [76, 77, 78]. During pair programming,
students naturally participate in code review, even if it is not systematic, as they
continuously read through each other’s code and correct errors as they proceed.

Guided peer code reviews and peer assessment has been used in introductory pro-
gramming courses with promising results. For example, a study by Brown [79]
found out that their guided peer code review system helped students to understand
hard-to-comprehend programming concepts, improved their programming skills, and
made them better at finding errors in programs. The same study also notes that
improved performance during the code reviews translates to the improvement in the
quality of the code produced. Similarly, Hamer et al. [9] report good correlations
in their study for quantitative marks given by students and tutors, with improving
correlations as student ability and experience increase.

Stegeman et al. [80] report their experiences using a code quality assessment rubric
meant to provide feedback from instructor to student. Based on their previous
work [81] with assessment of code quality in introductory programming courses, the

20

studies disassemble existing models of code quality and structure the introductory-
course-relevant aspects into concrete feedback tools. Working through multiple iter-
ations of the rubric, Stegeman et al. present a working feedback tool for systemat-
ically assessing code quality aspects like naming, formatting, and flow of the code.
For clarity and learning purposes, the rubric includes descriptors for the achieve-
ment levels and criterion, so that the rubric is not only a helpful grading tool for
the instructors, but also an instructional document for the students.

One other possible perspective into code quality management comes in the form of
test-driven development (TDD) [82]. In TDD, the programmer specifies the test
before implementing a new portion of the program. Typically, testing and espe-
cially TDD practices are not introduced very early during introductory computer
science studies, as it is not seen as a framework that is easy for novice programmers
to grasp effectively [83, 84]. Mugridge [84] notes that not only does TDD require
skills in testing, design and refactoring to utilize it well, the students also require a
complete reconfiguration of their models of learning and designing programs. Thus,
one important part of teaching both testing and TDD is to help students under-
stand and appreciate testing, and not see it as a redundant hurdle in completing a
programming assignment [85]. Some teachers also feel that they barely have enough
weeks on a course to teach the required topics as is, and adding testing would only
increase the overflowing workload [86].

While the approach is not the most common one, many courses have tried including
TDD into curriculum very early in the computer science studies. For example, Desai
et al. [86] report on their experiences in integrating TDD into existing CS1 and
CS2 materials without reducing topic coverage or increasing instructor workload.
Through exposing students to testing through examples, and gradually increasing
the number of tests required per programming project, students were smoothly
guided into writing tests unprompted and on their own. The same results have also
been previously noted by Janzen and Saiedian [87]. Desai et al. [86] also noted that
while awarding points for test code did not significantly change the quality of the
source code, attitude towards testing, or comprehension of the material, it did give
students more incentive to create more test cases, thus producing higher quality
code measured through code coverage. Edwards [83] reports very similarly, stating
integrating TDD into the introductory programming course helps students distance
themselves from the trial-and-error approach of debugging and encourages them to
learn analytical testing skills.

2.3 Inter-rater reliability

Inter-rater reliability is a statistical method used to describe the degree of agreement
between two or more raters or reviewers. Different statistics of inter-rater reliability
can be used to calculate the score of consensus between ratings of different reviewers
(in contrast to intra-rater reliability, where the consistency of ratings for one judge
in multiple occasions is measured).

21

Inter-rater reliability can be used to, for example, refine tools that are given to
human judges by determining a scale that is appropriate for measuring the particular
variable in question. Low inter-rater reliability means that either the scale used is
defective, the rating instructions are unclear, or the raters need to be retrained.

There are multiple statistical methods for inter-rater reliability measurements in
different situations and for different data sets, such as Cohen’s kappa (for two raters)
[88], Scott’s pi (for nominal data) [89], and Fleiss’ kappa (for fixed number of raters
and categorical data) [90]. The statistic used in this thesis is Krippendorff’s alpha
for its suitability for various types of data.

Krippendorff’s alpha [91] has been used since 1970s in content analysis as a general
agreement measure with appropriate reliability interpretations (for example [92, 93,
94]). Krippendorff describes that the α-agreement gives uniform reliability standards
over a wide array of varying types of data [91]:

• It is applicable to any number of values per variable. Its correction for chance
makes α independent of this number.

• It is applicable to any number of observers, not just the traditional two.

• It is applicable to small and large sample sizes. It corrects itself for varying
amounts of reliability data.

• It is applicable to several metrics (scales of measurements) – nominal, ordinal,
interval, ratio, and more.

• It is applicable to data with missing values in which some observers do not
attend to all recording units.

In its most general form, the definition of α is

α = 1− D0

De

,

where D0 is a measure of the observed disagreement and De is a measure of the
disagreement that can be expected in case of a chance [91].

The above definition has two implications relevant for reliability measurement. First,
when the observed agreement is perfect and therefore, the disagreement is absent,
D0 = 0 and α = 1, which indicates perfect reliability. Coincidentally, when agree-
ment and disagreement are random, and observed and expected disagreements are
equal, De = D0, α = 0, indicating the absence of reliability [91].

The α value could also become negative, as much as −1 [91]. However, negative
values are considered a result of two kinds of errors: sampling errors and systematic
disagreements. As the aim is to achieve as high reliability as possible, negative values
are too divergent from the reasonable reliability values to matter. For reliability
considerations, the values of α are limited to

22

1 ≥ α ≥ 0,

± sampling error and − systematic disagreement [91].

The more detailed definition of Krippendorff’s alpha beyond this description is not
within the scope of this thesis, but can be found in Content Analysis: An Introduc-
tion to Its Methodology by Klaus Krippendorff [91].

Sampling errors can be a result of multiple reasons, for example, too small sample
sizes. With only a few observations, each rating has a large effect on α. When
the observed disagreements do not line up with the expected disagreements, the α
values fluctuate above and below zero. Systematic disagreements occur when raters
have different interpretations for the instructions given to them, or simply disagree
heavily on the topic. While all observed disagreements waver the perfect reliability,
systematic disagreements can cause α values to drop below what could be expected
by chance [91].

The minimum acceptable value of the α coefficient should be chosen according to
the importance of the conclusions that are to be drawn from the data, even in the
case the data is imperfect for example due to sampling errors [91]. The higher
the cost of erroneous conclusions, the higher the minimum alpha should be. When
the risks of drawing false conclusions from unreliable data is not known, social
scientists rely only on data with reliability of α ≥ 0.800. Data with reliability of
0.800 > α ≥ 0.667 is considered viable for drawing tentative conclusions, and data
with agreement of α < 0.667 is not taken into account. For conclusions that allow
more lenient measurements, Landis and Koch [95] have set magnitude guidelines as
follows:

• 0.81-1: Almost perfect agreement

• 0.61-0.80: Substantial agreement

• 0.41-0.60: Moderate agreement

• 0.21-0.40: Fair agreement

• 0-0.20: Slight agreement

• Less than 0: Agreement random or worse

The latter guidelines by Landis and Koch are used for analysis of the results of this
thesis in Sections 4 and 5.

3 Methodology and research design

The following subsections go through the methodology, data collection, and research
design of this thesis. Section 3.1 gives the system description of CrowdSorcerer, the

23

system used to crowdsource programming assignments in this study. Section 3.2
describes the data collected with CrowdSorcerer. Section 3.3 introduces the five
research questions, and Section 3.4 the expert review criteria.

3.1 System description

Figure 6: The basic assignment creation view of CrowdSorcerer. At the very top, the
assignment field contains a student-written assignment handout. The source code
field has a student-written code with the model solution marked with the checkboxes
on the left (blue lines). The lines in gray are used as a base for the program, and
they cannot be edited by students.

24

Figure 7: Simple input-output test cases.

Figure 8: Tagging system with suggestions to make categorizing assignments by
topics easier.

CrowdSorcerer [6] is an embeddable tool that is used for programming assignment
creation. Development of the tool started in the summer of 2017 by the author and
her colleagues in the Agile Education Research Group (RAGE) at the University of
Helsinki. The frontend13, that is, the embeddable user interface of CrowdSorcerer,
is built with React. The backend14, which holds most of the system’s functionality
and storage, is a Ruby on Rails application. The student-created assignments are
sent to a Test My Code programming assignment evaluator server [96]15.

The user interface for basic assignment creation can be seen in Figure 6. First,
the user comes up with an assignment handout according to specifics given by the
instructor. These instructions may require, for example, usage of conditional state-
ments. Then, the user programs a model solution (seen in blue lines in Figure 6)
and code template for the assignment they came up with (everything else in the
source code). The model solution is a full, working answer to the assignment, while
the code template only contains the basic structure of the program without the
crucial implementation lines. In order to help the student to recognize the relevant
lines of code for the code template, and to keep the source code functional, parts of
the code can be locked by the instructor so that the students are not able to edit

13https://github.com/rage/crowdsorcerer
14https://github.com/rage/crowdsorceress
15https://github.com/testmycode

25

these lines (seen in gray lines in Figure 6). The user also invents some test cases for
their program (Figure 7). The program code is automatically tested for compilation
errors, and the user-given tests make sure that the program works as expected.

The created assignments can then be peer reviewed. The reviewer can inspect both
the source code and the model solution, as well as the given tests (Figure 9). They
are required to answer review statements chosen by the instructor, such as “Exercise
is suitably difficult” and “Test inputs and outputs are reasonable” (Figure 10). The
reviewer is also prompted to give written feedback. The number and content of
review statements are decided by the instructor while setting up the CrowdSorcerer
instance. The default minimum for the written feedback is three words.

The instructor can set the number of assignments to review for each instance of
CrowdSorcerer. The default is three assignments for each student. If the student
created an assignment, they will receive their own assignment to review as the last
shown assignment. This is to encourage them to compare and reflect their work to
that of their peers’. If the student did not create an assignment for the instance,
they will receive the set number of other students’ assignments to review. It should
be noted that while the students need to be logged in to the course material in order
to create and review assignments, the system handles all the processes anonymously
from the students’ perspective.

Both the creator and the reviewer are also required to give the assignment at least
one relevant tag. Tags are supposed to describe the assignment in a very brief
manner – descriptive tags can be, for example, for-loop, if-else, conditionals, easy
and so forth. The tool gives tag suggestions from its database, as can be seen
in Figure 8. Tagging helps with identifying the assignments by their features, for
example their topic or difficulty level. Cross-referencing the tags from both the
creator of the assignment and the reviewers increases the correctness of the tagging
system.

Many instructor-specific features of the tool can be used through a separate admin-
istrative user interface (UI), accessible through a browser. Through the admin UI,
the instructor or course assistant can create new assignment instructions, inspect
the created assignments with full information and relevant peer reviews, set the tags
the tool suggests and adjust the peer review statements. If need be, assignments and
users can be deleted, so reacting to any reports of misbehavior is easy. The admin UI
also makes it convenient to inspect the statistics of each instance of CrowdSorcerer,
for example the error rates, how many assignments have been completed and how
many peer reviews they have received. The screenshot of the admin UI can be seen
in Figure 11; here, assignment does not refer to an individual assignment a student
has created, but to a specific assignment instruction (an instance of CrowdSorcerer).
Each student generated assignment (called exercise in the backend and the admin
UI) has an ID that can be found by inspecting an individual assignment (clicking
Show button in the right hand side of the row). For anonymity, usernames have
been changed – in the actual UI, the names are links that lead to the user’s profile.

26

Figure 9: The basic peer reviewing view of CrowdSorcerer. The reviewer can switch
between the code template and the model solution to make comparing these eas-
ier. The tool also allows the reviewer to download both the model solution and
code template separately to run on their own computer if they want to try out the
assignment themselves.

27

Figure 10: Review statements and the given Likert scale. Students are required to
give a short, written feedback in addition to the grading.

Figure 11: Exercise page in the admin UI.

28

3.2 Data collection

The data studied in this thesis was collected in the autumn of 2018 during the second
week of an introductory Java programming course in the University of Helsinki. The
course consists of a total of seven weeks, and teaches the typical introductory Java
programming topics, such as variables, conditionals, loops, functions, objects, and
object-oriented programming. The course uses an online textbook which contains
integrated programming exercises and other practices, CrowdSorcerer included. The
programming exercises are generally small, so the students complete some tens of
exercises each week, as opposed to completing fewer, larger projects. The recom-
mended programming environment for the course is NetBeans16. This iteration of
the course also had weekly lectures, as well as walk-in laboratories for added support.

The data was collected from 91 students who gave their permission for using their
data for scientific purposes, and completed an assignment using CrowdSorcerer. The
instruction for the CrowdSorcerer assignment for the second week was the following:

“Create an assignment that requires a student to create a program that reads an
integer from the user, uses a conditional statement to inspect the integer and then
prints a string. For tests, give an example input and the output the program will
print with this input.”

During the first weeks of the course, there was a bug in the CrowdSorcerer’s backend
that resulted in erroneously creating empty test files within certain conditions. This
allowed some of the assignments to reach the finished state (all tests passed) even
though there were some errors in the code, and in regular conditions, the student
would have been expected to fix these errors in order to complete the task.

Out of the 91 assignments, 13 had errors in them – however, due to the aforemen-
tioned bug, the system only marked three of these as errored assignments, and passed
10 of them, even though an error message was shown to the students. Normally,
errored assignments are not shown in the peer reviewing phase, but these 10 were
marked as finished by the system, so they received a few peer reviews each. These
assignments were not excluded from the study, and were investigated more closely
to see whether the peer reviewers were able to notice the errors in the assignments
without being prompted to specifically look for any code-breaking errors.

There was only one properly finished assignment that did not receive any peer
reviews at all, even though it was completed correctly. Generally, this should be a
rare case, as the backend of the system has a drawing logic for the distribution of
peer reviews to ensure somewhat equal distribution of peer reviews to assignments.
A completed assignment without any peer reviews occurs most likely due to very
late return of the assignment, or severe lack of motivated reviewers. In addition, the
three assignments that errored properly and did not receive a finished status due to
the bug did not receive any peer reviews either. The finished assignments from the
second week of the course received 409 peer reviews in total, ranging from 2 to 12
peer reviews per assignment.

16https://netbeans.org/

29

3.3 Research design

The research questions for this thesis are as follows:

• RQ1. What types of assignments do students create?

• RQ2. How do students perceive crowdsourced programming assignments?

• RQ3. To what extent experts and students are in agreement with their re-
views?

• RQ4. What characteristics are there in assignments in which experts and
students agree the most?

• RQ5. What characteristics are there in assignments in which experts and
students disagree the most?

To answer RQ1, the set of 91 assignments was categorized according to their types
and features. The categorisation identified seven different categories based on the
simplicity-difficulty level of the assignments.

To answer RQ2, the overall peer review grades were inspected using simple statistical
methods. This was to reveal general conceptions students have about crowdsourced
assignments, and how students tend to grade their peers overall. Though the writ-
ten feedback was not reviewed systematically, a tentative overlook to the feedback
collected is also included.

To answer RQ3, the assignment set was expert reviewed manually by the author us-
ing the same review statements as in the peer reviews. The peer reviews and expert
reviews were then compared using inter-rater reliability, more specifically Krippen-
dorff’s alpha. This analysis is divided into two sections: reliability by statement
and reliability by assignment. For the by statement analysis, each grade given in
the expert review for each statement is compared to the grades given to the same
statement in peer review, as is shown in Figure 13. For the by assignment analysis,
all the grades across all the review statements given in the expert review are com-
pared to those given for the same assignment in peer review, as seen in Figure 14.
This review setup is also illustrated in Figure 12.

30

Figure 12: Students can both create one assignment for each instance of CrowdSor-
cerer, and review multiple assignments, though some choose to only create or only
review. An expert reviews all the assignments using the same statements as the
students in their peer reviews. The agreement calculations between the peer and
the expert reviews are conducted by statement and by assignment.

To answer RQ4 and RQ5, assignments that received the highest and the lowest alpha
values (as calculated in RQ3) were further studied to find defining characteristics
that may have impacted the reviews, both for the peer and the expert reviews.
For RQ4, the purpose is to define characteristics that may commonly occur in a
good student-created programming assignment, while for RQ5, the purpose is to
find possible reasons why the expert and the peer reviews have such noticeable
disagreements.

31

F
ig
ur
e
13

:
E
xa

m
pl
e
of

th
e
ex
pe

rt
re
vi
ew

da
ta

ta
bl
e.

Fo
r
th
e
pu

rp
os
e
of

an
on

ym
ity

,
st
ud

en
ts
’
us
er
na

m
es

ha
ve

be
en

re
pl
ac
ed

w
it
h
St
ud

en
t
1,

St
ud

en
t
2,

...
T
he

co
lu
m
n
w
it
h
th
e
bl
ue

ba
ck
gr
ou

nd
de
m
on

st
ra
te
s
th
e
fir
st

in
te
r-
ra
te
r
re
lia

bi
lit
y
ca
lc
ul
at
io
n
(b
y

st
at
em

en
t)

-
th
es
e
gr
ad

es
w
er
e
co
m
pa

re
d
to

th
e
sa
m
e
co
lu
m
n
of

th
e
pe

er
re
vi
ew

da
ta

ta
bl
e.

F
ig
ur
e
14

:
E
xa

m
pl
e
of

th
e
pe

er
re
vi
ew

da
ta

ta
bl
e.

Fo
r
th
e
pu

rp
os
e
of

an
on

ym
ity

,
st
ud

en
ts
’
us
er
na

m
es

ha
ve

be
en

re
pl
ac
ed

w
it
h
St
ud

en
t
1,

St
ud

en
t
2,

...
T
he

ro
w

w
it
h
th
e
bl
ue

ba
ck
gr
ou

nd
de
m
on

st
ra
te
s
th
e
se
co
nd

in
te
r-
ra
te
r
re
lia

bi
lit
y
ca
lc
ul
at
io
n
(b
y

as
si
gn

m
en
t)

-
th
es
e
gr
ad

es
w
er
e
co
m
pa

re
d
to

th
e
sa
m
e
ro
w

of
th
e
ex
pe

rt
re
vi
ew

da
ta

ta
bl
e.

Si
nc
e
St
ud

en
t
3
di
d
no

t
re
ce
iv
e
an

y
pe

er
re
vi
ew

s,
th
ei
r
ro
w

is
em

pt
y.

T
he
ir

as
si
gn

m
en
t
ha

s
be

en
re
m
ov
ed

fr
om

th
e
co
m
pa

ri
so
n
an

al
ys
is
,e

ve
n
th
ou

gh
it

w
as

ex
pe

rt
re
vi
ew

ed
.

32

3.4 Expert review grading criteria

The statements used for both the peer and expert reviews were originally created
for the initial version of CrowdSorcerer. The statements were chosen so that they
inspect the quality aspects of the assignment from various perspectives as compre-
hensively as possible. As of the time of writing this, some review statements have
been modified – see Section 5.3 for discussion.

In order to remain consistent in the expert reviews, a set of grading criteria was es-
tablished and followed throughout the review process. Though the criteria are based
on the software quality standards presented in Section 2.2, strict specifications are
not followed. This is because industry standards would be too harsh for novice pro-
grammers who haven’t been taught the quality aspects yet. The reviewing process
through the students’ point of view is described in Section 3.1.

The model solution corresponds to the assignment handout: The model
solution created by the student is expected to match the instructions they give in the
assignment handout. Generally, this statement was well-graded, as vast majority of
the assignment handouts matched perfectly to the suggested model solution, or had
very minor issues, resulting in a subtraction of one point. The bigger the discrepancy
between the assignment handout and the model solution, the more points were taken
from the full five point marks.

The code is clean: Cleanliness of a program code describes its readability, ad-
herence to coding practices taught on the course and general best practices for the
programming language used. Measuring the cleanliness of a program is very much
possible with systematic methods [68], and these methods were roughly applied in
the expert review process.

The model solutions were graded so that each started with the base of five points,
which is the maximum. Points were subtracted according to the amount and severity
of the style issues – inconsistent use of spaces or line changes, unconventional place-
ment of brackets, and confusing order of declared variables being under scrutiny, to
mention a few. There were generally very few issues with the readability and overall
cleanliness of the code, as the exercises were short and usually very similar to those
on the course.

The model solution and the code template are separated correctly: While
originally this statement was meant to measure how well the students can identify
the aspects that are needed for the code template and what is necessary for the model
solution part of the program, it ended up serving a dual purpose of measuring how
well the students can use CrowdSorcerer. In the original version of the tool, there
were some issues with the marking of the model solution and code template lines,
namely that students tended to forget the whole process so that the model solution
and code template ended up identical. This issue was alleviated in the version
that was used in the course iteration this data is collected from by using a preview
window that shows the model solution and code template before sending, and urges
the student check that these have been marked correctly.

33

It seems that the preview window did help with the separation issue, as there were
no assignments with identical model solution and code template. These assignments
would have received one point from the expert review out of the five possible points.
Assignments that received two or three points were usually cases where the checks
would not have passed if it hadn’t been for the bug in the system, or the assignments
were actually left in the error state and not finished. Four points were given to
those assignments that were correctly marked, but left too little for the user to do
to make the exercise reasonable – that is, had too many lines in the code template.
Five points were given to assignments that had reasonably marked model solution
lines and good balance between the solution and the template.

The assignment is creative: Creativity of a programming assignment is a very
subjective matter, and the grading is likely to depend on the sense of humour,
personal interests and background knowledge of programming exercises for each
reviewer. The points were awarded as follows:

• One point given if the assignment is directly plagiarized from the example
given in the instructions on how to use CrowdSorcerer. As the assignment
handout, model solution, code template and tests are fully given in the in-
structional video, this option does not require any individual work from the
student besides writing out the given solution to their instance of the tool.

• Two points for assignments that directly copy an exercise from the course
material. Though not optimal for a learning experience, this still requires
that the student has completed the exercise, either while using the tool or
beforehand, as they need to provide the model solution.

• Three points for assignments that are heavily inspired by an exercise in the
course material, though not directly copied. These can be, for example, cases
where the variables are slightly changed, even though the structure is identical
to the exercise on the course. These kinds of assignments are expected, as most
of the solutions are very simple and rarely novel.

• Four points for assignments that use very simple solution for an unique topic
to create an interesting and novel assignment.

• Five points for a novel topic or implementation idea. Usually more complex
in their model solution than the assignments that were awarded four points.

It should be noted that while copying is very much against good practices, it was
not explicitly prohibited for the CrowdSorcerer assignments. The students were
encouraged to take inspiration from the course exercises if they had trouble coming
up with their own ideas. Students who directly copied their assignment from the
CrowdSorcerer example video or the course materials were not sanctioned in any
way.

34

The assignment is suitably difficult: When examined subjectively, the difficulty
of the assignment depends heavily on the knowledge and experience level of the stu-
dent or user. Objectively, the difficulty level of the assignment should depend mostly
on the topics that have been covered so far during the course. In more complicated
exercises, added difficulty may arise due to the structure and requirements of the
exercise, but in simpler exercises, the difficulty is provided by the topics used on the
exercise. For example, using recursion is perceived more difficult than using simple
if-else statements.

The instructions for the assignment asked to use a conditional statement, take in
integer input from the user using Scanner and print out string output. The very
basic implementation of this awarded the student three points in the expert review,
as the course had advanced beyond these topics and the students are capable of
using other tools beside these. Four to five points were awarded for example for the
correct use of relational operators, for-loops and while-loops. Grades of one to two
points usually had other issues that also affected their difficulty indirectly, such as
omitting the use of conditional statement completely.

The assignment handout corresponds to the instructions: This statement
requires that the assignment handout written by the student corresponds to the
instructions given by the lecturer. For example, if the instructions require using
if-else statement, the assignment handout given directly or indirectly requires the
user completing the assignment to use if-else statement. Though direct instructions
make grading this clearer, indirect instructions are not an issue if the assignment
handout is clearly written (reviewed in the next statement). Indirect instructions in
the handout may actually provide a slight increase in difficulty of the assignment.

The grading started with five points and points were subtracted on a case-by-case
basis depending on how far from the lecturer’s instruction the student drifted. Com-
pletely disregarding the instructions awarded three points or less, while smaller mis-
takes such as asking for a string input instead of integer subtracted one point.

The assignment handout is clear: The clarity of the assignment handout is a
sum of multitude of things. A clear handout should, first and foremost, have all the
information needed to actually complete the exercise – variables, parameters and
clear outputs. In more complicated exercises, the handout should give a hint of the
actual structure of the expected program, though some room needs to be left for
the user’s own thought process.

Besides the obvious necessity of needing all the pieces required to complete the ex-
ercise, a clear assignment handout is also linguistically coherent. The words used
should match the vocabulary of the course, and the sentences used should not be
overtly long to easily portray the purpose and the goal of the exercise. While gram-
matical issues, lacking punctuation and typing errors rarely affected the grading, the
cases where the assignment handout becomes very difficult to read required some
subtractions to the overall score for this statement.

The expert review gradings for this statement started from the full five points, and
subtracted points cumulatively approximately as follows:

35

• Subtract one point if the assignment handout is missing information.

• Subtract one point if the assignment is very difficult to understand because of
grammatical issues.

• Subtract one point if the assignment handout gives wrong or misleading in-
structions.

Assignments that received only one point from this statement’s grading were gen-
erally very vague, and it would be impossible to complete the exercise with the
information given.

The test cases are reasonable: Though there are very concrete and studied
ways to determine test coverage and quality [68], these methods are excessive for
the small assignments created with CrowdSorcerer. They would also most likely be
too harsh, considering that the students are on their second week of the introductory
programming course and have not been introduced to the topic of testing yet.

The instructions for the tool noted that the students should consider all the paths
their program can take, and test at least all the possible outputs their solution
can produce. Thus, the grading was heavily based on the test coverage, namely
how precisely the test cases represent the branches of the conditional statements.
The grading was a bit more fluid, as the required test cases vary depending on the
implementation of the assignment.

The assignments that received one or two points had major flaws in their test cases.
Most commonly, several outputs were not tested, and in some cases, the assignment
was actually flawed so that it would not have passed the checks if proper tests were
implemented. The assignments with three points had some flaws, but covered most
of the test cases deemed necessary. The test cases used covered all the flaws the
model solution could have so that the solution itself is checked, though some user
inputs may still cause unwanted behaviour. The assignments that received four
points had some minor flaws, usually concerning boundary values when the model
solution uses relational operators. The assignments with five points had perfect
test coverage on the level expected, and usually demonstrated ability to create test
inputs and outputs in a systematic way, for example, starting from negative values
and moving towards positive values, acknowledging possible boundary values in
between.

4 Results

The following subsections present the results for each of the five research questions
in the same order as described in Section 3.3.

36

Category Students
Only printing 2
Single if 2
Multiple ifs 2
Simple if-else 54
Intermediate if-else 16
Advanced if-else 8
Loops (+ if-else) 7

Table 1: Categorized assignments, 91 in total.

4.1 Categorizing student-created assignments

To answer the first research question, “What types of assignments do students cre-
ate?”, the student-created programming assignments were categorized according to
their features. Since the instructions prompted for an assignment that asks the user
for an integer input, uses a conditional statement and prints a string output, the
simplest expected assignments should have at least one if-statement.

The categorized assignments can be found in Table 1. In this table, the categories
are as follows:

• Only printing: 2 assignments. The assignment does not include any con-
ditionals, loops, or other relevant structures – the program only prints hard-
coded statements. The Scanner, already declared and locked in the source
code as a hint for the students, is not used.

• Single if: 2 assignments. The assignment uses a singular if-statement, but no
else or if-else. The simplest acceptable assignment type for the instructions
given.

• Multiple ifs: 2 assignments. The assignment uses multiple if-statements one
after another, but not nested or if-elses.

• Simple if-else: 54 assignments. Usually a simple if-else with one relational
expression. See Example assignment 1.

• Intermediate if-else: 16 assignments. Slightly more complicated assign-
ment, such as using more complicated combinations of relational expressions,
or multiple if-elses. See Example assignment 2.

• Advanced if-else: 8 assignments. The assignment uses complicated combi-
nations of relational expressions, and nested conditionals. See Example as-
signment 3.

• Loops (+ if-else): 7 assignments. The assignment uses some kind of loop in
addition to conditional expressions. See Example assignment 4.

37

The assignments in the first category are automatically faulty from the review point
of view, as they do not follow the instructions given. All of the assignments that
included loops were either intermediate- or advanced-level regarding the use of con-
ditionals and relational expressions.

The following assignments are examples of the typical program in some of the cate-
gories mentioned above. All of the assignments have been translated from Finnish to
English by the author. For readability purposes, the assignments have been cleaned
up where necessary, and the Java package imports and class declarations have been
omitted.

//Example assignment 1

public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
System.out.println("Give an answer: ");

int answer = Integer.valueOf(sc.nextLine());

if (answer == 42) {
System.out.println("But what was the question?");

} else {
System.out.println("OK");

}
}

//Author’s note: example of the category simple if-else

38

//Example assignment 2

public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
System.out.println("How many cats do you have? ");

int cats = Integer.valueOf(sc.nextLine());

if (cats == 0) {
System.out.println("What a pity!");

} else if (cats >= 1 && cats <= 4) {
System.out.println("Exemplary work!");

} else if (cats > 4) {
System.out.println("Wow, what a herd!");

}
}

//Author’s note: example of the category intermediate if-else

//Example assignment 3

public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int number = sc.nextInt();

if (number % 6 == 0) {
if (number % 4 == 0) {

System.out.println("The square of the given number is: "
+ number * number);

} else {
System.out.println("The cube of the given number is: "
+ number * number * number);

}
}

}

//Author’s note: example of the category advanced if-else

39

//Example assignment 4

public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int positives = 0;
int sum = 0;
int i = 0;

System.out.println("Please give three numbers: ");

while (i < 3) {
int number = Integer.valueOf(sc.nextLine());

if (number > 0) {
positives++;
sum += number;

}

if (positives == 0) {
System.out.println("The average cannot be calculated");

}

System.out.println("The average is: " + 1.0 * sum / positives);
}

}

//Author’s note: example of the category loops (+ if-else)

4.2 Student perceptions of assignments

To answer the second research question, “How do students perceive crowdsourced
programming assignments?”, analysis was mostly focused on the grading the students
gave each other in the peer review statements. No systematic analysis was done on
the written feedback the students were required to give.

On average, students graded the assignments higher than the expert. Over all the
statements, the peer reviews average to five points, whereas expert reviews round
to four points. Peer reviews also had a much lower standard deviation across all the
statements – the average standard deviation for the student-given grades was around
0.41, while the standard deviation for expert reviews was approximately 0.92.

From these results, it seems that students were generally very hesitant to give lower
points to their peers – many seemed to subtract points from the full five points only
for glaring mistakes. Whether this is because students did not want to grade their
peers too harshly or they simply did not notice smaller mistakes in the assignments
is unknown, but discussed further in Section 5.

40

While the open feedback was not inspected systematically for this study, a cursory
glance to it did reveal some general trends. Most of the time, students seem to be
very succinct in their feedback. The minimum for the open feedback was three words,
and while some of the students did give proper feedback, there was a noticeable
group that gave the most minimalistic answers possible, sometimes circumventing
the word count minimum with answers such as “Very nice .” (period separated from
the last word to increase the word count). However, since the open feedback was not
systematically reviewed, no conclusions are drawn from these observations. Some
ideas for future work on the topic are presented in Section 5.3.

4.3 Agreement

The following subsections present the results of inter-rater reliability calculations
for each statement (Section 4.3.1) and each assignment (Section 4.3.2). The used
measurement is ordinal Krippendorff’s alpha as per description in Section 2. These
sections answer the third research question, “To what extent experts and students
are in agreement with their reviews?”.

It should be noted that since the students were able to create a maximum of one
assignment each, the words assignment and student can and are sometimes used
interchangeably in these subsections. Also, the inter-rater reliability calculations
use only 87 assignments out of the set of 91 assignments, as four of the assignments
did not have any peer reviews, and thus, could not be compared to the expert review.

4.3.1 Reliability by statement

When Krippendorff’s alpha is measured for each statement so that the peers are
considered as one rater and their ratings are compared to the expert’s ratings, the
inter-rater reliability values are very low. The results of this calculation can be seen
in Table 2.

To categorize the results in Table 2 according to the magnitude guidelines by Landis
and Koch [95]:

• Fair agreement (0.21-0.40): 1 statement

• Slight agreement (0-0.20): 5 statements

• Agreement random or worse (less than 0): 2 statements

The average agreement is α = 0.09.

As seen above, the inter-rater reliability only reaches fair agreement at its best. This
was for the statement “The assignment is suitably difficult”. Most of the statements
fall in to the category of slight agreement, which is the lowest possible category
without being completely random. Two of the statements, “The model solution and

41

Review statement α

The model solution corresponds
to the assignment handout 0.17

The code is clean 0.10
The model solution and the code
template are separated correctly -0.10

The assignment is creative 0.08
The assignment is
suitably difficult 0.30

The assignment handout corresponds
to the instructions 0.02

The assignment handout
is clear 0.15

The test cases are
reasonable -0.03

Table 2: Ordinal Krippendorff’s alpha for each statement over all the assign-
ments/students.

the code template are separated correctly” and “The test cases are reasonable”, got a
negative alpha value, meaning that the agreement for these statements was random
or worse. The implications of these results are discussed in Section 5.1.3.

Even with the most lenient minimum acceptable alpha values [95], these results can
be used to draw tentative conclusions at best. Calculating the inter-rater reliability
over statements is not a reliable way of using the alpha coefficient, as using all the
peers as one singular rater introduces too much noise to the data.

4.3.2 Reliability by assignment

Table 3 in Appendix 1 shows the ordinal Krippendorff’s alpha values for each stu-
dent’s assignment. All the peer reviewers for each assignment are treated as one
rater, and the grades given by them are compared to those given in the expert re-
view. To categorize the results in Table 3 according to the magnitude guidelines by
Landis and Koch [95]:

• Almost perfect agreement (0.81-1): 3 assignments

• Substantial agreement (0.61-0.80): 7 assignments

• Moderate agreement (0.41-0.60): 19 assignments

• Fair agreement (0.21-0.40): 24 assignments

• Slight agreement (0-0.20): 18 assignments

42

• Agreement random or worse (less than 0): 16 assignments

The average agreement is α = 0.27.

Though the majority of the assignments do get categorized to slight to moderate
agreement, the alpha coefficient gives more reliable results when used over students
and their assignments instead of statements. In this case, the peer reviews come
from a handful of students, the exact number depending on how many peer reviews
the assignment received, ranging from 2 to 12 peer reviews. Thus, the dispersion
between peer reviews does not cause as much effect as it does with calculations in
Section 4.3.1. However, a noticeable portion of the assignments still got categorized
as random or worse agreement, meaning that the results should only be used to
draw tentative conclusions.

4.4 Assignment characteristics

Finally, this subsection studies the characteristics of the student-created program-
ming assignments, answering the fourth and the fifth research questions, “What
characteristics are there in assignments in which experts and students agree the
most?” and “What characteristics are there in assignments in which experts and
students disagree the most?”. It should be noted that these assignments are not the
best and the worst rated out of the data set, and should not be considered examples
of such. The assignments used as examples here were simply rated in a way that
the agreement was notably high or low between the peer and the expert reviews.

As before, all the assignments used as examples have been translated from Finnish to
English by the author, and may have been slightly modified for readability purposes.
The alpha values used are specifically from the reliability by assignment calculations
of Section 4.3.2.

Three assignments were graded so that the Krippendorff’s alpha value is above
0.80 agreement, meaning almost perfect agreement between the raters. These as-
signments were by Student 66 (α = 0.96), Student 49 (α = 0.95) and Student
8 (α = 0.82) (Table 3 in Appendix 1). All these three assignments were neatly
written, both in code and handout, and had no issues with their model solutions.
Coincidentally, these assignments were also from the simpler end of the assignments
created during the first week, so both the expert and the peer reviews took some
points out of creativity and proper difficulty. Example assignment 5 shows one
assignment that received a high alpha value from the agreement calculation.

To compare, the lowest agreement values were given to assignments by Student
35 (α = −0.43), Student 55 (α = −0.50) and Student 77 (α = −0.63) (Table 3 in
Appendix 1). Since negative values are considered too divergent from the reasonable
reliability values to matter [91], all of these assignments could be treated as equally
in disagreement. The lowest values that were not in the negatives were rounded to
zero, and thus would not have provided effectively different comparisons. Two out of
the three assignments were labeled as finished only due to the bug described earlier,

43

and they should not have passed the tests. Thus, these two assignments received
lower points from the expert review, while the peer reviews gave the assignments
relatively good grades. Example assignment 6 shows one assignment that received
a low alpha value from the agreement calculation.

In total, there were ten assignments that passed only due to the aforementioned
bug. Categorizing them separately with the guidelines by Landis and Koch [95]:

• Moderate agreement (0.41-0.60): 2 assignments

• Fair agreement (0.21-0.40): 4 assignments

• Agreement random or worse (less than 0): 4 assignments

The errored assignments received generally poor agreement rates, majority of the
assignments falling into fair or random agreement categories. Generally, even if
students were able to recognize something amiss in an assignment, their judgement
was not as strict as in the expert review, and most of the time, they were not able
to recognize all the mistakes in the assignment. This is expected, as the students
were not explicitly told that the reviewable assignments may contain fatal errors,
so the students were not specifically looking for these types of characteristics while
reviewing.

//Example assignment 5

public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
System.out.println("Which month were you born in?

Enter a number! ");

int month = Integer.valueOf(sc.nextLine());

if (month == 12 || month == 1 || month == 2) {
System.out.println("Winter child");

} else if (month == 3 || month == 4 || month == 5) {
System.out.println("Spring child");

} else if (month == 6 || month == 7 || month == 8) {
System.out.println("Summer child");

} else if (month == 9 || month == 10 || month == 11) {
System.out.println("Autumn child");

} else {
System.out.println("Not a month!");

}
}

//Author’s note: Example assignment from the highest alpha values

44

//Example assignment 6

public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
System.out.println("Enter a number: ");

int number = Integer.valueOf(sc.nextLine);

if (number < 0) {
System.out.println("Freezing!");

} else {
System.out.println("Whew, too hot");

}
}

//Author’s note: Example assignment from the lowest alpha values.
This was an errored assignment, as the required brackets are
missing after Scanner nextLine() method declaration.

5 Discussion

In the following subsections, Section 5.1 discusses the implications of the results of
each research question, proceeding in the same order as Section 4. Section 5.2 reflects
the limitations this study has, and lastly, Section 5.3 considers future directions,
taking into account both the further development of CrowdSorcerer and the possible
future studies.

5.1 Analysis of the results

5.1.1 Categorizing student-created assignments

To answer the first research question, “What types of assignments do students cre-
ate?”, the student-created programming assignments were categorized according to
their most notable features. The vast majority of the assignments fall into the first
four categories, meaning that most of the assignments collected are very simple both
in structure and in difficulty (see Table 1 in Section 4.1 for the categories). In to-
tal, 60 of the 91 assignments are categorized as simple if-else or simpler. This is
expected, as the majority of the students on the course are novices as they start,
and assuming more complicated programs from the majority of them would be un-
reasonable. Also, there are only so many ways one can implement the assignment
according to the instructions with the tools the students have learned during the
first two weeks of the course. Since completing CrowdSorcerer assignments did not
award any points during this iteration of the course, it is also very likely that many

45

students did not want to spend too much time on the tool, and would rather use
their effort on exercises that do affect their grade. Thus, even students who perhaps
could have been able to create more complicated programming assignments might
have chosen to implement as simple programs as possible.

While the program structure for many of the simple assignments was exactly the
same as some example programs in the course material, most of the assignments
created in CrowdSorcerer did change the topic to something novel. There was one
type of assignment that appeared frequently, “tell the user whether the number they
gave is even or odd”. Though this had also appeared in the course material as a
practice exercise during the first week, there were no sanctions for copying or re-
implementing previously used code, as it was deemed better that the students at
least try the tool and practice input-output testing in the process.

This study did not inspect whether those who created intermediate or more compli-
cated assignments (31 out of 91) had more programming experience at the beginning
of the course, or if their grades or general completion rates for each week differ from
those who decided to create simpler assignments. The possibilities of a study like
this are discussed in the Section 5.3. Also, as this study uses data only from the
very beginning of an introductory programming course, these results may not be
applicable in cases where the students have more advanced programming skills, but
are also required to complete more complex tasks with CrowdSorcerer.

5.1.2 Student perceptions of assignments

To answer the second research question, “How do students perceive crowdsourced
programming assignments?”, the grades the students gave each other in the peer
review statements were analysed. Looking at the ratings across all the statements,
peer reviews average to 5 points, whereas expert reviews average to 4 points. The
difference is most noticeable in the statement “The assignment is suitably difficult”.
In this case, it is possible that the novice students are not yet very well-versed in
analyzing whether a programming assignment is too easy or too difficult objectively
based on the course content thus far, and that the subjective answers cause this
difference.

Studies about the reliability of peer reviewers in regards to the accuracy of the grad-
ing have given mixed results. Some studies note that students tend to undermark
their peers [9, 97, 98], while others report slight overmarking [99]. Some studies
suggest that as students gain more experience, they give more accurate reviews, or
even shift towards undermarking [100].

One of the possible reasons for overmarking might be that students do not want to
hurt their peers’ grades, even if it is clearly stated that the peer review grades do not
affect the course grade. In the context of this study, it is also possible that students
give each other better grades than experts simply because they do not notice all the
mistakes. There are no model solutions to which the reviewable assignments could
be compared, and if the students do not try to complete and run the assignments

46

themselves, it is fairly easy for an untrained eye to miss errors and faulty handouts.

When self-evaluating, students can also tend to give too high grades for the very
worst of the exercises, and not good enough grades for the very best [100]. This
leads to the grades falling into narrower range than those from the expert reviews.
This corresponds with the results of this study – peer reviews have lower standard
deviation than expert reviews (0.41 and 0.92, respectively).

5.1.3 Agreement

To answer the third research question, “Are experts and students in agreement with
their reviews?”, the inter-rater reliability was measured in two ways – by statement
and by assignment. First, each grade given in the expert review for each statement
is compared to the grades given to the same statement in peer review (see Figure
13 in Section 3.3, and Section 4.3.1), and secondly, comparing the grades for one
student’s single assignment (see Figure 14 in Section 3.3, and Section 4.3.2).

To begin with, this section goes through the inter-rater reliability measurements
across all the assignments one by one using the results from the by statement cal-
culations. This gives quite a low reliability score, as the peer reviewers have widely
varying levels of competence, understanding and even interest for the review process.

The lowest values were for the statements “The model solution and the code template
are separated correctly” (-0.10) and “The test cases are reasonable” (-0.03). Negative
values imply that there is no effective agreement between the raters, or that the
agreement is worse than random. These values can be explained in the specific
context of this CrowdSorcerer instance.

With the statement “The model solution and the code template are separated cor-
rectly”, there were cases where the separation of the model solution and the code
template was so erroneous that without the aforementioned bug in the backend, the
assignments would not have passed the tests. Students rarely noticed these cases,
giving the assignment good reviews for the statement, while the expert review scores
were very low in these cases. It is also possible that since the data is from the very
beginning of the course, the students are not very honed in approximating what is
a good amount of code to be shown in the template and what should be left in the
model solution only.

The discrepancy with the statement “The test cases are reasonable” clearly shows
that the students have very vague understanding of testing at this point of the
course, and even though the expert reviews used quite a lax grading criteria for
the tests, the scores were still very much not in agreement. This is expected, as
the students have not encountered testing on the course material yet, and are only
thinking of the input-output cases of their program, so no coverage or borderline
case analysis is expected of them.

Most of the statements indicate only slight agreement. After the negative results,
the lowest value is for the statement “The assignment handout corresponds to the

47

instructions” (0.02). This is a statement that may be difficult to evaluate precisely,
both for peers and experts, especially without testing the assignment in practice.
It is possible that the expert reviews are somewhat stricter in this case, as the
expert reviewer has most likely had more practice in reading and completing simple
programming exercises than the majority of the students, thus being able to identify
missing assignment handout information more easily. There might also be confusion
between the statements “The assignment handout corresponds to the instructions”
and “The assignment handout is clear” for their differences in meaning.

As for the statement “The assignment is creative” (0.08), the low inter-rater relia-
bility is possible due to the subjective nature of the statement. As the definition
of “creativity” is left entirely for the reviewer to decide, the determining factors for
the score can be the entertainment value, whether the reviewer has encountered a
similar assignment before, the topic, or wording of the assignment handout, just to
name a few possibilities.

Similarly to the statement “The test cases are reasonable”, the results for statement
“The code is clean” (0.10) can indicate that the students do not have clear vision
of what is required from clean code. These practices have not been taught on the
course, and while the examples given in the material are as clean as possible, stu-
dents tend to make mistakes and incorrectly remember established syntax practices
that have no effect on the functioning of the program. Also, since CrowdSorcerer
does not highlight small errors like these as an IDE (integrated development envi-
ronment) would, and the tool does not have automatic indentation shortcut key like
for example NetBeans does, there might be cleanliness errors that would not have
happened when programming in an IDE.

One of the statements with surprisingly low agreement was “The assignment handout
is clear” (0.15). While it is very possible that the peer reviews do not acknowledge the
possible linguistic errors and minor inaccuracies in the description, the hypothesis
for this statement was that the agreement would be at least moderate. In this case,
the fairly low agreement value is most likely due to the way the inter-rater reliability
is calculated across all the peer reviews for one statement.

The same applies for the statement “The model solution corresponds to the assign-
ment handout” (0.17). As this seems like something that the students should be
able to evaluate fairly well with the skillset they possess, the low agreement is again
most likely due to the calculation method.

The only statement with fair agreement is “The assignment is suitably difficult”
(0.29). It seems reasonable that the peer reviews and expert reviews are somewhat
in agreement, as difficulty can be considered a matter students can have a grasp of,
even if they are novices in the field they are studying. The relatively low agreement
rate can be explained with the differing views of difficulty - while the expert reviews
try to be as objective as possible, taking into account the exercises and materials
that have been introduced at the point of the first CrowdSorcerer instance, perceived
difficulty can be very subjective and relies heavily on the student’s view of the topic
at hand.

48

It should be noted that all of the previously mentioned agreement values are very
low, and that the results from the second calculation allow better base for drawing
tentative conclusions. The average agreement for the statements is α = 0.09. This is
very low, falling into the category of slight agreement. As all the peers are considered
one rater in the reliability over statements, the results are understandably weak, as
a rater with several possibly disagreeing minds will produce confusing results.

For the second inter-rater reliability calculation, expert review grades were compared
to peer review grades of each students’ singular assignment. The results of this
Krippendorff’s alpha calculation can be found from Table 3 in Appendix 1. Again,
as in Section 4.3.2, to categorize the results according to the magnitude guidelines
by Landis and Koch [95]:

• Almost perfect agreement (0.81-1): 3 assignments

• Substantial agreement (0.61-0.80): 7 assignments

• Moderate agreement (0.41-0.60): 19 assignments

• Fair agreement (0.21-0.40): 24 assignments

• Slight agreement (0-0.20): 18 assignments

• Agreement random or worse (less than 0): 16 assignments

The average agreement for the assignments is α = 0.27. While still low, falling
into the category of fair agreement, this is notably better than with reliability by
statement. In this case, even though students are still considered one rater per
assignment, there are less people causing noise in the calculation, as the assignments
have twelve peer reviewers at the very most.

The general trend is that the assignments that had very low agreement were graded
very well by peers, and received low grades in the expert review, usually due to
systematic disagreement on multiple statements. The assignments with fair agree-
ment usually had novel topics and had good ideas, but lost points due to lacking
execution, such errors peer reviewers did not notice, insufficient test cases or some
minor inclarities in the handout.

In the higher agreement categories, from moderate to substantial agreement, the
assignments tended to be very well composed, had less inconsistencies in the hand-
outs, and had novel ideas, but lost some points in the expert review due to lacking
test cases, thus causing some disagreement between the peer and the expert reviews.
As mentioned before, the vast majority of the students do not have any experience
or knowledge about software testing at this point of the course, so it is not sur-
prising that this review statement causes systematic discrepancies in the agreement
calculations.

As mentioned in Section 2.3, low inter-rater reliability means that either the scale
used is defective, the rating instructions are unclear, or the raters need to be re-
trained [91]. Addressing all of these points may help with the low and middle tier

49

agreements. Clarifying the review statements with, for example, examples or longer
descriptions, could help to unify the answers between peer reviewers. It is very
possible that during the later weeks, when the students have been introduced to
testing, not only does the agreement on the test cases improve, but also the number
and the quality of the test cases increases. This is also supported by an extensive
literature review by Boud and Falchikov [100]. Their study notes that it seems that
students do tend to get better at self-assessment over time, even though results
are somewhat inconclusive. Their conclusion is that experience either diminishes
the difference between self review and expert review, or steers towards underrating
rather than overrating.

It should also be noted that students can be good reviewers, but also in disagreement
with each other. Some of the review statements used in this study are inherently
subjective (“The assignment is creative”), and thus, reviewers can have very differing
opinions.

5.1.4 Assignment characteristics

To answer the fourth and fifth research questions, “What characteristics are there in
assignments in which experts and students agree the most?” and “What characteris-
tics are there in assignments in which experts and students disagree the most?”, the
characteristics of the assignments with the highest and the lowest alpha agreement
values were inspected in more detail. As discussed already in Section 5.1.3, students
are able to recognize very good assignments, and it seems reasonable that with more
experience or instructions, they could be able to recognize weak assignments as well.
While the review instructions should not be too strict, as this can affect the stu-
dents’ review process, more detailed review statements and examples of features to
take note of could help making the reviews more reliable.

Based on the characteristics of the assignments with the highest agreement, even
novice students seem to have the ability to recognise well-made assignments. All
of the assignments in the almost perfect agreement category (α between 0.81-1)
were on the simpler end difficulty-wise, but had sufficient test cases and were not
directly copied from the course materials. The peer and the expert reviews were
in agreement that these assignments were all in all very well-rounded programming
assignments, but were not the most interesting or novel for their topics.

Most of the assignments with negative agreement (random or worse) were errored,
that is, the assignments that should not have passed the compilation tests. This is
not only for the three assignments with the lowest agreement as presented in Section
4.4, but also for the other assignments in the negative alpha values (16 assignments
in total, as seen in Section 4.3.2). Since students were not told to expect assignments
with fatal errors, drawing conclusions from these results is difficult, as it can be safely
said that the peer reviewers were not sufficiently trained for the review process. An
interesting future research would be to inspect whether the peer reviewers are able
to find errored assignments in the midst of correct ones, and whether they recognize

50

the compilation-breaking errors correctly. The most typical errors were unpaired
brackets and missing characters, such as missing brackets after method declaration,
as well as some other syntax issues like forgotten capitalisations of classes such
as String. These are all issues that would be more noticeable in a proper IDE
which the students are used to programming in, and especially the issue of unpaired
parantheses often comes due to incorrectly marked model solution lines. This is a
design issue in the tool, and making the difference between the code template and
the model solution more clear could alleviate this issue altogether.

The assignments with lowest agreements that were not errored were simply unclear,
usually due to multitude of reasons. These assignments had serious flaws in the
assignment handouts, had severely lacking test cases that could cause issues when
completing the assignment, and were not necessarily created using the instructions.
The peer reviewers were generally not able to recognize these types of mistakes very
clearly. It is very possible that the students would be able to spot these errors if they
tried to complete the programming assignment themselves, as is possible through
downloading the code template ZIP file, but as this is not required for the review
process, it is most likely seen as a waste of time. Since the expert review was able to
point out issues with the assignment handout and other features, it is also possible
that the peer reviews would be able to put a note on these too when they gain more
experience.

5.2 Limitations

This study comes with a range of limitations, which are discussed in this subsection.
Threats to both internal and external validity are considered – internal validity
referring to how well other explanations to the results can be ruled out, and external
validity to whether the results can be generalized into other contexts.

There are limiting factors considering the source of the data for this study. The
data has been collected from a single institution, and even more importantly, from
one iteration of an introductory programming course. As the expert reviews were
only conducted on the second week of the course, it is possible that the context has
an effect on the results. For example, even including later weeks from the course,
there could be change in the way the students peer review exercises, as they have
had more experiences on what programming exercises look like and how they are
typically solved. It is also possible that the way the course is structured affects
the results. This particular programming course has tens of small programming
exercises integrated into the online learning material for each week, as opposed to
some courses that use larger assignments that have been split into smaller tasks. It
may be that students used to the latter type of exercises would have very different
approach to using the tool.

There is also a participation bias when considering both creating the assignments
and the peer reviewing process. Since using CrowdSorcerer was optional, it is likely
that the students who decided to use the tool form a differing population from the

51

overall course population. For example, it is possible that more active students
were more eager to use CrowdSorcerer, and thus, those who decided to skip the tool
altogether were excluded from the data.

It is also very possible that the subjective nature of some of the review statements
affected the results of this study. To alleviate this in the future studies, the review
statements could be separated to those that have clear, correct answers, and those
that are open for interpretation, and then inspected separately.

Though the expert review criteria was determined beforehand, it should be acknowl-
edged that the reviewer had only had limited experience in reviewing and grading
processes beforehand. Thus, it is possible that the expert reviews are slightly skewed,
as the reviewer gained more confidence and insight by the end of the reviewing pro-
cess. For increased reliability, it would be beneficial to use multiple experts for the
reviewing process instead of just one. If all the experts complete all the ratings
instead of sharing the reviewing workload, it would also be possible to inspect the
inter-rater reliability between experts before analysing the agreement between the
experts and the students.

Considering student feedback received after this study was conducted, there may be
inconsistencies on how students have understood and interpreted the review state-
ments. Consequently, this can have an effect to the peer review results in general,
and in turn, also affect the inter-rater reliability. However, the misconceptions would
have to be severe to show up as systematic disagreements and affect the α-agreement,
and this was not indicated by the student feedback.

Also stemming from the same student feedback, there were major issues with struc-
turing and usability of CrowdSorcerer. It is possible that these issues have made
the assignment creation process needlessly difficult, which in turn can have an effect
on the peer reviews. For example, the interface of the tool did not make it clear
enough what part of the program was to be the model solution, and what would be
the code template. Thus, the review statement “The model solution and the code
template are separated correctly” can be very ambiguous for students who struggle
to understand the difference between these two altogether. The expert reviews did
not take the user interface problems into account during the review process.

5.3 Future work

There are several plans and future directions already decided when it comes to
developing CrowdSorcerer, some of which have come to fruition since the beginning
of this thesis. For example, the way students are introduced to testing practices has
been improved. Now, the students first get the input-output test cases as before,
but on the later weeks, they are shown ready-made test methods they need to fill in
themselves with provided fields (Figure 15). Finally, when the course material is at
the point where testing has been properly taught, the students are expected to write
their own test methods as a part of the CrowdSorcerer assignment (Figure 16). The
usefulness for learning testing in CrowdSorcerer has been evaluated by Kangas et

52

Figure 15: New test type in CrowdSorcerer requires the students to fill in the relevant
fields of a test method.

al. [13], and further studies with the improved system are in the works.

Besides putting emphasis on using CrowdSorcerer to teach testing, some improve-
ments have been implemented to the tool to alleviate the difficulties in differentiating
between the model solution and the code template. When the user submits their
assignment, the tool now shows a preview of the model solution and the code tem-
plate separately, and asks to check that the programs in these two are correct. The
wording of the instructions has also been improved. These two changes seem to have
made using the tool slightly clearer.

However, through feedback we have received about CrowdSorcerer at the end-of-
course questionnaires, the user experience is still somewhat tedious. Most of the
feedback concerns are about how slow the submission process is, how the source
code field does not work like an IDE or text processor the students are more used
to, and how the error messages are unclear. This feedback indicates that the tool
might benefit greatly from a user interface redesign, as well as rework regarding how
error messages are parsed. The worst of the submission issues have been fixed by

53

Figure 16: As a final step of using CrowdSorcerer to teach testing, the students are
required to write full test methods themselves.

changing the queuing system that handles sending the assignments to the server that
runs automatic testing. However, it would be useful if typing mistakes and errors
like unpaired brackets could be checked and shown real-time, and only checking for
compilation errors would require sending the assignment. This feature is something
that is being investigated alongside the interface redesign. As the tool is stable
enough, running longer studies, for example, throughout a 14-week period of both
the introductory and the advanced course in programming, would provide more data
and allow more reliable analyses. Technical issues could also be ruled out with a
lab study, in which students are invited to the university’s computer laboratory to
create CrowdSorcerer assignments with a possibility of asking help from a course
assistant.

Since there are plans to launch CrowdSorcerer in the near future in other universities
besides the University of Helsinki [14], the tool will require some language updates
– both for the natural and programming languages. The interface of the tool has
been translated into English, and support for Python assignments has been added.
As these features are developed, upgrading the tool for different localisations and
programming courses becomes easier. This would also grant access to different
contexts, and cross-institutional studies.

Updating the basic set of the review statements should be considered in the fu-
ture. Although new statements have been added, usually depending on the types

54

of assignments, the basic set has stayed the way it has been since the beginning.
Rewording statements based on the student feedback and considering how the basic
set could be improved so that it delivers an overview to the quality of the assign-
ments as comprehensively as possible would increase the reliability of the reviews.
This could be done, for example, by referencing existing review rubrics [80].

Analyzing the written feedback would grant a clearer view into the peer reviews, and
the reviewers’ thoughts. Though the brief exploration revealed that some students
opt for shortest answers possible, most of the answers seemed legitimate. Besides
focusing on the types of feedback students write, it could also be beneficial to inspect
if the students have distinct profiles as assignment creators and reviewers. For
example, are students who create highly graded or more complicated programming
assignments also better reviewers in terms of insightful written feedback?

It would also be beneficial to dive deeper into the assignments students create,
focusing especially on the students’ background and experience. By analysing the
highest and the lowest rated assignments and the types of assignments the students
in these percentiles create, one could possibly find patterns, such as students with
more programming experience creating more complicated assignments or just having
higher completion rate in general.

6 Conclusion

In this study, a data set of 91 student-created programming assignments from the
second week of introductory Java programming course was inspected to analyze the
quality of both the assignments and their peer reviews. This is a continuation for
a previous study [7] in order to analyze whether (novice) students can be reliably
given grading tasks, in this case in order to automatize the screening process typical
for crowdsourced content.

To summarize, the research questions and their answers are:

RQ1. What types of assignments do students create?
Answer: The student-created programming assignments are mostly short and sim-
ple, but adhere well to the instructions given.

RQ2. How do students perceive crowdsourced programming assignments?
Answer: The students tend to be more lenient in their reviews than the experts,
and the grades they give have less deviation. This is in line with some previous stud-
ies, though the consensus regarding student perception for peer assessment remains
inconclusive.

RQ3. Are experts and students in agreement with their reviews?
Answer: The agreement measured between experts and students was mediocre at
best, and can only be used to draw tentative conclusions. When measuring reliability
by statement, the noise caused by using all the peer reviewers as one reviewer lowers
the agreement drastically (average α = 0.09, slight agreement). When measuring

55

reliability by assignment, the results are more promising, though still lower end
(average α = 0.27, fair agreement).

RQ4. What characteristics are there in assignments in which experts and students
agree the most?
Answer: The assignments with high alpha values are highly rated both by students
and experts. They are relatively simple and similar to the programming assignments
students are used to seeing on the course, but may contain novel topic ideas.

RQ5. What characteristics are there in assignments in which experts and students
disagree the most?
Answer: The assignments with low alpha values tend to have lower ratings from
both the students and experts, though the expert reviews use stricter grading. As
noted in RQ2, students tend to grade using narrower scale, which explains the more
drastic differences between the peer and the expert reviews.

In the future, the focus is on developing CrowdSorcerer for a more stable release
with improved localisation and programming language support. Interesting future
directions for potential studies focusing on both the assignments and the peer reviews
are outlined in Section 5.3.

Though the current version of CrowdSorcerer has its limitations that, unfortunately,
also reflect to the user experience and thus, possibly the assignment quality, the
goal is that in the future, the tool could be used continuously for a longer period
of time. This would allow more focused studies into the student-created assignment
and peer review quality, and in time, using the tool to collect a databank of simple
programming assignments with as little manual work from the educators as possible.

56

References

1 T. Volery and D. Lord, “Critical success factors in online education,” Interna-
tional Journal of Educational Management, vol. 14, no. 5, pp. 216–223, 2000.

2 P. Weill and M. Broadbent, Leveraging the New Infrastructure: How Market
Leaders Capitalize on Information Technology. USA: Harvard Business School
Press, 1998.

3 J. Howe, “The rise of crowdsourcing,” Wired magazine, vol. 14, no. 6, pp. 1–4,
2006.

4 L. von Ahn, B. Maurer, C. McMillen, D. Abraham, and M. Blum, “recaptcha:
Human-based character recognition via web security measures,” Science, vol. 321,
no. 5895, pp. 1465–1468, 2008.

5 M. Dontcheva, R. R. Morris, J. R. Brandt, and E. M. Gerber, “Combining crowd-
sourcing and learning to improve engagement and performance,” in Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’14,
(New York, NY, USA), p. 3379–3388, Association for Computing Machinery,
2014.

6 N. Pirttinen, V. Kangas, I. Nikkarinen, H. Nygren, J. Leinonen, and A. Hellas,
“Crowdsourcing programming assignments with crowdsorcerer,” in Proceedings of
the 23rd Annual ACM Conference on Innovation and Technology in Computer
Science Education, ITiCSE 2018, (New York, NY, USA), pp. 326–331, ACM,
2018.

7 N. Pirttinen, V. Kangas, H. Nygren, J. Leinonen, and A. Hellas, “Analysis of
students’ peer reviews to crowdsourced programming assignments,” in Proceed-
ings of the 18th Koli Calling International Conference on Computing Education
Research, Koli Calling 2018, (New York, NY, USA), ACM, 2018.

8 P. Denny, A. Luxton-Reilly, J. Hamer, and H. Purchase, “Coverage of course
topics in a student generated mcq repository,” in Proceedings of the 14th Annual
ACM SIGCSE Conference on Innovation and Technology in Computer Science
Education, ITiCSE ’09, (New York, NY, USA), pp. 11–15, ACM, 2009.

9 J. Hamer, H. C. Purchase, P. Denny, and A. Luxton-Reilly, “Quality of peer
assessment in cs1,” in Proc. of the 5th International Workshop on Computing
Education Research Workshop, ICER ’09, (New York, NY, USA), pp. 27–36,
ACM, 2009.

10 P. Denny, A. Luxton-Reilly, and J. Hamer, “The peerwise system of student
contributed assessment questions,” in Proceedings of the Tenth Conference on
Australasian Computing Education - Volume 78, ACE ’08, (Darlinghurst, Aus-
tralia, Australia), pp. 69–74, Australian Computer Society, Inc., 2008.

57

11 P. Denny, A. Luxton-Reilly, E. Tempero, and J. Hendrickx, “Codewrite: Sup-
porting student-driven practice of java,” in Proceedings of the 42Nd ACM Tech-
nical Symposium on Computer Science Education, SIGCSE ’11, (New York, NY,
USA), pp. 471–476, ACM, 2011.

12 A. Luxton-Reilly, B. Plimmer, and R. Sheehan, “Studysieve: A tool that supports
constructive evaluation for free-response questions,” in Proceedings of the 11th
International Conference of the NZ Chapter of the ACM Special Interest Group
on Human-Computer Interaction, CHINZ ’10, (New York, NY, USA), p. 65–68,
Association for Computing Machinery, 2010.

13 V. Kangas, N. Pirttinen, H. Nygren, J. Leinonen, and A. Hellas, “Does creating
programming assignments with tests lead to improved performance in writing
unit tests?,” in Proceedings of the ACM Conference on Global Computing Edu-
cation, CompEd ’19, (New York, NY, USA), pp. 106–112, ACM, 2019.

14 N. Pirttinen and J. Leinonen, “Integrating crowdsorcerer: Lessons learned,” in
Proceedings of SPLICE 2019 workshop Computing Science Education Infrastruc-
ture (P. Brusilovsky, T. Price, and S. Edwards, eds.), (United States), National
Science Foundation (NSF), 8 2019.

15 E. Estellés-Arolas and F. González-Ladrón-De-Guevara, “Towards an integrated
crowdsourcing definition,” J. Inf. Sci., vol. 38, pp. 189–200, Apr. 2012.

16 M. Hossain and I. Kauranen, “Crowdsourcing: a comprehensive literature re-
view,” Strategic Outsourcing: An International Journal, vol. 8, no. 1, pp. 2–22,
2015.

17 E. Schenk and C. Guittard, “Crowdsourcing: What can be outsourced to the
crowd, and why?,” p. 29, 01 2009.

18 D. C. Brabham, “Crowdsourcing as a model for problem solving: An introduction
and cases,” Convergence, vol. 14, no. 1, pp. 75–90, 2008.

19 “Amazon mechanical turk.” https://www.mturk.com/. Accessed: 25.6.2019.

20 K. Hara, A. Adams, K. Milland, S. Savage, C. Callison-Burch, and J. P. Bigham,
“A data-driven analysis of workers’ earnings on amazon mechanical turk,” in Pro-
ceedings of the 2018 CHI Conference on Human Factors in Computing Systems,
CHI ’18, (New York, NY, USA), pp. 449:1–449:14, ACM, 2018.

21 D. Difallah, E. Filatova, and P. Ipeirotis, “Demographics and dynamics of me-
chanical turk workers,” in Proceedings of the Eleventh ACM International Con-
ference on Web Search and Data Mining, WSDM ’18, (New York, NY, USA),
pp. 135–143, ACM, 2018.

22 R. M. Ryan and E. L. Deci, “Intrinsic and extrinsic motivations: Classic defini-
tions and new directions,” Contemporary Educational Psychology, vol. 25, no. 1,
pp. 54 – 67, 2000.

58

23 Y. Wang and D. Fesenmaier, “Assessing motivation of contribution in online com-
munities: An empirical investigation of an online travel community,” Electronic
Markets, vol. 8, 01 1998.

24 A. C. Bandura and D. H. Schunk, “Cultivating competence, self-efficacy, and
intrinsic interest through proximal self-motivation,” 1981.

25 R. Lukyanenko, J. Parsons, and Y. F. Wiersma, “The iq of the crowd: Under-
standing and improving information quality in structured user-generated con-
tent,” Information Systems Research, vol. 25, no. 4, pp. 669–689, 2014.

26 D. Schlagwein, D. Cecez-Kecmanovic, and B. Hanckel, “Ethical norms and is-
sues in crowdsourcing practices: A habermasian analysis,” Information Systems
Journal, 12 2018.

27 K. Fort, G. Adda, and K. B. Cohen, “Amazon mechanical turk: Gold mine or
coal mine?,” Computational Linguistics, vol. 37, no. 2, pp. 413–420, 2011.

28 D. C. Brabham, “The myth of amateur crowds,” Information, Communication
& Society, vol. 15, no. 3, pp. 394–410, 2012.

29 A. Settle, A. Vihavainen, and C. S. Miller, “Research directions for teaching
programming online,” in Proceedings of the 10th International Conference on
Frontiers in Education: Computer Science and Computer Engineering, 2014.

30 L. Pappano, “The year of the mooc,” The New York Times, 2012.

31 A. McAuley, B. Stewart, G. Siemens, and D. Cormier, The MOOC model for
digital practice. University of Prince Edward Island, 2010.

32 A. Vihavainen, M. Luukkainen, and J. Kurhila, “Multi-faceted support for mooc
in programming,” in Proceedings of the 13th Annual Conference on Information
Technology Education, SIGITE ’12, (New York, NY, USA), pp. 171–176, ACM,
2012.

33 A. Vihavainen, M. Luukkainen, and J. Kurhila, “Mooc as semester-long entrance
exam,” in Proceedings of the 14th Annual ACM SIGITE Conference on Infor-
mation Technology Education, SIGITE ’13, (New York, NY, USA), pp. 177–182,
ACM, 2013.

34 J. Leinonen, P. Ihantola, A. Leinonen, H. Nygren, J. Kurhila, M. Luukkainen,
and A. Hellas, “Admitting students through an open online course in program-
ming: A multi-year analysis of study success,” in Proceedings of the 2019 ACM
Conference on International Computing Education Research, ICER ’19, (New
York, NY, USA), p. 279–287, Association for Computing Machinery, 2019.

35 J. Kurhila and A. Vihavainen, “A purposeful mooc to alleviate insufficient cs
education in finnish schools,” Trans. Comput. Educ., vol. 15, pp. 10:1–10:18,
Apr. 2015.

59

36 R. Vivian, K. Falkner, and N. Falkner, “Addressing the challenges of a new digital
technologies curriculum: Moocs as a scalable solution for teacher professional
development,” Research in Learning Technology, vol. 22, Aug. 2014.

37 B. Ericson, M. Guzdial, B. Morrison, M. Parker, M. Moldavan, and L. Surasani,
“An ebook for teachers learning cs principles,” ACM Inroads, vol. 6, p. 84–86,
Nov. 2015.

38 P. Ihantola, T. Ahoniemi, V. Karavirta, and O. Seppälä, “Review of recent sys-
tems for automatic assessment of programming assignments,” in Proceedings of
the 10th Koli Calling International Conference on Computing Education Re-
search, Koli Calling ’10, (New York, NY, USA), pp. 86–93, ACM, 2010.

39 S. Fincher and M. Petre, Computer Science Education Research. 2004.

40 A. Leinonen, H. Nygren, N. Pirttinen, A. Hellas, and J. Leinonen, “Exploring
the applicability of simple syntax writing practice for learning programming,” in
Proceedings of the 50th ACM Technical Symposium on Computer Science Educa-
tion, SIGCSE ’19, (New York, NY, USA), p. 84–90, Association for Computing
Machinery, 2019.

41 D. Parsons and P. Haden, “Parson’s programming puzzles: A fun and effec-
tive learning tool for first programming courses,” in Proceedings of the 8th Aus-
tralasian Conference on Computing Education - Volume 52, ACE ’06, (AUS),
p. 157–163, Australian Computer Society, Inc., 2006.

42 P. Denny, A. Luxton-Reilly, and B. Simon, “Quality of student contributed ques-
tions using peerwise,” in Proceedings of the Eleventh Australasian Conference
on Computing Education - Volume 95, ACE ’09, (Darlinghurst, Australia, Aus-
tralia), pp. 55–63, Australian Computer Society, Inc., 2009.

43 P. Denny, A. Luxton-Reilly, and J. Hamer, “Student use of the peerwise system,”
in Proceedings of the 13th Annual Conference on Innovation and Technology in
Computer Science Education, ITiCSE ’08, (New York, NY, USA), pp. 73–77,
ACM, 2008.

44 P. Denny, A. Luxton-Reilly, E. Tempero, and J. Hendrickx, “Understanding the
syntax barrier for novices,” in Proceedings of the 16th Annual Joint Conference
on Innovation and Technology in Computer Science Education, ITiCSE ’11, (New
York, NY, USA), pp. 208–212, ACM, 2011.

45 A. Luxton-Reilly, P. Denny, B. Plimmer, and D. Bertinshaw, “Supporting
student-generated free-response questions,” in Proceedings of the 16th Annual
Joint Conference on Innovation and Technology in Computer Science Educa-
tion, ITiCSE ’11, (New York, NY, USA), pp. 153–157, ACM, 2011.

46 M. Barak and S. Rafaeli, “On-line question-posing and peer-assessment as means
for web-based knowledge sharing in learning,” Int. J. Hum.-Comput. Stud.,
vol. 61, pp. 84–103, July 2004.

60

47 P. Denny, B. Hanks, and B. Simon, “Peerwise: Replication study of a student-
collaborative self-testing web service in a u.s. setting,” in Proceedings of the 41st
ACM Technical Symposium on Computer Science Education, SIGCSE ’10, (New
York, NY, USA), pp. 421–425, ACM, 2010.

48 K. Sanders, M. Ahmadzadeh, T. Clear, S. H. Edwards, M. Goldweber, C. John-
son, R. Lister, R. McCartney, E. Patitsas, and J. Spacco, “The canterbury ques-
tionbank: Building a repository of multiple-choice cs1 and cs2 questions,” in
Proceedings of the ITiCSE Working Group Reports Conference on Innovation
and Technology in Computer Science Education-working Group Reports, ITiCSE
-WGR ’13, (New York, NY, USA), pp. 33–52, ACM, 2013.

49 N. Parlante, “Nifty reflections,” SIGCSE Bull., vol. 39, pp. 25–26, June 2007.

50 C. A. Shaffer, V. Karavirta, A. Korhonen, and T. L. Naps, “Opendsa: Begin-
ning a community active-ebook project,” in Proceedings of the 11th Koli Calling
International Conference on Computing Education Research, Koli Calling ’11,
(New York, NY, USA), pp. 112–117, ACM, 2011.

51 P. Denny, A. Luxton-Reilly, and B. Simon, “Evaluating a new exam question:
Parsons problems,” in Proceedings of the Fourth International Workshop on Com-
puting Education Research, ICER ’08, (New York, NY, USA), pp. 113–124, ACM,
2008.

52 Y. Hirai and A. Hazeyama, “A learning support system based on question-posing
and its evaluation,” in Fifth International Conference on Creating, Connecting
and Collaborating through Computing (C5 ’07), pp. 178–184, Jan 2007.

53 A. Luxton-Reilly, D. Bertinshaw, P. Denny, B. Plimmer, and R. Sheehan, “The
impact of question generation activities on performance,” in Proceedings of the
43rd ACM Technical Symposium on Computer Science Education, SIGCSE ’12,
(New York, NY, USA), pp. 391–396, ACM, 2012.

54 A. Luxton-Reilly, P. Denny, B. Plimmer, and R. Sheehan, “Activities, affordances
and attitude: How student-generated questions assist learning,” in Proceedings
of the 17th ACM Annual Conference on Innovation and Technology in Computer
Science Education, ITiCSE ’12, (New York, NY, USA), pp. 4–9, ACM, 2012.

55 D. S. Weld, E. Adar, L. Chilton, R. Hoffmann, E. Horvitz, M. Koch, J. Lan-
day, C. H. Lin, and Mausam, “Personalized online education"”a crowdsourcing
challenge,” Association for the Advancement of Artificial Intelligence, January
2012.

56 J. Hui, A. Glenn, R. Jue, E. Gerber, and S. Dow, “Using anonymity and com-
munal efforts to improve quality of crowdsourced feedback,” in HCOMP, 2015.

57 A. Korhonen, T. Naps, C. Boisvert, P. Crescenzi, V. Karavirta, L. Mannila,
B. Miller, B. Morrison, S. H. Rodger, R. Ross, and C. A. Shaffer, “Requirements

61

and design strategies for open source interactive computer science ebooks,” in
Proceedings of the ITiCSE Working Group Reports Conference on Innovation
and Technology in Computer Science Education-working Group Reports, ITiCSE
-WGR ’13, (New York, NY, USA), pp. 53–72, ACM, 2013.

58 F. J. Buckley and R. Poston, “Software quality assurance,” IEEE Transactions
on Software Engineering, vol. SE-10, pp. 36–41, Jan 1984.

59 B. Kitchenham and S. L. Pfleeger, “Software quality: The elusive target,” IEEE
Softw., vol. 13, pp. 12–21, Jan. 1996.

60 D. Garvin, “What does “product quality” really mean?,” MIT Sloan Management
Review, vol. 26, pp. 25–43, 10 1984.

61 B. Edvardsson, “Service quality: beyond cognitive assessment,” Managing Service
Quality: An International Journal, vol. 15, no. 2, pp. 127–131, 2005.

62 B. Edvardsson, “Service quality improvement,” Managing Service Quality: An
International Journal, vol. 8, no. 2, pp. 142–149, 1998.

63 W. Abramowicz, R. Hofman, W. Suryn, and D. Zyskowski, “Square based web
services quality model,” in Proceedings of the International MultiConference of
Engineers and Computer Scientists 2008, 03 2008.

64 F. T. Sheldon, K. M. Kavi, R. C. Tausworth, J. T. Yu, R. Brettschneider,
and W. W. Everett, “Reliability measurement: From theory to practice,” IEEE
Softw., vol. 9, pp. 13–20, July 1992.

65 T. Gilb, Principles of Software Engineering Management. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1988.

66 J. Tian, “Quality-evaluation models and measurements,” IEEE Software, vol. 21,
pp. 84–91, May 2004.

67 C. Prahalad and M. Krishnan, “The meaning of quality in the information age,”
Harvard Business Review, vol. 77, pp. 109–118, 9 1999.

68 “Software engineering - product quality - part 1: Quality model,” Tech. Rep.
ISO/IEC 9126-1:2001, International Organization for Standardization, 2001.

69 N. Fenton and J. Bieman, Software Metrics: A Rigorous and Practical Approach,
Third Edition. Boca Raton, FL, USA: CRC Press, Inc., 3rd ed., 2014.

70 S. H. Kan, Metrics and Models in Software Quality Engineering. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 2nd ed., 2002.

71 R. G. Dromey, “Cornering the chimera [software quality],” IEEE Software,
vol. 13, pp. 33–43, Jan 1996.

62

72 B. Kitchenham, “Towards a constructive quality model. part 1: Software quality
modelling, measurement and prediction,” Software Engineering Journal, vol. 2,
pp. 105–126, July 1987.

73 B. W. Boehm, ed., Characteristics of software quality. North-Holland Pub. Co.,
1978.

74 B. W. Kernighan and P. J. Plauger, The Elements of Programming Style. New
York, NY, USA: McGraw-Hill, Inc., 2nd ed., 1982.

75 D. M. Breuker, J. Derriks, and J. Brunekreef, “Measuring static quality of student
code,” in Proceedings of the 16th Annual Joint Conference on Innovation and
Technology in Computer Science Education, ITiCSE ’11, (New York, NY, USA),
p. 13–17, Association for Computing Machinery, 2011.

76 C. McDowell, L. Werner, H. Bullock, and J. Fernald, “The effects of pair-
programming on performance in an introductory programming course,” SIGCSE
Bull., vol. 34, p. 38–42, Feb. 2002.

77 C. McDowell, L. Werner, H. E. Bullock, and J. Fernald, “The impact of pair pro-
gramming on student performance, perception and persistence,” in 25th Inter-
national Conference on Software Engineering, 2003. Proceedings., pp. 602–607,
2003.

78 B. Hanks, C. McDowell, D. Draper, and M. Krnjajic, “Program quality with pair
programming in cs1,” in Proceedings of the 9th Annual SIGCSE Conference on
Innovation and Technology in Computer Science Education, ITiCSE ’04, (New
York, NY, USA), p. 176–180, Association for Computing Machinery, 2004.

79 T. Brown, “Guided peer code reviews in cs1/cs2 and se curricula,” in 2019 IEEE
Frontiers in Education Conference (FIE), pp. 1–2, 2019.

80 M. Stegeman, E. Barendsen, and S. Smetsers, “Designing a rubric for feedback
on code quality in programming courses,” in Proceedings of the 16th Koli Calling
International Conference on Computing Education Research, Koli Calling ’16,
(New York, NY, USA), p. 160–164, Association for Computing Machinery, 2016.

81 M. Stegeman, E. Barendsen, and S. Smetsers, “Towards an empirically validated
model for assessment of code quality,” in Proceedings of the 14th Koli Calling
International Conference on Computing Education Research, Koli Calling ’14,
(New York, NY, USA), p. 99–108, Association for Computing Machinery, 2014.

82 K. Beck, Test Driven Development: By Example. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2002.

83 S. H. Edwards, “Using software testing to move students from trial-and-error to
reflection-in-action,” SIGCSE Bull., vol. 36, p. 26–30, Mar. 2004.

63

84 R. Mugridge, “Challenges in teaching test driven development,” in Proceedings of
the 4th International Conference on Extreme Programming and Agile Processes
in Software Engineering, XP’03, (Berlin, Heidelberg), p. 410–413, Springer-
Verlag, 2003.

85 J. Spacco and W. Pugh, “Helping students appreciate test-driven develop-
ment (tdd),” in Companion to the 21st ACM SIGPLAN Symposium on Object-
Oriented Programming Systems, Languages, and Applications, OOPSLA ’06,
(New York, NY, USA), p. 907–913, Association for Computing Machinery, 2006.

86 C. Desai, D. S. Janzen, and J. Clements, “Implications of integrating test-driven
development into cs1/cs2 curricula,” SIGCSE Bull., vol. 41, p. 148–152, Mar.
2009.

87 D. Janzen and H. Saiedian, “Test-driven learning: Intrinsic integration of testing
into the cs/se curriculum,” vol. 38, pp. 254–258, 03 2006.

88 J. Cohen, “A coefficient of agreement for nominal scales,” Educational and Psy-
chological Measurement, p. 10, 04 1960.

89 W. A. Scott, “Reliability of content analysis: The case of nominal scale coding,”
The Public Opinion Quarterly, vol. 19, no. 3, pp. 321–325, 1955.

90 J. L. Fleiss and J. Cohen, “The equivalence of weighted kappa and the intraclass
correlation coefficient as measures of reliability,” Educational and Psychological
Measurement, vol. 33, no. 3, pp. 613–619, 1973.

91 K. Krippendorff, Content Analysis: An Introduction to Its Methodology. Sage
Publications, Inc., 2004.

92 K. Krippendorff, “Estimating the reliability, systematic error and random error
of interval data,” Educational and Psychological Measurement, vol. 30, no. 1,
pp. 61–70, 1970.

93 K. Krippendorff and J. L. Fleiss, “Reliability of binary attribute data,” Biomet-
rics, vol. 34, no. 1, pp. 142–144, 1978.

94 K. Krippendorff, “Recent developments in reliability analysis,” in Proceedings of
the 42nd Annual Meeting of the International Communication Association, 05
1992.

95 J. R. Landis and G. G. Koch, “The measurement of observer agreement for
categorical data,” Biometrics, vol. 33, no. 1, pp. 159–174, 1977.

96 A. Vihavainen, T. Vikberg, M. Luukkainen, and M. Pärtel, “Scaffolding students’
learning using test my code,” in Proceedings of the 18th ACM Conference on
Innovation and Technology in Computer Science Education, ITiCSE ’13, (New
York, NY, USA), p. 117–122, Association for Computing Machinery, 2013.

64

97 J. Heywood, Assessment in Higher Education: Student Learning, Teaching, Pro-
grammes and Institutions. Jessica Kingsley Publishers, 2000.

98 L. A. Stefani, “Peer, self and tutor assessment: Relative reliabilities,” Studies in
Higher Education, vol. 19, no. 1, pp. 69–75, 1994.

99 D. Boud, Enhancing Learning Through Self-Assessment. 01 1995.

100 D. Boud and N. Falchikov, “Quantitative studies of student self-assessment in
higher education: A critical analysis of findings,” Higher Education, vol. 18, no. 5,
pp. 529–549, 1989.

Appendix 1. Inter-rater reliability by assignment

Student 1 0.20 Student 30 0.05 Student 59 0.14
Student 2 -0.30 Student 31 0.32 Student 60 0.19
Student 3 0.02 Student 32 0.36 Student 61 0.65
Student 4 0.10 Student 33 -0.06 Student 62 0.31
Student 5 -0.35 Student 34 0.24 Student 63 0.66
Student 6 0.38 Student 35 -0.43 Student 64 0.51
Student 7 0.39 Student 36 0.29 Student 65 0.20
Student 8 0.82 Student 37 0.14 Student 66 0.96
Student 9 -0.24 Student 38 -0.30 Student 67 0.37
Student 10 0.15 Student 39 0.40 Student 68 0.49
Student 11 0.10 Student 40 0.73 Student 69 0.31
Student 12 0.39 Student 41 0.33 Student 70 0.69
Student 13 0.17 Student 42 0.57 Student 71 0.30
Student 14 -0.13 Student 43 0.54 Student 72 -0.03
Student 15 -0.26 Student 44 -0.24 Student 73 0.23
Student 16 0.19 Student 45 0.05 Student 74 0.44
Student 17 0.55 Student 46 0.39 Student 75 0.20
Student 18 0.00 Student 47 0.25 Student 76 0.57
Student 19 0.30 Student 48 0.47 Student 77 -0.63
Student 20 0.00 Student 49 0.95 Student 78 0.56
Student 21 0.41 Student 50 0.56 Student 79 0.32
Student 22 0.66 Student 51 0.19 Student 80 0.42
Student 23 0.39 Student 52 0.31 Student 81 0.54
Student 24 -0.07 Student 53 0.42 Student 82 0.51
Student 25 0.40 Student 54 -0.13 Student 83 0.09
Student 26 0.10 Student 55 -0.50 Student 84 0.58
Student 27 0.39 Student 56 0.55 Student 85 -0.35
Student 28 0.66 Student 57 0.57 Student 86 0.58
Student 29 0.63 Student 58 0.32 Student 87 0.38

Table 3: Ordinal Krippendorff’s alpha for each student/assignment, the alpha values
in the blue background.

