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Abstract: Classical extreme value statistics consists of two fundamental approaches: the
block maxima (BM) method and the peak-over-threshold (POT) approach. It seems to
be general consensus among researchers in the field that the POT method makes use of
extreme observations more efficiently than the BM method. We shed light on this discussion
from three different perspectives. First, based on recent theoretical results for the BM
approach, we provide a theoretical comparison in i.i.d. scenarios. We argue that the data
generating process may favour either one or the other approach. Second, if the underlying
data possesses serial dependence, we argue that the choice of a method should be primarily
guided by the ultimate statistical interest: for instance, POT is preferable for quantile
estimation, while BM is preferable for return level estimation. Finally, we discuss the two
approaches for multivariate observations and identify various open ends for future research.
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1. Introduction

Extreme-Value Statistics can be regarded as the art of extrapolation. Based on a finite sample
from some distribution F , typical quantities of interest are quantiles whose levels are larger
than the largest observation or probabilities of rare events which have not occurred yet in the
observed sample. Estimating such objects typically relies on the following fundamental domain-
of-attraction condition: there exists a constant γ ∈ R and sequences ar > 0 and br, r ∈ N, such
that

lim
r→∞

F r(arx+ br) = exp
{

−(1 + γx)−1/γ
}

for all 1 + γx > 0. (1.1)

In that case, γ is called the extreme value index. The limit appears unnecessarily specific, but
it is in fact the only non-degenerate limit of the expression on the left-hand side. An equivalent
representation of the domain of attraction condition (1.1) is as follows: there exists a positive
function σ = σ(t) such that

lim
t↑x∗

1− F (t+ σ(t)x)

1− F (t)
= (1 + γx)−1/γ for all 1 + γx > 0, (1.2)

where x∗ denotes the right end-point of the support of F , see Balkema and de Haan (1974). The
two sequences in (1.1) are related to the function σ as follows: ar = σ(br) and br = U(r) where
U(r) = F←(1 − 1/r) = (1/(1 − F ))←(r), with ·← denoting the left–continuous inverse of some
monotone function.
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Consider for instance the consequences of the previous two displays for high quantiles of F .
By by (1.1), for all p sufficiently small,

F←(1 − p) ≈ br + ar
{−r log(1− p)}−γ − 1

γ
≈ br + ar

(rp)−γ − 1

γ
. (1.3)

Hence, by the plug-in-principle, a suitable choice of r and suitable estimators of ar, br and γ
immediately suggest estimators for high quantiles.

Similarly, by (1.1), for all p sufficiently small,

F←(1− p) ≈ t+ σ(t)
{ p
1−F (t)}−γ − 1

γ
. (1.4)

Again, by the plug-in-principle, a suitable choice of t and suitable estimators of σ(t), γ and
1−F (t) immediately leads to estimators for high quantiles. Here, t is typically chosen as a large
order statistic t = Xn−k:n and 1− F (t) is replaced by k/n.

In practice, estimators for the parameters in these two approaches typically follow their cor-
responding basic principles: the block maxima method motivated by (1.1) and the peak-over-
threshold approach motivated by (1.2). Let X1, X2, . . . , Xn be a sample of observations drawn
from F , and for the moment assume that the observations are independent. Then (1.1) gives rise
to the block maxima method (BM) (Gumbel, 1958): for some block size r ∈ {1, . . . , n}, divide
the data into k = ⌊n/r⌋ blocks of length r (and a possibly remaining block of smaller size which
has to be discarded). By independence, each block has cdf F r. By (1.1), for large block sizes
r, the sample of block maxima can then be regarded as an approximate i.i.d. sample from the
three-parametric generalized extreme-value (GEV) distribution Gγ,b,a with location parameter
b = br, scale parameter a = ar and shape parameter γ, defined by its cdf

GGEV
γ,b,a(x) := exp

{

−
(

1 + γ
x− b

a

)−1/γ}

1
(

1 + γ
x− b

a
> 0

)

.

The three parameters can be estimated by maximum-likelihood or moment-matching, among
others. Irrespective of the particular estimation principle, any estimator defined in terms of the
sample of block maxima will be referred to as an estimator based on the block maxima method.

Often, an available data-sample consists of block maxima only, for example, annual maxima of
a river level. Then a practitioner may only rely on the block maxima method. If the underlying
observations are available, then (1.2) gives rise to the competing peak-over-threshold approach
(POT) (Pickands, 1975): for sufficiently large t in (1.2), we obtain that, for any x > 0,

Pr(X > t+ x | X > t) =
Pr(X > t+ x)

Pr(X > t)
≈

(

1 + γ x
σ

)−1/γ

=: 1−GGP
γ,σ(x), (1.5)

where the right-hand side defines the two-parametric generalized Pareto (GP) distribution with
scale parameter σ := σ(t) and shape parameter γ. In practice, t is typically chosen as the (n−k)-th
order statistic Xn−k:n for some intermediate value k (hence, Xn−k:n is the (1−1/r)-sample quan-
tile with r = n/k). Then, one may regard the sample Xn−k+1:n−Xn−k:n, . . . Xn:n−Xn−k:n as ob-
servations from the two-parametric generalized Pareto-distribution. The parameters can hence be
estimated by moment matching, and even by maximum-likelihood since the sample of order statis-
tics can actually be regarded as independent (see, e.g., Lemma 3.4.1 in de Haan and Ferreira,
2006). In general, any estimator defined in terms of all observations exceeding some (random)
threshold will be referred to as an estimator based on the POT approach. The vanilla estimator
within this class is the Hill estimator (Hill, 1975) in the case γ > 0.
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The goal of the present paper is an in-depth comparison of the two approaches, in particular
in terms of recent solid theoretical advances on asymptotic theory for the BM method, but
also with a view on time series data and multivariate observations. The discussion will mostly
be of reviewing nature, but some new insights will be presented as well. The next paragraphs
summarize our contribution in a chronological order.

1. Efficiency comparison in i.i.d. scenarios. It seems to be general consensus among
researchers in extreme value statistics that the POT method produces more efficient estimators
than the BM method. The main heuristic reason is that all large observations are used for the
calculation of POT estimators, while BM estimators may miss some large observations falling
into the same block. This heuristics was confirmed by simulation studies in Caires (2009), see
also the additional references mentioned in Ferreira and de Haan (2015). Due to some recent
advances on theoretic properties of BM estimators (Dombry, 2015; Ferreira and de Haan, 2015;
Bücher and Segers, 2014, 2018b; Dombry and Ferreira, 2017), the two approaches may actually
be compared on solid theoretical grounds. For a certain type of cdfs, such a discussion has been
carried out in Ferreira and de Haan (2015) and Dombry and Ferreira (2017); their findings are
summarized and extended in Section 2 of this paper. We show that, depending on the data
generating process, the convergence rate of the two methods may be different, with no general
winner being identifiable. In case the rates are the same, BM estimators typically have a smaller
variance, but a larger bias than their POT-competitors.

2. BM and POT applied to time series. The above discussion motivating the BM and
POT approach was based on an i.i.d. assumption on the underlying sample. This assumption is
actually quite restrictive since it excludes many common environmental or financial applications,
where the underlying sample is typically a (stationary) time series. In this setting, it seems to
be general consensus that the block maxima method still ‘works’ because the block maxima are
(1) still approximately GEV-distributed (Leadbetter, 1974) and (2) distant from each other and
thus bear low serial dependence. Consequently, the sample of block maxima may still be regarded
as an approximate i.i.d. sample from the three-parametric GEV-distribution. This heuristics is
confirmed by recent theoretical results in Bücher and Segers (2018b, 2014).

Nevertheless, as discussed in Section 3 below, an obstacle occurs: the location and scale param-
eters attached to block maxima of a time series will typically be different from those of an i.i.d.
series from the same stationary distribution F , whence estimators for quantities that depend on
the stationary distribution only will possibly be inconsistent. The missing link is provided by the
extremal index (Leadbetter, 1983), a parameter in [0, 1] capturing the tendency of the extreme
observations of a stationary time series to occur in clusters. The discussion will be worked out
on the example of high quantile estimation: based on suitable estimators for the extremal index,
see Section 3 below, (1.3) can in fact be modified to obtain consistent BM estimators of large
quantiles.

On the other hand, estimators based on the POT method for characteristics of the stationary
distribution remain consistent. This however comes at the cost of an increased variance of the
estimators due to potential clustering of extremes, see Hsing, 1991; Drees, 2000; Rootzén, 2009,
among many others. Should the ultimate interest be in return level or return periods estimation,
the picture is reversed: the BM method is consistent without the need of estimating the extremal
index, while POT estimators typically require estimates of the extremal index. More details are
provided in Section 3.

3. Extensions to multivariate observations and stochastic processes. The previous
discussion focussed on the univariate case. Section 4 briefly discusses multivariate extensions. On
the theoretical side, while there are many results available for the POT approach, there is clearly
a supply issue regarding the BM approach: almost all statistical theory is formulated under the
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assumption that the block maxima genuinely follow a multivariate extreme value distribution,
thereby ignoring a potential bias and rendering a fair theoretical comparison impossible for the
moment (to the best of our knowledge, the only available results on the BM method are provided
in Bücher and Segers, 2014). Instead, we provide a review on some of the existing theoretical
results using these two approaches, and identify the open ends that may eventually lead to results
allowing for an in-depth theoretical comparison in the future.

Not surprisingly, a fair comparison is even more difficult when considering extreme value anal-
ysis for stochastic processes. Most of the existing statistical methods are based on max-stable
process models, i.e., on limit models arising for maxima taken over i.i.d. stochastic processes.
The respective statistical theory is again mostly formulated under the assumption that the ob-
servations are genuine observations from the max-stable model, whence the statistical methods
can (in most cases) be generically attributed to the BM approach. As for multivariate models,
potential bias issues are mostly ignored. By contrast to multivariate models, however, very little
is known for the POT approach to processes. A comparison is hence not feasible for the moment,
and we limit ourselves to a brief review of existing results in Section 5.

Finally, we end the paper by a section summarizing possible open research questions, Section 6,
and by a short conclusion, Section 7.

2. Efficiency Comparison for univariate i.i.d. observations

The efficiency of BM and POT estimators can be compared in terms of their asymptotic bias and
variance. In this section, we particularly focus on the estimation of the extreme value index γ
because for estimating other tail related characteristics such as high quantiles or tail probabilities,
the asymptotic distributions of respective estimators are typically dominated by those derived
from estimating the extreme value index.

In both the BM and POT approach, a key tuning parameter is the intermediate sequence
k = k(n), which corresponds to either the number of blocks in the BM approach, or the number
of upper order statistics in the POT approach. For most data generating processes, consistency of
respective estimators can be guaranteed if k is chosen in such a way that k → ∞ and k/n → 0 as
n → ∞. Here, the small fraction k/n reflects the fact that the inference is based on observations
in the tail only. Typically, the variance of respective estimators is of order 1/k, while the bias
depends on how well the distribution of block maxima or threshold exceedances is approximated
by the GEV or GP distribution, respectively. Choosing k in such a way that variance and squared
bias are of the same order (see Section 2.1 below), one may derive an optimal rate of convergence
for a given estimator. Depending on the model, the optimal choice of k may result in a faster
rate for the BM method or the POT approach, as will be discussed next.

It is instructive to consider two extreme examples first (where the condition k/n → 0 as
n → ∞ may in fact be discarded): if F is the standard Fréchet-distribution, then block maxima
of size r = 1 are already GEV-distributed. In other words a sample of k = n block maxima of
size r = 1 can be used for estimation via the BM method. The rate of convergence is thus 1/

√
n

and the POT method fails to achieve this rate. On the other hand, if F is the standard Pareto
distribution, then all k = n largest order statistics can be used for the estimation via the POT
approach. The rate of convergence is 1/

√
n for the POT method, which is not achievable via the

BM method.
Apart form these two (or similar) extreme cases, the optimal choice of k depends on second

order conditions quantifying the speed of convergence in the domain of attraction condition.
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These are often (though not always) formulated in terms of the two quantile functions

U(x) =
( 1

1− F

)←

(x) and V (x) =
( 1

− logF

)←

(x)

for the POT- and the BMmethod, respectively. Note that the domain of attraction condition (1.1)
is equivalent to the fact that there exists a positive function aPOT such that, for all x > 0,

lim
t→∞

U(tx)− U(t)

aPOT(t)
=

∫ x

1

sγ−1 ds, (2.1)

see Theorems 1.1.6 and 1.2.1 in de Haan and Ferreira (2006). The function aPOT is related to the
sequence (ar)r appearing in (1.1) via aPOT(r) = a⌊r⌋.

In parallel, (1.1) is also equivalent to the fact there exists a positive function aBM such that,
for all x > 0,

lim
t→∞

V (tx)− V (t)

aBM(t)
=

∫ x

1

sγ−1 ds. (2.2)

The bias of certain BM- and POT estimators is determined by the speed of convergence in the
latter two limit relations, which can be captured by suitable second order conditions.

For γ ∈ R, ρ ≤ 0 and x > 0, let

hγ(x) =

∫ x

1

sγ−1 ds, Hγ,ρ(x) =

∫ x

1

sγ−1
∫ s

1

uρ−1 du ds.

Definition 2.1 (Second order conditions). Let F be a cdf satisfying the domain-of-attraction
condition (1.1) for some γ ∈ R. Consider the following two assumptions.
(SO)U Suppose that there exists ρPOT ≤ 0, a positive function aPOT and a positive or negative

function APOT with limt→∞APOT(t) = 0, such that, for all x > 0,

lim
t→∞

1

APOT(t)

(

U(tx)− U(t)

aPOT(t)
− hγ(x)

)

= Hγ,ρPOT
(x).

(SO)V Suppose that there exists ρBM ≤ 0, a positive function aBM and a positive or negative
function ABM with limt→∞ ABM(t) = 0, such that, for all x > 0,

lim
t→∞

1

ABM(t)

(

V (tx) − V (t)

aBM(t)
− hγ(x)

)

= Hγ,ρBM
(x).

The functions |ABM| and |APOT| are then necessarily regularly varying with index ρBM and
ρPOT, respectively. The limit function Hγ,ρ might appear unnecessarily specific, but in fact it is
not, see de Haan and Stadtmüller (1996) or Section B.3 in de Haan and Ferreira (2006). If the
speed of convergence in (2.1) or (2.2) is faster than any power function, we set the respective
second order parameter as minus infinity. For example, for F = GGP

γ,σ from the GP family, we

have {U(tx) − U(t)}/(σtγ) = hγ(x), i.e. ρPOT = −∞ in this case. Likewise, any F = GGEV
γ,σ,µ

from the GEV distribution satisfies {V (tx) − V (t)}/(σtγ) = hγ(x), which prompts us to define
ρBM = −∞.

It is important to note that ρBM and ρPOT can be vastly different. A general result can be
found in Drees, de Haan and Li (2003), Corollary A.1: under an additional condition which only
concerns the cases γ = 1, ρBM = −1 or ρPOT = −1, the two coefficients are equal within the
range [−1, 0]. Otherwise, if (SO)V holds with ρBM < −1, then (SO)U holds with ρPOT = −1; if
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Distribution γ ρPOT ρBM

GP(γ, σ) γ −∞ −1
Exponential(λ) 0 −∞ −1
Uniform(0, 1) −1 −∞ −1
Arcsin −2 −2 −1
Burr(η, τ, λ) 1/(λτ) −1/λ max(−1/λ,−1)
tν , ν 6= 1 1/ν −2/ν max(−2/ν,−1)
Cauchy(= t1) 1 −2 −2
Weibull(λ, β), β 6= 1 0 0 0
Γ(α, β) 0 0 0
Normal(µ, σ2) 0 0 0

F (x) = exp(−(1 + xα)β) 1/(αβ) max(−1/β,−1) −1/β
Fréchet(α, σ) 1/α −1 −∞

Reverse Weibull(β, µ, σ) −1/β −1 −∞

GEV(γ, µ, σ) γ −1 −∞

Table 1

Extreme value index and second order parameters for various models.

(SO)U holds with ρPOT < −1, then (SO)V holds with ρBM = −1. Some values of the parameters
for various types of distributions are collected in Table 1.

We remark that for the the t1-distribution, we obtained ρBM = ρPOT = −2. This is a spe-
cial example for which Corollary 4.1 in Drees, de Haan and Li (2003) is not applicable: 2tA(t)
converges to 0 = 1− γ. Notice that for the six models in the first category ρPOT < ρBM (if we
consider λ > 1 in the Burr distribution and ν > 2 in the tν distribution). For the four models
in the second category ρPOT = ρBM while for the last four models, ρPOT > ρBM if we consider
β > 1 in the model F (x) = exp(−(1 + xα)β).

Let us now consider asymptotic theory for the estimation of the extreme value index γ. Per-
haps surprisingly, asymptotic theory for the BM method has hitherto mostly ignored the fact that
block maxima are only approximately GEV distributed (see, e.g., Prescott and Walden, 1980;
Hosking, Wallis and Wood, 1985; Bücher and Segers, 2017, among others). Only recent theo-
retical studies in Ferreira and de Haan (2015) and Dombry and Ferreira (2017) for the prob-
ability weighted moment (PWM) and the maximum likelihood (ML) estimator, respectively,
take the approximation into account. Correspondingly, the asymptotic bias can be explicitly
analyzed, relying on the second order condition (SO)V above. On the other hand, solid theoret-
ical studies regarding the POT method have a much longer history, see de Haan and Ferreira
(2006) for a comprehensive overview. For the sake of theoretical comparability with the BM
method, we will subsequently exemplarily deal with the ML estimator and the PWM estima-
tor, for which Theorems 3.4.2 and 3.6.1 in de Haan and Ferreira (2006) provide the respective
asymptotic theory under the assumption that (SO)U is met (the results rely on Drees, 1998;
Drees, Ferreira and de Haan, 2004).

Summarizing the above mentioned results, for both methods (BM and POT), the ML-estimators
are consistent for γ > −1 and asymptotically normal for γ > −1/2, while PWM-estimators are
consistent for γ < 1 and asymptotically normal for γ < 1/2. Asymptotic theory is formulated
under the conditions that k = kn satisfies k → ∞ and k/n → 0 (POT method) or r = rn satisfies
r → ∞ and k = r/n → 0 (BM method), as n → ∞. Under the respective second order conditions
(SO)U and (SO)V formulated above, the asymptotic results can be summarized as

γ̂
d≈ N

(

γ +Am(n/k)b,
1

k
σ2

)

, m ∈ {BM, POT},

where γ̂ is one of the four estimators, and where the asymptotic bias b and the asymptotic
variance σ2 depend on the specific estimator, the second order index ρm and γ. In particular,
the rate of convergence of the bias Am(n/k) crucially depends on the second order index ρm.
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In the next two subsections, we first discuss the best achievable rate of convergence and then
the asymptotic mean squared error in case the rates are the same. Finally, in the last subsection,
we discuss the choice of k, i.e., the number of large order statistics in the POT approach or the
number of blocks in the BM approach.

2.1. Rate of convergence

As is commonly done, we consider the rate of convergence of the root mean squared error. It is
instructive to first elaborate on the case Am(t) ≍ tρm with ρm ∈ (−∞, 0). The best attainable
rate of convergence is achieved when squared bias and variance are of the same order, that is,
when

A2
m

(n

k

)

≍
(n

k

)2ρm

≍ 1

k
.

Solving for k yields k ≍ n−2ρm/(1−2ρm), which implies

Rate of Convergence of γ̂ = nρm/(1−2ρm)

irrespective of m ∈ {ML, PWM}. For the POT approach, this result is known to hold for many other
estimators of γ; see de Haan and Ferreira (2006) (though not for every estimator, see Table 3.1
in that reference). In fact, it can be shown that this is the optimal rate under some specific
assumptions on the data generating process, see Hall and Welsh (1984). We conjecture that the
same result holds true for many other estimators relying on the BM method, though the literature
does not provide sufficient theoretical results yet except for the ML and PWM estimators.

Since ρBM and ρPOT might not be the same, the best attainable rate of convergence may be
different for the BM and POT approach. Table 2 provides a summary of which method results
in a better rate. The case where the rates are the same is discussed in more detail in Section 2.2
below.

2nd Order Parameters Rate POT Rate BM Better rate

ρ = ρBM = ρPOT ∈ [−1, 0) nρ/(1−2ρ) nρ/(1−2ρ) -

ρBM = −1, ρPOT < −1 nρPOT/(1−2ρPOT) n−1/3 POT

ρPOT = −1, ρBM < −1 n−1/3 nρBM/(1−2ρBM) BM

Table 2

Best attainable convergence rates for the BM and POT approach in case Am(t) ≍ tρm with ρm < 0 and for
typical relationships between ρBM and ρPOT (see Drees, de Haan and Li, 2003).

Let us finally mention that the specific assumption on the function Am made above (i.e.,
Am(t) ≍ tρm with ρm ∈ (−∞, 0)) is not essential, see the argumentation on pages 79–80 in
de Haan and Ferreira (2006). Moreover, for ρm = −∞, the convergence rate is ‘faster than
n−1/2+ε for any ε > 0’, and, depending on the underlying distribution, in fact could even achieve
n−1/2 (see also Remark 3.2.6 in de Haan and Ferreira, 2006).

2.2. Asymptotic mean squared error

As discussed in the previous subsection, if ρPOT 6= ρBM, the approach corresponding to a lower
ρ generically yields estimators for γ with a faster attainable rate of convergence than the other
approach. In this subsection, we consider the case ρPOT = ρBM. Then both approaches, at their
best attainable rate of convergence, will yield estimators of γ with the same speed of convergence.
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Hence, the efficiency comparison should be made at the level of asymptotic mean squared error
(AMSE) or, more precisely, its two subcomponents: asymptotic bias and asymptotic variance.
Notice that the asymptotic bias and variance depends on the specific estimator used, whence the
comparison can only be performed based on some preselected estimators.

A detailed analysis of the PWM and the ML estimators under the BM and POT approach has
been carried out in Ferreira and de Haan (2015) and Dombry and Ferreira (2017), for the case
ρBM = ρPOT ∈ [−1, 0] and γ ∈ (−0.5, 0.5). The results are as follows: when using the same value
for k, being either the number of large order statistics in the POT approach or the number of
blocks in the BM approach, the BM version of either ML or PWM leads to a lower asymptotic
variance compared to the corresponding POT version, for all γ ∈ (−0.5, 0.5). On the other hand,
the (absolute) asymptotic bias is smaller for the POT versions of the two estimators, for all
(γ, ρ) ∈ (−0.5, 0.5)× [−1, 0].

When comparing the optimal AMSE (where optimal refers to the fact that the parameter k
is chosen in such a way that the AMSE for the specific estimator is minimized), it turns out
that, for the ML estimator, the POT approach yields a smaller optimal AMSE. For the PWM
estimator, the BM method is preferable for most combinations of (γ, ρ). When comparing all
four estimators, the combination ML-POT has the overall smallest optimal AMSE.

2.3. Threshold and block length choice

Both the POT and the BM approach require a practical selection for the intermediate sequence
k = kn in a sample of size n. In the POT approach, the choice of k problem can be interpreted as
the choice of the threshold above which the POT approximation in (1.5) is regarded as sufficiently
accurate. Similarly, in the BM approach, k is related to r = n/k, which is the size of the block
of which the GEV approximation to the block maximum is regarded as sufficiently accurate.

The theoretical conditions that k → ∞ and k/n → 0, as n → ∞ are useless in guiding the prac-
tical choice. Practically, often a plot between the estimates based on various k against the values
of k is made for resolving this problem, the so-called “Hill plot” (Drees, de Haan and Resnick,
2000), despite the fact that it can be also be applied to other POT or even BM estimators than
just the Hill estimator. The ultimate choice is then made by taking a k from the first stable
region in the “Hill plot”. Nevertheless, the estimators are often rather sensitive to the choice of
k.

For the POT approach, there exist a few attempts on resolving the choice of k issue in a formal
manner. For example, one solution is to find the optimal k that minimizes the asymptotic MSE;
see, e.g., Danielsson et al. (2001), Drees and Kaufmann (1998) and Guillou and Hall (2001). As
an indirect solution to the problem, one may also rely on bias corrections, which typically allows
for a much larger choice of k, see, e.g., Gomes, De Haan and Rodrigues (2008). After the bias
correction, the “Hill plot” usually shows a stable behavior and the estimates are less sensitive
to the choice of k. For an extensive review on bias corrections, see Beirlant, Caeiro and Gomes
(2012).

Compared to the extensive studies on the threshold choice and on bias corrections for the POT
approach, there is, to the best of our knowledge, no existing literature addressing these issues for
the BM approach. This may partly be explained by the fact that block sizes are often given by
the problem at hand, for instance, block sizes corresponding to year. Nevertheless, based on the
recent solid theoretical advances on the BM method, the foundations are laid to explore these
issues in a rigorous manner in the future.
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3. BM and POT for Univariate Stationary Time Series

In many practical applications, the discussion from the previous section is not quite helpful: the
underlying data sample is not i.i.d., but in fact a stretch of a possibly non-stationary time series.
Often, by either restricting attention to a proper time horizon or by some suitable transformation,
the time series can at least be assumed to be stationary.1 Throughout this section, we make the
following generic assumption: (Xt)t∈Z is a strictly stationary univariate time series, and the
stationary cdf F satisfies the domain-of-attraction condition (1.1). It is important to note that
the parameters γ, ar and br only depend on the stationary cdf F , and that for instance (1.3)
expressing high quantiles of F through these parameters continues to hold for time series. Let
us begin by passing over the arguments from Section 1 that eventually led to the BM- and POT
method.

3.1. The POT approach for time series

Recall that the POT approach is based on the sample of large order statistics denoted by
XPOT = {Xn−k:n, . . . , Xn:n}. The main motivation that lead us to consider this sample was
the marginal limit relation (1.2). Bearing in mind that, under mild extra conditions on the serial
dependence (ergodicity, mixing conditions, . . . ), empirical moments are consistent for their theo-
retical counterparts, it is thus still reasonable to estimate the respective parameters by any form
of moment matching, e.g., by PWM. The asymptotic variance of such estimators will however
be different from the i.i.d. case in general (a consequence of central limit theorems for time series
under mixing conditions).

Consider the ML-method: unlike for i.i.d. data, the sample XPOT cannot be regarded as in-
dependent anymore, whence it is in general impossible to derive the (approximate) generalized
Pareto likelihood of XPOT. As a circumvent, one may ‘do as if’ the likelihood arising in the i.i.d.
case is also the likelihood for the time series case (quasi-maximum likelihood), and use essen-
tially the same ML-estimators as for the i.i.d. case. Then, since the latter estimator is in fact
also depending on empirical moments only, we still obtain proper asymptotic properties such as
consistency and asymptotic normality.

Respective theory can be found in Hsing (1991); Resnick and Stărică (1998) for the Hill esti-
mator and in Drees (2000) for a large class of estimators, including PWM and ML. Most of the
estimators have the same bias as in the i.i.d. case, whereas their asymptotic variances depend
on the serial dependence structure and are usually higher than those obtained in the i.i.d. case.
Since the asymptotic bias shares the same explicit form, bias correction can also be performed
in the same way as in the i.i.d. case; see, e.g., De Haan, Mercadier and Zhou (2016).

3.2. The BM approach for time series

Recall that the BM approach is based on the sample of block maxima XBM = {M1,r, . . . ,Mk:r},
whereMj,r denotes the maximum within the jth disjoint block of observations of size r. The main
motivation in Section 1 that lead us to consider this sample as approximately GEV-distributed
was the relation

Pr(M1,r ≤ arx+ br) = F r(arx+ br) ≈ GGEV

γ,0,1(x),

1For example, for financial applications, the stationarity assumption can often be approximately guaranteed
by restricting attention to a time horizon during which few macro economic conditions had changed. Similarly,
for environmental applications, this can be achieved by restricting attention to observations falling into, say, the
summer months.
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for large r. The first equality is not true for time series, whence more sophisticated arguments
must be found for the BM method to work for time series. In fact, it can be shown that if F
satisfies (1.1), if Pr(M1,r ≤ arx+ br) is convergent for some x and if mild mixing conditions on
the serial dependence (known as D(un)-conditions) are met, then there exists a constant θ ∈ [0, 1]
such that

lim
r→∞

Pr(M1:r ≤ arx+ br) =
(

GGEV

γ,0,1(x)
)θ

for all x ∈ R (Leadbetter, 1983). The constant θ is called the extremal index and can be inter-
preted as capturing the tendency of the time series that extremal observations occur in clusters.
If θ > 0, then letting

ãr = arθ
γ , b̃r = br − ar

1− θγ

γ
(3.1)

we immediately obtain that

lim
r→∞

Pr(M1:r ≤ ãrx+ b̃r) = GGEV

γ,0,1(x) (3.2)

for all x ∈ R. Hence, the sample XBM is approximately GEV-distributed with parameter (ãr, b̃r, γ),
which can then be estimated by any method of choice. It is important to note that, unless θ = 1
or γ = 0, ãr and b̃r are different from ar and br. Consequently, additional steps must be taken
for estimating quantiles of F via (1.3), see also Section 3.3.2 below. Via (3.1), it is possible
to transform between (ar, br) and (ãr, b̃r) if the extremal index θ is known or estimated. Re-
garding the estimation of the extremal index, a large variety of estimators has been proposed,
which may itself be grouped into four categories: 1) BM-like estimators based on “blocking”
techniques (Northrop, 2015; Berghaus and Bücher, 2017), 2) POT-like estimators that rely on
threshold exceedances (Ferro and Segers, 2003; Süveges, 2007), 3) estimators that use both prin-
ciples simultaneously (Hsing, 1993; Robert, 2009; Robert, Segers and Ferro, 2009) and 4) estima-
tors which, next to choosing a threshold sequence, require the choice of a run-length parameter
(Smith and Weissman, 1994; Weissman and Novak, 1998).

Since the distance between the time points at which the maxima within two successive blocks
are attained is likely to be quite large, the sample XBM can be regarded as approximately inde-
pendent. As a matter of fact, the literature on statistical theory for the BM method is mostly
based on the assumption that XBM is a genuine i.i.d. sample from the GEV-family (see, e.g.,
Prescott and Walden, 1980; Hosking, Wallis and Wood, 1985; Bücher and Segers, 2017, among
others). Two approximation errors are thereby completely ignored: the cdf is only approximately
GEV, and the sample is only approximately independent. Solid theoretical results taking these
errors into account are rare: Bücher and Segers (2018b) treat the ML-estimator in the heavy-
tailed case (γ > 0). The main conclusions are: the sample can safely be regarded as independent,
but a bias term may appear which, similar as in Section 2, depends on the speed of convergence
in (3.2). Bücher and Segers (2018a) improve upon that estimator by using sliding blocks instead
of disjoint blocks. The asymptotic variance of the estimator decreases, while the bias stays the
same. Moreover, the resulting ‘Hill-Plots’ are much smoother, guiding a simpler choice for the
block length parameter.

3.3. Comparison between the two methods

Let us summarize the main conceptual differences between the BM and the POT method for time
series. First of all, BM and POT estimate ‘the same’ extreme value index γ, but possibly different
scaling sequence ãr, b̃r and ar, br. Second, the sample XBM can be regarded as asymptotically
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independent (asymptotic variances of estimators are the same as if the sample was i.i.d.), while
XPOT is serially dependent, possibly increasing asymptotic variances of estimators compared to
the i.i.d. case.

Due to the lack of a general theoretical result on the BM method, a theoretical comparison on
which method is more efficient along the lines of Section 2 seems out of reach for the moment.
In particular, a relationship between the respective second order conditions controlling the bias
is yet to be found. However, some insight into the merits and pitfalls of two approaches can be
gained by considering the problem of estimating high quantiles and return levels.

3.3.1. Estimating high quantiles

Recall that high quantiles of the stationary distribution can be expressed in terms of ar, br and
γ, see (1.3). As a consequence, based on the plug-in principle, the POT method immediately
yields estimators for high quantiles. On the other hand, the BM method cannot be used straight-
forwardly, as it commonly only provides estimators of ãr, b̃r and γ. Via (3.1), the latter estimators
may be transferred into estimators of ar, br and γ using an additional estimator of the extremal
index θ. It is important to note that the latter estimators typically depend on the choice of one or
two additional parameters, and that they are often quite variable. By contrast, the POT approach
therefore seems more suitable when estimating high quantiles or, more generally, parameters that
only depend on the stationary distribution (such as probabilities of rare events). Recall though
that estimators based on the POT approach usually suffer from a higher asymptotic variance
due to the serial dependence.

3.3.2. Estimating return levels

Let Fr(x) = Pr(M1:r ≤ x). For T ≥ 1, the T -return level of the sequence of block maxima is
defined as the 1− 1/T quantile of Fr, that is,

RL(T, r) = F←r (1− 1/T ) = inf{x ∈ R : Fr(x) ≥ 1− 1/T }.

Since block maxima are asymptotically independent, it will take on average T blocks of size
r until the first such block whose maximum exceeds RL(T, r). Now, since Fr is approximately
equal to the GEV-cdf with parameters γ, b̃r, ãr for large r by (3.2), we obtain that

RL(T, r) ≈ b̃r + ãr
{−r log(1− 1/T )}−γ − 1

γ
≈ b̃r + ãr

(r/T )−γ − 1

γ
.

In comparison to the estimation of high-quantiles, see (1.3), we have now expressed the object
of interest in terms of the sequences ãr and b̃r and the extreme-value index γ. Following the
discussion in the previous section, it is now the BM method which yields simpler estimators that
do not require additional estimation of the extremal index. By contrast, the POT approach only
results in estimators of (ar, br) and γ, and therefore requires a transformation to (ãr, b̃r) via (3.1)
based on an estimate of the extremal index θ.

4. BM and POT for Multivariate Observations

Due to the lack of asymptotic results on the multivariate BM method which take the approxima-
tion error into account, a deep comparison between the BM and POT approach is not feasible
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yet. Within this section we try to identify the open ends that may eventually lead to such results
in the future.

Let F be a d-dimensional cdf. The basic assumption of multivariate extreme-value theory,
generalizing (1.1), is as follows: suppose that there exists a non-degenerate cdf G and sequences
(ar,j)r∈N, (br,j)r∈N, j = 1, . . . d, with ar,j > 0 such that

lim
r→∞

Pr
(maxri=1 Xi,1 − br,1

ar,1
≤ x1, . . . ,

maxri=1 Xi,d − br,d
ar,d

≤ xd

)

= G(x1, . . . , xd) (4.1)

for any x1, . . . , xd ∈ R, where Xi = (Xi,1, . . . , Xi,d)
′, i ∈ N, is an i.i.d. sequence from F , and

where the marginal distributions Gj of G, j = 1, . . . , d, are GEV-distributions with location pa-
rameter 0, scale parameter 1 and shape parameter γj ∈ R (location 0 and scale 1 can always be
reached by adapting the sequences ar,j are br,j if necessary). The dependence between the coor-
dinates of G can be described in various equivalent ways (see, e.g., Resnick, 1987; Beirlant et al.,
2004; de Haan and Ferreira, 2006): by the stable tail dependence function L (Huang, 1992), by
the exponent measure µ (Balkema and Resnick, 1977), by the Pickands dependence function A
(Pickands, 1981), by the tail copula Λ (Schmidt and Stadtmüller, 2006), by the spectral mea-
sure Φ (de Haan and Resnick, 1977), by the madogram ν (Naveau et al., 2009), or by other less
popular objects. All these objects are in one-to-one correspondence, and for each of them a large
variety of estimators has been proposed, both in a nonparametric way and under the assumption
that the objects are parametrized by an Euclidean parameter.

In this paper, we will mainly focus on nonparametric estimation. As in the univariate case,
the estimators may again be grouped into BM and POT based estimators, see Sections 4.1
and 4.2 below. Often, estimation of the marginal parameters and of the dependence structure is
treated successively. It is important to note that standard errors for estimators of the dependence
structure may then be influenced by standard errors for the marginal estimation, a point which
is often ignored in the literature on statistics for multivariate extremes. In fact, a phenomenon
well-known in statistics for copulas (Genest and Segers, 2010) may show up: possibly completely
ignoring additional information about the marginal cdfs, estimators for the dependence structure
may have a lower asymptotic variance if marginal cdfs are estimated nonparametrically; see
Bücher (2014) for a discussion of the empirical stable tail dependence function from Section 4.1
below, and Genest and Segers (2009) for estimation of Pickands dependence function based on
i.i.d. data from a bivariate extreme value distribution, Section 4.2 below.

4.1. The POT method in the multivariate case

Suppose X1, . . . ,Xn, with Xi = (Xi,1, . . . , Xi,d)
′, is an i.i.d. sample from F . Recall that the uni-

variate POT method was based on the observations XPOT = {Xn−k:n, . . . , Xn:n}, which may be
rewritten as XPOT = {Xi : rank(Xi among X1, . . . , Xn) ≥ n− k). Thus, a possible generalization
to multivariate observations consists of defining

XPOT = {Xi | rank(Xi,j among X1,j , . . . , Xn,j) ≥ n− k for some j = 1, . . . , d},

that is, XPOT comprises all observations for which at least one coordinate is large. Any estimator
defined in terms of these observations may be called an estimator based on the multivariate POT
method.

As an example, consider the estimation of the so-called stable tail dependence function L,
which is defined as

L(x) = lim
t↓0

t−1 Pr(F1(X1) > 1− tx1 or . . . or Fd(Xd) > 1− txd), (4.2)
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where x = (x1, . . . , xd)
′ ∈ [0, 1]d; a limit that necessarily exists under (4.1), but may also exist for

marginals Fj not in any domain-of-attraction. The function L can be estimated by its empirical
counterpart, defined as

L̂(x1, . . . , xd) =
1

k

n
∑

i=1

1(F̂n,1(Xi,1) > 1− k
nx1 or . . . or F̂n,d(Xi,d) > 1− k

nxd),

where F̂n,j denotes the empirical cdf based on the observations X1,j , . . . , Xn,j ; see, e.g., Huang
(1992). Since x ∈ [0, 1]d, the estimator in fact only depends on the sample XPOT.

Suppose the following natural second order condition quantifying the speed of convergence in
(4.2) is met: there exists a positive or negative function A and a real-valued function g 6≡ 0 such
that

lim
t→∞

tPr(F1(X1) > 1− x1

t or . . . or Fd(Xd) > 1− xd

t )− L(x1, . . . , xd)

A(t)
= g(x) (4.3)

uniformly in x ∈ [0, 1]d. Then, under additional smoothness conditions on L, it can be shown
that L̂ is consistent and asymptotically Gaussian in terms of functional weak convergence, the
variance being of order 1/k and the bias being of order A(n/k), provided that k = kn → ∞
and k/n → 0 as n → ∞; see, e.g., Huang (1992); Einmahl, Krajina and Segers (2012), among
others. Following the discussion in Section 2, if we additionally assume that A(t) ≍ tρ for some
ρ ∈ (−∞, 0), the best attainable convergence rate, achieved when squared bias and variance are
balanced, is

Rate of Convergence of L̂(x) = nρ/(1−2ρ).

This convergence rate is in fact optimal under additional conditions on the data-generating
process, see Drees and Huang (1998). Also note that L̂ suffers from an asymptotic bias as in the
univariate case, and that corresponding bias corrections for the bivariate case have been proposed
in Fougères et al. (2015).

As in the univariate case, the literature on further theoretical foundations for the multivari-
ate POT method is vast, see, e.g., Einmahl, de Haan and Piterbarg (2001); Einmahl and Segers
(2009) for nonparametric estimation of the spectral measure, Drees and de Haan (2015) for esti-
mation of failure probabilities, or de Haan, Neves and Peng (2008); Einmahl, Krajina and Segers
(2012) for parametric estimators, among many others.

4.2. The BM method in the multivariate case

Again suppose X1, . . . ,Xn is an i.i.d. sample from F . Let r denote a block size, and k = ⌊n/r⌋
the number of blocks. For ℓ = 1, . . . , k, let Mℓ,r = (Mℓ,1,r, . . . ,Mℓ,1,r)

′ denote the vector of
componentwise block-maxima in the ℓth block of observations of size r (it is worthwhile to
note that Mℓ,r may be different from any Xi). Any estimator defined in terms of the sample
XBM = (M1,r, . . . ,Mk,r) is called an estimator based on the BM approach.

Just as for the univariate BM method, asymptotic theory is usually formulated under the
assumption that M1, . . . ,Mk is a genuine i.i.d. sample from the limiting distribution G; a po-
tential bias is completely ignored. Moreover, estimation of the marginal parameters is often
disentangled from estimation of the dependence structure, with theory for the latter either de-
veloped under the assumption that marginals are completely known (which usually leads to wrong
asymptotic variances), or under the assumption that marginals are estimated nonparametrically.
See, for instance, Pickands (1981); Capéraà, Fougères and Genest (1997); Zhang, Wells and Peng
(2008); Genest and Segers (2009); Gudendorf and Segers (2012) for nonparametric estimators
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and Genest, Ghoudi and Rivest (1995); Dombry, Engelke and Oesting (2016) for parametric ones,
among many others.

To the best of our knowledge, the only reference that takes the approximation error in-
duced by the assumption of observing data from a genuine extreme-value model into account is
Bücher and Segers (2014), where the estimation of the Pickands dependence function A based on
the BM-method is considered. Not only the bias is treated carefully there, but also the underlying
observations X1, . . . ,Xn may possess serial dependence in form of a stationary time series. Just
like in the univariate case described above, the best attainable convergence rate of the estimator
again depends on a second order condition.

4.3. Comparison between the two methods

Due to the lack of honest theoretical results on the BM method, not much can be said yet
about which method is better in terms of, say, the rate of convergence. The missing tool is a
multivariate version of Corollary A.1 in Drees, de Haan and Li (2003), allowing one to move from
a BM second order condition (such as the one imposed in Bücher and Segers, 2014) to a POT
second order condition as in (4.3), and vice versa. It then seems likely that similar phenomena
as in the univariate case in Section 2 may show up.

4.4. Multivariate time series

Moving from i.i.d. multivariate observations to multivariate strictly stationary time series in-
duces similar phenomena as in the univariate case, whence we keep the discussion quite short.
Under suitable conditions on the serial dependence, estimators based on the POT approach are
still consistent and asymptotically normal, though with a possibly different asymptotic variance
(this can for instance be deduced from Drees and Rootzén, 2010). Regarding the BM method,
the same heuristics as in the univariate case apply: block maxima may safely be assumed as in-
dependent and as following a multivariate extreme value distribution (Bücher and Segers, 2014).
The estimators based on the BM method are then also consistent and asymptotically normal with
a potential bias. Similar to the discussion on the location and scale parameters in the univariate
case, the objects that are estimated by POT and BM may be different but are linked by the
multivariate extremal index (Nandagopalan, 1994, see also Section 10.5 in Beirlant et al., 2004).
Hence, following the discussion in Section 3.3, it seems preferable to estimate quantities that
only depend on the tail of the stationary distribution by the POT approach, while tail quantities
similar to the univariate return levels (that also depend on the serial dependence) are preferably
estimated by the BM approach. As in the univariate case, a detailed theoretical comparison does
not seem to be feasible.

5. BM and POT for stochastic processes

The BM approach for stochastic processes is based on modeling by max-stable processes, i.e.,
on limit models arising for block maxima taken over i.i.d. stochastic processes. Recent research
has focussed on the structure and characteristics of max-stable processes, see, e.g., De Haan
(1984), Giné, Hahn and Vatan (1990) and Kabluchko, Schlather and De Haan (2009); on simu-
lating frommax-stable processes, see, e.g., Dombry, Éyi-Minko and Ribatet (2013), Dieker and Mikosch
(2015), Dombry, Engelke and Oesting (2016) and Oesting, Schlather and Zhou (2018); and on
statistical inference based on max-stable processes, see, e.g., Coles and Tawn (1996), Buishand, De Haan and Zhou
(2008), Padoan, Ribatet and Sisson (2010) and Huser and Davison (2014).
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As mentioned in the introduction, there is a clear supply issue regarding the POT approach
to stochastic process models. Early studies such as Einmahl and Lin (2006) consider the esti-
mation of marginal parameters only, or consider nonparametric estimation of the dependence
structure (de Haan and Lin, 2003), however with only weak consistency established. Recent
development on Generalized Pareto Processes allow for considering parametric estimation for
the dependence structure, see, e.g. Ferreira and De Haan (2014), Thibaud and Opitz (2015) and
Huser and Wadsworth (2017). Given the imbalanced nature, we skip a deeper review on the BM
and POT approaches for extremes regarding stochastic processes.

6. Open problems

Throughout this paper, we have already identified a number of open research problems, mostly
related to an honest verification of the BM approach. Within the following list, we recapitulate
those issues and add several further possible research questions:

• Asymptotic theory on further estimators based on the block maxima method, if possible
allowing for a comparison between the imposed second order condition and those from the
POT approach.

• In case the BM method yields to faster attainable rates of convergence than the POT
approach (Section 2.1): are the obtained rates optimal?

• Derive a test for which approach is preferably for a given data set (H0 : ρBM ≤ ρPOT, or
similar).

• Block length choice and bias reduction for BM.
• More results on the sliding block maxima method (non-heavy tailed case, multivariate
case).

• A comparison of BM and POT second order conditions in the multivariate case.
• A comparison of return level/quantile estimation based on BM and POT, possibly incor-
porating an estimator for the extremal index.

• Extension to stochastic processes (max-stable processes and generalized Pareto processes):
theoretical results on statistical methodology are still rare, and a comparison between BM
and POT is not feasible yet.

7. Conclusion

There is no winner.
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Bücher and Zhou/Block Maxima vs. Peak-over-Threshold 18

value copulas. J. Statist. Plann. Inference 142 3073–3085. . MR2956794
Guillou, A. and Hall, P. (2001). A diagnostic for selecting the threshold in extreme value
analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 63 293–
305.

Gumbel, E. J. (1958). Statistics of extremes. Columbia University Press, New York.
MR0096342 (20 ##2826)

Hall, P. and Welsh, A. H. (1984). Best attainable rates of convergence for estimates of
parameters of regular variation. The Annals of Statistics 12 1079–1084.

Hill, B. M. (1975). A Simple General Approach to Inference about the Tail of a Distribution.
Ann. Statist. 3 1163–1174.

Hosking, J. R. M., Wallis, J. R. and Wood, E. F. (1985). Estimation of the generalized
extreme-value distribution by the method of probability-weighted moments. Technometrics 27
251–261. . MR797563

Hsing, T. (1991). On Tail Index Estimation Using Dependent Data. Ann. Statist. 19 1547–1569.
Hsing, T. (1993). Extremal index estimation for a weakly dependent stationary sequence. Ann.
Statist. 21 2043–2071.

Huang, X. (1992). Statistics of bivariate extreme values. PhD thesis, Tinbergen Institute Re-
search Series, Netherlands.

Huser, R. and Davison, A. (2014). Space-time modelling of extreme events. Journal of the
Royal Statistical Society. Series B. 76 439–461.

Huser, R. G. and Wadsworth, J. L. (2017). Modeling spatial processes with unknown ex-
tremal dependence class. Journal of the American Statistical Association Forthcoming.

Kabluchko, Z., Schlather, M. and De Haan, L. (2009). Stationary max-stable fields asso-
ciated to negative definite functions. The Annals of Probability 37 2042–2065.

Leadbetter, M. R. (1974). On extreme values in stationary sequences. Z. Wahrscheinlichkeit-
stheorie und Verw. Gebiete 28 289–303. . MR0362465

Leadbetter, M. R. (1983). Extremes and local dependence in stationary sequences. Z.
Wahrsch. Verw. Gebiete 65 291–306. . MR722133 (85b:60033)

Nandagopalan, S. (1994). On the multivariate extremal index. Journal of Research-National
Institute of Standards and Technology 99 543–543.

Naveau, P., Guillou, A., Cooley, D. and Diebolt, J. (2009). Modelling pairwise depen-
dence of maxima in space. Biometrika 96 1–17. . MR2482131

Northrop, P. J. (2015). An efficient semiparametric maxima estimator of the extremal index.
Extremes 18 585–603.

Oesting, M., Schlather, M. and Zhou, C. (2018). Exact and fast simulation of max-stable
processes on a compact set using the normalized spectral representation. Bernoulli 24 1497–
1530.

Padoan, S. A., Ribatet, M. and Sisson, S. A. (2010). Likelihood-based inference for max-
stable processes. J. Amer. Statist. Assoc. 105 263–277. . MR2757202

Pickands, J. (1975). Statistical Inference Using Extreme Order Statistics. Ann. Statist. 3 119–
131.

Pickands, J. III (1981). Multivariate extreme value distributions. In Proceedings of the 43rd
session of the International Statistical Institute, Vol. 2 (Buenos Aires, 1981) 49 859–878,
894–902. With a discussion. MR820979

Prescott, P. and Walden, A. T. (1980). Maximum likelihood estimation of the parameters of
the generalized extreme-value distribution. Biometrika 67 723–724. . MR601119 (81m:62046)

Resnick, S. I. (1987). Extreme values, regular variation, and point processes. Applied Probability.
A Series of the Applied Probability Trust 4. Springer-Verlag, New York. . MR900810
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