
https://helda.helsinki.fi

Smash plus plus : an alignment-free and memory-efficient tool

to find genomic rearrangements

Hosseini, Morteza

2020-05

Hosseini , M , Pratas , D , Morgenstern , B & Pinho , A J 2020 , ' Smash plus plus : an

alignment-free and memory-efficient tool to find genomic rearrangements ' , GigaScience ,

vol. 9 , no. 5 , 048 . https://doi.org/10.1093/gigascience/giaa048

http://hdl.handle.net/10138/316325

https://doi.org/10.1093/gigascience/giaa048

cc_by

publishedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.

GigaScience, 9, 2020, 1–15

doi: 10.1093/gigascience/giaa048
Technical Note

TE CHNICAL NO TE

Smash++: an alignment-free and memory-efficient
tool to find genomic rearrangements
Morteza Hosseini 1,*, Diogo Pratas1,2, Burkhard Morgenstern3,4 and
Armando J. Pinho1

1IEETA/DETI, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; 2Department
of Virology, University of Helsinki, Haartmaninkatu 3, 00014 Helsinki, Finland; 3Department of Bioinformatics,
University of Göttingen, Goldschmidtstr. 1, 37077 Göttingen, Germany and 4Göttingen Center of Molecular
Biosciences (GZMB), Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
∗Correspondence address. Morteza Hosseini, IEETA/DETI, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal. E-mail:

seyedmorteza@ua.pt http://orcid.org/0000-0001-8962-8985

Abstract

Background: The development of high-throughput sequencing technologies and, as its result, the production of huge
volumes of genomic data, has accelerated biological and medical research and discovery. Study on genomic
rearrangements is crucial owing to their role in chromosomal evolution, genetic disorders, and cancer. Results: We present
Smash++, an alignment-free and memory-efficient tool to find and visualize small- and large-scale genomic
rearrangements between 2 DNA sequences. This computational solution extracts information contents of the 2 sequences,
exploiting a data compression technique to find rearrangements. We also present Smash++ visualizer, a tool that allows
the visualization of the detected rearrangements along with their self- and relative complexity, by generating an SVG
(Scalable Vector Graphics) image. Conclusions: Tested on several synthetic and real DNA sequences from bacteria, fungi,
Aves, and Mammalia, the proposed tool was able to accurately find genomic rearrangements. The detected regions were in
accordance with previous studies, which took alignment-based approaches or performed FISH (fluorescence in situ
hybridization) analysis. The maximum peak memory usage among all experiments was ∼1 GB, which makes Smash++
feasible to run on present-day standard computers.

Keywords: genomic rearrangement; alignment-free; genome comparison; genome duplication; data compression;
information theory; probabilistic-algorithmic model; complexity; visualization; high-throughput sequencing

Background

With the ever-increasing development of high-throughput se-
quencing (HTS) technologies, a massive amount of genomic in-
formation is produced at much higher speed and lower cost than
was possible before [1]. Analysis of such information has led to
the advancement of our understanding of biology and disease
over the past decade [2, 3]. Computational solutions play a key
role in dry-lab analysis of the deluge of HTS data by using effi-
cient and fast algorithms.

Genome rearrangements are mutations that alter the ar-
rangement of genes on a genome, and they usually occur in
the presence of errors in cell division following meiosis or mi-
tosis. These structural abnormalities in chromosomes, wich in-
clude but are not limited to deletions, duplications, transloca-
tions, inversions, and insertions, mostly occur as an accident in
the sperm or egg cell and hence are present in every cell of the
body [4, 5].

Studies on chromosomal aberrations, which underlie many
genetic diseases and cancer, are crucial for diagnostics, prognos-

Received: 11 January 2020; Revised: 6 April 2020; Accepted: 20 April 2020

C© The Author(s) 2020. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.

1

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/9/5/giaa048/5841055 by guest on 22 June 2020

http://www.oxfordjournals.org
http://orcid.org/0000-0001-8962-8985
mailto:seyedmorteza@ua.pt
http://orcid.org/0000-0001-8962-8985
http://orcid.org/0000-0001-8962-8985
http://creativecommons.org/licenses/by/4.0/

2 Smash++: an alignment-free and memory-efficient tool to find genomic rearrangements

tics, and targeted therapeutics [6, 7]. Examples of such diseases
are Wolf-Hirschhorn syndrome, which is caused by a partial
deletion from human chromosome location 4p16.3 [8]; Charcot-
Marie-Tooth disease, which is most commonly caused by du-
plication of the gene encoding peripheral myelin protein 22 on
human chromosome 17 [9]; and acute myeloid leukemia, which
may be caused by translocations between human chromosomes
8 and 21 [10].

Various computational methods have been proposed in the
literature that perform alignment, i.e., aligning regions that
are conserved in 2 (or more) genomic sequences, for the pur-
pose of detecting chromosomal rearrangements (comparing se-
quences) [11–16]. Alignment methods cannot be solely used to
detect rearrangements because they follow the assumption that
order of homology is maintained between the sequences to be
compared [17, 18]. Alignment-free (AF) approaches, on the other
hand, do not have this limitation; in addition, they offer compu-
tational speed-up advantages over alignment algorithms [19].

Among AF methods are information theory–based ones,
which measure the amount of shared information within the se-
quences to quantify the similarity/dissimilarity between them.
Information theory–based approaches have a broad range of ap-
plications, including but not limited to global and local charac-
terization of DNA, e.g., prediction of transcription factor bind-
ing sites and classification of motifs, and gene mapping [20]. In
2015 another application of such approaches, namely, finding
rearrangements between DNA sequences, was introduced [21].
Here, we provide a significant improvement over the mentioned
method. It should be noted that the 2 alignment-based and AF
approaches can be accompanied by genomic data visualization
tools, which provide researchers with facilities to explore and
analyze genomic data [22].

In this article we present Smash++, an AF tool that finds
chromosomal rearrangements between 2 DNA sequences based
on their information content, which is obtained by a data com-
pression technique. This computational solution follows a com-
bination of probabilistic and algorithmic approaches for having
a quantitative definition of information, although it can be seen
as more of a probabilistic one [23]. Associated with Smash++, we
present a visualizer that is capable of visualizing as SVG images
informationally similar regions between 2 genomic sequences.
This tool also provides self- and relative redundancy (complex-
ity) for the similar regions.

Smash++ is an improved version of Smash [21], featuring
(i) improved accuracy, obtained by using multiple finite-context
models (FCMs) along with substitution-tolerant Markov models
to find fine-grained and coarse-grained chromosomal rearrange-
ments; (ii) presentation of self-complexity (redundancy) and rel-
ative redundancy of informationally similar regions between 2
DNA sequences; (iii) improved user interface in the command
line, by adding several options to customize the tool for running,
and the resulting SVG image, by adding markers for positions of
DNA bases and also plotting self- and relative redundancy; and
(iv) improved performance, in terms of memory and time usage.

Results and Discussion
Implementation

Smash++ is implemented in the C++ language and is licensed
under GNU GPLv3. It generates information maps for 2 se-
quences and, based on that, finds similar regions in them, in
which there can potentially be DNA rearrangements. Therefore,
Smash++ provides insight into positions of rearrangements

that have happened between 2 sequences. The tool comes with
a visualizer, which can be called in the command line with a flag
called “-viz”. Similar regions in reference and target sequences
are shown with the same color, which is chosen randomly using
an HSV color model. For more information about use of the tool,
see Note S3 of the supplementary material.

The machine used for the tests had a 2-core 2.90 GHz
Intel R© CoreTM i7-3520M CPU and 8 GB of RAM. The Python script
“xp.py,” in the “experiment” directory, can be used to reproduce
the results by switching False/True the variables associated with
each dataset.

Dataset

Smash++ and several other methods have been tested on a col-
lection of synthetic and real sequences, which are described
in Table 1. We used the GOOSE toolkit [24] to make the syn-
thetic sequences, of which the sizes vary from 1.5 kb to 100 Mb.
We applied mutations and reversely complemented parts of
the sequences. For a real dataset, we chose different sequences
from bacteria, Aves, Mammalia, and fungi, with sizes of ∼1 to
∼127 Mb.

Application on synthetic data

Fig. 1 illustrates the result of running Smash++ and the asso-
ciated visualizer on a synthetic dataset. The top sections show
how we have built the reference and the target sequences. For
example, to build the reference sequence in Fig. 1a, we generated
3 random sequences of size 500 bp, using GOOSE, and concate-
nated them. To build the target sequence, we made reverse com-
plements of Parts I and III from the reference, and also mutated
Part II 2%, then we concatenated the parts in the order shown in
the figure. Fig. 1b, c, and d follow the same procedure. To build
the target in Fig. 1e, we mutated the first 1 kb block of the refer-
ence 1%, the second block 2%, and the third block 3%, up until
the 60th block, which we mutated 60%.

The bottom sections of Fig. 1 show the output of the
Smash++ visualizer, detecting similar regions regardless of
their size. Note that for each detected region, the average value
of redundancy and relative redundancy is illustrated. In Fig. 1b,
Part II of the reference is mutated 90%; i.e., 9 of every 10 bases are
mutated, on average. As expected, Smash++ does not recognize
similarity between this pair of regions. Also, in the case of Parts
III and IV of the reference, because we detect similarity between
Part III of the reference and I of the target, and also Part IV of
the reference and II of the target, and there is no space between
these regions, we join them and consider them as a bigger re-
gion of size 50 kb. Fig. 1e shows that Smash++ is able to detect
∼43% of mutation, which has been made possible by the use of
substitution-tolerant Markov models (see Methods). Fig. 1 shows
that Smash++ can be used to detect small-scale and large-scale
similarities between DNA sequences.

Application on real data

Fig. 2 shows similarities between real sequences, found by
Smash++. Fig. 2a and b show similarities of chromosomes 18
and 14 of Gallus gallus (chicken) with orthologous chromosomes
20 and 16 of Meleagris gallopavo (turkey), respectively. These
avian species, which are of great agricultural and commercial
importance, are estimated to have diverged 37.2 million years
ago (MYA) [27]. Fig. 2a and b demonstrate that Smash++ was

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/9/5/giaa048/5841055 by guest on 22 June 2020

Hosseini et al. 3

Table 1: Synthetic and real dataset used in the experiments

Sequence Group Length (bp) Description

GGA18 Aves 11,373,140 Access. CM000110 – Gallus gallus chromosome 18
MGA20 Aves 10,730,484 Access. CM000981 – Meleagris gallopavo isolate NT-WF06-2002-E0010 breed Aviagen

turkey brand Nicholas breeding stock chromosome 20
GGA14 Aves 16,219,308 Access. CM000106 – G. gallus chromosome 14
MGA16 Aves 14,878,991 Access. CM000977 – Meleagris gallopavo isolate NT-WF06-2002-E0010 breed Aviagen

turkey brand Nicholas breeding stock chromosome 16
HS12 Mammalia 133,275,309 Access. NC 000012 – Homo sapiens chromosome 12, GRCh38.p13 Primary Assembly
PT12 Mammalia 130,995,916 Access. NC 036891 – Pan troglodytes isolate Yerkes chimp pedigree #C0471 (Clint)

chromosome 12
PXO99A Bacteria 5,238,555 Access. CP000967 – Xanthomonas oryzae pv. oryzae causes the major disease of bacterial

blight of rice (Oryza sativa L.). X. oryzae pv. oryzae PXO99A strain is virulent toward a
large number of rice varieties representing diverse genetic sources of resistance [25]

MAFF 311018 Bacteria 4,940,217 Access. AP008229 – X. oryzae pv. oryzae MAFF 311018 is a Japanese race 1 strain [26]
ScVII Fungi 1,090,940 Access. NC 001139 – Saccharomyces cerevisiae S288C chromosome VII
SpVII Fungi 1,105,967 Access. CP020299 – Saccharomyces paradoxus strain UFRJ50816 chromosome VII
RefS Synthetic 1,500 It consists of 3 segments of 500 bp size.
TarS Synthetic 1,500 To build TarS, segment I is mutated 2%, II is inversely repeated, and III is duplicated.
RefM Synthetic 100,000 It has 4 segments of 25 kb size.
TarM Synthetic 100,000 For building TarM, segment I of RefM (out of total 4) is inversely repeated, II is

mutated 90%, III is duplicated, and IV is mutated 3%
RefL Synthetic 5,000,000 It includes 2 segments, 2,500,000 bp each
TarL Synthetic 5,000,000 Segment I is inversely repeated, and II is mutated 2% for building TarL
RefXL Synthetic 100,000,000 It is made of 4 segments, 25,000,000 bp each
TarXL Synthetic 100,000,000 Segment I is mutated 1%, segments II and III are inversely repeated, and segment IV is

duplicated to make TarXL
RefMut Synthetic 60,000 It includes 60 segments of 1 kb size
TarMut Synthetic 60,000 To build TarMut, the first segment (I) is mutated 1%, the second segment is

mutated 2%, the third one is mutated 3%, and so on
RefComp Synthetic 1,000,000 It consists of 10 segments of 100 kb
TarComp Synthetic 1,000,000 To build it, the first segment (I) of RefComp is duplicated, and the second, third, and

fourth segments are mutated 1%, 2%, and 3%, respectively. Segments V, VI,and VII of
RefComp are inversely repeated, then mutated 4%, 5%, and 6%, respectively. Finally,
segments VIII, IX, and X are mutated 7%, 8%, and 9%, respectively.

RefPerm Synthetic 3,000,000 It includes 3 segments of 1 Mb size. In addition to the original sequence, it is
permutated, using GOOSE toolkit, by blocks of sizes 450 kb, 30 kb, 1 kb and 30 bp.

TarPerm Synthetic 3,000,000 To build TarPerm, the first segment is mutated 1%, the second segment is inversely
repeated, and the third one is mutated 2%.

The real dataset can be download from NCBI via accession number (access.) provided in the descriptions.

able to find the inversions confirmed by fluorescence in situ hy-
bridization (FISH) analysis [28, 29].

In Figs S1 and S2 of the supplementary material, we have
compared Smash++ with other methods, on GGA 18 / MGA 20
and GGA 14 / MGA 16 chromosomes, respectively. The methods
included in these figures are as follows: (a) Smash++; (b) pro-
gressiveMauve [11], which uses an alignment objective score
to detect rearrangement breakpoints when genomes have un-
equal gene content. It also applies a probabilistic alignment fil-
tering method to remove erroneous alignments of unrelated se-
quences; (c) the method proposed in [29], which takes a bacterial
artificial chromosome–based approach along with FISH analysis
to develop an integrated physical, genetic, and comparative map
of chicken and turkey; (d) SynBrowser [15], which constructs
synteny blocks using prebuilt alignments in the UCSC genome
browser database; and (e) FISH analysis [28].

Fig. 2c demonstrates similarities between chromosomes 12
of Homo sapiens and Pan troglodytes, which are estimated to have
diverged 6.7 MYA. A comparison with other methods is pro-
vided in Fig. S3 of the supplementary material. The methods
include (a) Smash++; (b) progressiveMauve; (c) Cinteny [16],
which performs sensitivity analysis for synteny block detection

and for the subsequent computation of reversal distances, by
means of an extended version of ternary search trees. Embed-
ded in this extension are “walks” through the leaves of the tree,
which correspond to walks on the genome markers in their lin-
ear order; (d) SynBrowser; and (e) D-Genies [30], which works
on the basis of alignment of genomes by minimap2 software
package [31].

Fig. 2d illustrates similarities between Xanthomonas oryzae pv.
oryzae PXO99A and Xanthomonas oryzae pv. oryzae MAFF 311018,
2 strains of Xanthomonas oryzae pv. oryzae (Xoo) pathogen, which
causes the disease of bacterial blight of rice (Oryza sativa L.).
It is the most serious bacterial disease of rice and can reduce
yields by as much as 50% [25]. Note that to have a clearer
picture, we have not plotted the shades connecting similar
regions. This can be achieved using the “-l 6” option while
calling the Smash++ visualizer. Figure S4 of the supplemen-
tary material provides the comparison of Smash++ with pro-
gressiveMauve and Salzberg et al. [25], which uses an align-
ment method to find genome rearrangements in Xoo. As can
be seen, the result provided by Smash++ conforms to the
one presented by Salzberg et al. [25], without performing an
alignment.

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/9/5/giaa048/5841055 by guest on 22 June 2020

4 Smash++: an alignment-free and memory-efficient tool to find genomic rearrangements

Figure 1: Similarities between synthetic sequences with different sizes, detected by Smash++. The parameters used are k-mer size = 14 and number of substitutions
in substitution-tolerant Markov model (STMM) = 5, which are the default parameters used by Smash++. For the threshold, the default values of 1.5 and 1.97 are used
for panels a–d and e, respectively. (a) 1.5 kb sequences; (b) 100 kb sequences. No similarity is detected for Part II of the reference because it is mutated 90%. Parts III

and IV of the reference and I and II of the target are joined because there is no space between consecutive regions. (c) 5 Mb sequences; (d) 100 Mb sequences; (e) 60 kb
sequences. Roughly 43% of mutation is detected.

Comparison with Smash

To better understand the improvement we have made over the
first version, Smash, we compare the 2 tools on a synthetic and
a real dataset (see Fig. 3). In Table 1, the procedure for creat-
ing the synthetic data (RefComp and TarComp) is described.
Fig. 3a compares running Smash and Smash++ on the synthetic
dataset. For Smash, we used an FCM with k-mer size of 14, and
for Smash++, we used a combination of an FCM with k-mer size
of 14 and an STMM with number of substitutions of 5. As the in-
formation profiles show, Smash++ is better able to model the
data because it uses less information (lower information con-
tent) to describe the target based on the reference; this is pos-
sible because of using a combination of the FCM and the STMM
instead of using solely an FCM. We expect the output to have the
following format: Parts I, II, III, and IV of the reference and the
target are similar (including rearrangements); there are also in-
verted repeats between Parts V, VI, and VII of the sequences; and
finally, there are rearrangements between Parts VIII, IX, and X of
the sequences. When there is no space between consecutive re-
gions, Smash++ joins them; therefore, we expect Smash++ to
detect 3 similar regions: the one including Parts I, II, III, and IV;
the one with Parts V, VI, and VII; and the one including Parts VIII,
IX, and X. The rearrangement map shows that Smash++ fulfills
our expectation. On the other side, Smash was not able to de-

tect all rearrangements, showing that to model such a dataset,
we need more than a single FCM.

The result of running Smash and Smash++ on a real dataset,
Saccharomyces cerevisiae chromosome VII and Saccharomyces para-
doxus chromosome VII, is demonstrated in Fig. 3b. S. cerevisiae
is a species of yeast that plays a key role in winemaking, bak-
ing, and brewing. Its use as a eukaryotic model organism has
provided insights into the molecular functioning of human
cells [32]. S. paradoxus is the closest known species to S. cerevisiae,
which has proved its importance in different fields of the life sci-
ences, including evolution, ecology, and biotechnology [33]. For
the experiment, we ran Smash using an FCM with k-mer size of
14, and Smash++ using an FCM with k-mer size of 14 combined
with an STMM with number of substitutions of 5. As can be seen,
using an FCM along with an STMM could drastically improve
modeling the data, which led to finding rearrangements more
accurately. The rearrangement map of Smash++ conforms to
the previous study [32].

Robustness against fragmented data

Inherited from Smash, Smash++ is capable of finding similari-
ties between a fragmented reference and a target sequence. Fig-
ure S5 of the supplementary material shows the robustness of
the proposed tool against fragmented data, for different ran-

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/9/5/giaa048/5841055 by guest on 22 June 2020

Hosseini et al. 5

Figure 2: Similarities in a real dataset, detected by Smash++. (a) G. gallus (chicken) chr. 18 and M. gallopavo (turkey) chr. 20. The parameters were k-mer size = 14,
No. substitutions in STMM = 5, threshold = 1.9, and minimum block size (m) = 500,000; i.e., regions smaller than 500,000 bp were not considered for further processing;
(b) G. gallus chr. 14 and M. gallopavo chr. 16. The result is obtained by setting k = 14, No. substitutions = 5, threshold = 1.95, and m = 400,000; (c) H. sapiens (human)

chr. 12 and P. troglodytes (chimpanzee) chr. 12. The parameters were k = 14, without using STMM, threshold = 1.9, and m = 100,000; (d) X. oryzae pv. oryzae PXO99A (a
rice pathogen) and X. oryzae pv. oryzae MAFF 311018 (a rice pathogen). The result was obtained by setting k = 13, threshold = 1.55, and m = 10,000.

domly permutated block sizes. As can be seen, the same 3 target
regions are detected even when the reference is fragmented to
100,000 blocks of 30 bp. This capability might be of interest in
the case of non-assembled sequences or in the presence of as-
sembly errors; note that this approach cannot be considered as
an alternative to assembly.

Benchmarking

Fig. 4 illustrates the performance of the proposed tool in terms
of memory and time usage for all datasets (see supplementary
Table S1 for more details). Size of the datasets and number of
detected similar regions between each pair of sequences (“# Re-
arr”) are shown at the bottom of the figure. The pair dataset
“Perm30” and the pair “Perm1000” are, as outliers, not shown.
Fig. 4a shows the peak memory in gigabytes used by Smash++
on all synthetic and real datasets. As can be seen, it is ∼1 GB for
all datasets. The maximum peak memory, ∼1.08 GB, was used
when the proposed tool was run on human and chimpanzee
chromosomes 12. It should be mentioned that the memory us-
age of Smash++ is related to the k-mer size that is used to model
the data because different data structures are used for different
k-mer sizes (see Methods). Sizes 13 and 14 were used to perform
the experiments. The maximum memory usage of ∼1 GB en-
ables Smash++ to run on any computer nowadays.

Fig. 4b demonstrates elapsed (wall clock) times, in minutes.
The elapsed times rely on the file sizes along with the number of
detected similar regions, meaning that the greater the number
of regions and/or the greater the dataset size, the more time will
be taken. Note that it is not a linear relation. As an example, the
pair dataset “Large” and the pair “PXO99A MAFF311018” have
approximately the same total size of 10 Mb; but in the former
case that 2 similarities is detected, Smash++ takes ∼16 seconds,
and in the latter case with 23 similarities (∼12 times more than
the former case), the proposed tool takes ∼48 seconds (3 times
more) to run. As another example, carrying out Smash++ on the
pair “Large” with 50 times larger size than the pair “Medium”
leads to detection of the same number of rearrangements, i.e., 2,
while it takes only ∼3 times more time. Regarding the pair
“Perm30” with 11,565 similarities detected (Supplementary Ta-
ble S1), we note that it has a massively fragmented reference se-
quence with 10,000 fragments of 30 bp; therefore it is by far the
most time-consuming dataset. Note that the difference between
the values of 10,000 (number of reference fragments) and 11,565
(number of similar regions) arises from the fact that a number
of the reference chunks are similar to >1 target region and vice
versa.

A major advantage of Smash++ over Smash is using a com-
bination of FCMs and STMMs to better model the data; how-
ever, to have an idea about how the performance of these 2

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/9/5/giaa048/5841055 by guest on 22 June 2020

6 Smash++: an alignment-free and memory-efficient tool to find genomic rearrangements

Figure 3: Comparison of Smash++ and Smash. (a) Performance on a synthetic dataset. Using the combination of an FCM and an STMM (in Smash++) produces more
accurate results than using a single FCM (in Smash). (b) Performance on a real dataset, including S. cerevisiae chr. VII and S. paradoxus chr. VII. The rearrangement maps

clearly show the improvement made over Smash, using an FCM along with an STMM.

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/9/5/giaa048/5841055 by guest on 22 June 2020

Hosseini et al. 7

Figure 4: (a) The peak memory consumption, in gigabytes; and (b) the elapsed (wall clock) time usage, in minutes, of Smash++ obtained by running on all synthetic
and real datasets described in Table 1.

tools can be compared, we let Smash++ run with only 1 FCM
on the dataset described in Table 1. We also did not compute
self-complexity, similarly to Smash. Fig. 5 and supplementary
Table S2 show the results. In Fig. 5a, the range of peak mem-
ory usages (from minimum to maximum usage) are compared,
while running Smash and Smash++ on different real and syn-
thetic datasets. The diamond symbol shows the mean value.
The results show that the maximum peak memory usage by
Smash++ is 1.9 times less than that by Smash. In Fig. 5b, the
range of wall clock times is compared for these 2 tools. As men-
tioned in the figure, Smash++ runs 5.4 times faster than Smash
on the tested datasets. It is worth mentioning that due to the ab-
sence of another tool that provides relative compression in ad-
dition to detecting rearrangements, we cannot have a fair quan-
titative camparison to other tools, in terms of time and memory
usage; therefore, we have only included the results obtained by
Smash++ and Smash.

Conclusions

Finding genomic rearrangements is crucial becaue they play
an important role in genetic disorders, cancer, and chromoso-
mal evolution. We presented Smash++, an AF tool that accu-
rately finds small- and large-scale genomic rearrangements be-
tween pairs of DNA sequences, by using a data compression ap-
proach. This memory-efficient tool was successfully tested on
several synthetic and real data from bacteria, fungi, Aves, and

Mammalia. The presented results show that the detected rear-
rangements were in accordance with previous studies, which
used alignment-based methods or performed FISH analysis.
Smash++ consumed a maximum of ∼1 GB of memory, among
all experiments, which showed that it can be run on any com-
puter, nowadays. The proposed tool has the potential to improve
the accuracy of diagnostic and genetic counselling and also to
guide future investigations into the development of personal-
ized therapeutics.

Methods

The schema of the proposed method is illustrated in Fig. 6.
Smash++ takes as inputs a reference and a target sequence and
produces as output a position file, including local similarities of
the 2 sequences, which can then be used by the Smash++ vi-
sualizer to produce an SVG image illustrating the similarities.
This process has 8 major stages: (1) compression of the orig-
inal target file, based on the model of the original reference
file; (2) filtering the information profile, which is the output of
Stage 1, and segmenting the target sequence; (3) reference-free
compression of the segmented sequences obtained by the pre-
vious stage; (4) compression of the original reference file, based
on the model of segmented sequences, which are obtained by
Stage 2; (5) filtering the information profile and segmenting the
reference sequence; (6) reference-free compression of the seg-
mented sequences; (7) aggregating positions that are generated

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/9/5/giaa048/5841055 by guest on 22 June 2020

8 Smash++: an alignment-free and memory-efficient tool to find genomic rearrangements

Figure 5: Comparison of Smash++ and Smash, in terms of (a) memory usage; and (b) time usage, running on real and synthetic data described in Table 1. To have a fair
comparison, only 1 model (FCM) is used by Smash++, and also self-complexity is not computed. Diamonds indicate the mean, and bars, the ranges from minimum
to maximum values.

Figure 6: The schema of Smash++. The process of finding similar regions in reference and target sequences and computing the redundancy in each region includes 8
stages. Smash++ outputs a ∗.pos file that includes the positions of the similar regions, and can be then visualized, resulting in an SVG image.

by stages 3 and 6; and (8) visualizing the positions. The following
sections describe the process in detail.

Data modeling

We consider sequences over the nucleotide alphabet � = {A, C,
G, T}; our goal is to measure the degree of local similarity be-

tween 2 such sequences. More specifically, we consider a refer-
ence sequence S = s1, . . . , sN over �, and we want to measure
the local information content of a target sequence, given this
reference sequence. To this end, we use a combination of finite-
context models and substitution-tolerant Markov models to de-
rive different probability measures for observing a nucleotide x
in a sequence, given the context of the previous k nucleotides

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/9/5/giaa048/5841055 by guest on 22 June 2020

Hosseini et al. 9

(Fig. 7a); these probabilities are then mixed (by multiplications
and additions shown in Fig. 7b) to provide the final probability
(P) of observing the nucleotide x. The following subsections de-
scribe the models we use in detail.

Finite-context model
We consider the probability of observing a certain nucleotide,
given the previous k nucleotides, by using the relative frequency
of this event in the reference sequence S. For x ∈ � and a k-mer
Q ∈ �k, let N(x|Q) be the number of occurrences of Q in S that are
followed by nucleotide x, and let N(Q) be the number of occur-
rences of Q in S. As in [23, 34, 35], we then define

PFCM(x|Q) = N(x|Q) + α

N(Q) + 4 · α
, (1)

where “4” is the size of alphabet � and α is a pseudo-count pa-
rameter. For α = 1, Eq. 1 turns into the Laplace estimator. Note
that an FCM has the Markov property, in which the conditional
probability distribution of observing a nucleotide depends only
on the state of the preceding k-mer.

Substitution-tolerant Markov model
Given the reference sequence S, we use the aforemen-
tioned probability distribution PFCM to define a sequence S′ =
s′
−k, s′

−k+1, . . . , s′
N recursively by

s′
i =

⎧⎪⎨
⎪⎩

A if i < 1

arg max
x∈�

PFCM(x|s′
i−k, . . . , s′

i−1) if i ≥ 1.
(2)

For x ∈ � and a k-mer Q ∈ �k, we then define N
′
(x|Q) as the num-

ber of occurrences of Q followed by x and N
′
(Q) as the number

of occurrences of Q, respectively, in the sequence S
′
. Finally, we

define

PSTMM(x|Q) = N′(x|Q) + α

N′(Q) + 4 · α
. (3)

STMMs, which are probabilistic-algorithmic models [23, 36],
can be used along with FCMs to modify the behavior of
Smash++ when confronted with nucleotide substitutions in
genomic sequences. These models can be disabled, to reduce
the number of mathematical calculations, and consequently,
increase the performance of the proposed method. Such an
operation is automatically performed using an array of size k
(the context size), named ”history,” which preserves the past k
hits/misses. Observing a symbol in the sequence, the memory is
checked for the symbol with the highest number of occurrences.
If they are equal, a hit is saved in the history array; otherwise, a
miss is inserted into the array. Before getting to store a hit/miss
in the array, it is checked for the number of misses and in the
case they are more than a predefined threshold t, the STMM will
be disabled and also the history array will be reset. This process
is performed for each nucleotide in the sequence.

The following example shows the distinction between an
FCM and an STMM. Assume that the current context at a cer-
tain position is AGACGTAC, and the number of occurrences of
symbols saved in memory is 10, 6, 15, and 8 for A, C, G, and T,
respectively; also, the next symbol to appear in the sequence is
T. An FCM considers the next context as GACGTACT, while an
STMM considers it as GACGTACG because the nucleotide G is

the most probable symbol, based on the number of occurrences
stored in memory.

Cooperation of FCMs and STMMs
When FCMs and STMMs are in cooperation, the probability of
observing a nucleotide x in a sequence S can be estimated as

P (x) =
∑m

i=1
PFCMi (x|Q) wi +

∑n

j=1
PSTMM j (x|Q) w j , ∀x ∈ S, (4)

in which m and n denote the number of FCMs and STMMs, re-
spectively, and wi and wj are weights assigned to each FCM and
STMM, respectively, based on its performance. We have

wi p ∝ (wi p−1)γi PFCM(x|Q p−1), 1 ≤ i ≤ m,

w jp ∝ (w jp−1)γ j PSTMM(x|Q p−1), 1 ≤ j ≤ n,
(5)

where p denotes a certain position, and γ i and γ j ∈ [0, 1) are for-
getting factors predefined for each model. Also,

∑m

i=1
wi +

∑n

j=1
w j = 1. (6)

By experimenting with different forgetting factors and context-
order sizes for models, we have found that the factors are di-
rectly related to the context sizes and reciprocally related to the
complexity (see Fig. S6 of the supplementary material).

Storing models in memory

The FCMs and STMMs include, in fact, count values that need to
be saved in memory. For this purpose, 4 different data structures
have been used considering the context-order size k, as follows:

� table of 64-bit counters, for 1 ≤ k ≤ 11,
� table of 32-bit counters, for k = 12, 13,
� table of 8-bit approximate counters, for k = 14, and
� Count-Min-Log Sketch (CMLS) of 4-bit counters, for k ≥ 15.

The table of 64-bit counters (Fig. 8a) simply saves the number
of events for each context. The table of 32-bit counters saves in
each position the number of times that the associated context is
observed. When a counter reaches the maximum value 232 − 1
= 4,294,967,295, all the counts will be renormalized by dividing
by 2, as shown in Fig. 8b.

Approximate counting is a method that use probabilistic
techniques to count large number of events while using a small
amount of memory [37]. Fig. 9 shows the algorithm for 2 ma-
jor functions associated with this method, Update and Query.
To update the counter, a pseudo-random number generator is
used the number of times of the counter’s current value to sim-
ulate flipping a coin. If it comes up 0/Heads each time or 1/Tails
each time, the counter will be incremented. Fig. 8c shows the
difference between arithmetic and approximate counting, and
also the values that are actually stored in memory. Note that be-
cause an approximate counter represents the actual count by an
order-of-magnitude estimate, one only needs to save the expo-
nent. For example, if the actual count is 8, we store in memory
log28 = 3.

CMLS is a probabilistic data structure to save the frequency of
events in a table by means of a family of independent hash func-
tions [38]. The algorithm for updating and querying the counter
is shown in Fig. 10. To update the counter, its current value
is hashed with d independent hash functions. Then, a coin is

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/9/5/giaa048/5841055 by guest on 22 June 2020

10 Smash++: an alignment-free and memory-efficient tool to find genomic rearrangements

a

b

Figure 7: Data model used by Smash++. (a) Cooperation between finite-context models (FCMs) and substitution-tolerant Markov models (STMMs). Note that each

STMM needs to be associated with an FCM. (b) Probability of an input symbol is estimated by using the probability and weight values that have been obtained from
processing previous symbols.

flipped the number of times of the counter’s current value, us-
ing a pseudo-random number generator. If it comes up 0/Heads
each time or 1/Tails each time, the minimum hashed values (out
of d values) will be updated, as shown in Fig. 8d.

CMLS requires a family of pairwise independent hash func-
tions H = {h: U → [m]}, in which each function h maps some
universe U to m bins. In this family of functions, the probability
that all x, y ∈ U, x �= y will hash to any pair of hashed values z1,
z2 is as if they were perfectly random, i.e., Ph ∈ H[h(x) = z1∧h(y) =
z2] = 1/m2. A hash function in this family can be obtained by

ha,b(x) = ((ax + b) mod p) mod m, (7)

where p ≥ m is a prime number and a and b are randomly cho-
sen integers modulo p with a �= 0. Note that if the number of
bins is a power of 2, m = 2M, the multiply-add-shift scheme [39]
can be used to avoid modular arithmetic. A hash function in this
scheme can be obtained by:

ha,b(x) = ((ax + b) mod 2w) div 2w−M, (8)

in which w is the number of bits in a machine word, e.g., 64; a is
a random positive integer <2w; and b is a random non-negative
integer <2w − M. Such a hash function can be implemented in the

C++ language by

ha,b(x) = (uint64 t) (a � x + b) � (w − M).

Finding similar regions

To find similar regions in reference and target sequences, a
quantity is required for measuring the similarity. We use “per
symbol information content,” in bpb (bits per base), which can
be calculated as

I (x) = − log2 P (x), ∀x ∈ S, (9)

where P(x) denotes the probability of observing a nucleotide x in
the sequence S, obtained by Equation 4.

The information content is the amount of information re-
quired to represent a symbol in the target sequence, based on
the model of the reference sequence. The less the value of this
measure is for 2 regions, the more information is shared be-
tween them, and, therefore, the more similar are the 2 regions.
Note that a version of this measure has been introduced by
Pratas et al. [21], who used a single FCM to calculate the prob-
abilities. In this article, however, we exploit a cooperation be-
tween multiple FCMs and STMMs for highly accurate calculation
of such probabilities.

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/9/5/giaa048/5841055 by guest on 22 June 2020

Hosseini et al. 11

Figure 8: The data structures used by Smash++ to store the models in memory. (a) Table of 64-bit counters that uses up to 128 MB of memory, (b) table of 32 bit counters
that consumes at most 960 MB of memory, (c) table of 8 bit approximate counters with memory usage of up to 1 GB, and (d) Count-Min-Log sketch of 4-bit counters,

which consumes up to 1
2 w × d B of memory; e.g., if w = 230 and d = 4, it uses 2 GB of memory.

The procedure of finding similar regions in a reference and a
target sequence, illustrated in Fig. 11, is as follows: after creat-
ing the model of the reference, the target is compressed based
on that model and the information content is calculated for
each symbol in the target. Then, the content of the whole tar-
get sequence is smoothed by a Hann window [40], which is a
discrete window function given by w[n] = 0.5 − 0.5 cos (2πn/N),
where 0 ≤ n ≤ N and length of the window is N + 1. Next, the
smoothened information content is segmented considering a
predefined threshold, meaning that the regions with content
greater than the threshold are filtered out. This is carried out for
both regular and inverted repeat homologies, and, at the end,
the result would be the regions in the target sequence that are
similar to the reference sequence (Fig. 11a). The described phase
repeats for all of the target regions found, in such a way that af-
ter creating the model for each region, the whole reference se-

quence is compressed to find those regions in the reference that
are similar to each of the target regions (Fig. 11b). The final result
would have the form of Fig. 11c.

Computing complexity

After finding the similar regions in reference and target se-
quences, we evaluate redundancy in each region, knowing that
it is inversely related to Kolmogorov complexity, i.e., the more
complex a sequence is, the less redundant it will be [41]. The
Kolmogorov complexity, K, of a binary string s, of finite length,
is the length of a shortest binary program p that computes s in
a universal Turing machine and halts. In other words, K(s) = |p|
is the minimum number of bits required to computationally re-
trieve the string s [42, 43].

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/9/5/giaa048/5841055 by guest on 22 June 2020

12 Smash++: an alignment-free and memory-efficient tool to find genomic rearrangements

Figure 9: Approximate counting update and query.

Figure 10: Count-Min-Log Sketch update and query.

The Kolmogorov complexity is not computable; hence, an al-
ternative is required to compute it approximately. It has been
shown in the literature that a compression algorithm can be
used for this purpose [44–46]. In this article, we use a reference-
free compressor to approximate the complexity and, conse-

quently, the redundancy of the found similar regions in the ref-
erence and the target sequences. This compressor works on the
basis of cooperation of FCMs and STMMs, which has been pre-
viously described in detail. Note that the difference between a
reference-based and reference-free version of such a compres-
sor is that, in the former mode, a model is first created for the
reference sequence and then the target sequence is compressed
on the basis of that model, while in the latter mode, the model
is progressively created at the time of compressing the target
sequence.

Availability of Source Code and Requirements

Project name: Smash++
Project home page: https://github.com/smortezah/smashpp
Operating system(s): Linux, macOS, Windows
Programming language: C++, Python
Other requirements: C++ 14, Python 3
License: GNU GPLv3
RRID: SCR 018307

Availability of Supporting Data and Materials

The datasets supporting the results of this article are available
in the Smash++ Github repository, https://github.com/smortez
ah/smashpp/tree/master/experiment/dataset. Snapshots of our
code and other supporting data are available in the GigaScience
repository, GigaDB [47].

Additional Files

Supplementary Figure S1. Comparison of Smash++ and other
methods on G. gallus chromosome 18 and M. gallopavo chromo-
some 18.
Supplementary Figure S2. Different methods running on G. gal-
lus chromosome 14 and M. gallopavo chromosome 16.
Supplementary Figure S3. Comparing with other methods on
H. sapiens chromosome 12 and P. troglodytes chromosome 12.
Supplementary Figure S4. Result of running different meth-
ods on X. oryzae pv. oryzae PXO99A and X. oryzae pv. oryzae
MAFF 311018.
Supplementary Figure S5. Similarity of a target sequence to a
fragmented reference sequence, which is randomly permutated
by different block sizes.
Supplementary Figure S6. Relation between context-order sizes,
forgetting factors, and complexity (information content).
Supplementary Table S1. Performance of Smash++, in terms of
memory and time usage, running on different synthetic and real
datasets.
Supplementary Table S2. Comparison of the performance of
Smash++ and Smash, running on different synthetic and real
datasets.
Supplementary Note S1. Software manual for Smash++.

Abbreviations

AF: alignment-free; bp: base pairs; CMLS: Count-Min-Log
Sketch; CPU: central processing unit; FCM: finite-context
model; FISH: fluorescence in situ hybridization; GGA: Gal-
lus gallus; HS: Homo sapiens; HSV: hue, saturation, value;
HTS: high-throughput sequencing; Mb: megabase pairs;
MGA: Meleagris gallopavo; MYA: million years ago; NCBI: Na-
tional Center for Biotechnology Information; PMP22: periph-

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/9/5/giaa048/5841055 by guest on 22 June 2020

https://github.com/smortezah/smashpp
https://github.com/smortezah/smashpp/tree/master/experiment/dataset

Hosseini et al. 13

a

b

c

Figure 11: Finding similar regions in reference and target sequences. Smash++ first finds the regions in the target that are similar to the reference and then finds the
regions in the reference that are similar to the detected target regions. This procedure is performance for both regular and inverted homologies.

eral myelin protein 22; PT: Pan troglodytes; RAM: random
access memory; Sc: Saccharomyces cerevisiae; Sp: Saccha-
romyces paradoxus; STMM: substitution-tolerant Markov model;
SVG: Scalable Vector Graphics; UCSC: University of California,
Santa Cruz.

Competing Interests

The authors declare that they have no competing interests.

Funding

M.H. was supported by PhD MAP-i grant (PD/BD/113969/2015)
from Foundation for Science and Technology (FCT) in Portu-
gal. D.P. was funded by Scientific Employment Stimulus Pro-
gram (CI-CTTI-94-ARH/2019) from FCT. M.H., D.P., and A.J.P.

were supported by Operational Program of Competitiveness
and Internationalization (COMPETE) (UID/CEC/00127/2019 and
UIDB/00127/2020) from FCT.

Authors’ Contributions

M.H. developed the software and wrote the manuscript. D.P. and
A.J.P. contributed to and tested the software. D.P., B.M., and A.J.P.
provided guidance. All authors review the final manuscript and
provide critical comments.

Acknowledgements

We thank everyone who has contributed to the development of
Smash++, through testing and feedback.

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/9/5/giaa048/5841055 by guest on 22 June 2020

14 Smash++: an alignment-free and memory-efficient tool to find genomic rearrangements

References

1. Reuter J, Spacek DV, Snyder M. High-throughput sequencing
technologies. Mol Cell 2015;58(4):586–97.

2. Villamor DEV, Ho T, Al Rwahnih M, et al. High through-
put sequencing for plant virus detection and discovery. Phy-
topathology 2019;109(5):716–25.

3. Rego SM, Snyder MP. High throughput sequencing and
assessing disease risk. Cold Spring Harb Perspect Med
2019;9(1), doi:10.1101/cshperspect.a026849.

4. Hartmann T, Middendorf M, Bernt M. Genome rearrange-
ment analysis: cut and join genome rearrangements and
gene cluster preserving approaches. In: Setubal J, Stoye J,
Stadler P , eds. Comparative Genomics. New York: Humana;
2018:261–89.

5. Gardner R, Gardner RM, Amor DJ. Gardner and Sutherland’s
Chromosome Abnormalities and Genetic Counseling. No. 70.
Oxford University Press; 2018.

6. Theisen A, Shaffer LG. Disorders caused by chromosome ab-
normalities. Appl Clin Genet 2010;3:159.

7. Damas J, Samuels DC, Carneiro J, et al. Mitochondrial DNA re-
arrangements in health and disease–a comprehensive study.
Hum Mutat 2014;35(1):1–14.

8. Dufke A, Seidel J, Schöning M, et al. Microdeletion 4p16.3
in three unrelated patients with Wolf-Hirschhorn syndrome.
Cytogenet Genome Res 2000;91(1-4):81–4.

9. Timmerman V, Nelis E, Van Hul W, et al. The periph-
eral myelin protein gene PMP–22 is contained within the
Charcot–Marie–Tooth disease type 1A duplication. Nat Genet
1992;1(3):171.

10. Huang L, Abruzzo LV, Valbuena JR, et al. Acute myeloid
leukemia associated with variant t(8;21) detected by con-
ventional cytogenetic and molecular studies: a report of
four cases and review of the literature. Am J Clin Pathol
2006;125(2):267–72.

11. Darling AE, Mau B, Perna NT. progressiveMauve: multiple
genome alignment with gene gain, loss and rearrangement.
PloS One 2010;5(6):e11147.

12. Brudno M, Malde S, Poliakov A, et al. Glocal alignment:
finding rearrangements during alignment. Bioinformatics
2003;19(suppl 1):i54–62.

13. Pham SK, Pevzner PA. DRIMM-Synteny: decomposing
genomes into evolutionary conserved segments. Bioinfor-
matics 2010;26(20):2509–16.

14. Pevzner P, Tesler G. Genome rearrangements in mam-
malian evolution: lessons from human and mouse genomes.
Genome Res 2003;13(1):37–45.

15. Lee J, Hong Wy, Cho M, et al. Synteny Portal: a web-based
application portal for synteny block analysis. Nucleic Acids
Res 2016;44(W1):W35–40.

16. Sinha AU, Meller J. Cinteny: flexible analysis and visualiza-
tion of synteny and genome rearrangements in multiple or-
ganisms. BMC Bioinformatics 2007;8(1):82.

17. Zielezinski A, Girgis HZ, Bernard G, et al. Benchmarking of
alignment-free sequence comparison methods. Genome Biol
2019;20(1):144.

18. Frith MC, Khan S. A survey of localized sequence rearrange-
ments in human DNA. Nucleic Acids Res 2017;46(4):1661–73.

19. Zielezinski A, Vinga S, Almeida J, et al. Alignment-free
sequence comparison: benefits, applications, and tools.
Genome Biol 2017;18(1):186.

20. Vinga S. Information theory applications for biological se-
quence analysis. Brief Bioinform 2013;15(3):376–89.

21. Pratas D, Silva RM, Pinho AJ, et al. An alignment-free method

to find and visualise rearrangements between pairs of DNA
sequences. Sci Rep 2015;5:10203.

22. Nielsen CB, Cantor M, Dubchak I, et al. Visualizing genomes:
techniques and challenges. Nat Methods 2010;7(3s):S5.

23. Hosseini M, Pratas D, Pinho AJ. AC: a compression tool for
amino acid sequences. Interdiscip Sci 2019;11(1):68–76.

24. Goose GitHub Repository https://github.com/pratas/goose.
Accessed 1st March 2020

25. Salzberg SL, Sommer DD, Schatz MC, et al. Genome sequence
and rapid evolution of the rice pathogen Xanthomonas oryzae
pv. oryzae PXO99A. BMC Genomics 2008;9(1):204.

26. Ochiai H, Inoue Y, Takeya M, et al. Genome sequence of
Xanthomonas oryzae pv. oryzae suggests contribution of large
numbers of effector genes and insertion sequences to its
race diversity. Japan Agric Res Q 2005;39(4):275–87.

27. Kumar S, Stecher G, Suleski M, et al. TimeTree: a resource
for timelines, timetrees, and divergence times. Mol Biol Evol
2017;34(7):1812–9.

28. Dalloul RA, Long JA, Zimin AV, et al. Multi-platform next-
generation sequencing of the domestic turkey (Melea-
gris gallopavo): genome assembly and analysis. PLoS Biol
2010;8(9):e1000475.

29. Zhang Y, Zhang X, O’Hare TH, et al. A comparative physi-
cal map reveals the pattern of chromosomal evolution be-
tween the turkey (Meleagris gallopavo) and chicken (Gallus gal-
lus) genomes. BMC Genomics 2011;12(1):447.

30. Cabanettes F, Klopp C. D-GENIES: dot plot large genomes in
an interactive, efficient and simple way. PeerJ 2018;6:e4958.

31. Li H. Minimap2: pairwise alignment for nucleotide se-
quences. Bioinformatics 2018;34(18):3094–100.

32. Fischer G, Rocha EP, Brunet F, et al. Highly variable rates of
genome rearrangements between hemiascomycetous yeast
lineages. PLoS Genet 2006;2(3):e32.

33. Charron G, Leducq JB, Bertin C, et al. Exploring the north-
ern limit of the distribution of Saccharomyces cerevisiae and
Saccharomyces paradoxus in North America. FEMS Yeast Res
2014;14(2):281–8.

34. Sayood K. Introduction to Data Compression. Morgan Kauf-
mann; 2017.

35. Pinho AJ, Pratas D. MFCompress: a compression tool for
FASTA and multi-FASTA data. Bioinformatics 2013;30(1):117–
8.

36. Pratas D, Hosseini M, Pinho AJ. Substitutional tolerant
Markov models for relative compression of DNA sequences.
In: Fdez-Riverola F, Mohamad M, Rocha M , et al., eds. In-
ternational Conference on Practical Applications of Compu-
tational Biology & Bioinformatics (PACBB). Cham: Springer;
2017:265–72.

37. Morris R. Counting large numbers of events in small regis-
ters. Commun ACM 1978;21(10):840–2.

38. Pitel G, Fouquier G. Count-min-log sketch: approximately
counting with approximate counters. In: International Sym-
posium on Web AlGorithms, Deauville, France; 2015.

39. Woelfel P. Efficient strongly universal and optimally univer-
sal hashing. In: Kutyłowski M, Pacholski L, Wierzbicki T , eds.
International Symposium on Mathematical Foundations of
Computer Science. Springer; 1999:262–72.

40. Blackman R, Tukey J. Particular pairs of windows. In: The
Measurement of Power Spectra, from the Point of View of
Communications Engineering. New York: Dover; 1959:95–
101.

41. Hosseini M, Pratas D, Pinho AJ. Cryfa: a secure en-
cryption tool for genomic data. Bioinformatics 2018;35(1):
146–8.

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/9/5/giaa048/5841055 by guest on 22 June 2020

https://github.com/pratas/goose

Hosseini et al. 15

42. Turing A. On computable numbers, with an applica-
tion to the Entscheidungsproblem. Proc Lond Math Soc
1936;42(2):230–65.

43. Li M, Vitányi P. An Introduction to Kolmogorov
Complexity and Its Applications. 3rd ed. Springer;
2009.

44. Zenil H, Soler-Toscano F, Delahaye JP, et al. Two-dimensional
Kolmogorov complexity and an empirical validation of the
Coding theorem method by compressibility. PeerJ Comput
Sci 2015;1:e23.

45. Antão R, Mota A, Machado JAT. Kolmogorov complexity as
a data similarity metric: application in mitochondrial DNA.
Nonlinear Dyn 2018;93(3):1059–71.

46. Faloutsos C, Megalooikonomou V. On data mining, compres-
sion, and Kolmogorov complexity. Data Min Knowl Discov
2007;15(1):3–20.

47. Hosseini M, Pratas D, Morgenstern B, et al. Supporting data
for “Smash++: an alignment-free and memory-efficient tool
to find genomic rearrangements.” GigaScience Database
2020. http://dx.doi.org/10.5524/100741.

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/9/5/giaa048/5841055 by guest on 22 June 2020

http://dx.doi.org/10.5524/100741

