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Abstract
Purpose  With the increasing interest in treatment decision-making based on risk prediction models, it is essential for clini-
cians to understand the steps in developing and interpreting such models.
Methods  A retrospective registry of 20 Dutch hospitals with data on patients treated for castration-resistant prostate cancer 
was used to guide clinicians through the steps of developing a prediction model. The model of choice was the Cox propor-
tional hazard model.
Results  Using the exemplary dataset several essential steps in prediction modelling are discussed including: coding of 
predictors, missing values, interaction, model specification and performance. An advanced method for appropriate selec-
tion of main effects, e.g. Least Absolute Shrinkage and Selection Operator (LASSO) regression, is described. Furthermore, 
the assumptions of Cox proportional hazard model are discussed, and how to handle violations of the proportional hazard 
assumption using time-varying coefficients.
Conclusion  This study provides a comprehensive detailed guide to bridge the gap between the statistician and clinician, 
based on a large dataset of real-world patients treated for castration-resistant prostate cancer.
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Introduction

As an urologist or oncologist it is not rare to encounter a 
77 year old prostate cancer patient treated with androgen 
deprivation therapy, whose PSA rises consecutively at 
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castrate serum levels of testosterone and who develops new 
bone lesions on imaging studies. According to the Euro-
pean Association of Urology guidelines, this patient meets 
the criteria for metastatic Castration-Resistant Prostate 
Cancer (CRPC) (Cornford et al. 2017). The patient has a 
medical history of chronic obstructive pulmonary disease 
(COPD) and diabetes mellitus. He has no prostate cancer 
related symptoms but due to his comorbidities he has a per-
formance status of 1. We have previously shown that based 
on these factors Dutch clinicians are more likely to opt for 
watchful waiting or hormone targeted drugs, instead of doc-
etaxel/prednisolone or radium-223 (Angst et al. 2019). In 
absence of clear recommendations for a preferred treatment 
option and sequence, clinicians may benefit from support 
of a clinical prediction model that is able to predict survival 
per treatment option based on patients’ clinical baseline 
characteristics.

Recently, a significant amount of work has been pub-
lished concerning risk prediction in prostate cancer (Kearns 
and Lin 2017). Risk prediction models evolved to indispen-
sable tools to aid clinicians in making evidence-based deci-
sions. In the urology field clinical risk prediction models for 
different disease states of prostate cancer exist, to predict 
for example the probability of biopsy-detectable aggressive 
prostate cancer, lymph node involvement, or overall sur-
vival (OS) in first-line chemotherapy. Nevertheless, despite 
existing general guidelines for reporting of a multivariable 
prediction model for individual prognosis or diagnosis (Col-
lins et al. 2015), the process of developing and validating 
such models is still shrouded in mystery for most clini-
cians. The aim of this paper is to provide a comprehensive 
detailed guide to help clinicians understand the (sometimes 
complex) steps in developing a useful prediction model for 
CRPC patients, based on a real-life case, using a retrospec-
tive dataset of real-world patients treated for CRPC. We aim 
to both assist the clinician in understanding the develop-
ment of a prediction model and to support the clinician in 
recognizing common shortcomings in existing prediction 
models. Of course, it is of highly importance to involve a 
statistician in the preparatory phase as well as constructing 
and validating the model.

Methodology

Research question and statistical model choice

First and foremost, one needs to formulate a clear research 
question. Additionally, before delving into the process of 
developing a prediction model it should first be checked if a 
similar model exists. In this case it may sometimes be more 
appropriate to update or adapt these previous models. In 
this study we aimed to develop a model to predict mortality 

in patients with CRPC treated in first-line with either abira-
terone, enzalutamide, docetaxel, watchful waiting (defined 
as best supportive care using systemic treatment without 
proven life prolonging benefits, such as anti-androgens and 
ketoconazole) or radium-223, with the goal to use the model 
for treatment decision-making and to incorporate the model 
into a decision aid. Based on the type of outcome an appro-
priate model should be chosen, because different models 
should be used for different types of data (Supplementary 
Table 1). In our case we are dealing with survival data. 
Hence, a non-parametric Cox proportional hazard model was 
chosen. It should be noted that for very long-term predic-
tions a parametric model (e.g. Weibull) may be preferred, 
since these provide more stable predictions at the end of 
follow up (Carroll 2003). A summary of all considerations 
in model development is presented in Table 1.

Data inspection

In our case we used a retrospective registry called the CAs-
tration-resistant Prostate cancer RegIstry (CAPRI), which 
is an investigator-initiated, observational multi-center reg-
istry in 20 hospitals in the Netherlands. In the subset of the 
data we used, with first line treatment only, 3588 patients 
and 2335 deaths were recorded (Westgeest et al. 2018). The 
patients were treated according to clinical practice with a 
variety of first-line treatments including abiraterone, enza-
lutamide, docetaxel, or watchful waiting. Radium-223 was 
excluded from analyses due to the fact that only ten patients 
received Radium-223 as first line treatment in this dataset. 
Baseline variables are presented in Table 2. Furthermore, 
this dataset contained sixteen potential predictors. In gen-
eral, it is recommended to have at least ten events (deaths 
in our case) to investigate one predictor. If a predictor has 
multiple categories you need 10*(number of categories − 1) 
events for that predictor.

Missing values and coding of predictors

In an ideal world the predictors in a dataset are all clinically 
relevant (Cornford et al. 20172), comprehensible (Angst 
et  al. 2019), measured reliably (Kearns and Lin 2017), 
without missing data (Collins et al. 2015), and not corre-
lated with each other (Carroll 2003). Unfortunately, datasets 
fulfilling all these criteria are the exception rather than the 
rule. Regarding the first three criteria it is recommended 
that clinician’s perspectives are taken into account. Several 
authors mentioned to perform systematic reviews in order to 
find suitable candidate predictors (Steyerberg 2008). In the 
sections below we will address the latter two criteria (miss-
ing values and correlation between predictors). Additionally, 
we will give special attention on how to handle continuous 
predictors (e.g. age and hemoglobin).
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Missing values

Various approaches are described to handle missing data, 
each with its own limitations and benefits (Papageorgiou 
et al. 2018). In our case we used multiple imputation using 
the MICE statistical package of R (Buuren and Groothuis-
Oudshoorn 2011). “Imputation” in the context of missing 
baseline variables basically means that missing values are 
predicted upon other baseline values and/or outcome. Alike 
almost every statistical manipulation, certain assumptions 
must be made about the missing data, especially the mecha-
nism of missing data (missing completely at random, miss-
ing at random, missing not at random) should be addressed 
(Papageorgiou et al. 2018). Following the latest consensus 
we incorporated the outcome in the imputation model using 
the Nelson-Aalen estimator, a non-parametric estimator of 
the cumulative hazard rate function (Moons et al. 2006). 
Using multiple imputation one creates multiple datasets in 
which the missing values are imputed, resulting in multiple 
completed datasets. The formal rules state that the analy-
ses need to be conducted on all datasets separately and the 
obtained estimated must be pooled thereafter (Rubin 2004). 
Nevertheless, in case of a few missing values some authors 
proposed to develop the model on one dataset and test the 
model on the other datasets (Steyerberg 2008). Controversy 

remains on the cut-off of how much missing values is “too 
much” missing (Papageorgiou et al. 2018).

Correlation between predictors

In medicine many variables roughly describe the same phe-
nomena and are therefore correlated with each other. One 
should avoid putting highly correlated variables in the same 
model. Firstly, the aim of a prediction model is to be as 
simple as possible, and incorporating similar variables is 
considered redundant. Secondly, in case of correlated vari-
ables a phenomena called “multicollinearity” can occur, 
characterized by extremely high/low estimates or standard 
errors (Multicollinearity 2020). Therefore, it is advisable 
to investigate all the correlations between the predictors 
by means of Pearson’s R or Spearman’s rho, and high cor-
relation should be addressed. This can either be done by 
excluding one of the two correlated variable or recoding the 
variables into one new variable. In our case the variables 
“pain” and “opioid use” were correlated (Spearman’s rho: 
0.36). Clinically this makes perfect sense, as opioids are 
prescribed when a patient is in pain. We recoded opioid and 
pain in several variables and a combined variable consisting 
out of 3 categories proved to be the best predictor (Supple-
mentary Table 3).

Table 1   Summary of considering in prediction modelling. [adapted from original version of Steyerberg et al. (2008)]

Step Specific issues CAPRI-dataset

General considerations
 Research question Aim: predictors/prediction Prediction
 Intended application Clinical practice/research Clinical practice
 Outcome Clinically relevant Mortality
 Predictors Reliable measurement

Comprehensiveness
Oncological clinical work-up and literature; extensive set of candi-

date predictors
 Study design Retrospective/prospective? Cohort; case–control Registry study: retrospective cohort
 Statistical model Appropriate for research question and outcome Non-parametric cox proportional hazard
 Sample size Sufficient for aim? 3588 patients; 2335 events

5 modelling steps
 Data inspection Data distribution

Missing values
Correlation between predictors

Table 2 (baseline table)
Multiple imputation
Using Pearson’s R or Spearman’s rho

 Coding of predictors Continuous predictors Extensive checks of transformations for continues predictors
Combining categorical predictors Comorbidity score was collapsed to three categories instead of eight
Combining predictors with similar effects Pain and opioid use

Model specification Appropriate selection of main effects LASSO regression
Assessment of assumptions Additivity checked with interaction terms, interaction with treatment 

was checked, three interaction terms included
Proportional hazard assumption checked—> relaxed by time varying 

coefficients
Model performance Appropriate measures Discrimination
Model validation Internal validation

External validation
Bootstrap and k-fold cross-validation
No external dataset was available
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Continuous predictors

Continuous predictors are variables that can take an infinite 
number of values (e.g. age and lactate dehydrogenase), and 
contain a lot of information. Hence, simply dichotomizing 
continuous predictors is paired with significant information 
loss (Royston et al. 2006). Nevertheless, incorporating con-
tinuous predictors into a statistical model comes along with 
the assumption the continuous predictors is associated with 
the outcome in a linear way. While a linear association can 
also be applied for some non-linear associations, this may 
not always be the case (Fig. 1). Thus, we recommend firstly 
to explore the association of the continuous predictor with 
the outcome in a univariable model. In order to explore the 
best fitting association with the outcome and a continuous 
predictor one can use: transformation (like logarithmic trans-
formation), categorization, splines and fractional polynomi-
als, as is explained in Table 3 and Fig. 2 (Steyerberg 2008).

Table 2   Baseline characteristics of patients with CRPC treated with abiraterone, enzalutamide, docetaxel or watchful waiting

Treatment Abiraterone Enzalutamide Docetaxel Watchful waiting

n 249 184 1006 2149
Anti-androgens before CRPC (%) 114 (46.0) 81 (44.0) 397 (39.5) 788 (36.8)
Comorbidity score (%)
 0 168 (67.5) 107 (58.2) 703 (70.0) 1227 (57.1)
 1 43 (17.3) 38 (20.7) 185 (18.4) 496 (23.1)
 2 24 (9.6) 23 (12.5) 80 (8.0) 252 (11.7)
 3 6 (2.4) 6 (3.3) 22 (2.2) 86 (4.0)
 4 5 (2.0) 4 (2.2) 8 (0.8) 46 (2.1)
 5 0 (0.0) 2 (1.1) 3 (0.3) 13 (0.6)
 6 3 (1.2) 2 (1.1) 4 (0.4) 17 (0.8)
 7 0 (0.0) 1 (0.5) 0 (0.0) 5 (0.2)
 8 0 (0.0) 1 (0.5) 0 (0.0) 5 (0.2)

Bone metastases (%) 142 (87.7) 103 (87.3) 703 (91.1) 929 (81.7)
Lymph node metastases (%) 66 (80.5) 41 (83.7) 373 (82.5) 507 (76.6)
Visceral metastases (%) 8 (16.7) 8 (24.2) 57 (21.7) 52 (16.1)
WHO (%)
 1 37 (40.2) 26 (43.3) 222 (42.0) 360 (47.1)
 2 41 (44.6) 21 (35.0) 245 (46.3) 317 (41.5)
 3 14 (15.2) 13 (21.7) 62 (11.7) 87 (11.4)

Pain (%) 47 (42.0) 28 (37.8) 317 (49.2) 323 (31.0)
Opioid use (%) 22 (32.8) 9 (24.3) 120 (29.3) 113 (22.7)
Gleason > 7 (%) 143 (67.8) 105 (65.2) 591 (65.9) 998 (55.5)
Time to castration (median [range]) 11.17 [1.4, 192] 13.34 [1, 196] 10.12 [0.2, 172.7] 20.47 [0.3, 248.4]
Age (median [range]) 76.00 [46, 95] 77.00 [50, 94] 70.00 [46, 93] 78.00 [49, 99]
Weight (median [range]) 83.00 [52, 120] 86.00 [60, 120] 84.50 [48, 150] 81.00 [44, 118]
Hemoglobulin (median [range]) 8.00 [5.1, 9.6] 8.00 [4.7, 10.3] 8.00 [4.3, 10.2] 8.10 [3.9, 10.5]
Platelets (median [range]) 234.00 [37, 569] 228.50 [54, 473] 243.00 [0.4, 749] 233.00 [0.3, 714]
Lactate dehydrogenase (median [range]) 218.00 [72, 3179] 216.00 [98, 730] 232.00 [21, 4100] 218.00 [79, 4329]
Alkaline phosphatase(median [range]) 122.00 [41, 1673] 109.00 [38, 1263] 136.00 [34.8, 3457] 93.00 [21, 4315]
PSA (median [range]) 34.00 [0.1, 8730] 24.40 [0.1, 4150] 40.00 [0.0, 8700] 9.70 [0.1, 4034]

Fig. 1   Example of a continuous outcome (y-axis) and continuous pre-
dictor (x-axis). As is shown: with the assumption the relation is linear 
the model (red line) does not fit the observed data well (black dots)
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Interaction

Let us consider two predictors. Separately, they have no 
association with the outcome, however, when they are 
both present, a significant association with the outcome 
is observed (or vice versa). Such a phenomena is called 
“interaction” (Steyerberg 2008). For example these inter-
actions are quite common in gene studies: Only when gene 
X and gene Y are turned on a certain chemical reaction 
will start. When either one of the genes is turned off, the 
reaction will not begin. Naturally, these interactions can 
also be present in epidemiology studies. However, espe-
cially when one considers many predictors, constructing 
interaction terms can be an overwhelming task. There are 
so many possibilities one cannot see the wood for the trees. 
In this case it is advisable to avert to the clinicians and 
a priori select a number of possible interactions, which 
make clinical sense. In our study, we tested the interaction 
term “watchful waiting” and “opioid use or pain”, which 

turned out to be highly significant. This corresponds to the 
clinic; a patient with watchful waiting and opioid use or 
pain indicates a palliative setting, in which the patient is 
expected to die soon. Hence, watchful waiting and opioid 
use together have a stronger association with the outcome 
than watchful waiting and opioid use separately.

Model specification

As mentioned earlier, the first step of predictor selection 
should be together with subject-specific experts. Predictor 
selection is arguably the hardest part of model building 
(Ratner 2010). Multiple methods exist to address the selec-
tion process of the a priori selected set of predictors. The 
most widely used methods include stepwise selection and 
best subset regression, and these are previously described 
(Miller 2002; Harrell 2015). In our case we had a lot of 
variables due to the interaction terms and non-linear con-
tinuous predictors. One always wants the most parsimoni-
ous model and does not want to exceed the one predictor 
per ten events rule of thumb. Therefore, it is reasonable to 
drop predictors that do not add much to the performance of 
the model. We employed a lesser known selection method 
using Least Absolute Shrinkage and Selection Operator 
(LASSO) regression (Tibshirani 1996). This is a penalized 
machine learning technique that shrinks the estimate of 
unimportant predictors to zero (Supplementary Fig. 1). An 
estimate of zero equals no association with the outcome 
and, therefore a predictor is excluded. This method also 
can handle correlation within predictors to some extent, 
as the algorithm will “see” that in case of high correlation 
of predictor A and B, shrinking predictor B to zero will 
not influence performance of the model (Tibshirani 1996). 
Nevertheless, an algorithm cannot judge which predictor 
is more comprehensible or measured reliably. Therefore, 
one should never skip the step of looking for correlations 
between predictors. A package to run LASSO regression 
in R is the “glmnet” package (Friedman et al. 2010), with 
an elaborate vignette to code this in R (Hastie and Qian 
2016). However, in our case we had multiple polynomi-
als describing the relation of a continuous predictor with 
the outcome (see “Continuous predictors”). One wants 
either include all the polynomials in the model or none 
at all. Hence, we need to “tell” the LASSO algorithm 
they belong together as a group. The statistical R package 
“grpreg” has implemented such a function (Breheny and 
Huang 2015).

We opted for a two-step approach. Firstly, we ran the 
LASSO regression and thereafter we incorporated all the 
non-zero predictors in a Cox-model. The final model is 
shown in Table 4.

Table 3   Performance of a linear model by adding flexibility to 
assumed linear association with the outcome

*R-squared is measure of how close the model fits the data, 1 indi-
cates the model explains all the variability of the data, whereas with 0 
the model does not explain any variability. For other types of models 
similar measurements are available

Variable R-squared*

Predictor linear 0.00938
Predictor with splines with one knot 0.9853
Predictor with fractional polynomial 0.9992

Fig. 2   Example of relaxation of the linear assumed association (red 
line) of a continuous outcome and predictor. This can be done either 
with natural splines (green line) or fractional polynomials (FP) (blue 
line). Using splines the data is divided in separate sections, and each 
section has its own estimate of the line. Using fractional polynomials 
the relationship is described as multiple polynomials, which can pro-
duce a very flexible line
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Assessment of assumptions

Every statistical model comes along with certain assump-
tions (Freedman 2009). If these assumptions are not met, 
the model is not or less valid (Freedman 2009). Each 
model family has its own specific assumptions. A key 
assumption in the cox model we used is the proportional 
hazard (PH) assumption. This basically means that ratio 
of hazards (the output of a Cox model) is constant over 
time. Two approaches are commonly used to test whether 
this assumption is violated: plotting Kaplan–Meier curves 

or plotting the residuals. Both methods are implemented 
in most statistical programs or packages. The Schoen-
feld residuals should be used to test the PH assumption. 
Schoenfeld residuals represent the difference between 
the observed covariate and the expected given the risk 
set at that time. If one draws an average line through the 
residuals, this line should be straight (Schoenfeld 1982). 
A formal test has also been developed (Schoenfeld F test) 
(Grambsch and Therneau 1994). In our model certain vari-
ables did not meet the PH assumption. Fortunately, this 
is not the end of the world. One can avert to parametric 

Table 4   Final Cox model for 
predicting mortality in patients 
with CRPC

The model contains fractional polynomials and splines to address non-linear associations of a continues 
variable with the outcome and a stepwise time-varying coefficient function; e.g. some covariates have a 
hazard ratio for below ten months of follow-up and above ten months of follow-up
1:(AF/100)^−2), 2: (AF/100)^−1, 3: PSA^−1, 4: log(PSA), 5: Platelets*1, 6: Platelets * log(Platelets), 7: 
interaction term

Characteristic Hazard ratio (95% CI) P value

Age 1.07 (1.04–1.09) < 0.001
Anti-androgens before CRPC 0.87 (0.8–0.95) 0.001
Bone metastases 1.16 (1.03–1.32) 0.016
AF polynomial 11 1.02 (0.9–1.16) 0.75
AF polynomial 22 0.75 (0.57–0.99) 0.044
Enzalutamide vs abiraterone 1.17 (0.64–2.15) 0.60
Docetaxel vs abiraterone 1.85 (1.23–2.77) 0.003
Watchful waiting vs abiraterone 0.45 (0.31–0.67) < 0.001
Time to start castration spline 1 h for <10 months 0.2 (0.1–0.39) < 0.001
Time to start castration spline 2 h for <10 months 0.19 (0.13–0.26) < 0.001
Time to start castration spline 1 h for>10 months 1.45 (0.75–2.8) 0.27
Time to start castration spline 2 h for>10 months 0.71 (0.51–1) 0.048
WHO HR for <10 months 1.64 (1.44–1.87) < 0.001
WHO HR for >10 months 1.07 (0.99–1.15) 0.11
PSA polynomial 13 h for <10 months 1.34 (1.15–1.56) < 0.001
PSA polynomial 13 h for >10 months 1.02 (0.88–1.17) 0.82
PSA polynomial 24 h for <10 months 1.27 (1.16–1.4) < 0.001
PSA polynomial 24 h for >10 months 1.11 (1.01–1.21) 0.023
HB HR for <10 months 0.82 (0.76–0.89) < 0.001
HB HR for>10 months 0.92 (0.87–0.97) 0.003
Platelets polynomial 15

HR for <10 months 0.97 (0.95–0.99) 0.001
Platelets polynomial 15

HR for >10 months 1.01 (0.99–1.02) 0.42
Platelets polynomial 26

HR for <10 months 1 (1–1.01) 0.001
Platelets polynomial 26

HR for <10 months 1 (1–1) 0.46
LDH HR for <10 months 1.66 (1.42–1.94) < 0.001
LDH HR for>10 months 1.09 (0.96–1.23) 0.18
Opioid or pain vs none HR for <10 months 1.09 (0.97–1.22) 0.16
Opioid or pain vs none HR for >10 months 1.02 (0.94–1.09) 0.67
Age*Enzalutamide vs abiraterone7 0.94 (0.9–0.97) 0.001
Age*Docetaxel vs abiraterone7 0.96 (0.93–0.99) 0.003
Age*Watchful waiting vs abiraterone7 0.99 (0.96–1.01) 0.25
Log(PSA)*Enzalutamide vs abiraterone7 1.08 (0.92–1.26) 0.35
Log(PSA)*Docetaxel vs abiraterone7 0.91 (0.83–1) 0.057
Log(PSA)*Watchful waiting vs abiraterone7 1.23 (1.12–1.35) < 0.001
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models, since some of these models do not rely on the 
PH assumption, however you need to start all over again. 
Another approach is to use an extension of the Cox model 
called time-varying coefficients, not to be confused with 
time-varying covariates (Hastie and Tibshirani 1993; 
Fisher and Lin 1999). Time-varying coefficients can be 
applied if the effect of a predictor is not constant over 
time, or in other words if the PH assumption is violated. 

In our case the effect predictor WHO performance status 
was not constant over time. As is shown in the Schoen-
feld residual plot the effect of the performance status was 
higher in the first months compared to later in follow-up 
(Fig. 3a). Therefore, we decided to use a stepwise time-
varying coefficient function; we made a separate hazard 
ratio for the first ten months and for the following months 
thereafter. As presented in Fig. 3b, the PH assumption 

Fig. 3   a Example of a Schoe-
nfeld residuals plot in order to 
check the proportional hazard 
assumption. When the hazard 
of WHO is assumed constant 
over time (blue line in part a), 
the assumption is violated, 
especially in the first ten months 
the blue line deviates from the 
red line. In part b we have two 
coefficients for WHO, one for 
the first ten months and one for 
more than ten months. Propor-
tional hazards assumption is not 
violated anymore
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was not violated anymore. A vignette to implement time-
varying coefficients in R has been published previously 
(Therneau et al. 2013).

Model performance

Two related terms are important in model performance: dis-
crimination and calibration (Alba et al. 2017). Discrimina-
tion describes how well a model discriminates a high risk 
patient from a low risk patient or, in other words: Does the 
model estimate higher probabilities for patients that have 
an event compared to patients that do not have an event? 
Discrimination of binary outcomes is measured with the 
c-statistic or with ROC-curves (Pencina and D’Agostino 
2015). In our study, the overall c-statistic of the model was 
0.74, which indicates a good discrimination of the model. 
Calibration or goodness-of-fit conveys to which extent the 
predicted probability agrees with the observed probability. 
For example a high risk patient had a sevenfold higher prob-
ability of an event compared to a low risk patient and pre-
dicted risks are 7% vs 1%. The observed probabilities of a 
high risk patient and a low risk patient were 70% vs 10%. 
In this case discrimination is satisfactory, as the model dis-
criminates well between a high and low risk patient. Never-
theless, calibration is extremely off; the observed risks are 
not even close to the predicted risks. Several methods exist 
to assess calibration and are described previously (Calster 
et al. 2016).

Model validation

Testing model performance on the dataset on which is devel-
oped is most of the time overly optimistic (Babyak 2004). 
After all, the model “learned” the estimates out of the cor-
relations/associations derived from that specific dataset. To 
assess the possibly overly optimistic performance a statisti-
cal model should be validated. Preferably, this should be 
done internally and externally. During internal validation 
the model is validated with the original dataset. Historically, 
this is done by randomly splitting the original dataset into 
two datasets. One training dataset and one validation dataset. 
Nevertheless, this approach is not recommended, because 
this inherently implies one cannot train the model on all the 
patients. In small datasets the amount of data is reduced, 
possibly leading to overfitting, and in very large datasets 
randomly splitting results in very comparable datasets. 
Therefore, we recommend to employ either bootstrapping 
techniques or k-fold cross validation. Using k-cross valida-
tion one uses the whole dataset as training dataset for the 
model, and thereafter splits the dataset in k groups (usually 
ten groups). One group is the validation set and the others 
are the training sets. This process is repeated k times with 
each a different group for the validation set (Supplementary 

Fig. 3) (Harrell 2015). Using bootstrapping the model is also 
trained on the whole dataset and thereafter random samples 
are drawn from the original data. Herein a patient can be 
drawn multiple times and the drawn sample is usually of 
the same size of the original dataset (Supplementary Fig. 4) 
(Efron and Tibshirani 1994).

Notwithstanding, the ultimate test for a model is external 
validation. This means that the performance of the model 
is still satisfactory if it is tested on a different dataset. For 
example this dataset could be derived from another center, or 
geographical area. A model that calibrates poorly on external 
data can be recalibrated, whereas a model that discriminates 
poorly cannot. In this case a new model is required (Su et al. 
2018).

There is another highly important form of validity called 
“face validity”. Yet, again the expert clinician comes into 
play here, as there are no formal ways to test face valid-
ity. Face validity says something about whether the test or 
model measures what it is supposed to measure. For instance 
face validity may be impaired when key predictors are not 
included in the model because they were not collected. Or 
when the dataset is old and does not represent clinical prac-
tice anymore. In our case, the patients in the CAPRI data-
set were included from January 1, 2010 until December 31, 
2017. Our aim was to develop a model to predict mortality in 
patients with CRPC treated with either abiraterone, enzaluta-
mide, docetaxel, or watchful waiting in first line, to support 
adequate decision making. However, due to the retrospec-
tive nature of this dataset, strong selection bias is present 
for treatment, especially since abiraterone and enzalutamide 
were not available as first-line treatment in the Netherlands 
from 2010–2013. So patients that were eligible for those 
treatments, received watchful waiting or docetaxel in this 
period. Of course, a multivariable model will adjust to some 
extend for this, and one can include intervention year as 
covariate to assess/and adjust for this phenomena. However, 
for future predictions, intervention year as covariate implies 
that a certain trend will continue in the future. This does not 
make (clinical) sense at all. Hence, this model failed the 
face validity.

Conclusion

Risk prediction is becoming increasingly more important in 
medical practice. In this article, we discuss several steps in 
developing a prediction model including missing data, pre-
dictor encoding and selection using LASSO, testing model 
assumptions, performance and validation, using an example 
from uro-oncology. Prediction model development is not a 
futile task and both the input of the clinician and statistician 
are essential. This article may be used to bridge the gap 
between the two disciplines.
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